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Abstract 

Deep drainage (DD) is recognised as one of the main drivers for dryland and irrigated salinity.  Review of 

the literature on risk and hazard highlights few Australian studies on assessing DD risk and the need to 

develop new methods for determining DD risk.  This study developed a method to map DD risk for the 

Northern Murray Darling Basin Catchment of the Border Rivers.  Deep drainage was predicted at 85 

points in the landscape using the mechanistic soil-water model SWAP, with soil hydraulic inputs created 

using pedotransfer functions and crop input from supervised classification of LANDSAT imagery. 

Uncertainty of the hydraulic property estimation was included using Monte Carlo simulations. The DD 

values were subsequently translated to probabilities of exceeding 5 or 100 mm/year for different land 

management options. The outcomes indicated that exceeding 100mm/year deep drainage had a 

probability of 60, 25, 1 and 5% for irrigated cotton, wheat, pasture and native vegetation, respectively. 

Using regression kriging based on ancillary information from the LANDSAT imagery, DD probabilities 

were predicted spatially over the study area to create a risk map.  Soil type was less important than land 

use in determining the probability of exceeding a certain value, because land uses tended to be already 

aligned with certain soil types. Areas that require further research include incorporation of temporal 

variability in land-use and spatial variability in climate. 
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Introduction 

There is continued concern about the changes in land-use in Australia and the impact on the hydrological 

cycle, primarily because of increased deep drainage (DD) (Walker et al. 2002).  DD can be described as 

“potential recharge” or as a loss of water below the root zone depending on the researchers viewpoint 

(Asseng et al. 2001).  As increased DD is recognised as one of the main drivers for dryland and irrigated 

salinity (Vervoort et al. 2002, Walker et al. 2002), it is important to have some estimate of the risk of 

such events occurring. Risk is an estimation of the expected amount of harm that will occur to an asset 

when a condition, such as excessive DD, occurs.  For example, salinity risk is the probability that certain 

management practices contribute to the expression of land or water salinity in the landscape (Collins and 

Donaldson 2002). As such, it is an expansion of the concept of hazard, which only describes the intrinsic 

nature of the issue. Increasingly hazard and risk maps are being used to aid management decisions, but 

most of the mapping in Australia appears to be based on subjective and empirical approaches (Gilfedder 

and Walker, 2001) with only a few studies employing the use of models to estimate hazard or risk (Bui et 

al. 1996; Asseng et al. 2001 Triantafilis et al. 2003).  Furthermore mapping in Australia has focussed 

primarily on salinity hazard, based on landscape characteristics and salt stores. 

 

Risk of DD is of particular interest in the Northern Murray Darling Basin (NMDB), as past research and 

management of the water balance has mainly focussed on infiltration, runoff and soil conservation 

(Vervoort et al. 2004).  But since irrigated cotton production is an important and growing industry in the 

area, DD, water-use efficiency and minimising the impact of the cotton industry on the environment are 

issues of growing importance. While there are a sufficient number of physically based field methods for 

determining DD, these methods are labour intensive and expensive (Silburn et al. 2004). An extensive 

range of models exists for describing soil-water movement and models are an effective way of estimating 

DD across an area (Walker and Zhang 2002).  But, because of the one-dimensionality of most soil 

vegetation models and because deep drainage constitutes only a small fraction of the total water balance, 

little success has been made in extrapolating DD values beyond the field scale (Walker et al. 2002). 

Triantafilis et al. (2003) used an empirical model to derive DD risk on a field scale and Bui et al. (1996) 

estimated DD hazard using a pedological model and tried to validate some of the local outcomes using the 

mechanistic model SWIM. Asseng et al. (1997) used the model APSIM to derive DD exceedance values 

based on 24 rainfall stations and 5 soil types. These values were subsequently interpolated using ordinary 

kriging for the Southwest Australian wheatbelt. This study uses remote sensing data (such as LANDSAT) 
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and geostatistics (Odeh et al. 1995), to interpolate the outcomes of a one-dimensional mechanistic soil-

water movement model in the landscape. In addition, uncertainty due to unknown hydraulic properties is 

included into the model using Monte-Carlo simulations.  

 

Methods 

Study Area 

For this research a 50km by 60km section of the Border Rivers Catchment was chosen.  The area 

encompasses the main town in the region, Goondiwinidi, and the border of NSW and Queensland: the 

Macintyre River (150
0
19’52.4S, 28

0
21’22E).  This region has summer dominated rainfall with average 

rainfall of 600mm/year and evapotranspiration rates which generally exceed the annual rainfall.  The 

landscape is characterised by level plains with very low gradients. 

 

 
Figure 1. Landuse in the Border Rivers catchment study area based on a classified LANDSAT-7 Image and 

locations of the soil sampling points (black crosses), January 2002.  The Macintyre River can be seen in the 

middle of the image, bordered by natural vegetation (light gray), and irrigated cotton fields (dark gray), 

grazing and cropping (middle gray).  

 

In order to establish the upper boundary for the one-dimensional model, it was necessary to determine the 

land use for the area. A LANDSAT-7 image of the area taken in January 2002 was acquired (Figure 1).  

LANDSAT-7 images contain data from 6 bands or channels of energy (blue, green, red, near infrared, 

shortwave infrared and thermal infrared). In January 2003, land use in the area was also mapped using a 

hand-held GPS and this data was imported into ARCGIS (ESRI Australia, Melbourne, Victoria). Through 

contacting landholders in the study area, and with the aid of farm maps and a copy of the LANDSAT 

image, land use at a field scale could be determined for January 2002. This information was combined 

with the LANDSAT data to perform a supervised classification using IMAGINE (Leica Geosystems, 

Atlanta, USA). For the land use map in this study, initial classification of obvious features and the field 

information meant that meaningful classes in the scene could be identified.  For example cotton has a 

strong spectral signature in January, appearing dark green in the LANDSAT (Figure 1) and was therefore 

easily recognised.  The main identified land uses were cotton, pasture, fallow (winter wheat) and natural 

vegetation (trees).   

 

SWAP 

Deep drainage (DD) was estimated using the one-dimensional finite difference model SWAP (Soil Water 

Atmosphere and Plant) (Van Dam et al. 1997). The SWAP upper boundary is located just above the 

vegetation, while free drainage at a depth of 3 m was simulated as the lower boundary. SWAP is a one-

dimensional model, and does not consider lateral flow, but considering the low gradients in the landscape 

this was probably not a major assumption. Ten years of climate data was sourced from a weather station 

in the area (Goondiwindi airport). Reference evapotranspiration (ETref) was based on the Penman-

Monteith equation.  While rainfall data was more abundant or could have been obtained from patched and 
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interpolated datasets such as DATADRILL (www.bom.gov.au), climate was assumed to be uniform 

across the study area.  

 

A previously conducted soil survey (Odeh et al. 2004; J.Triantafilis, pers. comm.) provided particle size 

distributions for 91 soil sites in the study area (Figure 1). This soil dataset contained samples to a depth of 

1.2m and provided the clay, silt and sand percentages.  The data was first merged from 6 layers to 3 

layers.  The final merged layers were from depths 0-30cm, 30-60cm and 60-300cm.  The layers created 

were arbitrary, but could be thought to represent a cultivation layer, subsoil and deeper subsoil. Mean 

profile clay contents in the area ranged from 12 to 77%, with a mean of 52 % (Table 1), typical for the 

heavy clays in the area. Six soil points appeared to be located in irrigation water storages, a landuse 

difficult to recreate using SWAP.  Therefore the landuses that described the remaining 85 soils points 

were cotton, perennial pasture, native vegetation, and winter wheat (Table 1). Crop heights rather than 

crop factors were used to calculate actual evapotranspiration from ETref. Since, for native vegetation the 

depth of the soil profile had to be 3 m to cover the maximum root depth (Table 1), all soil profiles were 

extended from 1.2m to 3m. Comparing soil profiles with different depths might have given a correct 

estimate of deep drainage below the rootzone, but would not have been comparable in terms of potential 

recharge to the groundwater (Jolly and Cook 2002). 

 
Table 1. Statistical summary of the soil properties in the study area indicating mean, maximum, minimum 

and standard deviation % of the clay silt and sand contents in the samples, and the resulting hydraulic 

conductivity based on the pedotransfer functions in Neurotheta. 

 Clay (%) Silt (%) Sand (%) Calculated Hydraulic conductivity  (mm/hr)

Mean 51.5 27.2 20.9 119.9
†
 

Maximum 77.7 58.6 78.3 2030.5 

Minimunn 12.3 8.3 2.3 4.3 

Standard deviation 11.7 9.7 11.7 0.66
†
 

† mean calculated using log-transformed values and back transformed, standard deviation based on log-transformed values 

 

To calculate hydraulic properties, pedotransfer functions (PTFs) were applied to the data using the 

program Neurotheta (Minasny and McBratney, 2002). Neurotheta uses a calibrated neural network to 

predict parameters of the van Genuchten function to describe the relationships between water content and 

pressure head and hydraulic conductivity, from soil particle size distributions (Minasny and McBratney 

2002). In this case the only data available were the clay, silt and sand contents (Table 1). Neurotheta is 

additionally able to calculate 50 samples out of the distribution of hydraulic properties associated with the 

specific soil properties, and this incorporates the uncertainty in estimating the average hydraulic 

conductivity. The values generated by Neurotheta sometimes contained unrealistic estimates for water 

retention parameters, and these parameters were removed prior to the simulations. The number of 

unrealistic estimates increased when the uncertainty in the estimation of the average hydraulic properties 

increased. On average more than 40 values for the hydraulic properties were generated for each soil point 

for Monte Carlo simulations. Irrigation was stipulated for cotton only, and was based on 6 irrigations of 

100 mm (Table 2). Ponding of 10cm was only allowed at the irrigated sites.  Preferential flow due to soil 

cracks was not employed in this study, due to lack of information on the shrinkage characteristic of the 

soil.  Most of the other inputs followed standard suggestions for SWAP as outlined in the user manual 

(van Dam et al. 1997). 

 
Table 2. Description of Crop inputs for the SWAP (Soil-Water-Atmosphere-Plant) model, indicating the 

number of points in the landscape modelled, the simulated maximum root depth, the crop calendar and 

whether irrigation was simulated. 

CROP Number of 

points 

Maximum root depth 

(m) 

Calender Irrigation 

simulated 

Crop 

height  

(m) 

Winter Wheat 18 1.2 May-Nov NO 0.8 

Cotton 35 1.2 Oct-April YES 0.8 

Pasture 22 0.5 Perennial NO 0.3 

Native 

Vegetation 

10 3 Perennial NO 10 
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The model was initially run for a simulation period of 11 years (1992 – 2002) with the average hydraulic 

properties for each location and the initial soil moisture conditions set at values found at-300cm to 

represent field capacity. However, the final soil moisture profile indicated that this overestimated the 

amount of moisture in the profiles and this increased deep drainage in the earlier years. The final moisture 

profile of these initial runs was therefore inserted as the initial soil moisture profile for subsequent runs. 

The model was first run with the average hydraulic properties to derive the estimated annual deep 

drainage at each point. Statistical summaries, such as means and standard deviations were calculated after 

discarding the first year of data (1992). Subsequently, to include the uncertainty in the estimation of the 

soil hydraulic properties, the model was run for all values of the hydraulic properties, resulting in more 

than 40 simulations per soil point. From these results, statistical summaries were calculated after 

discarding the first year of data (1992). The probability of a certain level of deep drainage occurring in a 

single year was calculated by summing the daily values for all simulations at a point and calculating the 

fraction of years producing deep drainage greater than either 100 or 5 mm/year. The 5 mm/year value was 

based on suggested deep drainage under natural vegetation (Walker et al. 2002), while the 100 mm/year 

can be seen as a possible environmental threshold above which DD is assumed to be environmentally 

harmful. 

 

Interpolation 

The annual values and calculated probabilities were extrapolated over the whole area by regression 

kriging using the different bands in the LANDSAT-7 image (Odeh et al. 1995). This involved using 

stepwise regression to develop regression equations between the different model output values and the 

spatial coordinates, LANDSAT-7 bands and, in our case, land use. Land use is of course not independent 

of the LANDSAT-7 bands, but since field based land use classification was also incorporated, it included 

additional information. The LANDSAT-7 bands were multiplied by the regression coefficients and 

variograms were fitted to the regression errors using an exponential model and a maximum range of 20 

km in VESPER (Minasny et al. 2002). The regression errors were then kriged using VESPER on the 

50×50 m grid and summed with the calculated values from the regressions (Odeh et al. 1995). Maps of 

these probabilities were generated and displayed using ARCGIS. 

 

Results and Discussion 

Land use was fairly well predicted using the supervised classification. Misclassification amounted to 

about 15 of the 85 locations, which were mainly related to the wheat and pasture land uses because the 

image was taken in January. At this time, wheat land was fallow, while unirrigated pastures were dry. 

This meant these land uses had similar spectral signatures. In contrast, natural vegetation and cotton had 

very distinct spectral signatures and were therefore fairly well predicted. There were some small areas 

planted under sorghum, but none of the soil points were located in these areas and this land use was thus 

not used in the simulations. 

 
Table 3. Mean, standard deviation, median, maximum and minimum values from simulations using the 

average soil hydraulic properties and the Monte Carlo simulations. Note the increase in the coefficient of 

variations if the uncertainty in determining the hydraulic properties is included. 

Wheat Cotton Pasture 
Native 

Vegetation 
Wheat Cotton Pasture 

Native 

Vegetation All values in 

mm/year 
Average hydraulic properties Monte Carlo simulations 

Mean deep 

drainage 
61.1 138.1 15.2 2.6 52.6 164.5 8.3 16.6 

Median deep 

drainage 
53.4 135.0 11.6 1.0 11.84 111.28 0.01 4.31 

Maximum 273.2 373.7 60.4 11.2 557.5 5324.5 387.0 447.3 

Minimum 0.2 67.5 -0.3† -0.001 -12.7 -80.0 -102.9 -96.4 

Coefficient of 

variation (%) 
132.3 32.0 119.1 150 151.7 129.7 273.4 228.3 

† negative deep drainage values indicate water uptake from the soil below 3 meters. 

 

Deep drainage (DD) under all land uses was highly episodic and somewhat correlated to rainfall events 

(e.g. Asseng et al. 2001; Walker et al. 2002). Annual DD values based on simulations using the average 

hydraulic properties ranged from 373.7 mm/year for a cotton location to an uptake of 0.3 mm/year for a 
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pasture site (Table 3). Average annual DD values indicated that the highest levels occurred under 

irrigated cotton resulting in a high probability of exceeding any of the cut-off values in any given year 

(Figure 3). The overall range of DD values was well within the range of values found in earlier research 

(i.e. Walker et al. 2002; Silburn and Montgomery 2001). In contrast, annual DD values under pasture and 

natural vegetation were low and had strongly skewed distributions, resulting in large coefficients of 

variation and differences between mean and median values. This meant that the probability of exceeding 

100 mm/year or 5 mm/year DD in any give year increased in the order of pasture, natural vegetation, 

wheat and cotton (Figure 2). In contrast, DD under cotton always exceeded 5 mm/year and also exceeded 

100mm/year in 75% of the time in the 10 years simulated.  

 

A) 

 
 

B) 
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Figure 2. Distribution and probability graphs for the occurrence of deep drainage under the different land 

uses for the simulations using average hydraulic properties (A) and the Monte Carlo simulations (B) which 

included the uncertainty in determining the hydraulic properties. Indicated are the distributions (blue bars), 

cumulative probaility of exceedance (solid line) and the 100 mm/year (dashed line) and 5 mm/year (dotted 

line) deep drainage values. 

 

The variability in DD increased when the uncertainty in the determination of the hydraulic properties was 

included (Monte Carlo simulations, MC). Interestingly, the mean DD values for cotton and natural 

vegetation increased, while the mean values for wheat and pasture decreased. All distributions of DD 

values were highly skewed, even more so than if the average hydraulic properties were used. This was 

indicated by large coefficients of variation and large relative differences between mean and median. The 

maximum and minimum values presented in Table 3 for the MC simulations were not considered to be 

realistic values observed in the field below the rootzone. For example the maximum simulated DD under 

irrigated cotton was larger than the amount of water applied in irrigation and rainfall in any given year. 

However this value resulted from a build up of soil moisture in two dry years before (possibly balanced 

by a negative DD in a year) followed by a release of water in a wet year. In addition, Silburn and 

Montgomery (2001) quoted lysimeter studies in southern Queensland, which reported DD of 1010 

mm/year under furrow irrigated cotton, indicating that very high values occur in some years. This extreme 

variability highlights the need to run long term simulations benchmarked by field studies (Silburn et al. 

2004). The probability of exceeding 5 mm/year DD increased for natural vegetation, but exceedance 

probabilities decreased for all other land uses, due to the increase in the skew of the distribution. Since the 

probability of exceeding a certain DD value equated to risk, we calculated the risk of exceeding 100 

mm/year DD and 5 mm/year DD. In general these results indicated that including the variability in 

hydraulic properties had a substantial effect on the average deep drainage simulated and the resulting DD 

risk. In other studies (i.e Asseng et al. 2001; Bui et al. 1996), such uncertainty has not been included, 

which probably led to an underestimation of the average deep drainage and an overestimation of the risk. 

On the other hand, this study included a much shorter temporal variability compared to the Asseng et al. 

(2001) study, which could have led to similar over- or underestimations.  

 

The correlations between the DD risk based on average hydraulic properties and the ancillary landscape 

variables (LANDSAT, spatial coordinates and land use) were reasonably strong (Table 4). However the 

regressions were dominated by land use, indicating the strong influence that this factor had on the DD 

risk. The regressions between the predicted MC DD risks and the ancillary landscape variables all had 
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fairly low correlations (Table 4). For both MC DD risk cut-off values, eastings, land use and the 

shortwave-infrared channel were significant predictors. Eastings would be an expected predictor, since 

many of the environmental signatures in this region (whether from soil, climate or vegetation) display an 

East-West trend, due to the strong East-West climate trend. The shortwave-infrared channel was strongly 

related to the vigour of the vegetation growth (Huete et al, 1994) and the significance of this band 

indicated the correlation between deep drainage and land use. The lower correlations for the MC DD risks 

regressions were caused by the increased variability introduced by the uncertainty in hydraulic properties, 

which was more related to soil properties. Introducing further variability due to rainfall and/or land use 

would decrease the correlation between a snapshot (the LANDSAT image) and the dynamic variables 

(DD risk) even more. This also highlighted the dynamic nature of DD risk in contrast to hazard. 

 

The predicted variograms for the regression errors indicated only a slight spatial trend, meaning that there 

was little spatial structure in this data. This might indicate that, as DD risk was mainly correlated to land 

use, and land use did not exhibit a spatial trend, the DD risks also exhibited little spatial trend. The 

resulting risk maps clearly indicated the high risk of DD in the cotton growing locations (compare Figure 

3 & Figure 1), particularly in the map based on the simulations with the average hydraulic properties. 

There was some difference in the magnitude of the DD risk depending on the underlying soil type in the 

MC DD risk map, and there appeared to be an East-West trend in the map, with the western side of the 

area having a lower risk. This was considered reasonable because the soils generally contained more clay 

from East to West.  It is clear that including the uncertainty arising from the estimation of the hydraulic 

properties changed the risk map and de-emphasised the effect of land use. The map can mainly be used to 

identify areas that have a high risk of DD under the current land use, such as the dark area in the 

southeastern corner. Another approach would be to simulate the same land use for all locations and as 

such indicate the risk of DD purely based on differences in soil type (Asseng et al. 2001; Triantafilis et al. 

2003). However, this would not reflect the current risk, but some hypothetical risk if all land use would 

have been changed to, for example, wheat production or irrigated cotton. While these types of risk 

analysis can be useful for assessing land use change, such information can also be gained from a hazard 

map (i.e. Bui et al. 1996), and the additional computational effort would not be warranted. 

 
Table 4. Overview of the results of the regression equations to predict the probability of exceeding an 

environmental cut off value from ancillary information. 

Variable Significant predictors r
2
 

Average Hydraulic properties 

Risk DD > 100 mm/year Band 2 – Band 5 and land use 0.54 (p<0.001) 

Risk DD > 5 mm/year Band 1 & 2, Band 4 & 5 and land use 0.63 (p<0.001) 

Monte Carlo simulations 

Risk DD > 100 mm/year East, Band 5 and land use 0.23 (p<0.001) 

Risk DD > 5 mm/year East, North, Band 4, 5, and 6 and land use 0.31 (p<0.001) 

 

 
Figure 3. DD risk map of exceeding 100 mm/year in any given year from the simulations based on the average 

hydraulic properties (A) and the Monte Carlo simulations (B) Darker colours indicating higher risk and this 

appears aligned with cotton production in (A), but less so in (B). Legend indicates the probability of 

exceedance, or risk. 

 

The risk analysis presented here was useful in that it allowed identification of current land use and 

landscape combinations that are under high risk of DD. These areas can be targeted for management or 

land use change. In addition, it is interesting to note that on a landscape scale the overall risk of DD >100 
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mm/year is low (in the order of 0.2), which might indicate that the overall landscape deep drainage is thus 

in the order of 20 mm/year. In terms of groundwater management and the risk of rising water tables, such 

an overall landscape value might help drive larger landscape scale models. The method developed here 

can thus also be used to assess catchment level DD for catchment management purposes. 

 

Inclusion of variability of rainfall through a stochastic rainfall simulator would be the next step. The work 

by Asseng et al. (1997) indicates that variability due to rainfall can have a major effect on the risk of DD. 

Interesting would be to test whether the uncertainty due to soil properties has a greater effect on DD risk 

than the uncertainty due to climate. From the inherent variability in the rainfall data it would be presumed 

that the uncertainty due to climate would be considerable. Another aspect not incorporated in this study is 

dynamic land use. Land use is considered to be static and does not change from year to year, such as 

under rotations or in response to available irrigation water (e.g. Dudley and Hearn 1993).  

 

Conclusions 

A combination of a one dimensional mechanistic model and regression kriging proved an effective 

method for constructing a DD risk map for the Border Rivers area of NSW and Queensland. Including the 

uncertainty of estimating the soil hydraulic properties increased the variability in DD estimates, but, in 

general, decreased the risk of exceeding 100 mm/year DD under all land uses. 
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