
Developer-Centric Knowledge Mining
from Large Open-Source Software Repositories

(CROSSMINER)

Alessandra Bagnato3, Konstantinos Barmpis5, Nik Bessis7,
Luis Adrián Cabrera-Diego7, Juri Di Rocco1, Davide Di Ruscio1(B),
Tamás Gergely4, Scott Hansen11, Dimitris Kolovos5, Philippe Krief 8,

Ioannis Korkontzelos7, Stéphane Laurière9,
Jose Manrique Lopez de la Fuente10, Pedro Maló6, Richard F. Paige5,

Diomidis Spinellis2, Cedric Thomas9, and Jurgen Vinju12

1 University of L’Aquila, L’Aquila, Italy
{juri.dirocco,davide.diruscio}@univaq.it

2 Department of Management Science and Technology, Athens University
of Economics and Business, Athens, Greece

dds@aueb.gr
3 Softeam R&D Department, Paris, France

alessandra.bagnato@softeam.fr
4 FrontEndART Ltd., Szeged, Hungary

tamas.gergely@frontendart.com
5 Department of Computer Science, University of York, York, UK

{konstantinos.barmpis,dimitris.kolovos,richard.paige}@york.ac.uk
6 Unparallel Innovation, Lda, Almada, Portugal

pedro.malo@unparallel.pt
7 Department of Computer Science, Edge Hill University, Ormskirk, UK

{nik.bessis,diegol,yannis.korkontzelos}@edgehill.ac.uk
8 Eclipse Foundation, Toulouse, France

philippe.krief@eclipse.org
9 OW2 Consortium, Paris, France

{stephane.lauriere,cedric.thomas}@ow2.org
10 Bitergia, Madrid, Spain
jsmanrique@bitergia.com

11 The Open Group, Brussels, Belgium
s.hansen@opengroup.org

12 Centrum Wiskunde and Informatica, Amsterdam, Netherlands
Jurgen.Vinju@cwi.nl

Abstract. Deciding if an OSS project meets the required standards for
adoption is hard, and keeping up-to-date with a rapidly evolving project
is even harder. Making decisions about quality and adoption involves
analysing code, documentation, online discussions, and issue trackers.
There is too much information to process manually and it is common
that uninformed decisions have to be made with detrimental effects.

The research described has been carried out as part of the CROSSMINER Project,
EU Horizon 2020 Research and Innovation Programme, grant agreement No. 732223.

c© Springer International Publishing AG 2018
M. Seidl and S. Zschaler (Eds.): STAF 2017 Workshops, LNCS 10748, pp. 375–384, 2018.
https://doi.org/10.1007/978-3-319-74730-9_33



376 A. Bagnato et al.

CROSSMINER aims to remedy this by automatically extracting the
required knowledge and injecting it into the developers’ Integrated Devel-
opment Environments (IDE), at the time they need it to make design
decisions. This allows them to reduce their effort in knowledge acquisi-
tion and to increase the quality of their code. CROSSMINER uniquely
combines advanced software project analyses with online IDE monitor-
ing. Developers will be monitored to infer which information is timely,
based on readily available knowledge stored earlier by a set of advanced
offline deep analyses of related OSS projects.

1 Project Data

– Acronym: CROSSMINER (http://www.crossminer.org)
– Title: Developer-Centric Knowledge Mining from Large Open-Source Soft-

ware Repositories
– Partners: The Open Group—Project Coordinator, University of York, Uni-

versity of L’Aquila—Technical Coordinator, Edge Hill University, Centrum
Wiskunde & Informatica, Athens University of Economics and Business,
UNPARALLEL, Softeam, Frontendart, Bitergia, OW2 consortium, Eclipse
Foundation Europe GmbH

– Start date: 1 January 2017, Duration: 36 months.

2 Introduction

Open-source software (OSS) is computer software distributed with a license that
allows access to its source code, free redistribution, the creation of derived works,
and unrestricted use [5]. Unlike commercial software which is typically developed
within the context of a particular organisation with a well-established business
plan and commitment to the maintenance, documentation and support of the
software, OSS is very often developed in a public, collaborative, and loosely-
coordinated manner. This has several implications to the level of quality of OSS
software as well as to the level of support that OSS communities provide to users
of the software they produce. Consequently, developing new software systems by
reusing existing open source components raises challenges related to at least the
following activities [13]: (i) searching for candidate components, (ii) evaluating
a set of retrieved candidate components to find the most suitable one, and (iii)
adapting the selected components to fit the specific requirements.

Dependence on OSS projects can either be a blessing or a curse. The ability
to accurately assess the risks and benefits of adopting particular OSS projects
as components is essential to the software development community at large.
The EU OSSMETER FP7 [4] project developed a distributed and horizontally-
scalable platform for incremental analysis of multiple dimensions of open-source
software projects including their source code, communication channels, and bug
tracking systems. The aim of CROSSMINER is to extend the outcomes of the

http://www.crossminer.org


Developer-Centric Knowledge Mining from Large OSS Repositories 377

OSSMETER project and to deliver an integrated open-source platform that
will support the development of complex software systems by (1) enabling mon-
itoring, in-depth analysis and evidence-based selection of open source compo-
nents, and (2) facilitating knowledge extraction from large open-source software
repositories.

The paper is structured as follows: Sect. 3 gives an overview of the CROSS-
MINER project. Section 4 outlines the planned evaluation process and concludes
the paper.

3 The CROSSMINER Approach

Figure 1 shows a high-level overview of the CROSSMINER approach. It shows
two major use cases and two minor user channels which are implemented using
two architectural stages: online and offline. We describe the two major use cases
here in some detail to clarify what CROSSMINER entails as a whole.

In step 1 the tool engineers of Use case II use a domain-specific (graphical)
editor in their IDE to compose new workflows of data sources and computa-
tions. This functionality is commonly available in big data analytics suites; here
we specialise this functionality for typical OSS project analysis tasks. Mining
and analysis tools will run incrementally in step 2 , and possibly on a remote
server, to extract relevant information from a pre-configured set of projects and
a list of projects configured by the software engineers of Use case I. The software
engineers of Use case I have a wizard to configure CROSSMINER with a rich set
of requirements (step 3 ), which includes not only registering a set of projects of
interest but also expressing preferences regarding the algorithms and processes
used to project the mined information into the IDE. This configuration is an
important step to make meaningful assessment possible later, since it makes
the context and preferences of the engineer explicit to the platform in terms
of technological, quality, configuration, and licensing aspects. Finally, step 4 is
when the acquired information is put to action, actively supporting the engi-
neers via the IDE, managers via the web site, and the open-source community
via GitHub integration. Typical examples of IDE services, which may be intro-
duced or enhanced using this architecture are: code assist, proposing relevant
code snippets, ranked by relevance and quality and informed by the earlier con-
figuration; infer/Fix project setup to retrieve a list of ranked relevant reusable
components, then set up relevant projects in the IDE and configure dependent
projects to use them; monitoring of development activities of the engineers who
will be notified of relevant facts pertaining to their current task context.

In the following the scientific and technological objectives to be achieved for
realizing the approach shown in Fig. 1 are summarized.

3.1 Development of Source Code Analysis Tools

State of the art: Source code analysis has its firm fundaments in compiler (front-
end) construction [2] and reverse engineering [20]. Based on this theory and



378 A. Bagnato et al.

Fig. 1. CROSSMINER approach at a glance

technology, to extract meaningful and accurate metrics, we developed reusable
front-ends generating informative reusable intermediate models with the OSS-
METER project (for the Java and PHP languages). Recently, examples of source
code analyses have been scaled up to acquire information over large source
code and software install bases [8,15]. However, mining information from source
code at scale, made available in an integrated platform, including the acquisi-
tion, extraction, and querying of source code from groups of arbitrarily selected
projects is just beyond the current state-of-the-art. Especially when the platform
should cater for bespoke analyses based on the intermediate models there exists
few related work in this regard [8].

Innovation: Mining source code artefacts to actively support decision making
by software engineers inside their IDE requires scaling the technology for source
code analysis to a level where we can mine in much larger corpora on the one
hand, and on the other hand can enable much more context-specific (bespoke)
analyses. At the same time the non-functional requirement of scalability must
not imply a lower expected level of accuracy of the (bespoke) analyses. To scope
this challenge in balancing trade-offs, and making it manageable for the current
project we reason back from example decisions and the information required
to make them. The main focus will be on dependency management : to help
software engineers which (parts of) open-source components to depend on and
how to manage these dependencies.

3.2 Development of Natural Language Analysis Tools

State of the art: Text mining tools to automatically extract, analyse, sum-
marise and assess information found in communication channels and bug trackers
related to OSS are valuable for supporting OSS development. Although there
is a significant amount of literature analysing code repositories and communi-
cation channels, there are only very few attempts to use these sources to help



Developer-Centric Knowledge Mining from Large OSS Repositories 379

programmers as they program or to improve their output. For example, similar-
ity methods have been proposed to identify the most relevant Stack Overflow
discussions to the code that a developer is working on in an IDE and recom-
mend them to improve developing performance [18]. Microsoft has just released
Bing Developer Assistant for Visual Studio1, which searches GitHub repositories,
locates and presents examples of API usage relevant to the code being developed
in Visual Studio.

Innovation: In CROSSMINER we plan to provide software developers with text
analysis components integrating three innovative aspects: (i) a user-oriented
platform, allowing users to tailor analysis to their needs by synthesising compo-
nents into workflows. We will design and implement text mining components to
identify the types of bugs and discussions in communication channels associated
with an OSS project. Developers will be able to select the components of inter-
est and synthesise them into workflows. Depending on the selected components
the output will contain different information useful for the developers; (ii) we
will investigate methods for using word embeddings for representing text in the
domain of discussions about OSS; (iii) new sources, such as social media and
Stack Overflow, and the analysis of code snippets.

3.3 Development of System Configuration Analysis Tools

State of the art: The practices, principles, and tools associated with Infrastruc-
ture as Code (IaC) and the analysis of software configuration management sys-
tems are in nascent phase. Studies to explore the characteristics of configuration
code written in languages such as Puppet and Chef are scarce. Similarly, tools
to carry out analyses of system configuration code have just started to emerge.
Jiang and Adams [12] study the co-evolution of Puppet and Chef configuration
files with source, test, and build code. They analyse the software repositories
of 256 OpenStack projects and distinguish files as infrastructure, which contain
configuration code in Puppet or Chef language, production, build, and test. They
find that configuration code comes in large files, changes more frequently, and
presents tight coupling with test files. Sharma et al. [19] carry out an empirical
study of 4,621 Puppet repositories to understand the characteristics of configura-
tion code written in Puppet. Puppet Forge2 is the repository of Puppet modules
and provides an evaluation of configuration code quality through a quality score
based on three aspects: code quality score provided by Puppet-Lint3, compati-
bility with Puppet, and metadata quality. On the other hand, although empirical
studies have examined the build aspect of software configuration management
[1,3,9,16,17], the corresponding results have not yet been adopted by software
developers.

1 http://visualstudiogallery.msdn.microsoft.com/a1166718-a2d9-4a48-a5fd-504ff4ad1
b65.

2 http://forge.puppetlabs.com.
3 http://puppet-lint.com.

http://visualstudiogallery.msdn.microsoft.com/a1166718-a2d9-4a48-a5fd-504ff4ad1b65
http://visualstudiogallery.msdn.microsoft.com/a1166718-a2d9-4a48-a5fd-504ff4ad1b65
http://forge.puppetlabs.com
http://puppet-lint.com


380 A. Bagnato et al.

Innovation: CROSSMINER aims to significantly improve the state of the art in
the configuration management domain by introducing advanced analysis tech-
niques to process configuration code and other relevant artefacts. In particular,
collecting meta-data and computing various metrics is the first step towards a
comprehensive analysis. CROSSMINER aims to analyse configuration code writ-
ten in various system configuration management languages including Puppet,
Chef, and CFEngine as well as software configuration management metadata.
Such source-code analysis will provide a uniform and comprehensive set of met-
rics that could be used to reveal the characteristics of configuration management
systems. Combining metrics and metadata collected from configuration code
with the results of source-code and natural language analysis using advanced
static analysis techniques will fetch interesting insights and actionable results.
Interactive visualisation techniques will be employed to engage the users in an
effective and productive manner. Thus, suitable dashboard with DevOps-level
information will be developed to show relevant metrics and insights about the
analysed systems.

3.4 Development of Workflow-Based Knowledge Extractors

State of the art: OSS forges such as GitHub, GitLab and SourceForge and bug
tracking tools such as Bugzilla and JIRA provide REST APIs with which users
can perform queries (as well as some updates) on remote data (e.g. repository
metadata, bug reports). To protect the underlying systems from uncontrolled
data harvesting, many of these REST APIs impose key-based rate limits that
clients cannot exceed and attempts to work around them (e.g. using multiple
accounts/keys) can result to network-level blocking of the offending network
endpoints. In addition to making use of remote APIs to extract knowledge from
open-source projects, the wide adoption of distributed version control systems
(predominately Git) where the entire history of repositories can be easily cloned,
has triggered the appearance of a number of tools (e.g. Gitana [6], Gitstats4) that
can analyse locally-cloned repositories and extract and present general-purpose
metrics such as development activity over time/contributions per developer etc.
While such metrics are useful, more advanced knowledge extraction (e.g. such as
the one conducted in [14] which measures the adoption of different model-based
technologies in Github-based open-source projects) typically requires bespoke
analysis which includes the use of remote APIs, cloning and local analysis of
repositories, natural language processing, HTML scraping, regular expressions
etc.

Innovation: In CROSSMINER we envision the development of a framework that
can support the development of declarative and efficient OSS project analy-
sis workflows. Using the envisioned framework, engineers will be able to plug
together OSS data harvesting, analysis and transformation components and
define their dependencies and interactions at a high level of abstraction. The

4 http://gitstats.sourceforge.net.

http://gitstats.sourceforge.net


Developer-Centric Knowledge Mining from Large OSS Repositories 381

framework will provide built-in support for recurring concerns such as net-
work/API error recovery and data caching so that engineers can focus on the
core analysis of the workflows, thus enhancing both productivity and maintain-
ability. The framework will ship with robust built-in components for extract-
ing information from widely-used systems such as Git(Hub), GHTorrent [10],
Bugzilla, JIRA, NNTP and StackOverflow and will also provide extensibility
mechanisms through which engineers can integrate additional components. We
will also develop a set of hybrid textual/graphical editors and viewers through
which engineers will be able to define knowledge extraction workflows, and also
debug and monitor their execution at a high level of abstraction.

3.5 Development of Cross-Project Relationship Analysis Tools

State of the art: Over the last decade several platforms have been introduced
to support automated analysis of open source software. All of them provide
techniques and tools to analyse projects individually and do not mine projects
relationships that instead can give more insight about existing OSS components.
Some representative analysis platforms are OSSMETER, SQO-OSS (Alitheia
Core)5, Openhub6, Qualipso7, Flossmetrics8, and RISCOSS9. Also, many OSS
forges (e.g., SourceForge and GitHub) provide built-in measurement facilities for
the OSS projects they host.

Innovation: In CROSSMINER we envision the development of advanced tech-
niques able to investigate relationships among different open source projects
and properly organise them in a dedicated knowledge base. Beyond the typical
project dependency and conflict relationships we aim at identifying and manag-
ing additional ones e.g., license compatibility, API compatibility, etc. A general
way to represent project relationships will be devised in order to enable relevant
features including the following: (i) support for automated classification of OSS
projects and discovery of related projects based on source code, configuration
code, licensing, communication channel and bug tracking system analysis; (ii)
adoption of clustering mechanisms supporting multidimensional classification of
OSS projects; (iii) support for issuing notifications when quality indicators of
selected OSS projects fall below a user-defined level; (iv) support for suggesting
OSS projects that can be alternatively used instead of OSS components, which
have been previously selected and integrated in the software being developed.

3.6 Development of Advanced Integrated Development
Environments

State of the art: Most of the current IDEs include a wide range of features to
enhance developer productivity from various code completion and refactoring
5 http://cordis.europa.eu/project/rcn/79362 en.html.
6 http://www.openhub.net.
7 http://cordis.europa.eu/project/rcn/80465 en.html.
8 http://dl.acm.org/citation.cfm?id=1545011.1545457.
9 http://www.riscoss.eu.

http://cordis.europa.eu/project/rcn/79362_en.html
http://www.openhub.net
http://cordis.europa.eu/project/rcn/80465_en.html
http://dl.acm.org/citation.cfm?id=1545011.1545457
http://www.riscoss.eu


382 A. Bagnato et al.

actions to style and error corrections. For Eclipse, the most notable related
plug-ins are Codetrails Connect Community Edition10 and Eclipse Code Rec-
ommenders11. These plugins learn how to use a new API from the source code
of other applications or from watching how experienced developers use it, and
share this information among team members through functions like code comple-
tion or snippet search. There are more novel approaches to extend the abilities
of modern IDEs, to enhance programmer productivity and coding quality. For
instance, in [18] authors proposed a novel approach that, given a context in
the IDE, automatically retrieves pertinent discussions from StackOverflow, and
evaluates their relevance. Another example is the Adinda approach (developed
by van Deursen et al. [7]) that re-thinks IDE features as web services to facilitate
informal inter-project communication and collaboration. Hora and Valente [11]
developed a tool that helps API comparison based on compatibility and pop-
ularity information of GitHub projects. The concept of the Change-Oriented
Programming Environment (COPE) research project12 is to monitor software
changes in real-time and provide actionable feedback to the developer through
the IDE.

Innovation: As the above examples show, there are many different ways to
give real-time suggestions to developers within their accustomed IDE. CROSS-
MINER brings a whole new dimension to the advanced IDEs because it collects,
processes and stores a huge amount of data about open source components in
a complex and cross-project data model. This enables intelligent recommenda-
tions to be provided to the developer, by going far beyond the current “code
completion-oriented” practice. Our Eclipse plug-in for CROSSMINER will be
developed primarily with the objective in mind that it improves the productivity
of developers in real-time and transparently. Furthermore, CROSSMINER will
learn from past recommendations and feedback from the developer so that even
more relevant help will be given after being in use for a certain time.

4 Evaluation and Conclusions

In this paper we provided an outline of CROSSMINER’s envisioned technical
contributions. The techniques and tools will be assessed by considering the needs
of six end-user partners (in the domains of IoT, multi-sector IT services, API co-
evolution, software analytics, software quality assurance, and OSS forges). The
full chain of retrieval, analysis and presentation of results will be implemented on
large-scale open-source forges like Eclipse and OW2 to assist users and demon-
strate the benefits of the solution. The technical outcomes of the project as well
as the evaluation results will be the subject of follow-up publications.

10 http://marketplace.eclipse.org/content/codetrails-connect-community-edition.
11 http://marketplace.eclipse.org/content/eclipse-code-recommenders.
12 http://cope.eecs.oregonstate.edu/.

http://marketplace.eclipse.org/content/codetrails-connect-community-edition
http://marketplace.eclipse.org/content/eclipse-code-recommenders
http://cope.eecs.oregonstate.edu/


Developer-Centric Knowledge Mining from Large OSS Repositories 383

References

1. Adams, B., De Schutter, K., Tromp, H., De Meuter, W.: The evolution of the Linux
build system. Electron. Commun. EASST 8 (2008)

2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools.
Addison-Wesley, Boston (1988)

3. Al-Kofahi, J.M., Nguyen, H.V., Nguyen, A.T., Nguyen, T.T., Nguyen, T.N.:
Detecting semantic changes in Makefile build code. In: 2012 28th IEEE Inter-
national Conference on Software Maintenance (ICSM), pp. 150–159. IEEE (2012)

4. Almeida, B., Ananiadou, S., Bagnato, A., Barbero, A.B., Rocco, J.D., Ruscio, D.D.,
Kolovos, D.S., Korkontzelos, I., Hansen, S., Maló, P., Drivalos, N., Paige, R.F.,
Vinju, J.J.: OSSMETER: automated measurement and analysis of open source
software. In: Proceeding of the Projects Showcase, Part of STAF 2015, pp. 36–43
(2015)

5. Androutsellis-Theotokis, S., Spinellis, D., Kechagia, M., Gousios, G.: Open source
software: a survey from 10,000 feet. Found. Trends Technol. Inf. Oper. Manag.
4(3–4), 187–347 (2011)

6. Cosentino, V., Izquierdo, J.L.C., Cabot, J.: Gitana: a SQL-based git repository
inspector. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P.
(eds.) ER 2015. LNCS, vol. 9381, pp. 329–343. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-25264-3 24

7. van Deursen, A., Mesbah, A., Cornelissen, B., Zaidman, A., Pinzger, M., Guzzi,
A.: Adinda: a knowledgeable, browser-based IDE. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, ICSE 2010, vol. 2,
pp. 203–206. ACM (2010)

8. Dyer, R., Rajan, H., Nguyen, H.A., Nguyen, T.N.: Mining billions of AST nodes to
study actual and potential usage of Java language features. In: 36th International
Conference on Software Engineering, ICSE 2014, pp. 779–790, June 2014

9. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Softw. 33(3),
94–100 (2016)

10. Gousios, G.: The GHTorrent dataset and tool suite. In: Proceedings of the 10th
Working Conference on Mining Software Repositories, MSR 2013, pp. 233–236.
IEEE Press (2013)

11. Hora, A., Valente, M.T.: Apiwave: keeping track of API popularity and migration.
In: Proceeding International Conference on Software Maintenance, pp. 321–323.
IEEE (2015)

12. Jiang, Y., Adams, B.: Co-evolution of infrastructure and source code: an empirical
study. In: Proceedings of MSR 2015, pp. 45–55. IEEE Press (2015)

13. Karlsson, E.A. (ed.): Software Reuse: A Holistic Approach. Wiley, New York (1995)
14. Kolovos, D., Matragkas, N., Korkontzelos, I., Ananiadou, S., Paige, R.: Assessing

the use of eclipse MDE technologies in open-source software projects. In: Proceed-
ings of 2nd OSS4MDE at MODELS 2015 (2015)

15. Landman, D., Serebrenik, A., Bouwers, E., Vinju, J.J.: Empirical analysis of the
relationship between CC and SLOC in a large corpus of Java methods and C
functions. J. Softw.: Evol. Process 28(7), 589–618 (2016)

16. McIntosh, S., Adams, B., Hassan, A.E.: The evolution of Java build systems.
Empir. Softw. Eng. 17(4–5), 578–608 (2012)

17. McIntosh, S., Nagappan, M., Adams, B., Mockus, A., Hassan, A.E.: A large-scale
empirical study of the relationship between build technology and build mainte-
nance. Empir. Softw. Eng. 20(6), 1587–1633 (2015)

https://doi.org/10.1007/978-3-319-25264-3_24
https://doi.org/10.1007/978-3-319-25264-3_24


384 A. Bagnato et al.

18. Ponzanelli, L., Bavota, G., Di Penta, M., Oliveto, R., Lanza, M.: Mining StackOver-
flow to turn the IDE into a self-confident programming prompter. In: Proceedings
of the 11th Working Conference on Mining Software Repositories, MSR 2014, pp.
102–111. ACM (2014)

19. Sharma, T., Fragkoulis, M., Spinellis, D.: Does your configuration code smell?
In: Proceedings of the Thirteenth International Workshop on Mining Software
Repositories, MSR 2016. ACM (to appear)

20. Tonella, P., Potrich, A.: Reverse Engineering of Object Oriented Code. Monographs
in Computer Science. Springer, New York (2004). https://doi.org/10.1007/b102522

https://doi.org/10.1007/b102522

	Developer-Centric Knowledge Mining from Large Open-Source Software Repositories (CROSSMINER)
	1 Project Data
	2 Introduction
	3 The CROSSMINER Approach
	3.1 Development of Source Code Analysis Tools
	3.2 Development of Natural Language Analysis Tools
	3.3 Development of System Configuration Analysis Tools
	3.4 Development of Workflow-Based Knowledge Extractors
	3.5 Development of Cross-Project Relationship Analysis Tools
	3.6 Development of Advanced Integrated Development Environments

	4 Evaluation and Conclusions
	References


