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ABSTRACT

The Deuteronomy system supports efficient and scalable
ACID transactions in the cloud by decomposing functions
of a database storage engine kernel into: (a) a transac-
tional component (TC) that manages transactions and their
“logical” concurrency control and undo/redo recovery, but
knows nothing about physical data location and (b) a data
component (DC) that maintains a data cache and uses ac-
cess methods to support a record-oriented interface with
atomic operations, but knows nothing about transactions.
The Deuteronomy TC can be applied to data anywhere (in
the cloud, local, etc.) with a variety of deployments for both
the TC and DC. In this paper, we describe the architecture
of our TC, and the considerations that led to it. Preliminary
experiments using an adapted TPC-W workload show good
performance supporting ACID transactions for a wide range
of DC latencies.

1. INTRODUCTION
The Brewer CAP theorem [8], formalized by Gilbert and

Lynch [20], states that “A distributed computer system can
simultaneously provide only two of three desirable prop-
erties: Consistency, Availability, and Partition tolerance”.
This suggests that it is difficult to support ACID transac-
tions in the cloud environment where distributed data and
high availability are essential elements. As testimony to the
influence of the CAP theorem, many cloud providers have
pretty much abandoned transactional support for data span-
ning multiple nodes. Dynamo [17], BigTable [10], Facebook
Cassandra [24], Windows Azure [29], and PNUTS [11] all
stop short of providing general purpose transactions. In-
stead, these systems opt for availability by relaxing consis-
tency, supporting either (a) atomicity over only a single data
item or a collection of items, or (b) eventual consistency [34],
i.e., data updates become visible to everyone after a finite
time. Weak consistency is sometimes acceptable. Examples
of applications that can tolerate weak consistency include
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keyword search, inventory search, and setting user prefer-
ences or recommendations (e.g., Facebook “Like” options,
or movie ratings). On the other hand, many applications,
new and old, would like to use cloud storage, yet find that
weak consistency makes life very difficult. Examples of new
applications include social networking and Web 2.0 applica-
tions, online auctions, and collaborative editing. Old appli-
cations include traditional database services such as credit
card transactions and flight reservations.

To date, three primary approaches have explored provid-
ing ACID transactions in a cloud environment: (a) relying
on application developers to implement their own consis-
tency checks [7], which is both burdensome and inefficient,
(b) making databases and data storage elastic to scale up
and down with the current workload [12, 13, 14, 33], which
still has either limited scalability or limited transaction sup-
port, and (c) extending single-key transactional support to
multi-key [9, 15, 19], which is still limited in terms of not
supporting transactions over keys in different groups.

This paper describes the architecture and functionality of
the Deuteronomy system that provides efficient ACID trans-
actions for data anywhere, including the cloud. Deuteron-
omy distinguishes itself from previous efforts by its radical
approach of factoring the functions of a database storage en-
gine kernel into: (a) a transactional component (TC) that
provides transactions via “logical” concurrency control and
undo/redo recovery but does not know physical data loca-
tion and (b) a data component (DC) that caches data and
knows about the physical organization, e.g. access methods,
and supports a record-oriented interface with atomic opera-
tions, but knows nothing about transactions. Applications
submit requests to the TC. The TC uses a lock manager and
a log manager to logically enforce transactional concurrency
control and recovery. The TC passes requests to the appro-
priate Data Component (DC). The DC, guaranteed by the
TC to never receive conflicting concurrent operations, need
only support atomic record operations, without concern for
transaction properties that are already guaranteed by the
TC.

A salient feature of Deuteronomy is the ability for transac-
tions to span multiple DCs. For example, consider a trans-
action that updates two tables: an order table stored at a
DC hosted on a local enterprise server, and a payment table
stored at another DC hosted in the cloud. A client executes
this transaction at a single TC, without specifying the phys-
ical location of the data. The TC performs all operations
necessary for transactional support (e.g., logging/locking),
and routes the data update operations to the correct DC ei-
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ther at the enterprise server (i.e., an order update) or in the
cloud (i.e., a payment update). Upon completion, the TC is
responsible for committing the transaction and ensuring the
updates are stable at both DCs.
The deuteronomy architecture is scalable in three dimen-

sions. (1) From a user perspective, if more application ex-
ecution capability is needed then more applications servers
(i.e., TC clients) can be added that interact with a single
TC. (2) If data volume grows, more DC servers can be added
“underneath” a TC to handle the storage and data manip-
ulation workload. (3) For the case that transaction rates
reach a degree that saturates the computational resources of
a single TC servicing multiple clients and interacting with
multiple DCs, multiple TCs can be instantiated (on sepa-
rate machines) supporting transactions on disjoint sets of
data. Thus, workloads can be split between TCs as long
as the data they update is disjoint. However, we believe
a single TC is capable of handling large workloads, as its
performance-intensive operations consist mainly of locking,
logging, and communication overhead. For OLTP workloads
(for which Deuteronomy is intended) that are update inten-
sive and do not deal with large answer sets, communication
bandwidth should not be a system bottleneck until transac-
tion rates saturate the communication link. Similarly, the
execution load (i.e., logging and locking) should not be sub-
stantial at the TC node until transaction rates are enormous.
A Deuteronomy TC can be seen as providing transactions

as a service. Storage systems in the cloud can “outsource”
their transaction services to a TC. Alternatively, a TC can
be seen as a storage engine that “outsources” its physical
data storage management to another component (DC) in
the cloud. Careful separation of transaction and data ser-
vices enables multiple deployment scenarios. A TC can be
applied to data anywhere, e.g., in one cloud, in multiple
clouds, local, or at an enterprise server. Further, a TC can
allow a transaction to spread over multiple DCs. Multiple
TC deployment scenarios are also possible. Both TC and
DC can be at a client and access local data, a TC can be at
the client while the DC is in the cloud, or both the TC and
DC can be cloud-based.
Previously [26, 27, 28], we described how to separate trans-

actional functionality from data management functionality.
This motivated our current effort, where we view cloud stor-
age as an enormous atomic key-value store where data ac-
cessed within a transaction need not be co-located on an
individual node to enable ACID transactions. The contri-
butions of the current work are (1) the architecture of our
multi-threaded TC; (2) a new TC:DC protocol in which the
DC executes operations prior to TC logging them; (3) a new
implementation of log control operations to deal with this
protocol; and (4) initial experiments using an adapted TPC-
W workload [32] that demonstrate both good performance
and the impact of cloud latency on performance.
The rest of this paper is organized as follows. Section 2

highlights related work. The Deuteronomy system architec-
ture is presented in Section 3. Section 4 provides details of
the TC internals. Section 5 discusses transaction optimiza-
tions, while Section 6 provides an end-to-end example of a
transaction executing in Deuteronomy. Section 7 discusses
DC deployment scenarios. Preliminary performance results
are provided in Section 8. Section 9 discusses availability.
Finally, Section 10 concludes the paper, and Section 13 dis-
cusses a demonstration of the Deuteronomy system.

2. RELATED WORK
Several approaches have been proposed to enable ACID

transactions for the cloud. This has been motivated by:
(a) the lack of transactional support in existing commer-
cial and open-source cloud services (e.g., [3, 9, 10, 11, 17,
19, 21, 24, 29]), (b) the emergence of new applications that
require transactional support in the cloud, e.g., Web 2.0 ap-
plications, social networks, and collaborative editing [4, 23],
and (c) the desire for traditional database applications, e.g.,
credit card transactions and flight reservation, to make use
of the cloud infrastructure. The approaches can be divided
into the following three broad categories:

Application-provided consistency. This approach re-
lies on application developers to be responsible for ensuring
transactional consistency. It puts a huge burden on appli-
cation developers. It may also incur a big performance hit
due to the need to call the server multiple times to ensure
consistency [7]. While operations that do not require strong
consistency guarantees can be realized efficiently, for others
needing strong consistency, this performance impact may
be unavoidable. This approach makes sense only for appli-
cations that have a very low fraction of transactions that
require strong consistency guarantees [23].

Localized transaction support. Google Megastore [6]
and Microsoft SQL Azure [9] support transactions over mul-
tiple records, however, they require that these records be
co-located in some way. Developers must cluster Megas-
tore data items into hierarchical groups. For SQL Azure,
database size is constrained to fit on a single node. For
larger data sets, an application needs to partition the data
among different database instances. ElasTras [14] is an elas-
tic database design that scales up and down with the trans-
action workload, but does not provide transactions upon
recovery and supports a restricted transaction semantics,
termed minitransactions [2], that execute within one data
partition.

Limited wider transaction support. G-Store [15] al-
lows for dynamic group formation (a relatively costly op-
eration), where transactions are not allowed across these
formed groups. CloudTPS [35, 36] assumes that transac-
tions are short-lived and only access well-identified items (a
group). Then it employs a two-level hierarchy of transaction
managers running a global two-phase commit protocol over
a set of transactions that each access a single item. The
ecStore [33] is an elastic distributed storage system with
three layers: storage nodes, replication layer, and a trans-
action layer that provides a hybrid design of multi-version
and optimistic concurrency control. Transactions need full
knowledge of data layout in the storage nodes.

Deuteronomy distinguishes itself from these approaches
in architecting a complete separation of transaction services
from data services. Such modular design allows for porting
the Deuteronomy TC over any local or cloud data storage.
The Deuteronomy TC can provide transactions across data
anywhere, in the cloud or locally, not limited to a specific
node, nor requiring special setup costs. This transaction
support is transparent from both application developers and
DCs, making their life much easier when dealing with the
“elastic storage”provided by the cloud, though including DC
caching and log synchronization functionality on top of some
cloud infrastructures does take some effort.
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3. OVERALL SYSTEM ARCHITECTURE
Figure 1 gives the Deuteronomy architecture depicting one

transaction component (TC) (the large gray rectangle) and
multiple data components (DC) with their physical storage
as either local or in the cloud. The TC has five main compo-
nents, depicted as white rectangles: session manager, record
manager, table manager, lock manager, and log manager.
The TC-DC interaction contract [27] is enforced by a set
of control operations (depicted by dark rectangles in both
the TC and DC) that mainly ensure recovery after failure of
TC and/or DC, e.g. the write-ahead log protocol. The DC
needs to manage its own data and storage, and can do so
any way it likes as long as it supports atomic record opera-
tions and the“other side”of the control operations. This is a
strong feature of Deuteronomy, as it makes the TC portable
to many data storage providers and describes precisely what
is needed on the DC side, i.e., the atomic record and table
operations, the control operations, and the interaction con-
tract.
Implementing a DC is non-trivial, as the DC provides both

cache management and access method support, and in ad-
dition, it must fulfill the TC-DC contract, which includes
control operation support, guaranteeing idempotence of op-
erations, and recovery. A record-oriented cloud infrastruc-
ture is used by a cloud DC as if it were record-oriented disks.
The important thing here from the transactional viewpoint
is that there can be multiple DCs, the DCs can be located
anywhere, the data managed by a DC can itself be “scat-
tered across” the cloud or be local, and yet a single TC can
effectively provide transactions for applications under any of
these circumstances.
Applications submit their requests directly to the TC.

These requests are handled by a multi-threaded session man-
ager. The first request initiates the session, and the session
manager establishes an authenticated session for the user.
Subsequent requests flow through the session manager and
are dispatched to the other components. Based on whether
the request is for a record operation (e.g., read/write record)
or table operation (e.g., create/delete table), the TC “ses-
sion” invokes either its record manager or table manager,
respectively. In both cases, the record/table manager calls
both the lock and log manager to perform “logical” concur-
rency control and recovery.
We limit TC knowledge of threading to (1) the session

manager, which does all thread management, (2) the lock
manager which has to arbitrate and protect its lock data
from race conditions and occasionally needs to block a thread
when transactions have conflicting accesses, and (3) the log
manager, which needs similar protection for its data struc-
tures, and occasionally needs to block a thread while log
records are forced. Importantly, both table manager and
record manager are thread safe without needing to be aware
of threading issues (i.e. they are “thread oblivious”).
Resources within the TC are all treated as logical data

items in that their identification does not include physical
location information. Locks are taken without knowledge
of the physical layout of the stored data. Similarly, the log
manager posts log records with resources described logically
and without physical location information. These logical re-
sources are mapped via metadata stored via the table man-
ager to identify which DC owns the requested data. Meta-
data can be added throughout the lifetime of the TC in a
similar way as done with traditional database catalogs.
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Figure 1: Deuteronomy System Architecture

Using its metadata, the TC sends table or record opera-
tions to the appropriate DC. The DC executes each of these
operations as a stand-alone atomic operation, without wor-
rying about any transactional conflicts among concurrent re-
quests as TC locking will guarantee the absence of such con-
flicts. The TC also logs the operations as they are success-
fully completed (i.e., after the DC returns). This sequence
of locking, forwarding an operation to a DC, and then log-
ging, is quite different from our original thoughts [27], and
will be elaborated in the record manager section.

There are three important points to emphasize:

1. Data can be stored anywhere, e.g., in a local disk, in a
flash device, in the cloud, etc. TC functionality in no
way depends on where the data is located.

2. The TC and DC can be deployed in a number of ways.
Both can be located within the client, and that is help-
ful in providing fast transactional access to closely held
data. The TC could be located with the client while
the DC could be in the cloud, which is helpful in case
a user would like to use its own subscription at a TC
service or wants to perform transactions that involve
data in multiple locations. Both TC and DC can be
in the cloud, which is helpful if a cloud data storage
provider would like to localize transaction services for
some of its data to a TC component.

3. There can be multiple DCs serviced by one TC, where
transactions spanning multiple DCs are naturally sup-
ported because a TC does not depend on where data
items are stored. Also, there can be multiple TCs, yet,
a transaction is serviced by one specific TC.

4. TRANSACTION COMPONENT (TC)
This section discusses the five major components of the

TC: the session manager, record manager, table manager,
lock manager, and log manager, the ones on the most per-
formance sensitive execution path.

4.1 The Session Manager
The session manager is the application facing module of

the TC, providing the interface to the application (hence-
forth referred to as user) and overseeing the execution of
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its requests. The session manager maintains communica-
tion connections to users and provides multiplexed use of
these connections. It authenticates a user when a session
is initiated. Each session can support a stream of transac-
tional requests, though within a session, there are no con-
current transactions. Hence it is sessions that are assigned
to threads, with a session never using more than a single
thread.
The session manager maintains a thread pool, a thread be-

ing dispatch for a session when a request from that session
arrives and there is no thread assigned for this session. A dis-
patched session thread handles session requests in sequence.
After serving a request, the session thread finds the next
unprocessed queued request in this session and executes it.
Queued requests are possible since a client can issue a batch
of ordered requests. If there is no waiting request for the
session, the thread is returned to the thread pool so that it
can be used to handle requests from another session. Main-
taining a thread pool permits fast request handling without
the overhead of thread creation.
The session manager oversees the execution of user re-

quests, calling the record manager and/or table manager as
needed. User requests may be bracketed with explicit Be-
gin/Commit transaction operations or use implicit transac-
tions in which the session manager will provide these opera-
tions when a request from a client is not explicitly bracketed.
In any case, a user (session) has only one open transaction
at a time. User requests may result in multiple calls to table
and record manager, e.g. a record update may require that
the table manager be accessed to interrogate the catalog to
identify the DC at which the data is managed; followed by
an invocation of the record manager to perform the data
manipulation operation. The session manager also marshals
and de-marshals requests and replies between client and TC.

4.2 The Record Manager
The record manager supports operations that include mod-

ifying or reading records from DCs. Record operations “log-
ically”coordinate with both the lock and log managers with-
out knowledge of physical data placement and, in some cases,
of the values of keys at the DC. In general, the record man-
ager is responsible for two classes of operations: (a) reading
operations that include reading a single record or a range of
records, and (b) writing operations that include inserting,
updating, and deleting a single record.

4.2.1 Read Operations

For read operations, the record manager first requests
from the lock manager the appropriate lock(s) on the re-
quested resource(s) (detailed in Section 4.4). Once the rele-
vant locks are granted, the read request is forwarded to the
DC either for a single record or for a range of records. Reads
are not logged.
A user-provided key identifies a record for a singleton

record operation. However, this is not the case for range
reads, where the boundary keys that bracket the records of
the range need not be real key values associated with ex-
isting records. Thus our “range” locking needs to be done
without knowledge of the key values of records in the range.
This is discussed in the lock manager subsection 4.4.

4.2.2 Write Operations

Write operations need to be both locked and logged. Both

locking and logging are done with neither physical data
placement information nor knowledge of surrounding keys.
Both locking and logging requirements caused us to re-think
the nature of the TC:DC interface, with the result that we
changed the expected protocol specifics introduced in [27] to
improve performance.

Locking: We do not exploit “next key” range locking, even
of the type described in [28]. We made a strategic decision
that even if we could afford to set such key value range locks,
we could not afford to test them during inserts and deletes.
These operations would need to know the“next key”value to
test the “next key” lock protecting the gap (range) between
keys for a range reader. To learn the “next key” requires
that we read it from the DC, but this doubles the number
of round trips to the DC needed for every insert and delete.
While this may be reasonable when the DC is local, it is not
when dealing with remote DCs with large latencies.

Logging: There is no problem with logging logical record
identifiers for log records, and earlier work [26] demonstrated
that doing this would produce at worst a modest reduction
in speed of recovery, and little impact on normal execution.
There are two problems with logging addressed in Deuteron-
omy that are of a different nature.

1. We had modeled our TC:DC interface [27] on the re-
covery guarantees framework developed for application
recovery [5]. This posted information to the log prior
to sending messages to ensure that the sender remem-
bered a message it sent whenever a receiver remem-
bered it (causality). But if we logged requests, we
would need to also log replies in order to know when
an operation succeeded. And not all operations (re-
quests) succeed. For example, inserting a record when
a record with the same key already exists or updating
a record that does not exist are errors. We want to
log operations only once. To do that, we need to know
their outcome at the point when written to the log.

2. A second problem is that transactional logging requires
both before and after state so that operations can be
undone [31]. When an insert succeeds, the before state
is null, so undo logging for inserts requires nothing
new. For deletes and updates however, we did not want
to be required to read the record before we changed it.
By waiting for the DC to execute the operation and
return to the TC prior to logging, we can have the
response from the DC include the before image of the
record which we then can include in our log records.

The preceding problems caused us to want a record man-
ager protocol that orders locking and logging activities as
follows:

1. Request appropriate locks, and generate a log sequence
number (LSN), in monotonically increasing order, for
a DC data modification request. The LSN is generated
only after the appropriate write lock is granted. LSNs
are not generated for read or intention locks. Our lock
manager guarantees the order of these LSNs is consis-
tent with the conflict order of the operations.

2. Send the operation to the DC for execution. The DC
uses the LSN as it would in a conventional setting to
identify the operation and provide recovery idempo-
tence. For update and delete operations, the before
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image is returned. For all operations, an indication of
whether they succeeded is returned.

3. Log the operation after the DC has returned having
executed the operation, again using the lock manager
provided LSN to identify the operation. During recov-
ery, the LSN for a successful operation is sent again to
the DC along with the operation for the DC idempo-
tence test.

This protocol is possible only because the TC:DC inter-
face includes control operations which can be used to enforce
causality and permit recovery management in this new set-
ting. In particular, the TC can, via the control operations,
specify when the DC can make information stable. It does
this via an EOSL (“end of stable log”) call. Operations with
LSNs larger than the latest LSN provided to the DC via an
EOSL call must be “forgettable”.
Note here that when using this protocol, the LSNs on

the log may be out-of-order as there is no guarantee about
which requests will be granted/acknowledged first due to the
multi-threaded nature of both TC and DC. However, what
we are sure about is that conflict order will be preserved
through all LSNs in the log file. This is guaranteed by the
lock manager.

4.3 The Table Manager
The table manager is mainly concerned with data defi-

nition language (DDL) operations on a table that include
creating and deleting tables, as well as creating, deleting,
and modifying table columns. These operations sync with
the lock and log managers and are passed to the appropri-
ate DC in exactly the same way as the update operations
described for the record manager in Section 4.2. In addition
to executing DDL operations, the table manager has two
other responsibilities: meta-data management and creating
and altering logical locking partitions; we now describe these
responsibilities in detail.

4.3.1 Metadata Management

The table manager is responsible for maintaining two pri-
mary metadata catalogs: (1) A table catalog stores an entry
for each table containing its name, owner information, and
the DC that stores the table. This catalog is primarily used
to direct read/write requests to the appropriate DC. (2) A
column catalog stores table column information including
column name, constraints (e.g., primary/foreign key), and
minimum and maximum values. Each TC stores its meta-
data catalogs at a master DC, a designated “default” DC
whose address is given to each TC upon initialization and
kept safe and persistent. When a TC subsequently restarts
(e.g., due to a crash), it uses the stored master DC’s address
to retrieve its catalogs.
Like regular table and record operations, all operations

that modify metadata catalogs synchronize with the lock
and log managers. In fact, to ensure consistency between
tables and their metadata, we wrap each table operation
(e.g., create table) in a transaction with a symmetric op-
eration that manipulates the appropriate metadata catalog
(e.g., adding an entry to the table catalog).

4.3.2 Logical Partition Creation

As will be discussed in detail for the lock manager, there
is a need for logical locking partitions in Deuteronomy. Es-
sentially, the TC knows only about table and record lock

resources, but not about the pages on which records or ta-
bles are stored. Pages have served as an intermediate lock
resource in traditional database systems. But, in Deuteron-
omy, the TC cannot lock pages since they are not known to
it. To compensate for this, the table manager defines logical
partitions as an intermediate granularity lockable resource
for each Deuteronomy table. A straightforward approach
we currently use to create logical partitions is to divide the
key range equally into a fixed number of partitions. How-
ever, more sophisticated techniques can be used to provide
more uniform coverage by data volumes. New partitioning
techniques can be employed without affecting the overall op-
erations in Deuteronomy.

4.4 The Lock Manager
The lock manager is called from either the table or record

managers to obtain the appropriate locks before user re-
quests are forwarded to the DC. The lock manager must
be thread aware as its lock tables can be accessed by many
session threads concurrently. It uses a monitor to protect
the lock table entries. It causes a session thread to block
(sleep) if it encounters a conflicting lock. This part of the
lock manager is quite traditional. Our lock manger also
supports requests for multiple locks, with the lock manager
returning after all lock requests are granted.

We employ multi-granularity locking with three levels of
resources: table, partition, and record. Our multi-lock re-
quests are used to request known locks down this hierarchy
so that a single call is sufficient to acquire a record level lock.
For table or record level locks, it is straightforward to pro-
vide table ID(name) and record ID(key), respectively, which
are known to the TC as well as the DC. The TC knows these
via the user request and its metadata.

Partitions are present in our multi-granularity hierarchy
to facilitate reading ranges of records [28]. For example,
consider the query that selects all employees with IDs from
10 to 40, and runs with serializable isolation. The lock man-
ager needs to lock all the keys in the range [10,40]. However,
since the TC knows nothing about the stored data, it has
no way of locking these records without first reading them
from the DC, which is very expensive in a cloud setting. In-
stead, the record manager will consult the table manager,
which will return to it with a partition ID. The table man-
ager is responsible for knowing about key domains and can
partition them “logically” as appropriate.

The TC record manager will utilize these logical parti-
tions to request locks that cover the requested range through
locking all the logical partitions that overlap with the re-
quested range. With logical partitions, reading/writing a
single record requires an intent lock on the table and the
partition resources that cover the requested record, and an
explicit lock on the record itself. Reading a range of records
requires an intent lock over the table, then, a set of explicit
locks on all the logical partitions that overlap with the re-
quested range. Individual records are never locked for a
range read. Note that this is a different protocol than used
in [28], where individual records were locked in“border”par-
titions. We felt it essential to avoid checking a next key lock
during insert and delete operations, which is required for
key range locks. Using only partition locks, which are anal-
ogous to page locks, is a cruder approximation to the range
of records, but it avoids this extra “next key” access.

As discussed in Section 4.2, the lock manager is also re-
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sponsible for generating LSNs to be used when logging writ-
ing operations. The main idea is that LSNs generated by the
lock manager are guaranteed to be in conflict order. Thus,
they are ideal for communicating with the DC and for pro-
viding idempotence for write operations at the DC. They do
cause a complication at the log manager, however, which we
describe next.

4.5 The Log Manager
The core of the log manager is conventional. Indeed, in

our implementation, we used the Windows Common Log
File (CLF) [30] as the TC transactional log. CLF natively
supports multi-threading. Our code that wraps the CLF
invocations also must deal with explicit threading, and ap-
propriately synchronizes access to private data structures
(e.g., thread-safe hash tables). However, we differ from con-
ventional logging in that (1) we must deal with LSNs that
are stored somewhat out-of-order on the log; and (2) we
need to coordinate log management at the TC with cache
management at the DC.
Recall that our protocol for dealing with a record opera-

tion first acquires a lock at the lock manager, with an LSN
issued for it in strictly monotonic and hence conflict order.
The request is then forwarded to the DC for execution, and
we log the request only after the operation succeeds at the
DC and returns control to the TC. Given the extensive use
of multiple threads at all system levels, the LSNs, ordered
when they leave the lock manager, can arrive out-of-order at
the log manager. The log manager does not wait for LSNs of
missing requests but rather writes the log record describing
an operation immediately to the log.
Deuteronomy’s recovery protocol has been described in

some detail in an earlier paper [27]. Deuteronomy requires
some changes to the more traditional ARIES [31] style al-
gorithm. However, it shares the log management aspects
with ARIES. That is, we need to enforce the write ahead
log protocol, and we need to determine at what log position
to begin our redo scan. These two aspects of recovery are
normally done within a single database kernel, as part of an
integrated algorithm. For Deuteronomy, however, managing
the transaction recovery log is done at the TC, while cache
management is done at each DC. Hence, log management
requires that log and cache management be coordinated be-
tween TC and DC for successful recovery.
For the above reasons, the TC log manager will send two

control operations to the DC: to enforce the write-ahead log
protocol (causality); and to enable it to truncate the active
part of the log via a checkpoint so that redo recovery time
can be bounded and log space recovered and reused. Both
operations are implemented as separate background threads,
and do not interfere with the session-oriented record/table
operations.

EOSL: The TC log manager periodically sends to each DC
an LSN (denoted eLSN) indicating the End Of Stable
Log. This operation permits a DC to write updates
that it has cached back to stable storage. Before re-
ceiving an eLSN ≥ LSN of a cached update, the DC
must not make that update stable. This permits it to
“forget” the update (“forced amnesia”) should the TC
crash and lose the log tail containing that log record.

RSSP: At less frequent intervals, the TC log manager sends
to each DC an LSN (denoted rLSN) indicating its

desired Redo Scan Start Point. This operation requires
that the DC write to stable storage all updates with
LSNs earlier than rLSN prior to returning from this
operation. When control returns to the TC, the TC
writes the rLSN into its checkpoint information on its
log, and uses the last written rLSN as the start point
for its redo scan should recovery be needed.

Given that LSNs are not ordered monotonically on our log,
both eLSN and rLSN are “low water marks”. That is, for
EOSL, an LSN ≤ eLSN is stable. But an LSN > eLSN

may also be stable. For RSSP, the TC promises that every
operation with an LSN ≥ rLSN will be replayed during
recovery. Further, there is no guarantee that an operation
with an LSN < rLSN will be replayed during redo, so the
DC must promise to make those operations stable before
ACKing an RSSP call. This is the case even though some of
these operations may, in fact, be re-sent to the DC because
they appear later than the log position the TC uses for its
redo scan start point.

4.5.1 EOSL

For EOSL, we need to ensure that we have received replies
for all operations up to and including the operation with
LSN = eLSN , and that log records for these operations
are on the stable log. We may have received replies for
some requests with an LSNs > eLSN , but we can ignore
them. We keep a vector LSN-V (starting at the last value
for eLSN) indexed by LSN. Each element contains the log
position LP at which the operation with the given LSN is
placed. Log positions are monotonic such that when a log
record is posted to the log, it has a log position higher than
all preceding log records. We maintain a current log position
cLP to identify the log record slot in the log where next log
record will be written.

When an operation identified with an LSN oLSN returns
from the DC and arrives at the log manager, its log record is
placed in the current log position cLP . cLP is then stored
at LSN-V[oLSN ]. cLP is then incremented to reference the
next position in the log buffer. We also track the log position
of the end of the stable log, called sLP , which is updated
whenever a flushed log buffer is stably written.

To determine a new eLSN , we scan LSN-V from the old
eLSN position until we reach an LSN-V[lsn] that is not
set (operation has not yet returned and been logged) or
LSN-V[lsn] > sLP . lsn − 1 becomes the new eLSN as
we now know that lsn is the lowest LSN not on the stable
log.

4.5.2 RSSP

Implementing RSSP would seem to be easy since all we
need is to direct the DC to make operations earlier than
rLSN stable. But the TC itself starts its redo scan at a log
position rLP . For a pair of rLSN and rLP , we require two
things. (1) Any LSN ≤ rLSN must be stable on the log.
This is the same condition as for eLSN , suggesting that we
use an earlier eLSN as our rLSN . (2) Since we are starting
our redo scan at rLP , we need to make sure that we see for
redo all operations with LSNs greater than rLSN . Thus we
need to ensure that no operation with an LSN > rLSN has
a log position LP ≤ rLP .

We extend our work for EOSL to help us with RSSP. We
keep track of the maximum LSN that we have seen up to
the time we scanned LSN-V for eLSN , called maxLSN ,
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and also remember the sLP (end of stable log) used in de-
termining eLSN . We retain this information for the last
several EOSL requests (since the prior RSSP) in a list of
its own called EOSL-L. An element of EOSL-L consists of
⟨eLSN, sLP,maxLSN⟩, where the EOSL-L elements are or-
dered consistent with the time of an EOSL request, EOSL-L[i]
being at an earlier time than EOSL-L[i+ 1].
When an RSSP operation is invoked to determine a new

rLSN , we set rLP = EOSL-L[oldest].sLP . We then scan
EOSL-L[i] entries beginning with i = oldest + 1. Any
LSN ≤ EOSL-L[i].eLSN is stable on the log. When
EOSL-L[i].eLSN ≥ EOSL-L[oldest].maxLSN , we know
that if the DC makes stable all operations with oLSN ≤
EOSL-L[i].eLSN then all operations on the log before
EOSL-L[oldest].sLP will be made stable since none has an
LSN > EOSL-L[i].eLSN . Hence there will be no opera-
tions preceding EOSL−L[oldest].sLP on the log that need
redo when we set rLSN = EOSL-L[i].eLSN .
Once we choose rLSN , we improve rLP by scanning

EOSL-L entries EOSL-L[j] beginning with EOSL-L[oldest].
We stop at the largest j that satisfies rLSN ≥
EOSL-L[j].maxLSN . EOSL-L[j].sLP is then used as the
final rLP . The correctness of this improved rLP can be
shown in the same way as the previous one.

5. TRANSACTIONAL OPTIMIZATIONS
Deuteronomy incorporates classical and important trans-

actional optimization techniques. In this section we discuss
how fast commit and group commit [18] optimizations are
provided in Deuteronomy to improve throughput.

5.1 Fast Commit
Fast commit optimization allows a transaction to release

all its locks before waiting for its commit record to be flushed
to stable storage. Deuteronomy adopts the fast commit opti-
mization by arranging the key steps that a transaction takes
during commit as follows.

1. Create the commit record and post it to log buffer.

2. Release transaction locks.

3. Wait until transaction commit log record is flushed.

4. Remove the transaction from the table of active trans-
actions.

5. Send reply to the client indicating the transaction has
committed.

This order does not affect the correctness of the system
since a transaction that releases its locks is guaranteed to
commit earlier than any other transaction waiting for the
locks. The guarantee comes from the fact that the earlier
transaction places its commit record in log buffer before it
releases its locks, and the log records are written sequen-
tially during flush. So if a later transaction using the un-
locked resources commits, it will be done only if the earlier
transaction also commits. Compared to the original scenario
where locks are released after the commit record is flushed,
fast commit reduces lock wait time for every transaction.
To make this work correctly, we need to synchronize read-

only transactions with this optimization. This can be done
by writing commit log records for all transactions, including
read-only transactions.

Client TC DC
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Figure 2: End-to-end steps for single record read

5.2 Group Commit
The group commit optimization delays a set of commit-

ting transactions for a small time period and commits them
as a group by flushing the log buffer containing their com-
mit records to the disk. For durability, a transaction is not
committed until its commit log record has been flushed to
the stable log. Without group commit, each commit triggers
a system call to CLF to flush the log buffer to disk immedi-
ately. This requires CLF to flush the log buffer (write to the
disk) for every transaction commit. Thus, every transaction
incurs disk write latency, and log buffer storage utilization
suffers.

Group commit amortizes the cost of a log force by group-
ing transactions that commit close in time and issuing a
single log flush request for all transactions in the group. In
Deuteronomy, this is achieved by having the thread of a
committing transaction wait inside the log manager for a log
flush. (This occurs at step 3 above.) A log flush writes all
buffered log records to stable storage. This log buffer flush
occurs either (1) when the buffer is full, or (2) after a small
time delta, which is configurable, that enables the buffer to
fill. In this way, we reduce the number of log I/O system
calls from the number of commits to the number of commit
groups by slightly holding back each committing transac-
tion. All transactions of a group share the group commit
write latency instead of each incurring the write latency.

6. AN END-TO-END EXAMPLE
To help demonstrate the technical details described so far,

this section provides an end-to-end example of the steps nec-
essary to execute a transaction in Deuteronomy. Our run-
ning example is the following transaction that reads and
updates a single record R:

Begin Transaction

Read record R

Update record R with new value V

Commit Transaction

We describe the details of the four operations for this trans-
action in chronological order.

Begin transaction. To begin a transaction, the session
manager first assigns a thread to the transaction (details in
Section 4.1) and generates a unique transaction id, which
is then used to initiate an entry in the transaction table
that stores the log position of each active transaction’s last
operation (used to back-chain a transaction’s log records).

Read record. The steps of a read operation for a single
record are depicted in Figure 2. The client passes the TC
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Figure 3: End-to-end steps for record update

the table name and record key R.key. Upon receiving the
request, the TC calls the lock manager to acquire appro-
priate locks. The lock manager does not generate an LSN
for these operations since reads are not logged in Deuteron-
omy. Next, using the given table name, the DC address is
retrieved from the table manager, and the read request is
sent to the DC passing the table name and record key. The
DC then returns to the TC either record R if the read is suc-
cessful, or an error if record R does not exist. The TC then
passes back record R (or an error) to the client to complete
the read operation.
Update record. The steps of an update operation are

depicted in Figure 3. The client passes the TC a table name
and updated record R. The TC then calls the lock manager
to both acquire appropriate locks and retrieve an LSN for
the operation. The DC address is then retrieved from the
table manager, and the update is sent to the DC using the
table name and record R. The DC first retrieves the before
image of record R (abbr. R.before), and then performs the
record update. The DC then returns R.before to the TC,
and the TC logs the operation using the LSN, R.before as
the before image, and R as the after image. Finally, the
TC sends an acknowledgement of the update to the client,
which completes the update operation. In the case of an
error (e.g., record R does not exist at the DC), the TC will
return an error to the client without logging the update.
End transaction. To end the transaction, the TC first

writes a commit record to the log. Details of the Deuteron-
omy commit procedures are given in Section 5. Once the
commit is logged, the transaction’s entry is removed from
the transaction table. Finally, the TC returns to the client
and returns the transaction thread to the open thread pool.

7. DATA COMPONENTS (DCS)
We implemented and/or used a number of DCs: (1) a

“stub DC” that merely returns immediately, used solely to
test our TC code, (2) a “local DC” which keeps all data
in main memory, also used in testing, (3) a “flash DC” that
used a storage manager provided by the Communication and
Collaboration Systems Group in Microsoft Research1 that
exploits flash memory, but is also usable with a disk for
stability, and (4) a “cloud DC” written by a group in the

1This group consisted of Sudipta Sengupta, Biplob Debnath,
and Jin Li
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Figure 4: TC Performance for Varying DC Latencies

Microsoft XTREME Computing Group2 that uses Windows
Azure storage to make data stable.

Our TC code is defined to permit us to use several DCs
simultaneously, and the thread executing each TC operation
simply invokes a DC operation as if it were local. Given our
multi-threaded TC, this means that each DC needs to deal
with multi-threading issues. When a DC is not local, there
is a proxy DC behind the interface that forwards messages
to the remote DC. In this case, it is the proxy that deals with
the local (to the node of the TC) threading issues, such as
commanding a requesting thread to sleep and waking it up
when the reply comes back from the remote DC. A proxy
DC is required for the cloud DC, which cannot be local.

Had we only intended using a TC with local DCs, we
wouldn’t have been so concerned about the need to read a
record prior to locking records in a range or testing a next
key lock when doing inserts and deletes. However, the cloud
introduces large latencies (larger than a local disk). So it has
been essential to tailor our TC:DC interface to minimize the
number of times we incur cloud latency.

8. SOME PERFORMANCE RESULTS

8.1 Benchmarking
We evaluated performance via adapting a limited version

of the TPC-W benchmarks [32] to work in the cloud envi-
ronment. This is similar to the approach taken in [23, 22,
25]. Since we are most concerned about measuring TC per-
formance, we show throughput under controlled changes in
DC latency. The longer the latency to the DC, the higher
the level of multi-threading we must employ to keep the pro-
cessor busy. The more threads active at a time, the more
collisions they will see, and perhaps lower cache hits as well.
This results in higher throughput for lower latency deploy-
ments, as shown in Figure 4.

8.2 Improving Performance
We consider the performance reported for our benchmark-

ing to be only respectable. We believe it is possible for per-
formance to be substantially higher than we report above.
Here we want to discuss the nature of the overhead intro-
duced by the TC on the path to the data, and to understand
what might be done to improve performance.

The first thing we did was to isolate TC performance from
transactional aspects, in particular how much overhead was

2This group consisted of Roger Barga, Nelson Araujo, Bri-
hadish Koushik, and Shailesh Nikam.
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added by locking and logging. We ran tests with these ca-
pabilities disabled. Performance was only 20% better when
locking and logging were disabled for the cloud latency case.
As performance elsewhere improves, the cost of logging and
locking will loom larger. But it is clear that performance
gains will need to come from elsewhere.
We believe that there are two main impediments to higher

performance. And these impediments are neither architec-
tural nor are they intrinsic to the logic of operations as we
have implemented operations. Rather, we believe there are
two limitations that lie in the infrastructure that we used to
build our prototype.
Threading: Operating system threads are much lighter

weight than processes. However, whenever a system thread
blocks or otherwise does a context switch, an OS thread
crosses a protection boundary. This step adds substantial
overhead to the cost of a thread switch. Because of this,
SQL Server implements (in their SQL OS layer) user level
threading called fibers. We did not use SQL OS in our im-
plementation in the interest of rapid system prototyping.
However, we believe that there is a substantial gain to be
made by using fibers.
Implementation Language: We used C# as our im-

plementation language because it reduced the programming
effort. That was, we believe, a wise choice given the lim-
ited time we had to construct the system. But, for a “real”
Deuteronomy deployment, we would have made a different
choice. Building a system has a rough equivalence to work-
ing on the code in the inner loop of a large program. That
is, system programming is much more performance sensitive
than is application programming. Programming languages
that are great for rapid prototyping and fine for applica-
tion programming may be problematical for the inner core
of system level programming. Deuteronomy (encompassing
both TC and DCs) is part of that inner core. Indeed TC
and DC together constitute the kernel of a database system.
Thus, a language like C is the more appropriate language
for a system to be widely deployed.
While we cannot quantify the performance that would re-

sult from using fibers and implementing in C, we expect
substantial gains. At that point, we would need to revisit
lock and log manager implementations. In the lock man-
ager, we need to use more fine grained concurrency control
for accessing the lock manager data structures, e.g. spin
locks protecting smaller data extents. For the log manager,
as with threading, performance would benefit from its code
being entirely within user space to save the system protec-
tion boundary overhead of using CLF.

9. AVAILABILITY
Availability can be lost due to several forms of failure.

Availability is maximized when the system can (1) minimize
the extent of the availability loss when a failure occurs; and
(2) reduce the time to recover from the failure causing the
lost availability. In this section we describe a number of
types of lost availability resulting from failures, and how the
Deuteronomy architecture enables us to minimize the loss.

9.1 Data Unavailability
We focus first on data availability when the DC responsi-

ble for executing on the data has not failed. DC failures are
considered below. A prime purpose of cloud infrastructures
is to provide high availability. Data is typically replicated,

with a consensus protocol used to ensure that a replica fail-
ure does not make data unavailable for update. So data
unavailability should be a very rare event.

While there is nothing that Deuteronomy can do directly
to make unavailable data available, accessible data need not
become unavailable simply because it happened to be ac-
cessed in the same transaction as currently unavailable data.
Such data can become transactionally consistent either by
transaction commit or transaction abort. Both commit and
abort are feasible depending on the specific state of each
transaction. For transactions that are finished, commit re-
leases locks on available data, while for abort, undo opera-
tions are first sent to the DC managing the data, and then
locks are released. Neither outcome is a blocking outcome,
and access to available data continues uninterrupted.

Further, a DC may be able to mask some data unavail-
ability. This may enable some transactions to commit that
would otherwise have aborted. So long as the data being
accessed by transactions from the TC is in DC cache, avail-
ability continues. When the data becomes available again,
the changes captured by the DC are written back to storage.
Only when the DC needs to access data that is unavailable
and not in its cache does it need to notify the TC. When
this occurs, the TC aborts the transaction involved.

9.2 TC Failure
Availability in the presence of a TC failure depends on

the robustness and accessibility of the TC transactional log.
If the TC log is on a disk that is local to the TC, and is not
itself replicated elsewhere, then the data handled via the
TC is unavailable while the TC is down. However, if the log
is available, e.g. cloud replication is used for the log, then
the TC can failover to a standby TC that accesses the log.
The standby TC initiates recovery using the log, and when
recovery is complete, normal service resumes.

For a TC failure without an accompanying DC failure,
recovery is very fast. Even with the TC log replayed from
the RSSP, the DC has little recovery to perform as it has
not crashed. The most substantive activity it needs to do
is to reset its cache, removing updates that were not stable
on the TC log at the time of the crash. Only data items
modified by these updates, or ones reset along with them
(e.g. if the cache was paginated and a reset affected other
records on the page) need to be recovered.

9.3 DC Failure
Should a DC fail, a more expensive form of recovery is

needed to bring the database back to the point where the
failed DC can resume normal execution. We have outlined
that recovery earlier [27]. The TC waits for the DC to come
back up, and then initiates recovery with it. Because the
DC cache has been lost, recovery now entails re-execution
of all lost operations (i.e. redo recovery), and importantly,
the DC cache needs to be re-populated with the active data
as of the time of the crash to do this. While Deuteronomy
recovery needs to be “logical”, as shown in [26], recovery
performance can be comparable to ARIES style recovery.

While it is conceptually possible to maintain a hot DC
standby in the same way that a full-blown database systems
maintains a standby, there is a negative to this. A database
standby typically manages an independent database replica.
Hence it can read and write to its replica and manage its
cache independently of the primary database. To pursue
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that strategy, we would need a hot standby DC to manage
its own data replica. This can only be done by (1) replac-
ing the normal cloud replication with our own replication so
that a DC accesses a single replica or (2) having two repli-
cated cloud data sets, each with a separate DC, thus adding
another layer of replication on top of the normal cloud data
replication. How best to maintain a hot standby using a sin-
gle cloud replicated data set, where both primary and hot
standby manage this data set is a topic for further work.

10. CONCLUSION
We have described our implementation of a TC that can

provide transactional functionality over any storage infras-
tructure. To work effectively, we do need to provide a stor-
age infrastructure with DC functionality in order to enable
it to cache data and to post its results to stable storage
lazily. The DC functionality also permits the TC to lazily
force its log, and to truncate its log using normal database
checkpointing methods.
Our TC provides transaction functionality, regardless of

how the data may be distributed across the cloud. While ac-
cessing data in the cloud currently entails large latency, our
TC nonetheless achieves decent performance. Most previous
efforts have either tried to avoid cloud transactions, or have
severely circumscribed their scope. Our TC implementation
shows that this is not required, and that it is feasible to
provide full ACID transactions and enable the applications
that require them to be supported in the cloud.
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Figure 5: Demo app: MSRBook social network

13. DEMONSTRATION DESCRIPTION
This section provides a demonstration description of the

Deuteronomy system. We cover the demo applications, data,
and configuration necessary to support unrestricted transac-
tions for a social networking application that stores its data
anywhere in the cloud.

13.1 Application
The application we use to demonstrate Deuteronomy is

MSRBook, a cloud-based social-networking application. MSR-
Book comes in two versions: (1) Mobile-based, implemented
as a Microsoft Windows Phone 7 application and depicted
in Figure 5, and (2) Web-based, built for a standard web
browser (screen-shot omitted due to space). Users perform
actions in MSRBook similar to other well-known social net-
working applications, such as updating friend lists, posting
items on friend feeds, and sending and receiving messages.
MSRBook uses Windows Azure cloud-based storage for

managing its data. Deuteronomy provides transaction man-
agement for this data. MSRBook interfaces with the TC
session manager and all transactions performed by the appli-
cation use the TC interface methods covered in Section 4.2.

13.2 Data and System Configuration
For each user account, MSRBook stores two major pieces

of data: (1) a friend list that stores who a particular user is
connected with in the application, and (2) news feed items,
containing news updates a user wishes to share with friends.
MSRBook partitions its account data by user last name into
three primary partitions: [a-f], [g-p], [q-z]. Each partition
is managed by a separate DC, and is hosted on a differ-
ent Windows Azure partition, meaning data for any two
user accounts are not guaranteed to be co-located on the
same Azure storage node. MSRBook interfaces with a sin-
gle TC that provides transaction support for all three DCs
as depicted in Figure 6. The TC, as well as all DCs, are
cloud-based. The TC is implemented and hosted as a Win-
dows Azure web role, while Each DC is implemented as a
Windows Azure worker role (see [29] for details of web and
worker roles).

Deuteronomy TC

Deuteronomy DC

Data for accounts 

[A-F]

Deuteronomy DC

Data for accounts 

[G-P]

Deuteronomy DC

Data for accounts 

[Q-Z]
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Figure 6: Demonstration scenario overview

This configuration is significant for two reasons. First,
it mirrors a simple but realistic partitioning scheme typical
for many cloud-based applications. Second, such a configu-
ration does not guarantee that any two (or more) users are
co-located on the same storage partition, meaning many ex-
isting cloud-based transaction approaches (e.g., Azure entity
group transactions [29]) cannot provide support for a ACID
transactions involving any two (or more) user accounts.

13.3 Demonstration Scenarios
Transactions in Deuteronomy. Our first demonstra-

tion focuses on the transactional details of users updating
their friend lists in MSRBook. In this scenario, a user Lar-
son notifies user Smith that he would like to connect as
friends on MSRBook. Upon navigating to the friend notifi-
cation screen (depicted in Figure 5 (b)), user Smith touches
the “confirm” button in order to confirm his friendship with
Larson. This action requires a transaction that updates both
friend lists as well as both news feeds for the two users. Such
a transaction requires only six lines of straightforward code
in Deuteronomy as follows.

Begin Transaction

Insert user Larson into friend list of Smith

Insert new friend update into Larson’s news feed

Insert user Smith into friend list of Larson

Insert new friend update into Smith’s news feed

End Transaction

Given the configuration of the data (Larson and Smith
exist in separate Azure storage partitions), such a simple
and straightforward transaction is only possible in Deuteron-
omy. Under these partition constraints, all other cloud-
based transactional support (see Section 2) require some
form of eventual consistency that is orders of magnitude
more complicated for application developers to implement [1].

Scalability. Our second demonstration provides a live
showcase of scalability performance of Deuteronomy using
the MSRBook application. Using a workload generator that
simulates tens of thousands of simultaneous user friend up-
date requests in MSRBook, we report live throughput num-
bers for Deuteronomy under such a workload. We also con-
currently perform friend updates using the Windows Phone
7 application (Figure 5) while the simulated workload runs
to show that response time is on the order of milliseconds.
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