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Recent e-d elastic scattering experiments show that the deuteron elastic electromagnetic
form factor behaves like (Q%) ~° at large momentum transfers. This fact suggests that we
can observe a possible six-quark configuration besides the ordinary proton-neutron bound
state configuration in the deuteron state, because the power 5 is considered to come directly
from the degree of freedom of the internal orbital motion in the relativistic harmonic oscil-
lator model, for the same reason as the pion form factor of the simple pole type and the
nucleon form factor of the dipole type. Using the theoretical formula of the deuteron form
factor given by the model, we analyze the experimental data and then determine the proba-
bility of finding the six-quark configuration. Finally, a simple potential model is introduced
to connect the probability with possible dibaryon resonance states. Consistent numerical
relations are obtained between the deuteron form factor and the dibaryon resonances.

§ 1. Introduction

Recent experiments” of high energy electron-deuteron elastic scattering call
our attention to an interesting behaviour of the deuteron electromagnetic form
factor approaching to (Q% ~° in the region of large Q% (? being the invariant
momentum transfer squared. Ordinary nuclear physics, in which the deuteron is
a loosely bound system composed of two elementary particles—structureless proton
and neutron, never gives such a hard Q*dependence for the form factor but only
a soft one falling down more rapidly than the experimental result for inecreasing
Q® as a reflection of loose binding. The experiments, therefore, seem to us to
suggest that the deuteron state has a hadron physics component—for example, a
six-quark configuration in addition to the ordinary proton-neutron bound state in

nuclear physics. This view would be compatible with the recent discovery of dibar-
yon states® and their possible interpretations based on hadron physics.”

The possible existence of the six-quark configuration is also presumed by the
well-known experimental facts that the pion and nucleon electromagnetic form
factors are well described by the empirical formulas of the simple pole type and
of the dipole type, respectively. If the powers ‘1’ and ‘2’ of these form factors
come from the degree of freedom of the internal orbital motion in pion and nu-
cleon,® then we can suppose that the hard component of the deuteron form factor

* This fact was firstly shown by Fujimura, Kobayashi and Namiki (see Ref. 5)). Later, some
authors derived the same results through the discussion of the dimensional counting rule on the
basis of renomalizable and scale invariant field theory (see Ref. 6)).
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originating from the six-quark configuration should behave like (Q% ° at larger
Q?. Within the framework of the relativistic harmonic oscillator model with the
definite metric,”* in fact, one of the present authors and his collaborators gave
the theoretical form factors

@) =1, 7 e - 0 WQQM)] (-1
@ =[1 +2]%[] exp[‘@i@; I:?@%m] (1-2)

for pion and nucleon, respectively, and then pointed out that the powers ‘1’ and
‘2> mean the number of relative coordinates of the constituent quarks in pion and
nucleon. For details, see Refs. 5), 7) and the Appendix of this paper. For the sake
of exhibition, the theoretical curves of F, and Fy given by Egs. (1-1) and (1-2)
are shown together with experimental plot in Fig. 1. Note here that we have
used the SU(3)-symmetric masses, M,=0.558 GeV and My=1.097 GeV, and the
approximately common mass formula constants «,=0.5(GeV/c)* and ay=0.44
(GeV/c)2

In this paper we analyze the hard component of the deuteron form factor

a=0.44 (GeV?)
Mp =1.097 (GeV)
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Fig. 1. (@) The electromagnetic pion form factor in the RHOM model and comparison with
experiments.  (b) The electromagnetic proton form factor in the RHOM model and
comparison with experiments.

* In what follows, we shall use the abbreviation RHOM for this model.
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Deuteron Elastic Electromagnetic Form Factor 561

using the theoretical formula obtained from the six-quark configuration in the
RHOM, and give a close relation of the hard component with a possible dibaryon
resonance using a simple potential model.

§ 2. Phenomenological analysis of the deuteron form factor based
on the RHOM formula

In the preceding section we have emphasized the similarity of the power
behaviour of the form factors between the deuteron case and the pion and nucleon
cases. Nevertheless, there exists an essential difference between the deuteron state
and the pion and nucleon states, because the dominant component of the deuteron
wave function is undoubtedly given by ordinary nuclear physics. The six-quark
configuration is only its small component. Consequently, it is allowed to assume
that the deuteron wave function is written down as

Op=0ypcos 04@g,sin 0, (2-1)

where @yp represents a loosely bound state of proton and neutron to be identified
with the ordinary deuteron state when the six-quark component @, is discarded.
Now we suppose that [cos 0| >|sin 0], and further that @y, has nonzero values
only outside the ‘hard core’ region of the ordinary nuclear force, while @, distri-
butes only inside the ‘hard core’. Hence the introduction of @, implies that we
have assumed the existence of a new attractive force originating from the hadron
physics origin inside the ‘hard core’. Such an attractive force will be schematized
by a simple potential model in § 3.
Now we have the deuteron form factor

Fp(Q") =Fyp(Q)cos® 0+ Fy (Q°) sin® 0, 2-2)

where Fyp(Q® and Fy, (Q%) are form factors obtained from @yp and @y, respecti-
vely. It should be remarked that Fyp(Q?® is a rapidly decreasing function of Q?
for increasing QF, because the ordinary deuteron wave function describes a loosely
bound system spreading over a rather wide region. So we can observe only
Fo (Q%sin® 0 in the region Q*2>=1(GeV/c)® This is the base on which we analyze
phenomenologically the experimental plot of the deuteron form factor using the
theoretical formula for Fg,(Q». As derived in the Appendix, the RHOM model

gives us the theoretical formula

Fru(@)= [1 * 7]%4:;] Cew [ N 421, 1+ (QZQ/QZMDZ)] (2:3)

which certainly approaches (Q%) ~° at larger Q. It must be noticed here that we
have discarded .the spin-unitary spin part of the deuteron wave function and its
contribution to the Q*dependence of the deuteron form factor. Recalling the argu-
ments to obtain the pion and nucleon form factors within the framework of the
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I r RHOM together with the SU(6) ; scheme
of the spin-unitary spin dependence, we
may conclude that the Q®-dependence com-
ing from the spin-unitary spin part gives
only a constant factor of order 1.%
Throughout this paper we shall go on
only with the orbital wave function. we

«’; will deal with the contribution of the

= spin-unitary spin part to the (Q®-dependence
- e ; in a forthcoming chance.

o1k \ We are now at the position to analyze

T the experimental result shown in Fig. 2

10k \ along the line of thought mentioned above.

-t {\ First we have to fix the value of a using

T L the formula ay,= (N)**c derived in the

o 2 023[(66\/[/'6)2]5 6 Appendix for an N-quark system. If £ is

so determined as to give ap=~=0.5(GeV /c)?
Fig. 2. Fit of |Fe(Q?)sin®0|® with experimental ) h & h ’ ( /)
A(QY) in the region of larger Qi(=1 1 the proton case, then we have «p

(GeV/o)?). ~1.4(GeV/c)®. It should be remarked
that the nonzero region of @, with this
value of «p nearly coincides with the ‘hard core’ region of the nuclear force.
This is one of the satisfactory features of our model. With ap=~1.4(GeV/c)2
we can proceed to the next procedure of finding the best-fit of the theoretical
curve Fy (Q%)sin® 0 with the experimental plot in the region of larger Q*(=>1
(GeV/c)?), by adjusting values of Mp and sin®*0. Practically we have performed
this procedure, using the plot of A=F)* obtained by the Rosenbluth formula
do do 2 2 2
A = (47 W [A@) + B@) tan* (0/2)]
from observation of electron-deuteron elastic scattering for small scattering angles
(0,=0) (see Fig. 2). Thus the procedure gives us Mp*=1.5(GeV)* and sin®0
=~0.07.%%¥  Therefore, we can conclude that the probability of finding the six-quark
configuration in the deuteron state is about 79%;. Furthermore if necessary, one
could assert that the symmetric mass of a possible deuteron multiplet is nearly

equal to Mp~+1.5~1.2 GeV.

* See Ref. 7), especially see the paper by S. Saito. As for the SU(6)x symmetry, see also
Ref. 8).

#) Similar results were obtained by some authors in Ref. 9) along the line of the same ana-
lysis using the empirical pentapole fit to the deuteron form factor.
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Deuteron Elastic Electromagnetic Form Factor 563

§ 3. Possible connection with dibaryon states

In this section we schematize a simple potential model to give the six-quark
configuration in the deuteron state, and discuss a possible connection of the proba-
bility (sin®0 in § 2) with the elastic width of dibaryon resonance states.

Let us start our discussion with the following internal orbital wave function

O(r,s, 7,8, R) =d,(r, 5) ¢ (', ) P(R) 3-D

for a proton-neutron system. Variables (7, s) and (+’, s”) are, respectively, relative
coordinates of constituent quarks in the proton and the neutron. Variable R
stands for the relative coordinate between the two centre-of-mass coordinates of the
proton and the neutron. Following ordinary nuclear physics, ¢y (R) should vanish
inside the ‘hard core’ region of the nuclear force. However, we want to make
a model which enables the deuteron state to have the six-quark configuration
never vanishing inside the ‘hard core’. Defining ¢yp(R) =¢(R)0(R—R,) and
G (R) =¢(R)0(R,—R) in which 0 is the Heaviside step function and R, the ‘hard
core’ radius, then we have

P (R) =dwp (R) + ¢ (R) (3-2)

by which the whole wave function @ is decomposed as

@Eqqusn(//NP + ¢p¢n¢c . (3 : 3)

Here we equate the first and second terms of Eq. (3-3) to @yp cos0 and @,
xsinf of Eq. (2-1), respectively, and then replace @, with the RHOM wave
function given in the Appendix. This is the outline of our schedule. Qur task
in this section is to discuss ¢)(R) by a simple potential model and to find the
relation of sin®*6@ to the elastic width of dibaryon resonance states.

In the relativistic scheme, variable R has four components (R, R,), but we
suppress here the dependence of ¢ on relative time R,. The angle dependence of
¢ is determined and can be separated from the |R|-dependence if we fix the
angular momentum state of the proton-neutron state, for example, to be in S-state.
Then we have only to give the dependence of ¢ on |R|, for which we put here
a nonrelativistic Schrédinger equation

d*u (R)

gt TME=VER))uR)=0 (3-4)

for «(R)=RJ(R), where we have rewritten |R| by the same letter R again.
Equation (3-4) is designed for a proton-neutron system with reduced mass (M/2),
M being the physical nucleon mass.

Now let us suppose that the potential V' (R) can be represented schematically
by Fig. 3. The ordinary nuclear physics looks upon the very high potential
barrier located around R, as the ‘hard core’ with infinite height. The attractive
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/\ force inside the barrier is so designed
as to get a nonzero u,(R)=R{.(R)

/V(R) (see Eq. (3:2)) for the origin of the
six-quark configuration. It may be

obvious that this force also has di-

_________________ Epg baryon resonance states. Of course,
/ \ the attractive force never comes from
e e g —F, R the ordinary nuclear physics but from
U } M hadron physics. We shall not enter

into detailed discussion on its origin.

Fig. 3. Schematical representation of the potential

Needless to say, the appearance
V(R). Y Pl

of ¢, in the deuteron state is a direct
result of the tunnel effect passing through the barrier around R, from the right
to the left, namely, to the inside of the ‘hard core’. Hence we can put

sin® 0~ P, (3-5)

in the sense of the order of magnitude, where P, stands for the transmission
probability of the tunnel effect. Owing to the very high barrier, it holds that
P,&<1. On the other hand, the potential as schematized in Fig. 3 must have a
metastable state to be observed as a dibaryon resonance. Such a metastable state
will decay into proton and neutron due to the tunnel effect passing through the
barrier from the left to the right. The reciprocity principle gives us the same
transmission probability for it as the above P,. Consequently, the elastic width
of the dibaryon resonance is given by

Fe)olBNTﬂPc > (3-6)

where v~ (R, M/k,) is the average travelling time of the attractive force region
inside the barrier, k£, being the average momentum there. Rigorously speaking,
the transmission probability for the dibaryon level is different from that for the
deuteron level, because it depends on energy. However, we can neglect the dif-
ference between them because of the very high barrier. That is to say, it holds
that P, (Itpp) =P, (Ep) if the average height of the barrier is much larger than
E,; and |E,|. Now we must impose the condition

kR~ (3-7)

on the average momentum £k, to keep the metastable state—the dibaryon state.
Thus the elastic width is given by

ﬂP‘—ZV

]"el ~
DB (RCM) 2

(3:8)

Using P,~~sin® 0==0.07 for the transmission probability (see the preceding section)
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and R,~2.5M ! for the ‘hard core’ radius, we have
I'95~33 MeV .

This may be compared with the observed value (I"$p)exp==30 MeV obtained by the
recent experiment of the *F, dibaryon resonance'™® (mass—=2.22 GeV, total width
~150 MeV and elasticity==0.2), although it is discovered by the proton-proton
elastic scattering. It seems to us that the agreement is very good in the sense
of the order of magnitude.

Finally, we want to sketch the attractive force potential inside the barrier,
using (3-7) and kcz\/ﬁl(EDB—_v—) in which V is the average potential depth.
By the experimental data of the °F, resonance, we have Epz= Mpz—2M~—0.34M
and then

_V.oa1.

M

The attractive force potential would have the depth~1.1A7 and the range~2.5M"!
in the sense of the order of magnitude.

§ 4. Conclusion

In this paper we have analyzed the hard component of the experimental deu-
teron electromagnetic form factor using the theoretical formula of the RHOM
model, and obtained the probability of finding the six-quark configuration in the
deuteron state. One of the important features of the observed deuteron form
factor is in its asymptotic bahaviour proportional to (Q% % which is considered
in this paper to be a possible appearance of the six-quark configuration in the
deuteron state on the analogy of the pion and nucleon cases. If this view is
true, then we could also anticipate to observe the asymptotic Q*dependences of
(O 7% in the triton form factor and of (Q% ™" in the form factor of an « particle
and of (Q% "' in a nucleus with mass number A, in general, with a possible
saturation effect takes place.

Furthermore, we have attempted to connect the six-quark configuration with
the dibaryon resonances recently discovered, in view of a simple potential model.

The remaining works are (i) to give corrections of the deuteron form factor
coming from the spin-unitary spin wave function and (i) to give quantitative
discussion on the relation between the deuteron form factor and the dibaryon
resonances. They will be reported in the near future.

* Besides the *F; resonance, we have a few indications of dibaryon resonances with mass and
elastic width of the same order of magnitude.
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Appendix

Form Factor of an N-quark System in the RHOM Model

We assume that the internal orbital wave function obeys the following equa-
tion with a relativistic harmonic oscillator potential:

N N
[ 20"+ 33 @O =2 ]y (2, -, 2) =0, @1

where x® stands for the coordinate of the #-th quark and p% = (70/0x"), and
£® is a constant. The potential term is rewritten in the form

B —Leeeeeeeiiaiiinn, — 1 2D
1 =1 e —1\
v . . :
i>21(x<i>_x(/))z: (x®, - 2 S : N .Y
" L ' —1)
B R S R e

where n=N—1. Eigenvalues of the matrix are given by the equation

Py B ORI -1
L A S RO —1

-1 - L= (-DYQ—N)M=0, (A-3)
1 e 1

whose eigenvalues are A=0 and 2=N. The first eigenvector belonging to 1=0 is
a column vector v whose all components are equal to N2, but the other eigen-
vectors are arbitrary unit vectors u” (=1, ---, #n) orthogonal to the first and to
each other because the eigenvalue A= N is n-fold degenerate. Consequently, we can

diagonalize the quadratic form (A-2) by the matrix U= (v, u®, -, u™), namely,
N . s " .
D (2P —2UNE=N 30" (A-4)
i>7=1 iz

@)

where the relative coordinates »™’s are given by

2O z©
i (A-5)
™ 7
in which
x<0>:i(x<1)+...+x<N>>‘ (A-6)
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Deuteron Elastic Electromagnetic Form Factor 567

Denoting momenta conjugate to new variables z© and % by p© and p,* (@
=1, -, n), then we get

p(o) p(l)
S (A-7)
p;(m pE

Hence Eq. (A-1) becomes
[6® 43 (5,9 + NE7O)]0 (2, 70, o) 720) =0 |
i=1

Using the total momentum

P= \/Np(") (AS)
and the operators
a=—1_ (J Nl — iiirﬂ) cay= N, (A-9)
V2ay VN

then we have the equation

[P*— M, ] 0y =0,
(A-10)

n
tp=—20y ) ; a@ta®* 4 const.
=

If we impose on @y, the subsidiary condition formulated by Takabayasi, we can
easily obtain the following solution:

ay\" a s o PPN & Gy a
0o G, - P) = (48)" exp 0 (g2 D) 1 0n ) |, A1)

where we have dropped out the plane wave part for the centre-of-mass coordinate.
It is well known that the wave function (A-11) is characterized by the Lorentz
contraction effect.

Now we can give the form factor of an N-quark system by

Fy, (@) = jﬁﬁq (7, -5 Pp) eXP[—iq'i wyOr O Oy (7D, -5 Pr)
i=1

X AW dir™ (A-12)

where 7, is the first component of vector u® subject to the normalization condi-
tion

S Mz .
lal=2. (A-13)
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After elementary calculation using operators defined by Eq. (A-9) and also using
(A-13), we can easily find the following formula:

2 1 n o?
PO s g1 i i @mny] O

with Q= — ¢~
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