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Abstract

The process of deuteron formation in intermediate heavy ion reactions is ap-
proached within the strong coupling BCS theory assuming that the final stage of
the reaction can be described as an adiabatic expansion of a piece of nuclear matter.
Since the gap equation in the Sy =% D, channel goes into the deuteron Schrédinger
equation in the low density limit, a smooth transition from the superfluid Cooper
pair phase to a Bose deuteron gas is found. For a fixed entropy the deuteron fraction
as a function of density shows a steep uprise, up to one in the limit of vanishing
density. The relevance of these results for heavy ion collisions and the shortcomings
of the present approach are briefly discussed. The model is further generalised to the
time dependent case. A semiclassical set of HFB equation is presented and the limit-
ing situation of an adiabatic expansion is detailed. A schematic calculation suggests
that the Fermi energy regime should be the best suited to observe the phenomenon
of deuteron formation via BCS pairing. The inclusion of fluctuations is outlined
by coupling the BCS equations with a self-consistent nonlinear quasi-particle RPA
(SCqpRPA). This theory is tested in a schematic model.

1 Introduction

Central heavy ion collisions at E/A in the 50 to 200 MeV range can roughly
be described by the initial build up of compressed and hot nuclear matter and
by a sequential decompression. At low energies the system may pass through
the spinodal instability region and may undergo a liquid-gas phase transition
or, at higher energies, the temperature and the internal pressure involved may
be so high that the piece of nuclear matter just vaporizes into the individual
nucleons. In any case, however, the expanding gas cools down rather fast, al-
lowing for deuterons, as well as other fragments, to form again in the final




stage. Actually the yields of deuterons in high energy reactions always exhibit
a surprisingly high production rate[1]. Typically, e.g. the ratio of deuterons to
protons is of the order of unity. At higher bombarding energies (E/A > 200
MeV) such abundances have been successfully explained from a transport
model [2], where the deuteron pole in the n-p scattering matrix has been ex-
plicitly isolated. Though pure phase space considerations may account for a
large fraction of the deuteron production rate [3] it still may be interesting to
investigate the problem, for instance, of deuteron production from a slightly
different point of view. We have in mind the very idealized situation of a piece
of hot nuclear matter expanding quasi-stationarily with total entropy kept
constant. The latter feature seems to be realized in heavy ion reactions [4].
When lowering the density, the temperature will then drop, and the combina-
tion of both effects will allow the appearance of deuterons (Mott transition).
The phenomenological observation that the main components of the outgoing
fragments, in this energy region, are nucleons and deuterons indicates that nu-
clear matter has not enough time, during the expanding phase, to get close to
its lowest free energy state. In fact, at low enough densities and temperatures,
nuclear matter is expected to form a gas of alpha particles. Therefore a mix-
ture of nucleons and deuterons is a metastable system, which spontaneously
decays in a gas of alpha particles. This metastable system, however, is worth
to be studied, since it is likely to be the one which is more closely related to
the final stage of heavy ion reactions. The characteristic time of the expand-
ing phase is, therefore, assumed to be faster than the alpha formation rate,
consistently with phenomenology, and slow enough, as already mentioned, to
consider nuclear matter not too far from thermal equilibrium.

In this work we will be mainly concerned with the deuteron formation. An
aspect we will partially develop is that nuclear matter at low density, below a
certain critical temperature T,, may show strong n-p pairing in the deuteron
channel. This has been revealed in several recent studies [5-7] and, in fact,
it can be anticipated since the NN force in the deuteron channel is more
attractive than in the usual p-p or n-n pairing channels. At higher bombarding
energies the entropy production is typically several units (see for instance
[8]) and this is probably too high for the superfluid phase to occur but at
lower energies (E/A < 100 MeV) the entropy per nucleon S/A < 1 and this
may well allow the appearance of deuteron pair condensation. The reason
why such a pair condensate may be relevant for the deuteron production can
qualitatively be explained, at least, within the BCS approach to superfluidity.
In this approach it has been shown [9] that in the low density limit the BCS
equations for the pairing condensate goes over into the Schrodinger equation
for the deuteron. In a first attempt we will try to get some insight into the
physics of this process in adopting a mean field strong coupling BCS approach.
We know about the weakness of this approach, which completely leaves aside
the influence of fluctuations, that, in this type of situation, may be crucial,
both with respect to the finiteness of the system and with respect to a possible



crossover from BCS superconductivity to Bose-Einstein condensation of the
deuterons. Indeed, in the limit of inter-particle distance much larger than the
deuteron radius ag, i.e. krag << 1, the deuterons behave essentially as a gas
of bosons, which can undergo the usual condensation phenomenon. We may
deal with this difficult problem in the future. Here we shall stay within the
pure BCS approach. We shall first treat the equilibrium case [10], and at
the end indicate how to generalise to the dynamic case. A schematic pilote
calculation will be presented for a dynamically expanding blob of nuclear
matter. Furthermore, we also outline how fluctuations can be taken care of
within a self consistent version of the quasi particle RPA (SCqpRPA).

2 Strong coupling Briickner-BCS approach

Proton-neutron pairing in nuclear matter has only been investigated very re-
cently [5-7]. Using realistic bare forces in the gap equation and a Briickner
Hartree-Fock G-matrix approach for the normal mean field, surprising high
values for the gap in the deuteron channel have been found in symmetric
nuclear matter. Since the attraction in the deuteron channeljie. S — D T=0
channel , is stronger than in the T = 1 neutron-neutron or proton-proton chan-
nels, this may actually be not a complete surprise. However, the in medium
renormalization (screening) of the bare n-p force is certainly an unsolved prob-
lem, in spite of the fact that the use of a bare n-n and p-p forces yields quite
reasonable values for the gap A in the scalar isovector channel T = 1. Bearing
this difficulty in mind, we nonetheless go on using the bare Paris force as the
n-p interaction in the S — D pairing channel, which in the mostly interesting
low density regime may eventually not be a quite unreasonable choice.

For the norma) mean field we use, as in an early paper [11], the one from the

Briickner HF approach. The intermediate two particle propagator g is given
by

g = (1—'fk)(1_fk’) (1)
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where fj is the Fermi function, calculated at the single particle energy ¢, the
latter being obtained from the Briickner HF self consistent potential.

The gap equation reads
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with By = \/(ck — )% + A}. As usual the density is obtained from
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and the anomalous density is given by
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The entropy reads

2 = = 3 J(E)log f(E) = (1= f(Ex))log(1 = /(Ex)) (6)
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The coupled set of non-linear equations (2),(4) is solved, for a given total
density p, adopting a separable form of the Paris potential [12]. The same
numerical method as in [7] is used in solving the gap equation for Ag. In
the present work, however, the chemical potential 1 has been also determined
from the set of equations (2),(4). Once the solution for the gap function Ay
and the chemical potential x4 are found, the quantities x and S are calculated
from eqs. (5),(6), respectively.

Tt is also interesting to combine equations (2),(4), (5) to obtain an expression
equivalent to the gap equation:
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This equation looks very much like the deuteron Schroedinger equation into
which it turns for a dilute svstem, i.e. in the limit p — 0. The quantity in
which we are mostly interested here is the ratio of the number of deuterons
N, to the number of unbound nucleons N, or equivalently the ratio between
the abnormal and normal density. According to standard BCS theory we have

Ps _ A 1 5/(11:1;4 {1 - tanhz(é—f&)} . (8)
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which will be evaluated, as already mentioned, at constant entropy.



3 Results

The transition from the superfluid phase to the deuteron gas is best illustrated
by considering the pairing anomalous density i, or its Fourier transform
in coordinate space ¢(r), which should smoothly merge into the deuteron
wave function in the low density limit. This is displayed in Fig. 1, where
the two components of ¢(r) are drawn at different densities. For the lowest
density at p = 0.0075 fm~3 a comparison is made with the deuteron wave
function. One can observe a large overlap between ¢(r) and the deuteron
wave function, which indicates that already at this density the BCS solution
is hardly distinguishable from a gas of deuterons, despite the fact that the
chemical potential is about +1 MeV, still away from the deuteron limit value
u= Ep/2 =—1.1 MeV. At increasing densities the inner part of ¢(r) is not
so much affected, while the large r behaviour changes drastically.
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Fig. 1. The S and D components of the pairing correlation function in coordinate
space for three different values of the baryonic density. The right lower figure displays
for comparison the deuteron wave function.

From these results one can conclude that the BCS theory describes, in the
low density limit, a smooth transition from the S — D superfluid phase of
symmetric nuclear matter, to the Bose condensate phase of an ideal deuteron
gas. In BCS language it corresponds to a transition from the weak to the strong
coupling limit. The Cooper pairs, each one of which has zero momentum,
merge naturally into the zero momentum condensate of deuterons.

According to the scenario mentioned in the introduction we assume a piece
of hot and compressed nuclear matter formed by a HIC which expands isen-
tropically. At some low density and temperature deuteron superfluidity pops




up. When the gas expands further to lower and lower densities the chemical
potential g will turn negative ( relative to the mean field value U(kr) at the
Fermi momentum ) from where on at a certain density the deuterons are be-
ing formed. This actually occurs at extremely low densities p < p,/30 where
the mean distance of the deuterons from one another is about 2-3 times their
diameter (~ 3 fm ). At low densities we shall calculate the ratio of the number
of deuterons versus the total number of nucleons, given by equation (8). This
ratio is shown in Fig. 2, for fixed values of the entropy per particle, as a func-
tion of the total density. As we can see, there is a steep increase of deuterons
as a function of decreasing density. For a typical value of S/A & 1 there exists
already an appreciable number of deuterons at p = po/5.
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Fig. 2. (right) Deuterons to nucleons ratio Ng/N vs density for four values of the
entropy.(left) The same ratio but in an enlarged scale at low densities. In some cases
the corresponding temperatures are indicated. The dashed line connects the points
corresponding to ¢ = 0 MeV.

The strongly uprising branch of N,/N in the final stage of the expansion is due
to the fact that the final infinitely diluted stage is always at zero temperature
where, within the pure BCS theory, everything is paired (N,/N = 1). This
behaviour can be seen more clearly in the blow up of Fig.2 for low densities.
The ratio N,/N tends to one as p tends to zero. On the other hand,since the
entropy is kept constant also T tends to zero as p — 0. In Fig.2 are indicated on
the lines of constant entropy in addition to the temperatures at various values
of the density also the corresponding values of the chemical potential. Since
p = 0 marks the border from where on deuterons are bound, we connected
the points 1 = 0 on the various curves S4 = const by the broken line. We
should, however, like to point out that deuterons are formed already at higher
densities. For example, the coalescence model gives a freeze-out density of
A po/10 [2] similar to our calculation. On the other hand one sees on Fig.2



that the points x = 0 where the chemical potential turns negative all lie at a
density of around p = 0.002 fm~2 for the various entropies.

It may seem surprising that the chemical potential turns negative only at such
extremely low densities where the interparticle distance is of order of 8 fm.
One should bear in mind, however, that the deuterons are only weakly bound
and that therefore the corresponding wave function reaches out appreciably to
distances beyond 8 fm as can be seen on Fig.1. The Pauli principle therefore
is still active. An inter-particle distance 2-3 times the deuteron diameter can
therefore seem reasonable for the Mott transition. We must of course always
be aware of the weakness of our present approach where we completely neglect
thermal and quantal fluctuations which may be very important at such low
densities. For instance, the fact that BCS theory even at finite temperature
imposes that the deuterons are at rest seems to be a drastic assumption, which
should be relaxed in a more realistic approach (see Section 5). Nevertheless
our study may set qualitative indications. The fact seen on Fig.2 that the
ratio deuteron to unpaired nucleons varies very strongly in the low density
regime of expanding nuclear matter should probably remain. This mechanism
of deuteron production can then coexist with other normally considered mech-
anisms where the deuterons are formed in final state interactions of an emitting
source or by coalescence

4 Dynamics of the Expansion

It is evident that the assumption of quasi-static expansion cannot be valid in
practice. One therefore should generalise the present formalism to the time
dependent case. With the generalised density matrix R and the HFB hamil-
tonian H we then have [13]

iRR = [%R} (9)

_ p K [ h —A)
R=(" 1—p'> A= (o D (10)

The semiclassical limit of this equation can be found (see e.g. [14]) introducing
a unitary transformation

R =URU" | uzexp(%@ra) (11)




As a matter of fact, the phase of the abnormal density is of order 1/A and
a semiclassical transport theory is possible only if we put ourselves in the
frame where the gap is real, i.e. in the frame where the phase is gauged out.
Supposing the phase to be a local operator < 7®|r >= O(F)§(F— r'), we then
obtain [15] in semiclassical (first order in &) approximation

fo={ho,f0} + {Ao,fio} (12)
f€'0={§l‘vq),fo}+é{ﬁo,f0“7o} (13)
]—:_;‘ll‘éo + (Qfo - 1) /.(Q—Cfg)—gvpkh‘,o(l;) = 2)\&0 (14)

with
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and the shorthand notation f, = fo(7, —p,t). Equations (12), (13), (14) rep-
resent three evolution equations for the three unknowns fo, k0, ® (the sub-
script "0” always denotes gauge transformed quantities). The self-consistent
solution of these equations constitutes the semiclassical time dependent BCS
approach (TDBCS). The modified gap equation eq.(14) has the form of a local
Schroedinger equation for the deuteron wave function, with a local eigenvalue
[10] represented by eq.(16). Therefore eq.(14) is formally the same as in the
static case eq.(7) (up to the fact that fo is obtained from a dynamical equa-
tion), only the "eigenvalue” 2A(7,t) is now a field of the two parameters 7, 1.
One can verify that in the static limit equations (12), (13), (14) are equivalent
to our previous equilibrium equations (2),(4),(5). To further clarify the phys-
ical meaning of the transport equations it may be instructive to calculate the
first moments of the distributions. By introducing the usual notations for the
densities and currents

pz/d3pf0(17,ﬁ,t) s Ps /d3PN0(F>]7~,f) . ;oE/dSP%fo(Fvﬁat)

One straightforwardly gets

p+ Ve Jot+ Ve 7=0 (17)
ps+vr';s =0 (18)
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and for simplicity we have assumed a local gap, A = Gp,. Equation (19) is
equivalent to a London equation for the superfiuid velocity, with an inhomo-
geneity represented by the coupling to the normal phase[16]. So we can see
that in the limit of a local pairing gap the problem can be reduced to a closed
set of hydrodynamical equations, that is a continuity equation for the super-
matrix eq.(17),(18) and an Euler equation eq.(19) for the collective velocity,
in perfect analogy with the non superfluid case [13]. The physical meaning of
the gauge transformation is now clear: among all the possible unitary trans-
formations of the generalised density matrix, the physical gauge is defined by
the constraint that a (2X2) continuity equation is fulfilled, 7.e. by the require-
ment that the phase V& actually represents the collective superfluid velocity
(17). The gauge transformation eq.(11) that we have employed up to now is
in principle a simple change of the reference frame, with no loss of generality.
Correspondingly the TDBCS equations exhibit all the complexity of a coupled
set of integro-differential equations, and in general solutions cannot be given
in an analytical form. However, the problem is drastically simplified in the
special case where this transformation isolates all the time odd components
of the generalised density matrix [15].

Let us suppose that with the transformation (11) the matrix Ro coincides
with the time even part of R. For the distribution functions in Wigner space
this means [18] fo(7,7,t) = fo(7. —P,t) and ro(7, B, t) real (as before). Then
the local velocity of both the normal and superfluid phase are represented by
V. ® and one can readily write down the solution of the transport equations

AO 1 /24)
Ko=5F. fo=§<1——) (20)

with E2 = Al + h3 and hg defined in eq. (13). The structure of these solu-
tions is the same as in the equilibrium case, but the dynamics of the phase is
governed by the time odd components of the transport equations, namely
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Fig. 3. Pairing gap as a function of momentum for a portion of uniformly accelerated
nuclear matter at normal nuclear matter density, for three different values of the
acceleration.

fo—{%vr@,fo} =0 (21)
Kl.o—'{%vrq),fio} = 0 (22)

Remark that in the case of a constant collective velocity eqs.(21), (22) repre-
sent a trivial streaming motion. and the equilibrium solution is recovered. Let
us examine the structure of the modified gap equation in more detail. If we
specify to a separable interaction in momentum space v(p,p') = Vov,v, the
gap equation can be rewritten as

K}

2/ (BT g pm — ) ot Vo)

2m

(23)

1:47rV0/dk
0

that in spherical symmetry is a one dimensional implicit equation for the r-
dependent part of the gap C(r) (here, A(r,p) = Vou,C(r)). As a first appli-
cation let us drop self-consistency and solve eq.(23) for the simple dynamical
case of a spherical nucleus at zero temperature immersed into an external
uniformely accelerated velocity field. For U¥ we use a standard Wood Saxon,
the pairing interaction is taken from ref.[19], and the chemical potential 4 is
fixed to conserve the total number of particles. A result of this model cal-
culation is presented in Fig.3, where the momentum dependence of the gap
in the center A(r = 0) is plotted for three different values of the (constant)
acceleration. The acceleration is seen to systematically reduce the pairing gap,
up to a critical value - specific to the chosen pairing interaction - where the
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gap completely vanishes. This pair breaking effect of an acceleration field is
well known in the standard theory of superconductivity.

Let us now turn to deuteron production in expanding nuclear systems.
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Fig. 4. Normal and abnormal distribution functions versus momentum for a spherical
uniformly expanding nucleus with a radial collective velocity u=0.035 r/c Full line:
normal nuclear matter density. Dashed line: after 50 fm/c. Dotted line: after 100
fm/c. Dash-dotted line: asymptotic time.

The solution of TDBCS for a spherically symmetric expanding nucleus at zero
temperature is readily written (after an inverse gauge transformation) as

(24)

( (p— mu)?/2m + UH — w(t) )
(7 — m)?/2m + UH — p(t))* + A2(F, 5, 1))/

The simplest possibility for the velocity field is to take a time independent
function 4(F) = co - 7. In this case the time dependence of the macroscopic
parameters is given by the continuity equation

p=poe™ | R= Roe® | p=poe ™ (25)

and the distribution functions (normal and abnormal) can be determined at
any time by solving the gap equation (23). As an example we report in Fig.4
the distribution functions evaluated at the center of the nucleus, at different
times up to vanishing density. As the density gets lower, not only the average
Fermi momentum diminishes as in the non pairing case, but also the average




occupation of low momentum states is progressively reduced. Correspondingly
the distribution of paired nucleons is shifted towards lower energies as a func-
tion of time. In the limit of asymptotic times the wave function of the deuteron
is recovered, and all nucleons are paired.

However it is clear that this model is too schematic in many respects. Tem-
perature effects are neglected, for any initial value of the collective velocity
a state at zero density is asymptotically reached, and the acceleration is not
taken into account. From the structure of eq.(23) and the results of Fig.3 we
expect that these results will not necessarily be preserved for a more realistic
dynamics of the expansion. However, the adiabatic dynamics will be recovered
if the initial density and thermal pressure stored in the compound system is
sufficiently low to make the term & in eq. (23) negligeable. On the other side,
from the preceding section we know that in order to have a transition to the
superfluid phase the initial pressure must be high enough to lead to a very
dilute system in the final stage, and the balance between these two effects can
be very delicate.

We shall therefore consider a more realistic model for the macroscopic param-
eters of the expansion entering the gap equation. For this purpose we shall
use the hydrodynamical model of ref.[20]. Here the mean field U# is neglected
as before, but an homogeneous expansion of the nucleus is assured by a self-
similar radial velocity field of the form

Vo R 12
— =u(r,t) =co(t) -7 °

N L. 9
m “rVerra (26)

Here, R is the (sharp) radius of the expanding system, Ro the radius at the
time of formation of the composite system, and ag,to are parameters. With the
constraints of mass and energy conservation, the parameter ag can be fixed to
obtain a given initial excitation energy while t; measures the acceleration of
the collective motion. The continuity equation is again solved with the ansatz
(26) for the time evolution of the density p, chemical potential x and nuclear
radius R. If we neglect the time dependence of ¢ and R with respect to the
time dependence of p, eq.(25) is still valid. From the preceding section we
know that the correction to the chemical potential due to the pairing gap
is important only at very low densities. For this simplified analysis we shall
therefore keep eqs.(25) as a qualitative representation of the time evolution of
the normal phase. However now ¢y has the more complicated time dependent
form of eq.(26), that simulates the effect of mean field and thermal pressure.
The parameters E~ and to are then fixed to approximately reproduce the
expansion dynamics (initial excitation energy, time behaviour of the average
density and radial velocity) calculated from a BUU simulation [8] of a heavy
ion collision.



As an example in Fig.5 we report the quality of the fit for the density evolution
in a central Au + Au collision at two different bombarding energies. Only at
the highest energy a complete vaporisation of the system is seen, while at 50
MeV /u the calculation has been stopped at the time when density inhomo-
geneities start to appear, leading to fragment formation. In the same figure we
show the time evolution of the surface velocity from eq.(26) for the two cases.
The acceleration is clearly much more important for the high energy collision.
Finally temperature is calculated at any time from energy conservation, and
the gap equation eq.(23) is correspondingly modified as in eq. (2).
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Fig. 5. (upper part) Average density as a function of time for a central Au+Au
collision at 50 MeV /u(left) and 600 MeV /u(right) obtained in a BUU calculation.
The dispersion of the points reflects the density inhomogeneities. The solid line is a
calculation from an hydrodynamical model (see text). (lower part) Collective radial
velocity at the surface of the expanding nucleus as a function of time, from the
hydrodynamical model with the same parameters as in the upper part.

For the highest excitation energy the acceleration of the expansion turns out
to be higher than the limiting value: the gap vanishes. The upper limit of a
complete pairing at zero temperature given by the BCS theory 1s not true any




more, and deuteron production due to BCS coupling - if any - has to be calcu-
lated from the complete self consistent transport equations egs.(12)(13)(14).

On the other hand at the lowest bombarding energy the gap is only slightly
reduced with respect to the equilibrium case, and the dynamics is qualitatively
like in Fig. 4. The corresponding number of deuterons as a function of time,
calculated from eq.(8), is plotted in Fig.6. At longer times the average density
does not evolve any more due to the showing up of fragments, therefore the
ratio will be approximately frozen, if recombination effects are negligeable.

It is interesting to observe that an anomalous proportion of deuterons has
been recently measured by the INDRA collaboration in vaporisation events at
a similar bombarding energy [21]. Our calculation suggests that a systematic
study of deuteron yields and deuteron correlation functions in vaporisation
events as a function of excitation energy will be very helpful in clarifying the
possible observation of a Mott transition in deuteron production.
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Fig. 6. Deuterons to nucleons ratio Ng/N versus time for a central Au+Au collision
at a beam energy of 50 MeV /u, calculated with the macroscopic parameters from
the hydrodynamical model.
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A word of caution is however necessary: the result presented in Fig.6 must be
considered only as a very qualitative indication of the effects of the expansion
dynamics, and not as a real theoretical prediction of deuteron yield in a re-
alistic reaction. The complete lack of self-consistency and the schematicity of
the macroscopic model do not yet allow to attach a quantitative meaning to
the numbers obtained. Further work in this direction is in progress [15].



5 Inclusion of Fluctuations within a Generalised RPA Formalism

QOur formalism of static BCS in Section 2 has the great disadvantage that
the deuterons stay immobile even at finite temperature. The time dependent
description remedies this to some extent (it gives the usual quasi-particle RPA
in the small amplitude limit, see below) but even this has some shortcomings.
We therefore want to present here the so called self-consistent quasi-particle

RPA (SCqpRPA) which, as we shall see, has many rather appealing features
[22].

Let us define the qp RPA excitation operator

1 : .
t 2 : r K t 4
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Here K,p are general quantum numbers. In infinite matter they represent
momenta and spins. [t is clear that eq.(27) can create a "deuteron” pair with
total momentum A. The excited state is then

K >=QL0> (28)

where the ground state is defined by

Qrl0>=0 (29)

The standard equation of motion method leads to the following RPA type of
equations {13]
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where
Aperwr = < Ol[away, [H,alal]]j0 > (31)
Bkkl”l:— < Ol[ak;ak,[H, a;au]]IO > (32)
Ny = < 0|[awag, alal]lo > (33)

Replacing in these equations the ground state |0 > defined by (29), by the BCS
ground state, linearizes eq.(30) and we arrive to the usual gpRPA, equivalent
to the linearised version of the time dependent BCS equation (9). Here we
want to avoid this "quasi-boson” approximation. We therefore must find a




way to fully express the matrix elements in egs. (31),(32),(33) by the X, ¥V
amplitudes. This can be achieved in the following way. Employing the usual
normalisation of the RPA amplitudes 3 ¥ [X|?—|Y|* = 1 we can invert eq.(27)

alal, = T XEQ) + Y50k (34
K

For a two-body Hamiltonian H, the matrix elements in eqgs. (31),(32),(33) will
involve the following densities (schematically)

< ala >, < atal > , < alatalal > s
<alalaa >, < adlala’a > +ce. (35)

Let us first discuss the third and fourth element. Inserting eq.(34) and com-
muting Qx to the right we can use (29). Then < a'a’ata! > and < alalaa >
are expressed by X, Y and the density < a'a >. The element < atal >= 0,
using egs.(29) and (34). For the density < a'ata'a > we insert (34) for the
left pair operator, commute Qp to the right, and are left with an expression
directly containing < ata' >. So the last density is also zero. Of course anal-
ogous considerations hold for the complex conjugate quantities (c.c.). We now
have reduced everything to the single unknown < afe >. This quantity is not
so easily expressed in a consistent way through the RPA amplitudes and in
the past mostly perturbative methods have been applied [23]. It turns, how-
ever, out that a fully consistent expression can be found via the single particle
Green’s function
T ’
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This Green’s function obeys Dyson’s equation: G = G°+G° MG, which we shall
treat in perturbation theory i.e. ¢ = G° + G°MGP. The mass operator M 1is
known to have the following exact representation which we show graphically

@ >

where the dot represents the bare interaction and the other vertex contains
the exact 4 point T-matrix. We replace it by the expression that corresponds

to our RPA eq.(30).



Graphically this can be achieved in the following way

where on the r.h.s the wiggly line stands for the solution of (30), z.e. the

corresponding RPA propagator, and the shaded cercle stands for the < g i)

matrix in (30). We now have a well defined expression for G in terms of X, Y
from which we can calculate < a'a > in the usual way. This method implies a
strong consistency check. It is well known (see e.g. [13]) that the ground state
energy Eo can be obtained directly from the single particle Green’s function
(36) and it will contain the RPA amplitudes. On the other hand from our
RPA formalism we can express at least the potential energy part of Ep which
contains the two-body amplitudes of (35) directly by the RPA amplitudes,
as this was explained above. It turns out that both ways to calculate Ejg
lead to the same functional Eg[X,Y] which represents our above mentioned
consistency relation.

Still one ingredient is missing. This concerns the u,v amplitudes of the Bo-
goliubov transformation to quasi-particles. As usual we determine them from
the minimisation of the ground state energy where we can show the following
interesting equality [22]

0F,

=< 0|[H,QK]I0 >=0 (37)
Buk

where again |0 > is the RPA ground state of eq.(29). Equation (37) is a very
natural relation, since it is completely consistent with the equation of motion
method. The expectation value in (37) again only contains the densities of
(35) and thus our set of equations is completely closed. It is interesting to
write (37) and (30) somewhat differently

< 0|[H,alal)|0 > = Flu,v,X,Y] =0 (38)
< 0|[H,QLQL)I0 > =Glu,v, X, Y] =0 (39)

We recognize in eq.(38) the usual fermion gap equation, if we replace the
ground state by its BCS approximation [13]. Loosely speaking we then can




say that eq.(39) represents a "boson” BCS equation, if we identify the Q!
operator roughly as bosons.

E(app) - E{exact)
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"

Fig. 7. Ground state energy with respect to the exact one in the BCS and SCqpRPA
theories for the seniority model as a function of particle number.

We therefore have the very gratifying situation that we have in (38),(39) two
coupled BCS equations, one fermionic (the nucleons) and one bosonic (the
" deuterons” ). Of course here now the bosons (deuterons) are in motion, and
we can describe the real physical situation because it is well known how to
generalise qp RPA to finite temperatures [24]. An interesting aspect of eq.(39)
is that, since it is a bosonic gap equation, it should describe Cooper pairs
of bosons. Indeed it does. It is not difficult to show that (39), in the limit of
vanishing density, goes over into the Schroedinger equation of an a- particle in
the same way as (38) goes over into the Schroedinger equation of the deuteron

eq.(7).
Other interesting properties of our formalism are

— the f- sum rule is automatically fulfilled [22]

— an approximate form of (38),(39) is the Brueckner Hartree Fock equation
[25]. It thus seems that one can use hard core potentials in our theory.

— it yields ground state and excitation energies simultaneously

— it sums ph and pp correlations democratically.

Applications of this theory are only in their infancy. Apart from rather simple
models like the Lipkin model [22] the formalism has recently been applied
to spin waves in an Heisenberg antiferromagnet [22]. The SCRPA reproduces
in 1D the exact one magnon dispersion wy = X|sink| known from the Bethe
ansatz, and in two dimension the dispersion is in agreement with the most



recent Monte Carlo calculations. Concerning our present subject of SCqpRPA
the theory was only applied to the standard seniority model of nuclear physics
[26]. We show in Fig.7 the difference of the exact ground state energy and ¢) the
BCS energy ii) the SCqpRPA energy. We can notice the strong improvement
over BCS. The same improvement occurs for the number fluctuation AN/N.

6 Conclusions

In the last section we have seen that the coexistence of (bound) neutron-proton
pairs with a nucleon gas contains a variety of interesting and challenging phys-
ical and theoretical aspects. We have demonstrated that already usual equilib-
rium BCS theory is capable to describe important aspects of the problem. A
major deficiency there, however, is the fact that the bound pairs (deuterons)
are kept immobile. At finite temperature and very Jlow densities where we then
essentially have a dilute gas of bosons this is clearly an unphysical feature. A
first remedy to this deficiency is given by the time dependent generalisation of
BCS (TDBCS). This can also describe the time evolution of the decompres-
sion phase in a head on heavy ion collision, allowing - at least in principle - to
give quantitative predictions for the physical observables. TDBCS also puts
the Cooper pairs into motion, which for instance can break the pairs. Such an
effect has been demonstrated within pilote calculations.

However even TDBCS has deficiencies. We therefore discussed a self-consistent
generalisation of RPA theory which ressembles very much BCS theory for
bosons, however, we never really introduce the concept of bosons and always
work with fermion pairs. It turns out that this SCqpRPA has very nice prop-
erties. The essence is that we arrive at two coupled Hartree Fock Bogoliubov
equations: one for fermions and one for fermion pairs (deuterons or "bosons™).

The possible extension to finite temperature is then ideally suited for the
description of our problem: how does an expanding piece of hot nuclear matter
first turn into a n — p pairing phase and then. at very low densities, into a gas
of dilute deuterons and eventually a- particies.
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