

Devanagari Character Recognition towards
natural Human-Computer Interaction

Pulkit Goyal
IIIT Allahabad, Amethi Campus

Teekarmaphi, Amethi
Dist. Sultanpur(U.P) - 227413

pulkit110@gmail.com

Sapan Diwakar
IIIT Allahabad, Amethi Campus

Teekarmaphi, Amethi
Dist. Sultanpur(U.P) - 227413
diwakar.sapan@gmail.com

Anupam Agrawal
IIIT Allahabad

Deoghat, Jhalwa
Allahabad (U.P.) - 211012

anupam@iiita.ac.in

Human-computer interaction is a growing research area. There are several ways of interaction with
the computer. Handwriting has continued to persist as a means of communication and recording
information in the day to day life even with the introduction of new technologies. Due to the growth
of technology in India, it becomes important to devise ways that allow people to communicate with
computer in Indian languages. Hindi being the national language of India, we present a way to
communicate with the computer in Hindi or more precisely, ‘Devanagari script’. Due to absence of
a global font to represent Devanagari characters, it is important that the computer recognizes the
characters written by the user in order to interact with him. The algorithm implemented for
character recognition first segments the image containing Devanagari text fed to the software into
lines, lines to words and words to characters. The obtained characters are then brought down to a
standard size. The Kohonen Neural Network based recognizer then comes into action and
recognizes the text character by character and provides the output in Unicode format. The network
has been designed with no hidden layer to support quick recognition. Apart from text recognition
from an image, we also provided the option to recognize individual handwritten characters drawn
using a mouse. Such a system provides keyboard less computer interaction. The technique is
implemented using Java. The overall recognition rate for a fixed font machine printed characters is
90.26% and for hand written characters, it is 83.33%.

Handwriting Recognition, Segmentation, Kohonen Neural Network, Self Organizing Map, Devanagari Characters

1. INTRODUCTION

Hindi is used by more than 400 million people
across the globe [6]. It consists of eleven vowels
and thirty three consonants giving a total of forty
four characters. Every word in Devanagari script is
written by first drawing a horizontal line which is
called Shirorekha and then writing the characters
beneath Shirorekha. Characters can be joined with
other characters and with vowels as well.

Even with the advancing technology in India, there
is a lack of such software which can recognize
Devanagari text. Such software has many
applications. It may be used in communicating with
the computer in our native language by sketching
characters. It can also be useful for indexing
images for search engines. This is necessary
because most of the websites use images to
represent Devanagari text. It can also be used at
post offices to recognize addresses on envelopes
and sort them automatically.
Several researches have been carried out in this
area previously. Most of the errors in recognition

are due to the errors that occur during the
segmentation phase [2,7]. The authors in [7]
present the segmentation based on the feature
extraction along with recognition using back
propagation neural network. An accuracy of 90%
was achieved. [3] has carried out the recognition
using feedforward network followed by training
using back-propagation neural network. It employs
a 30 x 30 matrix of character as input to the neural
network which then produces output on 49
neurons.

2. METHODOLOGY

There are basically three steps involved in the
recognition of characters written in Devanagari
script from an image of Devanagari text. The text is
first segmented into lines, lines to words and words
to characters. After the segmentation process, we
then bring down the characters to a standard size
so as to make the recognition size independent.
This standard sized image matrix is then given to

 ©The author(s) 1

Devanagari Character Recognition towards natural Human-Computer Interaction
Goyal, Diwakar, Agrawal

the recognition module which employs Kohonen
Neural Network to recognize the characters.

3. SEGMENTATION

Segmentation of the image is performed to
separate the characters from the image [5].
Character Separation from the image of
Devanagari Text involves the three steps which are
described below. But before beginning with
segmentation; let us first define two terms that will
be used in the segmentation process.

Definition 1: Horizontal Projection, HP (k): For a
binary image of size H*W, where H is the height
and W is the width of image, horizontal projection
can be defined as the number of black pixels in
each horizontal row [1].

Definition 2: Vertical Projection, VP (k): For a binary
image of size H*W, vertical projection can be
defined as the number of black pixels in each
vertical column [1].

3.1 Line Segmentation

The image of text may contain any number of lines.
Thus, we would first need to separate the lines
from the documents and then proceed further. This
is what we refer to as line segmentation. To
perform line segmentation, we take horizontal
projection for every horizontal pixel row starting
from the top of document. The lines are separated
where we find a row with no black pixels [2]. That
means, HP (k) = 0 where k is the row number
where white space is found. This row acts as a
separation between two lines (see Figure 1).

Figure 1: Line Segmentation

3.2 Word Segmentation

After segmentation of lines from the text image,
next task is to segment the words from the lines.
This can be accomplished using the concept of
vertical projection. If we take vertical projection for
each line, then the words can be separated by
looking for the column with zero black pixels [2].
That means, VP (k) = 0, where k is the column
number where the white space is found. This k
serves as the separating index for words (see
Figure 2).

Figure 2: Word Segmentation

3.3 Character Segmentation

To segment characters from the image, we need to
use the words separated in the previous step and
then find the position of header line (Shirorekha).
Once the header line is separated from the word,
we can separate the characters individually. To
locate the position of header line, we compute the
horizontal projection of the word image box. The
row that contains maximum black pixels
corresponds to the position of the header line in the
word [2] (See Figure 3). The characters can then
be identified separately in the absence of header
line.

Figure 3: Header Line Identification

Now, we take the vertical projection of the word box
below the header line. The columns that have no
black pixels are treated as the boundary for
separating characters from the word [2] (See
Figure 4).

Figure 4: Character Segmentation

After the segmentation process is complete, we
obtain separate character boxes (See Figure 5)
which can then be brought down to a standard size.

Figure 5: Final Segmentation Output

4. DOWNSAMPLING

After we have the characters of the image of
Devanagari text separated, we then bring the
characters in a standard size. This is done so as to
make the character recognition size independent.
These can be brought to a standard size by
defining the number of pixels of the character
image box that are to be considered to calculate
one pixel in down sampled image. This can also be
referred to as windowing [3] (See Figure 6). This is
done using the following algorithm [4]:

 2

Devanagari Character Recognition towards natural Human-Computer Interaction
Goyal, Diwakar, Agrawal

Step i) ratioX = (Width of character image box) /
(Width of down sampled image)
Step ii) ratioY = (Height of character image box) /
(Height of down sampled image)
Step iii) downsampledImage(x, y) = black, if there
is a black pixel in the box starting from (x*ratioX,
y*ratioY) to (x*ratioX+ratioX, y*ratioY+ratioY); white
otherwise.

Figure 6: Down sampling the character

5. RECOGNITION

After the down sampled image matrix is generated,
the next step is the recognition of the character.
This recognition is done using Kohonen Neural
Network or KNN [4]. The input neurons to the KNN
are the elements of the down sampled image
matrix. The output neurons are equal to the number
of characters that can be recognized by the neural
network. The input neurons are connected to
output neurons through some weights. These
weights define how well the network recognizes the
input pattern. Using these weights and the input,
we can calculate the output of the neurons by
taking the dot product of the input neurons with the
weights. The output neuron with the maximum
value of output is chosen as the ‘winner’ and is
identified as the output for that given set of input
neurons. The corresponding character is then
found by looking for the pattern in the training set
that produces the same winning neuron.

For effective recognition, we have to train the
network with a set of characters that the network
can recognize. The training of the network will
continue until the error of the KNN is below an
acceptable level. Since KNN relies on
unsupervised training, the error is not actually as it
is defined with other networks. We have used a
slightly different definition of error [4]. Let us define
two terms that will be useful in calculation of errors.

Definition 1: NEURON_ON: This provides an
optimal value for a neuron in its activated state.
That is, it defines what the output value of a
winning neuron is. Let us keep it at 0.9.
Definition 2: NEURON_OFF: This provides an
optimal value for a neuron to be in its OFF state.
That is, it defines what the output value of a neuron
that hasn’t won for a given input should be. Let us
keep it at 0.1.
The error (E) can then be calculated by taking the
mean of square of the difference of the output

value of neuron (yi) to either one of these two
values. i.e., for winning neuron, it will be difference
between the output of the neuron and
NEURON_ON and for other neurons; it would be
the difference between the output value of the
neuron and NEURON_OFF [4].

 The step by step algorithm for training of the
network is described as follows [4]:
Step i) An input is presented to the software as
training data. The training set is stored with the
corresponding character that it represents.
Step ii) The training process begins by assigning
the KNN Structure. The number of input neurons is
equal to the size of down sampled image that is
being given to the network. Let us consider three
hundred input neurons.
Step iii) There are several training sets each
representing a single character in Devanagari
script. The number of training sets is the number of
output neurons for the network.
Step iv) The initial weights between the input and
output neurons are randomly generated real
numbers between -1 to 1.
Step v) The next step is to normalize the input (xi).
First we find the vector length of input vector which
is defined as the sum of squares of the elements of
input vector. The normalizing factor is calculated by
taking the reciprocal of square root of the vector
length [4].

The normalized input is then found by taking the
product of input with the normalizing factor.
Step vi) The weights are then normalized using a
similar algorithm by calculation of normalizing
factor.
Step vii) The next step is the calculation of output
of the neurons by taking the dot product of the input
vector (xj) with the weights (wji) of the output
neuron [4].

The output is then normalized by multiplying with
the normalizing factor calculated in step v.
Step viii) The output is then converted to bipolar by
multiplying it by two and then subtracting one from
it.
Step ix) The winning neuron is calculated by
finding the output neuron having the highest output
value among all the output neurons for a given
training set.
Step x) Now, we modify the weights of winning
neuron so that it reacts more strongly to the same
input pattern the next time. For this, we define a
learning rate (α) as 0.3 and decrease it by 1% after

 3

Devanagari Character Recognition towards natural Human-Computer Interaction
Goyal, Diwakar, Agrawal

each epoch. The weight adjustment is done using
subtractive method[4].

Step xi) If there exists a neuron that fails even to
learn, then it must be forced to win for at least one
input pattern [4]. This is because for every input
pattern, we have one output neuron to the network.
For this, we go through the entire training set and
find which training set pattern causes the least
activation.
Step xii) The training set identified in the previous
step is then chosen as the training set which is
least well represented by the current set of winning
neurons.
Step xiii) The values of output neurons for this
training set is now calculated and the neuron with
the maximum output value among the neurons that
haven’t yet won is selected as the neuron which
best represents the input neuron and whose weight
we will modify to better represent the input pattern.
Step xiv) The weights of that neuron are then
modified so that it better recognizes the input
pattern.
Step xv) The training process stops when the error
is below a desired level.

6. RESULTS

We have trained the software using standard
printed characters as well as for handwriting. For
the printed text input, the accuracy is 90.26% (See
Table 1).

Table 1: Accuracy for image of printed Devanagari text

I
D

Total
Character

s

Correct
recogniti

on

Font (Size) Accurac
y

1 275 254 Kruti (20) 91.49%
2 344 306 Kruti (24) 89.02%
3 235 212 Unicode(17) 90.29%
Average Accuracy 90.26%

a) Input Image of Printed Devanagari Text

b) Corresponding recognized text

Figure 7: Results on printed Devanagari text

We can provide the image of printed Devanagari
Text as input to the software for recognition (See
Figure 7).

a) Input Image of Handwritten Devanagari Text and

b) Corresponding Recognized Text

Figure 8: Results on handwritten Devanagari text

We can also provide the image of handwritten
Devanagari Text as input (See Figure 8). For the
above text the accuracy is 83.33%. It is our
endeavour to make the segmentation and pre-
processing algorithms discussed in this paper more
robust to cater various types of complexities in
handwritten text.

a) Sketched Devanagari Character

b) Corresponding recognized character

Figure 9: Results on sketched Devanagari character

We can also sketch Devanagari characters in the
drawing area for recognition (See Figure 9).

7.CONCLUSION

The method for recognition of Devanagari
characters presented in the paper is able to
recognize most of the given text and also recognize
the sketched Devanagari character presented to it.
Success also depends on the training of the neural
network. Higher the training, higher would be the
accuracy.

8. ACKNOWLEDGEMENTS

We would like to thank our Director Dr. M.D. Tiwari
for providing excellent computational facilities and

 4

Devanagari Character Recognition towards natural Human-Computer Interaction
Goyal, Diwakar, Agrawal

 5

stimulating work environment for carrying out the
research work.

9. REFERENCES

Liang, S., Sridhar, M. and Ahmad, M. (1994)
Segmentation of Touching Characters in Printed
Document Recognition, Pattern Recognition, 27,
pp. 825-840

Sinha, R.M.K. and Bansal, V. (1995) On
Devanagari Document Processing, IEEE
International Conference on Systems, Man and
Cybernetics, Canada, Vol 2, pp. 1621-1626

Rajput, K.Y. and Mishra, S. (2008) Recognition and
Editing of Devanagari Handwriting using Neural

Network, IEEE Colloquium and International
Conference, Mumbai, Vol 1, pp. 66-70

Heaton, J. (2008) Introduction to Neural Networks
for Java, 2nd ed., Heaton Research

Gonzalez, R.C. and Woods, R.E. (2002) Digital
Image Processing, 2nd ed., Pearson Education
(2009) Languages of India,
http://en.wikipedia.org/wiki/Languages_of_India
(Accessed: Dec. 8, 2009)

Yadav, D., Sharma, A.K. and Gupta, J.P. (2007)
Optical character recognition for printed Hindi text
in Devanagari using soft-computing technique,
IASTED International Multi-Conference: Artificial
Intelligence and Applications, Innsbruck, Austria,
pp. 102-107

	3.2 Word Segmentation
	3.3 Character Segmentation

