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Abstract—Crowdsourced software development utilises an
open call format to attract geographically distributed developers
to accomplish various types of software development tasks.
Although the open call format enables wide task accessibility,
potential developers must choose from a dauntingly large set of
task options (usually more than one hundred available tasks on
TopCoder each day). Inappropriate developer-task matching may
harm the quality of the software deliverables. In this paper, we
employ content-based recommendation techniques to automati-
cally match tasks and developers. The approach learns particular
interests from registration history and mines winner history to
favour appropriate developers. We measure the performance
of our approach by defining accuracy and diversity metrics.
We evaluate our recommendation approach by introducing 4
machine learners on 3,094 historical tasks from TopCoder. The
evaluation results show that promising accuracy and diversity are
achievable (accuracy from 50% to 71% and diversity from 40%
to 52% when recommending reliable developers). We also provide
advice extracted from our results to guide the crowdsourcing
platform in building a recommender system in practice.

I. INTRODUCTION

In recent years, an increasing number of successful soft-
ware companies have turned to employ decentralised software
ecosystems such as open source communities and crowdsourc-
ing to augment their software production [1]. Crowdsourced
Software Development (CSD), which derives its concept from
Crowdsourcing, utilises an open call format to attract online
developers to accomplish various types of software develop-
ment tasks such as architecture, component design, component
development, testing and bug fixing.

Jeff Howe [2] first coined the definition of crowdsourcing
in 2006. Although crowdsourcing is not specially proposed
for software engineering domains, its application in software
development is growing. A crowdsourcing industry report
from Massolution [3] indicates the number of workers engaged
in software development increased by 151% in the year 2011.
This increase is even more dramatic than the increase in
crowdsourced micro-tasks: Amazon Mechanical Turk (AMT)
is one of the most popular marketplaces for crowdsourcing
micro-tasks such as photo tagging, logo design and quick
idea gathering. Crowdsourcing platforms that support software
development include TopCoder, uTest, GetACoder, eLance,
Guru, Freelancer, Tackcn, etc. Among them, TopCoder1 is

1TopCoder Website: http://www.topcoder.com/

the world’s biggest competitive software development portal
[4]. Its clients include Google, Microsoft, Facebook and AOL.
Compared with traditional software development, TopCoder’s
crowdsourced development is claimed to exhibit the ability to
deliver custom requested software assets with reduced defect
rate, cost and in less time [5], [6].

Current crowdsourced software development practices usu-
ally use an open call format such as online competitions.
Although this enables wide task accessibility and self-selection
features for the crowd developers, potential developers must
choose from a dauntingly large set of task options. Chilton et
al. found that [7] most workers usually view only a few recent
tasks posted on the AMT micro-task crowdsourcing platform.
Considering the various expertise and skill levels of the
crowd developers, inappropriate developer-task matching may
harm the quality of the software deliverables. Specifically, the
caused issues can be viewed from two different perspectives:

1) From the developer’s perspective: Developers from
around the world can select the types of tasks in which
they would like to compete, however under the situation that
there are lots of simultaneously competitive tasks posted on
crowdsourcing platforms such as TopCoder. Examining from
a large number of tasks’ descriptions, it is quite a laborious
and demanding work for the developers to choose which one
is more suitable for them to undertake. Usually there are
more than one hundred simultaneously active online tasks on
TopCoder for a single day. For instance, the number is 222 on
Dec. 12, 2014, as shown in Figure 1.

2) From the platform’s perspective: It is a valuable but
challenging task for the platform to seek best available devel-
opers: a key factor for delivering qualified software assets. In
traditional outsourced software development, one of the most
critical steps is vendor selection, which has a direct correlation
with the quality of the outcome [8]. In crowdsourced software
development, despite the difference that the vendor developers
are attracted by an open call format rather than being selected,
encouraging the “right developers” to participate still plays a
crucial role in delivering qualified clients’ requested assets.
Background and skill levels can vary significantly among
crowd developers. Also, previous research showed that de-
veloper participation levels can impact CSD software quality
[9]. Thus the platform may need to attract not only the “right
developers”, but also as many participants as possible.



Fig. 1. Available tasks listed on TopCoder on Dec. 12, 2014.

In this paper, in order to tackle the above challenges,
we employ content-based recommendation techniques to au-
tomatically match tasks to developers based on historical
data and preference learning. The illustration of developer
recommendation in the CSD context can be briefly shown in
Figure 2. Although current CSD platforms such as TopCoder
usually allow sign up for alerts about upcoming tasks [6], they
do not provide personalised recommendation information for
such alerts. Our developer recommendation results for newly
arriving tasks can be delivered to signed up developers by
email notification2.

The primary contribution of this study is that we introduce
a framework named CrowdRex which automatically recom-
mends developers for newly arriving CSD tasks for different
purposes: our system learns from the winning history for
recommending reliable developers and learns from registration
history to suggest suitable participants for available tasks.
Other, more minor, contributions of the paper include multiple
content features and their similarity measures as well as the
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Fig. 2. Developer recommendation utilising historical data.

2According to a survey on TopCoder website (http://community.top-
coder.com/tc?module=SurveyResults&sid=5851), 80.8% vote for “email” as
their preferred method to receive information about TopCoder events.

formulation of the accuracy-diversity dilemma, for the CSD
developer recommendation problem.

The rest of this paper is organised as follows: Section
II describes crowdsourced software development process, the
work flow of open call tasks and participation incentives, as
well as related recommendation techniques as background in-
formation. Section III introduces our approach to recommend
developers for crowdsourced software development tasks. The
evaluation of our work is presented in Section IV. Section
V presents related work. Finally Section VI concludes and
presents directions for future work.

II. BACKGROUND

Prior to presenting our approach of developer recommen-
dation, we outline the background relating to TopCoder’s
crowdsourced development process, open call tasks and related
recommendation techniques for better understanding the con-
struction of our recommender system. Other platforms may
adopt similar processes but our evaluation was carried out
using the historical data from TopCoder.

A. Crowdsourced Software Development
Since TopCoder is currently the world’s largest CSD plat-

form supporting a global crowd of more than 715,000 develop-
ers. It is based on this platform shall we introduce the typical
CSD methodology.

1) Development Process: The crowdsourced software de-
velopment process used by TopCoder generally follows a
waterfall model, which is shown in Figure 3(a). Each of the
phases is achieved by the open competition format, utilising
TopCoder’s global talent pool of developers.

The development process commences with a requirement
phase. During this phase, the project manager, who comes
from the crowd or the TopCoder platform, is responsible for
managing the following phases and communicating with the
client companies to identify their project goals, task plan
and estimated budget. Then the requirements specification
is defined and passed as the input to the next phase. The
subsequent architecture phase decomposes the application into



a set of components. (TopCoder’s crowdsourced software
development practices component-based software engineer-
ing). The component design activity produces a full set of
design documentations such as UML diagrams and component
specifications.

These specified design components are then implemented in
the subsequent development phase. The component develop-
ment activity may incorporate pre-built reusable components.
The finished components are combined together in an assem-
bly phase and are further certified by system-level testing ac-
tivities. Assembly tasks require online developers to build the
application by assembling winning components according to
the architecture design. Finally, the fully functioning solution
is deployed into the customer’s quality assurance environment
in the deployment phase. After a period of user acceptance
testing, all developed assets are delivered to the client. For
further maintenance activities, TopCoder provides “Bug Hunt”
and “Bug Race” tasks for discovering and fixing bugs.

2) Open Call Tasks: Crowdsourcing utilises an open call
format to attract online workers to make contributions to the
posted tasks. TopCoder’s open call format is in the form of
a competition. Each crowdsourced development task is organ-
ised as an open contest. Every registered member satisfying
the legal requirement can register for contests and submit their
solutions. Usually the top two winners receive prize money as
a reward.

The typical open call task phases on TopCoder are divided
into a series of task competitions. The duration of the whole
process for a single task is usually 1-2 weeks. The process
to run an open call task is illustrated in 3(b). To start
with, a task categorised by its development type is posted
on the website with information such as task descriptions,
payment amount and time lines. The time lines include two
important dates: registration deadline and submission deadline.
All developers who are willing to participate should announce
their decision publicly by registering the contest. This means
online developers are allow to observe opponent developers’
information including historical performance and skill ratings.
This registration phase usually lasts a few days. Registrants
can obtain detailed documentation and are required to submit

Fig. 3. Crowdsourced software development process and its task phases
(derived from TopCoder.com and Mao et al. [10]).

their solutions before the submission deadline.
After the submission deadline, all submitted solutions are

collected by the platform to be evaluated by peer review
according pre-defined screening and review scorecards3. The
solutions that passed screening are scored (usually by three
community experts from different perspective, e.g., perfor-
mance on accuracy, stress and failure tests). Once the review
process is finished, the developers are notified privately. If
they are not satisfied with the results they have one chance to
argue with the reviewers (called the appeal phase). Finally the
revised scores are announced on the website and contestants
are ranked by the average score given by all reviewers. The
1st place winner gets the full payment and the runner-up gets
half of this amount.

3) Participation Incentives: The prize money is an impor-
tant factor in motivating the crowd participation [11]–[13].
But not everyone register the competition for winning the
prize. We respect the knowledge learned from register history.
Statistics on TopCoder’s historical assembly tasks shows that
only 13.6% developers had ever won a task, 23.4% developers
had not ever won a task but registered at least 5 tasks and
21.8% developers had not ever won a task but kept active in
participation for at least 180 days. There are multiple types of
incentives for developers to undertake CSD tasks. According
to TopCoder, these incentives include gaining skills, getting
feedback, making friends, earning money having fun, getting
peer recognition and getting sense of accomplishment [14].

Since usually only top two winners of the tasks can be re-
warded with money, the developers often get nothing monetary
for their effort. But through competing in the task competition,
developers may find it exciting and their submissions are
tested by screening and further reviewed by the experts of
the community. In this way they are rewarded with fun,
acknowledgement and experts’ feedback for improving their
skills. According to a survey4, 69.28% developers on Top-
Coder deem the platform has played at least a moderate role in
improving their programming ability. What’s more, TopCoder
would announce “Coder of the Month” and top ten developers
of each types of tasks on their website to satisfy developers’
desire for recognition. These non-monetary incentives can be
even more important than the money reward when motivating
crowd developers for participation.

B. Recommendation Systems for Software Development
Recommendation systems for software development support

developers who need to make decisions and choose from
among a potentially overwhelmingly large set of possibilities.
Examples of recommendation systems supporting software
development include code navigation support, software change
guidance, developer-bug assignment. An overview of available
recommendation systems for software engineering can be
found in the work of Robillard et al. [15].

3The scorecards are available at:
http://apps.topcoder.com/wiki/display/tc/Competition+Scorecards

4The online survey can be accessed at:
http://community.topcoder.com/tc?module=SurveyResults&sid=4765



Recommendation systems often employ either content-
based or collaborative techniques (or use hybrids) [16]. In
this paper we focus on content-based methods for developer
recommendation. The fundamental assumption of content-base
recommendation methods is that the user will be interested
in the items that are “similar” (in some measurable sense)
to the items the user preferred in the past. In the context of
developer recommendation, in order to recommend developers
for a newly arriving task, the content-based recommender
tries to understand the commonalities among the tasks that
the developers had participated. Then those developers whose
commonalities are best matched with the newly arriving task
would be recommended.

III. THE APPROACH TO DEVELOPER
RECOMMENDATION FOR CSD TASKS

Our recommender system recommends developers in order
to satisfy two objectives. One target is to recommend reliable
developers for delivering qualified software assets. The other
target is to recommend suitable developers who may be
interested in registration for promoting the task participation
level, and meanwhile reducing their effort in task selection.

A. Our Proposed Developer Recommendation Framework
The framework of our approach is named CrowdRex, which

is shown in Figure 4. Our approach is based on content: a
group of features describing a CSD task, such as required
techniques, payment, title and overview description, post data
and submission deadline, etc. The machine learner in the
framework tries to capture the characteristics (e.g., expertise,
expected payment and task duration, etc.) of each devel-
oper from their historical activities and recommend the best
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Fig. 4. CrowdRex: our developer recommendation framework.

matched developers to newly arriving tasks. In order to satisfy
the two targets described above, our approach is designed to
extract empirical knowledge from developers winning and par-
ticipation history separately to suggest two lists of developers
corresponding to the objectives. The final list of recommended
developers can adopt the two lists directly or use a re-rank
method (e.g., prioritise developers according to their recent
performance) to select a subset of developers according to the
application context. In this paper we adopt the two lists of
developers as our recommendation results.

B. Recommend Developers for Delivering Qualified Assets

In order to help the platform find reliable developers,
we recommend skilled developers to undertake their familiar
tasks. Our assumption here is that skilled developers undertak-
ing familiar tasks are more likely to deliver qualified software
assets.

To identify a qualified software asset, TopCoder has a
review system (introduced in Section II) to guarantee software
quality, which requires a qualified asset to pass a minimum
review score. Generally, for the historical tasks, if there exists
a winner, that means a qualified asset can be delivered. In
this paper, we define a developer as “skilled” if he or she has
delivered at least 5 qualified assets.

We employ multi-class, single-label classification technique
to automate the process of identifying developers who may be
familiar with the newly arriving tasks. Here we treat developer
as class. Each task in historical records is labelled with the first
place winner. The recommendation approach consists of four
major phases:

1) Data Filtering: We filter those historical tasks (i.e.
training set) with incomplete information (e.g., missing winner
label or lack of task descriptions). To exclude irrelevance
empirical knowledge, we remove the tasks which development
type do not match current application domain (e.g., develop-
ment, assembly, etc.). Also, all “non-skilled” developers are
removed by the filter.

2) Feature Extraction: CSD tasks on TopCoder contain a
variety of information. For feature extraction in this paper we
consider the informative text features including title, descrip-
tion, programming language and techniques. Numeric features
include task post date, allocated task duration and payment.
The detailed feature description is presented in Table I. In
order to unify numeric and text features, we convert each text
feature into word vector format, keeping only meaningful and
descriptive tokens processed by tokenization and stop words
(e.g., ‘a’, ‘the’, ‘and’, ‘of’, ‘is’, ‘this’, etc.) removal. More
formally, suppose there are m terms after the process for a text
feature, the corresponding vector of this feature in task t ∈ T
would be vt = (wt,1, wt,2, ..., wt,m), where wi,j stands for
the weight for each term termj , which is calculated by Term
Frequency-Inverse Document Frequency (TF-IDF) according
to Equation 1:

wi,j =
(
1 + log(tfj)

)
∗ log |T |

dfi
(1)



TABLE I
THE CONTENT FEATURES FOR CROWDSOURCED SOFTWARE TASKS

Feature Format Description

Date Numeric Post date of the task.

PL Text What Programming Language is used.

Title Text Title of the posted task.

Tech Text Indicate what techniques are used.

Description Text Task descriptions overview.

Duration Numeric Time allocated to the task.

Payment Numeric How much US dollars will the winner get.

Where tfj is the number of times termj appears in task i,
and |T | is the total number of tasks and dfi equals the number
of tasks containing termj .

3) Learner Training: In this step we train a classifica-
tion model on prepared historical tasks. Various supervised
learning algorithms can be adopted in this step, to generate
a distribution of probabilities for all labels. Such algorithms
can be C4.5 Decision Tree [17], Naı̈veBayes [18], k-Nearest
Neighbour [19], etc.

4) Learner Applying: Lastly, we apply the trained model
on test set, i.e. newly arriving tasks. Top N ranked winners
from the generated probability distribution are recommended.

Note that the k-Nearest Neighbour algorithm mentioned in
phase 3) is slightly different from other supervised learners
because it does not have an explicit model training phase.
However the lazy nature of this method makes it easier to
understand and previous research have shown its efficiency
and effectiveness. In order to use the k-Nearest Neighbour
algorithm, we need to define the similarity measure. In this
paper we define the similarity Sim between two task ti
and tj according to the post date distance, matching in
task programming language, matched number of techniques,
allocated duration distance, payment difference and the text
matching degree (i.e. cosine similarity of two vectors) in title
and description. Sim is defined as Equation 2.

Sim(ti, tj) = w1Dis(F1,i, F1,j) + w2Dis(F2,i, F2,j)

+w3Dis(F3,i, F3,j) + ...+ wnDis(Fn,i, Fn,j)
(2)

Where w stands for the weight assigned to the corresponding
feature (in this paper we use equal weights i.e. 1.0 for all
features), Dis indicates the distance function which varies
among different features. The definition of distance measures
in this paper is shown in Table II.

C. Recommend Developers for Participation
By recommending developers for participation, we aim

to enhance task participation level by helping developers to
receive information on new arrival tasks which are suitable for
them, meanwhile this can save their effort in task selection.
Admittedly, compare with those reliable developers in the
“winner group”, these “long-tail” participants have much less

chance to win the task prize. However their demand for
participation still exists thus the recommendation service can
be useful.

We define registrants of each historical task to be its
“participants” in this paper. As there are multiple participants
who register the newly arriving task to show their willingness
to engage with the work. We treat developer recommendation
for participation as a multi-class, multi-label classification
problem. Previous research have suggested lots of methods
to solve this problem. Tsoumakas and Katakis [20] grouped
existing methods into two categories: problem transformation
methods and algorithm adaptation methods. In this paper we
use a straightforward data transform based method which fall
into the first category. The method works as follows (the
data filtering and feature extraction processes are the same
as described above, which are omitted here):

Firstly, for each training historical task record with partic-
ipants set P , decomposes the record into |P | records, each
of these records keeps the task features but corresponds to
only one distinct participant p ∈ P . We apply a single-label
machine learner that can generate a distribution of probabil-
ities for all labels. Finally use the trained model to process
the testing records, rank the participant labels according to
the generated probability distribution and recommend top N
developers.

IV. EMPIRICAL STUDY

This section presents the empirical study conducted on 2
datasets with different development characteristics to evaluate
our proposed developer recommendation approach for CSD
tasks. Since there is no existing study that evaluated any
approach for CSD recommendation, we employ a simple but
actionable method named “Active” as our baseline, which
recommends the top N developers who have won most tasks
for delivering qualified assets, and recommends the top N
developers who have registered most tasks for participation,
according to the given training dataset. Through the evaluation,
we empirically study the following 3 research questions:

TABLE II
THE ADOPTED FEATURE DISTANCE MEASURES

Feature Distance Measure

Date (Datei −Datej)/DateMaxDiff

PL PLi == PLj ? 1 : 0

Title Titx·Tity
‖Titx‖‖Tity‖

Tech Match(Techi, T echj)/NumberOfTechsMax

Description Desx·Desy
‖Desx‖‖Desy‖

Duration (Durationi −Durationj)/DurationMax

Payment (Paymenti − Paymentj)/PaymentMax



TABLE III
STATISTICS OF THE EVALUATION DATASETS

Dataset # Tasks # Reg. # Win. Duration

Development 1093/1367 1045/3533 92/298 2003.10-2013.02

Assembly 1505/1727 541/1547 86/211 2008.11-2013.03
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Fig. 5. The distribution on the number of registrants in each task.

RQ1. (Baseline Comparison): How does our proposed
recommendation approach (instantiated with different machine
learners) perform compare to the “Active” baseline method?
Since the baseline approach is simple and actionable, if we
cannot outperform this method then there is no reason for the
platform to adopt our recommender system.

RQ2. (Performance Assessment): Which of the machine
learners can best support our recommender system according
to accuracy and diversity metrics? Can the best learner con-
sistently outperform other learners, on different datasets and
for different recommendation purposes?

RQ3. (Insights): What useful insights from the performance
data can we yield for the real world CSD platform?

A. Dataset
We evaluate our approach on the novel datasets collected

from TopCoder, which currently has the largest community
for crowdsourced software development. We collected 3,094
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Fig. 6. The relationship between the number of registrants and submissions.

historical tasks that have been crowdsourced between Oct.
2003 and Mar. 2013, covering 2 types of software development
tasks (component development and assembly). We evaluate
our approach separately on each of the 2 datasets. Summary
data regarding the 2 datasets after and before data filtering is
shown in Table III. Note that the 3rd and 4th columns indicate
the number of distinct registrants and winners respectively.
Figure 5 presents the registrations distribution among the 2
types of CSD tasks. The statistics generally indicates a normal
distribution for the number of registrants in each task.

B. Study Setting
We sort the task records ascendingly according to their

posted time and then divide each of the 2 datasets into 10 folds.
The top 9 folds of records are selected as our training set and
the 10th fold is selected as our testing set, i.e. newly arriving
tasks. On each of these datasets, we recommend top 5, 10 and
20 developers separately and record the recommended lists
for calculating evaluation metrics. Note that here we choose
to recommend 5, 10 and 20 developers, which produce larger
sets of candidate developers compare to most studies on bug
triage. This is because in the CSD context, a wider range of
developers are encouraged to participate, and the parameters
of top 5, 10 and 20 developers basically matches the real
registrants distribution shown in Figure 5: For component
development tasks, the average registrants number is 16, and
the 10th-90th percentile corresponds to 10-25 registrants. For
assembly tasks, there are 20 registrants on average for a task
and the 10th-90th percentile corresponds to 9-36 registrants.
Besides, Figure 6 presents the relationship between the number
of registrants and number of qualified submissions. We can
see that at least 5 registrants are expected in order to receive
one submission for a task. Also, 10 and 20 registrants are
expected to obtain 2 submissions for the development and
assembly tasks separately. We choose to recommend 5, 10
and 20 developers for simulating the real application of our
approach.

The machine learning algorithms evaluated in our study
are selected from popular algorithms applied in previous
related research, which include C4.5 Decision Tree (C4.5),
Naı̈veBayes (NB) and k-Nearest Neighbour when k = 1
(KNN 1) and k = 5 (KNN 5). For these machine learners ap-
plied in the experiments, we do not optimise their parameters
for a certain method to avoid biasing. Our results are therefore
directly compared to the baseline, which also requires no
tuning. The corresponding parameters are set according to the
default parameters in the popular open sourced data mining
tool named Weka [21].

C. Evaluation Metrics
In order to evaluate the performance of our proposed

approach, we need metrics that can be used to assess developer
recommendation techniques. Previous related research topics
such as bug triage focus on the Accuracy dimension of the
performance, the typical metrics used are Precision and Recall.
However in the context of CSD tasks, we additionally need to



TABLE IV
ACCURACY AND DIVERSITY OF DEVELOPER RECOMMENDATION FOR DELIVERING QUALIFIED SOFTWARE ASSETS

Dataset Recommend
C4.5 Naı̈veBayes KNN 1 KNN 5 Active

Acc Div Acc Div Acc Div Acc Div Acc Div

DEV

5 50% 40% 44% 21% 34% 27% 32% 35% 37% 5%

10 60% 45% 54% 26% 44% 30% 49% 38% 46% 11%

20 71% 52% 67% 18% 56% 40% 61% 42% 57% 22%

ASM

5 37% 72% 33% 33% 38% 47% 43% 73% 15% 6%

10 51% 74% 44% 18% 49% 49% 58% 76% 26% 12%

20 63% 77% 54% 48% 57% 53% 67% 78% 37% 23%

TABLE V
ACCURACY AND DIVERSITY OF DEVELOPER RECOMMENDATION FOR PARTICIPATION

Dataset Recommend
C4.5 Naı̈veBayes KNN 1 KNN 5 Active

Acc Div Acc Div Acc Div Acc Div Acc Div

DEV

5 30% 3% 4% 15% 3% 8% 3% 7% 24% 1%

10 23% 6% 2% 17% 5% 14% 6% 13% 18% 1%

20 21% 11% 1% 18% 6% 20% 6% 19% 12% 2%

ASM

5 69% 1% 12% 10% 10% 35% 10% 34% 65% 1%

10 48% 2% 6% 11% 16% 47% 17% 46% 44% 2%

20 30% 4% 3% 12% 17% 53% 18% 53% 25% 4%

consider Diversity, which aims to encourage more developers
to migrate into the task as the essence of crowdsourcing is to
utilise the “wisdom of the crowd”. A recommender system
can be statistically accurate if we focus on optimising the
Accuracy dimension but it may be not very useful for practical
purpose if it has poor diversity. For example, suppose a
developer d participates in all the CSD tasks and the developer
recommender would recommend d to any newly arriving tasks
in order to be accurate. However since d is so active, he or she
would likely still participate the newly arriving tasks without
being recommended. If the recommender system focus only
on accuracy, it will fail to enhance any participation level.

For measuring the Diversity dimension, we follow Ado-
mavicius and Kwon [22] referred diversity to the number
of distinct developers that can ever be recommended by the
recommender system. To normalise the diversity measure, we
define it as the percentage format. This diversity metric can
be calculated according to Equation 3 where Ri (t)) stands for
the recommended i developers for task t, Actual (t) stands for
the ground truth developers for task t, Tr stands for training
set and T stands for testing set. As for the Accuracy metrics,
we define HitRatei to assess the recommender for delivering
qualified assets (one ground truth label for each task) and
use AveragePrecision to assess the recommender for par-
ticipation (multiple ground truth labels for each task), i.e. the
Accuracy dimension in Table IV is measured from HitRate
and the Accuracy dimension in Table V is measured from
AveragePrecision. These two metrics are defined formally

as shown in Equation 4 and Equation 5.

Divi =

∣∣∣∣∣⋃
t∈T

Ri (t)

∣∣∣∣∣
/ ∣∣∣∣∣ ⋃

t∈Tr

Actual (t)

∣∣∣∣∣ (3)

HitRatei =
1

|T |
∗
∑
t∈T

∣∣correct(Ri (t)
)∣∣ (4)

AvgPreci =
1

|T |
∗
∑
t∈T

(∣∣correct(Ri (t)
)∣∣ / |Ri (t)|

)
(5)

D. Results and Analysis
Table IV shows the results for delivering qualified assets

evaluated on the datasets of Component Development (DEV)
and Assembly (ASM) CSD tasks. Table V presents the results
for participant recommendation on these two datasets. A
performance comparison of the results in above tables is
illustrated by the charts in Figure 7.

1) Results for RQ1 (Baseline Comparison): The perfor-
mance of our recommender system outperforms the baseline
“Active” method across all datasets with different settings
(recommending 5, 10, 20 developers). When recommending
developers for delivering qualified assets, our recommender
system instantiated with any of the 4 machine learners per-
forms better than the baseline method for most cases, assessing
from Accuracy and Diversity. When recommending developers
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Fig. 7. Performance comparison of developer recommendation when recommending 5, 10 and 20 developers. The x-axis shows the machine learners and
the baseline method “Active”. The y-axis shows the value for Accuracy (Acc) and Diversity (Div) measures. The scatter points are linked for the purpose of
improving the readability.

for participation, since the baseline method shows good capa-
bility to recommend developers accurately, the best performed
learner C4.5, on average is only 5.5% better than baseline from
the Accuracy perspective, and from the Diversity perspective,
our recommender employ different machine learner shows
different capabilities, i.e. the KNN 1 (8%-53%), KNN 5 (7%-
53%) and Naı̈veBayes (10%-18%) learners performs much
better than the baseline (1%-4%) method.

2) Results for RQ2 (Performance Assessment): As shown
in Table IV and Table V, there does not exist a machine learner
that can consistently support our recommender system better
than other machine learners. However the C4.5 decision tree
learner performs best for Accuracy in 9 of all 12 cases which
indicates that it is the best learner for Accuracy. Evaluating
from the Diversity dimension, KNN 1 is the best learner which
outperforms others in 4 of 12 cases. When we assess from
both Accuracy and Diversity dimensions by calculating their
Harmonic mean (i.e. 2∗Accuracy ∗Diversity/(Accuracy+
Diversity)), C4.5 decision tree outperforms others in 5 of 12
cases. Thus we regard C4.5 as the best learner for our proposed
recommender system, when assessing from the Harmonic
mean of Accuracy and Diversity measures.

From Figure 7 we can see that when recommending de-
velopers for delivering qualified assets, our proposed recom-
mender system can achieve reasonable accuracy and diversity.
However we cannot reach both high accuracy and diversity
when recommending developers for participation. This reveals
an Accuracy-Diversity dilemma of our recommender system.

Observed from the performance of the baseline “Active”
method, when recommending developers for participation, the
biased learner with high accuracy and low diversity can be
attributed to the ground truth of the participants distribution,
i.e., there does exist the phenomenon that a certain number

of active developers tend to participate newly arriving tasks
persistently. Admittedly, the recommender system with high
accuracy and low diversity consistently recommend those
active developers can be a solution, but this only works for
short-term benefit. Only by achieving reasonable diversity,
can the recommender serve for the “long-tail” developers
and enhance the task participation level (i.e., exploration).
Meanwhile, the recommendation can recommend some of the
active developers to ensure the accuracy is acceptable (i.e.,
exploitation). We suggest that a proper trade-off between ex-
ploration and exploitation may help the recommender system
work for long-term benefit.

3) Results for RQ3 (Insight): Our empirical results can be
used to derive a few insights which are listed as follows:

1). In conclusion, from the performance data in Table
IV and Table V, we suggest some careful selection from
among different machine learners will be required according
the application context (e.g., task type). This conclusion is
consistent with the no-free-lunch theorem [23] for machine
learning.

2). Those most active developers are very likely to partic-
ipate in newly arriving tasks. However they are only a small
proportion of all developers, shown from the high accuracy
and low diversity of “Active” method. This indicates that, to
enhance the participation level, the CSD platform may need to
allocate higher weight to diversity to focus on recommending
suitable, but not necessarily the most active developers. The
winners of newly arriving tasks tend to be more various
according to the high diversity in Table V, which may indicate
that skilled developers have different knowledge background
and tend to deliver qualified assets for those matched tasks
within their expertise.

3). The baseline “Active” method is simple and actionable,



but can be an option to recommend developers for participation
if the low diversity can be tolerated. It may yield short-term
advantage at the expose of the long-term sustainability of the
CSD platform.

V. RELATED WORK

Crowdsourced Software Development (CSD) has received
increasing attention from the research community in recent
years. The research topics vary from CSD model to domain
application. Kazman and Chen [24] argued that traditional
software development life-cycle models such as the waterfall
model and the spiral model are inadequate for mass peer
production and the service nature of crowdsourcing. They
proposed the Metropolis model for the development of crowd-
sourced systems. For the practice of CSD, Prikladnicki et al.
[25] reported their starting point of a multi-year study on CSD
in Brazil, which aims to identify the challenges as well as
the best practices for CSD. Musson et al. [26] showed how
they utilised the crowd users to improve the Lync software
performance at Microsoft. Crowdsouring can also be used
to tackle classical problems in software engineering. Schiller
and Ernst [27] presented VeriWeb, which is an online IDE
for solving the skill barriers problem in verification. Their
experiments showed that VeriWeb can lower the monetary
and time cost of verification. However the workers need to
be professional contract workers rather than ad-hoc workers.
Pastore et al. [28] conducted a study on using the crowd
to solve the oracle problem [29] in software testing. Their
experimental results indicated that although it still remains
hard to obtain qualified solutions from the crowd, it can be a
viable method to ameliorate the oracle problem. For the quality
concern of CSD outcomes, Li et al. [9] analysed the key
factors on CSD software quality. By conducting an empirical
study on TopCoder.com, they suggested four critical factors in
improving the quality of the deliverables, including the prosper
level of the CSD platform, the size of the task, the maximum
skill level of the crowd developers as well as the software
design quality of the CSD task.

Our review of the literature reveals that few previous
authors have investigated recommendation-related topics for
the emerging crowdsourcing paradigms. We could not find
any peer-reviewed papers on developer recommendation in
the CSD context. However, for the more general context of
recommending crowdsourced micro-tasks to users, we did
find related work although this is not directly related to
CSD recommender systems. Ambati, Vogel and Carbonell
[30] proposed a recommendation approach based on implicit
modelling of interest and skills. Yuen, King and Leung [31]
employed probabilistic matrix factorization for preference-
based task recommendation in crowdsourcing system. These
two studies were conducted on the Amazon Mechanical Turk
platform with micro-tasks, rather than tasks as complex as
software development.

Another related topic which has been studied more ex-
tensively is bug triage. Čubranić and Murphy [32] proposed
to automate bug triage using text categorization techniques.

Anvik, Hiew and Murphy [33] expanded the previous work
by data pre-processing, using additional features and exploring
the performance of more machine learning algorithms. Gaeul,
Kim and Thomas [34] further improved bug triage accu-
racy using developers tossing behaviours in bug repositories.
Matter, Kuhn and Niestrasz [35] presented their approach
to automatically suggest developers for handling bug reports
using a vocabulary-based expertise model. Tamrawi et al. [36]
introduced fuzzy set and cache-based modelling techniques for
automatic bug triage. Xuan et al. [37] leveraged developer pri-
oritization based on a social network techniques to assist triage
tasks in bug repositories. Wang et al. [38] explored developers’
collaboration relationship in bug repositories. They model the
collaboration as heterogeneous graphs to help triage the bug
reports and their evaluation showed higher accuracies can be
achieved by utilising the heterogeneous graphs. However these
proposed approaches need to be carefully re-examined in the
CSD context, due to the specialized properties and peculiarities
of CSD which require special treatment. For instance, one
prior research has shown that traditional laws on software cost
are challenged in the CSD context [10]. Likewise, we consider
traditional bug triage methods may not migrate to this new
context directly because previous bug triage studies are based
on open source communities, which are quite different from
crowdsourcing community.

VI. SUMMARY

Crowdsourced software development is an emerging
paradigm which utilises the “wisdom of the crowd” for soft-
ware production. The CSD tasks demand reliable developers
and enough participation to guarantee a qualified asset that
can be delivered to the client. In addition, examining from
hundreds of tasks’ descriptions, it is quite a laborious and
demanding work for the developers to choose which one is
more suitable for them to participate.

To tackle above challenges, we introduced content-based
recommendation techniques for developer recommendation
in the emerging CSD context. Our system learns particular
interests from registration history and mines winner history to
favour appropriate developers. To encourage task participation
as well as to serve more developers, we focus not only
accuracy but also diversity to measure the performance of our
recommender system. The experimental results show that our
recommender system outperforms the baseline method and can
achieve promising accuracy and diversity. We also provide a
few insights concluded from the results for the CSD platform
and its online developers.

For future work we plan to propose an improved approach to
optimise recommendation results by considering developers’
strategic behaviours and their social network information. A
wider range of machine learners and related state-of-the-art
methods in bug triage would be evaluated for performance
comparison. In addition, to further investigate the usefulness
of the recommender system, an online empirical study would
be conducted.
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