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Abstract—Restructuring and privatization in power systems 

have resulted in a fundamental transition of conventional 
distribution systems into modern multi-agent systems. In these 
structures, each agent of the distribution system would 
independently operate its local resources. In this regard, 
uncertainties associated with load demands and renewable energy 
sources could challenge the operational scheduling conducted by 
each agent. Therefore, this paper aims to develop a distributed 
operational management for multi-agent distribution systems 
taking into account the uncertainties of each agent. The developed 
framework relies on alternating direction method of multipliers 
(ADMM) to coordinate the operational scheduling of the agents in 
a distributed manner. Moreover, a robust optimization technique 
is employed to consider the worst-case realization associated with 
the operation of each agent. Finally, the proposed framework is 
implemented on IEEE 37-bus network to analyze its efficacy in 
distributed robust operational management of distribution 
systems with multi-agent structures.  

Index Terms—Energy Management, active distribution 
systems, distributed management, alternating direction method of 
multipliers (ADMM), robust optimization. 

I. INTRODUCTION 
Proliferation of conventional distributed generation units, 

renewable energy sources (RESs), and energy storage units in 
the forms of electric batteries or electric vehicles, as well as 
flexible demands has led to development of smart active 
distribution systems [1]. However, uncertainties associated 
with the intermittent RESs and end-user demands have caused 
challenges for utilities from operational and planning 
perspectives. Furthermore, privatization and development of 
independently operated resources as well as the concerns 
associated with complicated analysis of massive amounts of 
information and raised cyber security issues have led to 
introduction of distribution systems with multi-agent structures 
[2]-[3]. In this regard, new procedures should be developed to 
cope with the multi-agent structure of distribution systems 
while addressing the uncertainties of the system. 

In recent years, various methodologies have been developed 
by researchers to take into consideration the uncertainty of local 
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resources in operational scheduling procedures. In this regard, 
stochastic optimization technique is one of the methods that has 
been employed to model the realization of uncertain 
parameters. In this methodology, a finite set of scenarios are 
generated modeling the uncertain parameters, and deployed in 
the optimization formulation of local resources based upon their 
probability distribution functions [4]-[5]. Reference [6] 
develops a framework to manage reactive power in a radial 
microgrid while taking into account the uncertainty of active 
power injections of solar panels and household demands via 
stochastic optimization. The authors in [7] have presented a 
two-stage stochastic resource scheduling for AC/DC hybrid 
smart grids. In the first stage, the day-ahead scheduling of DG 
units is determined in a way that minimizes costs over all 
scenarios; whereas in the second stage, corrective decisions are 
made for each possible scenario. Bazrafshan et al. [8] have 
devised a decentralized active and reactive power management 
scheme in which the output power of photovoltaic (PV) units 
can take values from a finite set of scenarios. In [9], a multi-
objective framework is proposed to reduce the cost of energy 
and carbon dioxide emission in a distributed energy system, 
while utilizing  24-h scenarios to handle the uncertain 
parameters of supply and demand. Moreover, a decentralized 
framework is proposed in [10] to operate a multi-area integrated 
electricity and natural gas systems, while utilizing stochastic 
programming to address the uncertainty of wind power. 

While stochastic optimization algorithm enables operators to 
address the uncertainty of input data, the procedure of 
generating scenarios, estimating their probabilities, as well as 
the associated computational burden to analyze the overall 
optimization model hinder its application in scheduling of real 
systems. As a result, other algorithms like robust optimization 
technique have recently been applied to model uncertain 
parameters in operational scheduling of local resources. Robust 
optimization algorithm strives to solve the operational 
scheduling problem considering the worst-case scenario of 
uncertain parameters which makes the computational procedure 
more tractable.  In this approach, uncertainty associated with 
each parameter is modeled by a confidence interval which 
avoids necessity of defining probability distribution functions 
[11]-[15].  
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In [11], energy scheduling of home appliances has been 
modeled with robust optimization technique to take into 
account the worst-case operational scenario of all uncertain 
home appliances. Robust approach has been adopted in [12]-
[12] in order to accommodate the worst realization of uncertain 
variables. Reference [12] aims to optimize the operational 
scheduling of a microgrid considering islanded and grid-
connected modes, while bidding strategy of a microgrid 
aggregator participating in a pool electricity market is 
developed in [13]. Authors in [14] have proposed a robust-
based two-stage procedure to schedule resources in 
transmission and distribution systems. The proposed approach 
strives to address the variability of wind power considering the 
flexibility provided by the interconnected electricity and natural 
gas networks. Reference [15] has developed an adaptive robust 
min-max-min model to conduct unit commitment considering 
operational constraints of transmission networks. In this regard, 
robust algorithm is employed to address uncertainties 
associated with wind power production. Furthermore, the unit 
commitment model is decomposed into three levels and solved 
iteratively utilizing primal and dual cuts. While [12]-[15] have 
studied robust management of power systems from different 
perspectives, the multi-agent structure of modern power 
systems is not considered in the developed models.      

As mentioned, traditional distribution systems are moving 
towards multi-agent structures, in which each agent is 
responsible for managing its own local resources [16]. In this 
regard, new methodologies are required in order to enable 
agents to independently operate their resources while 
considering operational constraints of the underlying 
distribution grid. In particular, alternating direction method of 
multipliers (ADMM) has received significant attention in recent 
research works with the aim of facilitating distributed operation 
of multi-agent systems. In this method, a central optimization 
problem is broken down into smaller sub-problems which are 
iteratively solved by system’s agents in a decentralized fashion. 
The robust co-optimization of electricity and gas systems 
utilizing ADMM approach is investigated in [17]. In this regard, 
the operational management of electricity and gas systems are 
conducted by independent entities while ADMM is taken into 
account to iteratively coordinate the scheduling of the two 
systems. In other words, electrical system and gas system are 

operated in a central manner, while operational coordination of 
their respected utilities is ensured by ADMM algorithm. 
Moreover, authors in [18] have developed a decentralized 
scheme to schedule generation units and tie-line interchanges in 
multi-area systems, while robust optimization is utilized to 
handle wind uncertainty. Noted that the developed methods in 
[17]-[18] rely on DC power flow model which may not lead 
into reliable results in distribution networks. References [19]-
[20] have applied ADMM to efficiently control the flow of 
reactive power in distribution systems. A closed-form solution 
for the ADMM-based optimal power flow with SOCP 
relaxation (SOCP-OPF) in a radial distribution system is 
proposed in [21]. Moreover, the proposed ADMM-based 
SOCP-OPF is developed in [3] in order to be deployed on a 
multi-agent system with the bilateral energy trading structure. 
In  [22], decentralized operational scheduling of multi-
microgrid distribution system with energy-hubs is studied. In 
this respect, robust optimization is used to model uncertain 
parameters; however, the proposed approach does not consider 
the distribution network’s constraints. Authors in [23] have 
devised a decentralized robust model in order to coordinate the 
operation of distribution company and electric vehicle (EV) 
aggregators. Furthermore, distributed energy resources (DERs) 
coordination in distribution systems is investigated in [24]. It is 
noteworthy that the proposed methods in [22]-[24] are not fully 
distributed and rely on the distribution system operator to 
coordinate the operation of multiple entities and operate the 
distribution network. Authors in [25] have utilized robust 
optimization technique and ADMM algorithm to address the 
uncertainty of local resources while distributedly managing 
multi-microgrid distribution systems. In this method, the energy 
exchanged by each microgrid is considered to be fixed in case 
of system disturbance; therefore, the operational point of local 
resources in each microgrid would be exploited to address the 
net-load deviation in the respected microgrid during the real-
time operation. In other words, the uncertainty consequences in 
the system would merely be resolved locally by each microgrid. 
Furthermore, the operational characteristics of the grid are 
dismissed in the proposed methodology in [25]. Table I presents 
a comprehensive taxonomy table of research works in the 
context of this paper.  

Table I Taxonomy of research works on centralized/decentralized optimization of energy systems considering uncertainty 

Ref Robust Opt. Stochastic Opt. ADMM Network Modeling Description 
[5]-[7]  ✓  SOCP/AC-PF Central Optimization of the designated system  

[8]  ✓ ✓ SOCP Decentralized power management in distribution grid 
[9]  ✓   Optimizing the distribution system considering environmental constraints 

[10]  ✓ ✓ DC-PF Decentralized operation of gas and electricity systems 
[11] ✓    Central energy scheduling of home appliances 
[12] ✓    Central operational scheduling of MGs 
[13] ✓    Bidding strategy of a MG aggregator 
[14] ✓   DC-PF Central coordination of electricity and gas system 
[15] ✓   SOCP Central unit commitment in transmission network 
[17] ✓  ✓ DC-PF Decentralized coordination of electricity and gas system 
[18] ✓  ✓ DC-PF Decentralized generation and tie-line scheduling in multi-area systems 
[22] ✓  ✓  Operational optimization of multi-MGs considering a central coordinator 

[23] ✓  ✓ DC-PF 
• Operational scheduling of EVs in distribution system 
• The network constraints are merely considered by system operator while EV 

aggregators optimize their scheduling 

[24] ✓  ✓ SOCP • Residential DER coordination in distribution grid 
• The network’s constraints are merely considered by system operator 

[25] ✓  ✓  
• Distributed operation of multi-MG system 
• Network’s constraints are not considered; Power exchange among MGs is 

considered to be fixed  
This paper ✓  ✓ SOCP Distributed operation of distribution system with multi-agent structure 
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Despite various studies, which have been conducted to 
address the uncertainty of local resources and distributed 
management of multi-agent distribution systems; to the best of 
authors’ knowledge, employing robust optimization technique 
in a fully distributed manner to securely operate multi-agent 
distribution systems has not yet been fully investigated in 
previous proposed frameworks. Motivated by the 
aforementioned points, this paper aims to develop a robust 
optimal scheduling scheme in the context of the ADMM 
algorithm to address the uncertainty of system agents, while 
coping with the multi-agent structure of the system. Note that 
none of the previous research works have developed an 
ADMM-based robust optimization technique which complies 
with multi-agent distribution system, and either rely on a central 
coordinator to operate the distribution system, or deploy linear 
power flow algorithm to model the distribution network. 
Furthermore, the developed approach in [25] overlooks the 
underlying distribution network which could result in a sub-
optimal dispatch solution. In this regard, robust optimization 
techniques could not be employed in the previously developed 
ADMM-based mathematical optimization models to schedule 
the power exchange with the grid, address the uncertainty of 
local resources, and cope with the distributed nature of multi-
agent systems. Consequently, this paper aims to provide a 
mathematical modeling of an ADMM-based energy 
management scheme in a multi-agent distribution system; in 
which each agent independently schedules its resources 
utilizing robust optimization technique. In this context, in the 
first step, the centralized robust optimization of the distribution 
system is presented; while, in the second step, the primary 
optimization model is modified in a way that copes with the 
ADMM concept to facilitate distributed optimization of multi-
agent systems without a central coordinator. Based on the above 
discussions, the main contributions of this paper could be 
pointed out as follows:   

• Utilizing the robust optimization approach for operational 
scheduling of independent agents immunizes day-ahead 
management of the distribution system against associated 
uncertainties. Moreover, the proposed approach copes with 
the distributed nature of multi-agent systems where each 
agent could employ a robustness budget to adjust the 
robustness level of its respective operational scheduling.  

• The proposed scheme takes into account ADMM algorithm 
in order to coordinate the day-ahead scheduling of 
independently operated agents without a central 
coordinator. In this regard, information exchange between 
agents is managed in a way that addresses cyber-security 
and privacy concerns. Respectively, a mathematical 
formulation is developed based on the ADMM concept to 
facilitate the combination of robust optimization technique 
in distributed operation of multi-agent systems considering 
operational modeling of the grid. 

The rest of this paper is structured as follows. In Section II, 
the centralized framework for robust operational scheduling of 
distribution systems is formulated. In Section III, ADMM 
algorithm is taken into account to develop the distributed robust 
operational management of multi-agent distribution systems. 
Finally, the results associated with implementing the developed 
framework on the modified IEEE 37-bus network are presented 
in Section IV, followed by conclusions in Section V. 

II. CENTRALIZED ROBUST SCHEDULING FRAMEWORK 

A. System Modeling 
Distribution systems are undergoing a dramatic modification 

as a result of privatization and restructuring in power systems. 
In this regard, future distribution systems would be structured 
as multi-agent systems, in which each agent is independently 
operated and controlled. Figure 1 represents the model of a 
distribution system with a multi-agent structure considered in 
the proposed scheme for energy management in this paper. 

 
Fig. 1. The model of a distribution system with multi-agent structure. 

Traditionally, operational scheduling of local resources in 
distribution systems is conducted in a central manner where a 
central coordinator is responsible for collecting and analyzing 
operational information of all system agents. In this section, 
robust optimization technique is taken into account to address 
the uncertainty associated with local resources while 
operational management of the distribution system is conducted 
in a central manner. 

B. Deterministic Operational Scheduling of Distribution 
Systems 

It is considered that the modeled distribution grid consists of 
a set of nodes given by 0 : {0,..., }N N =  and a set of lines 
shown by L . Node 0 represents the common coupling point 
between the transmission and distribution system, while the 
remaining nodes represent independent agents of the system. In 
the presented radial distribution system, each node 

0 \ {0}N Ni  =  connects to a unique ancestor node shown by 
Ai and a set of child nodes, represented by Ci. In this regard, line 
i represents the line between nodes Ai and i [26]. Moreover, 
reactance and resistance associated with line i are respectively 
denoted by xi and ri. Without loss of generality, it is considered 
that each node has a conventional distributed generation (DG) 
unit, photovoltaic (PV) unit, battery energy storage (BES) unit, 
and load demand indexed by set Ni  . Finally, the optimal 
operational scheduling model for the multi-agent distribution 
system over the operational horizon T is presented as follows: 

0

,min
N

i t
t T i

OF
 
   (1a) 

s.t.  

, ,

,

,

if 0,
if

.
0,

trans
i t t t

i i tt i t

O PF i t T
OF t

LM P
C i TGC D

= 

 




=

 = +
 (1b) 

2
, , , , ,N

i t i i t i i t i tGC a Pg b Pg c i t T= + +     (1c) 

( )2

, , ,. ,Sch Ex N
i t i i t i tDC Pd Pd i t T= −    (1d) 

( ), , , ,Sch Ex Ex N
i t i t i t iPd Pd Pd AD i t T−     (1e) 

, ,
Sch Ex N
i t i t

t T t T
Pd Pd i

 

=    (1f) 

, , , ,Sch Sch N
i t i t i tQd Pd i t T=     (1g) 
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Feeder 
Agenti AgentAi AgentCi 



 4 

( ), , 1 , , ,Ch DCh Ni
i t i t i t i t

i

effSoC SoC Pb Pb i t T
Eb−= + −    (1h) 

, , , , , , ,Sch DCh Ch N
i t i t i t i t i t i tp Pg Ps Pd Pb Pb i t T= + − + −     (1i) 

, , , ,NSch
i t i t i t i t Tq Qg Qd   = −  (1j) 

, 0,trans
i t tp P i t T= =   (1k) 

( ) ( )2 2
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i

L
A t i t i i t i i t i t i i Ti tv v rPF x QF l r x = + + + +  (1l) 
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i

j t j t j i t i t
j

N

C

i t TPF l r p PF


− =+   (1m) 
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i
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j

N

C

i t TQF l x q QF


−  =+   (1n) 
2 2
, , , , ,i t i t i t t

N
i i t TPF QF v l +     (1o) 

, ,NMin Max
i i t i i t Tv v v      (1p) 

, ,0 NMax
i t i i t TPg Pg      (1q) 

, ,
, ,NG Min G G Max

i i t i i t TQ Q Q      (1r) 

, ,NMin Max
i i t i i t TSoC SoC SoC      (1s) 

,
, ,0 NCh Ch Max

i t i i t TPb Pb      (1t) 
,

, ,0 NDCh DCh Max
i t i i t TPb Pb      (1u) 

where the objective function (1a) aims to minimize the 
operational cost of the multi-agent distribution system over the 
scheduling horizon T. In this regard, the active power exchange 
between distribution and transmission level is denoted by 

trans
tP ; whereas the cost associated with this exchange is 

represented by LMPt. Moreover, the operational cost of each 
agent i is modeled considering the generation cost of 
conventional DG units represented by GCi,t, and discomfort 
cost of flexible loads represented by DCi,t. Equation (1c) models 
the generation cost of the conventional DG unit, where Pgi,t and 
Qgi,t represent the active and reactive power generation of the 
conventional DG unit in node i. Equation (1d) formulates the 
discomfort cost of each agent i, which is associated with the 
deviation of the scheduled demand ,

Sch
i tPd  from the expected 

value ,
Ex
i tPd , and a unit discomfort cost i . In (1e), the demand 

deviation of flexible load is limited to an allowable deviation 
(ADi) limit. Constraint (1f) forces that the sum of scheduled 
demand and expected demand are equal, ensuring that the 
primary energy consumption of each agent over the operational 
horizon is supplied. In (1g), it is considered that the reactive 
demand ,

Sch
i tQd is proportional to scheduled active demand 

based on an input parameter ,i t  for each agent i. The 
operational model of BES unit is presented in (1h), where state 
of charge (SoC), energy capacity, charging rate, discharging 
rate, and efficiency are denoted by 

, , ,, , , ,Ch DCh
i t i i t i t iSoC Eb Pb Pb eff , respectively. Also, the power 

production of PV units is presented by Psi,t. Furthermore, PFi, 
QFi, and li represent active power flow, reactive power flow, 
and squared current magnitude of line i, while vi, pi, and qi are 
used to show the squared voltage magnitude, active power 
injection, and reactive power injection of node i, respectively. 
The nodal active and reactive power balance are enforced in 
(1i)-(1j), while operational constraints of SOCP-relaxed 

DistFlow model [26] are formulated in (1l)-(1o). Equation (1k) 
shows that active power injection of node 0 is equal to power 
exchange from the transmission network. Finally, constraints 
(1p)-(1u) enforce lower and upper bounds on voltage 
magnitude of nodes, active/reactive power generation of 
conventional DG units, and SoC, charging/discharging rate of 
BES units, respectively.   

C. Uncertainty Modeling 
In this paper, the uncertainty associated with load demands 

and power production of PV units are taken into consideration. 
In this regard, the expected load demands and power production 
of  PV units could be modeled as follows:  

, , , , , ,, NEx Ex Ex Ex Ex
i t i t i t i t i t i t TPd Pd Pd Pd Pd     −  +    (2a) 

, , , , , ,, NEx Ex Ex Ex Ex
i t i t i t i t i t i t TPs Ps Ps Ps Ps     −  +    (2b) 

where ,
Ex
i tPd  is the forecasted value of load demand ,

Ex
i tPd , and 

,
Ex
i tPd  shows its maximum forecast error. Similarly, ,

Ex
i tPs  

represent the forecasted value of PV power production ,
Ex
i tPs , 

and ,
Ex
i tPs  shows its maximum forecast error. 

In this respect, robust optimization technique is taken into 
consideration to address the worst-case realization of 
uncertainty with the operation of each agent in the developed 
energy management of the system.     

D. Robust Operational Scheduling of Distribution Systems 
 The robust operational scheduling of the multi-agent system 

with the aim of minimizing the total cost is formulated as 
follows: 

,max min
N

i t
t T

xy
i

OF
 

  (3a) 

s.t.  

, , ,, , , ,d d
i t i

Ex Ex Ex Ex N
i t i t i t i ttPd Pd Pd Pd i t T + −= +  −     (3b) 

, , ,, , , ,s s
i t i

Ex Ex Ex Ex N
i t i t i t i ttPs Ps Ps Ps i t T + −= +  −     (3c) 

, , , ,0 , , , 1 ,d d s s N
i t i t i t i t i t T   − + − +      (3d) 

( ), ,
d d D N
i t i t i

t T
i − +



+     (3e) 

( ), ,
s s S N
i t i t i

t T
i − +



+     (3f) 

and (1b)-(1u).  
where y  represents the uncertain variables (i.e., , ,,Ex Ex

i t i tPd Ps ) 
and x represents the decision variables in (1). Moreover, 

, , , ,, , ,d d s s
i t i t i t i t   + − + −  are auxiliary variables taken into account to 

model the forecast error of expected values. The objective 
function (3a) minimizes the operational cost of agents over their 
respective worst-case scenarios. In addition, it is improbable 
that expected values by each agent over all time periods in the 
scheduling horizon dramatically deviate from their forecasted 
value. In this regard, robustness budgets for demands and PV 
units (i.e., Γ , ΓD S

i i ) are utilized to control the trade-off between 
robustness and optimality of the solution by enforcing 
limitation over demand deviation and PV production of each 
agent during the scheduling horizon. It is noteworthy that the 
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robustness budget would be set based upon each agent’s 
perspective regarding its associated risk. In other words, a risk 
-seeker agent selects a higher value for the robustness budget 
while a risk-averse agent considers lower values for the 
designated budget of uncertainty. In this context, the minimum 
and maximum values of robustness budget are correspondingly 
equal to zero and the total number of uncertain parameters. 

III. DISTRIBUTED ROBUST SCHEDULING FRAMEWORK 
The proposed operational management model could be 

implemented on a distribution system using a central 
coordinator that collects and analyzes information of all entities 
in a centralized fashion. However, this approach requires 
transmission of the detailed operational characteristics of local 
resources to the central operator, which could cause privacy and 
cyber-security concerns. As a result, ADMM approach [27] is 
employed to distributedly conduct the robust scheduling model 
in a multi-agent distribution system.  

A. ADMM Approach 
Consider a convex optimization problem as follows:  

,
min ( ) ( )

x zx K z K
f x g z

 
+  

  s.t.  Ax Bz c+ = . 
(4) 

The augmented Lagrangian model of the convex 
optimization problem is derived using a Lagrangian multiplier 
  and a positive constant  as follows: 

( , , ) : ( ) ( ) ( )TL x z f x g z Ax Bz c  = + + + −  
2

22
Ax Bz c

+ + − . (5) 

In order to apply the ADMM model, a three-step procedure 
could be defined in which the variables would be iteratively 
updated as below: 

1 arg min ( , , )
x

k k k

x K
x L x z +


=  (6a) 

1 arg min ( , , )
z

k k k

z K
z L x z +


=  (6b) 

1 1 1( )k k k kAx Bz c  + + += + + −  (6c) 
where (6a)-(6c) are respectively considered as x-update, z-
update, and dual-update. In this context, x and z could be 
regarded as local and global variables, respectively. Finally, the 
following criteria are defined in order to ensure convergence of 
the approach.  

:kr Ax Bz c= + −  (7a) 
1: ( )k T k ks A B z z −= −  (7b) 

where rk represents primal residual, and sk shows dual residual 
of the ADMM model. 

B. ADMM-Based Robust Scheduling Model  
The power flow modeling equations in the distribution grid, 

(1l)-(1o), couple variables associated with operational state of 
adjacent neighbors; which hinders the robust scheduling model 
(3) to be conducted in a distributed manner. Consequently, in 
order to decompose the optimization problem, agents need to 
consider copies of coupling variables in order to modify (3) into 
an ADMM model. Therefore, each agent runs a sub-problem 
considering its local variables and global variables that stand as 
adjacent agents’ variables. Furthermore, global variables could 

be taken into account to ensure the consensus of sub-problems 
conducted by adjacent agents. Finally, ADMM model could be 
deployed by deriving Augmented Lagrangian model and 
decomposing it into x-update and z-update steps to be solved 
by each agent. In this context, : [ , , , ]i i i i ix v l PF QF= are local 
variables of node i, , , , ,: [ , , ]j i j i j i j ix l PF QF=  denote the duplicated 
local variables of child nodes, ,iA iv shows the copy of the 

ancestor’s voltage magnitude, and [ , , , ]z z z z
i i i i iz v l PF QF=

represent the global variables considered by agent i. In this 
regard, coupling constraints associated with ADMM model 
could be defined as shown in (8). Moreover, the Lagrangian 
multipliers associated with coupling constraints (8) are listed in 
Table I.  

, , , , , , , ,, , , Nz z z z
i t i t i t i t i t i t i t i t iv v l l PF PF QF QF  = = = =  (8a) 
, , , , , , , , , ,, , N

n
z z z

j i t j t j i t j t j i t j t i j Cl l PF PF QF QF   = = =  (8b) 

, , ,i i

Nz
A i t A t iv v  =  (8c) 

Table II Lagrangian Multipliers 
1
, :i t  , ,

z
i t i tv v=   

2
, :i t  , ,

z
i t i tl l=  

3
, :i t  , ,

z
i t i tPF PF=   

4
, :i t  , ,

z
i t i tQF QF=  

1
, :j t  , , ,

z
j i t j tl l=   

2
, :j t  , , ,

z
j i t j tPF PF=  

3
, :j t  , , ,

z
j i t j tQF QF=   , :i t  , , ,i i

z
A i t A tv v=  

 
1) x-update 

The x-update optimization in the ADMM procedure could be 
formulated as in (9). It is noteworthy that the generation cost of 
conventional DG units and the discomfort cost of flexible 
demands are linearized utilizing piece-wise linear functions.  

( )

( ) ( )
0

, ,

, , , ,

,

, ,

,

222

2 2

,

, , , , , , , 2

max min

 

)
2

(

 

i i

i

i

i

N

T
i t i txy t T

T z
j j i t i A i t A t

j C

i t i t j i t j t A i

i t i t
i

j t

i t A t
j C

z

x

x v v

x z x z

OF z

z

v v



 









+ +

 
+ − + − + −  

 

+ −

− −









 
(9a) 

s.t.   
0

, ,

, ,

, ,0
. if 0, :

if , :
i t

i

trans
i t t

t

t

i t i t i t

OF i t T f
OF C i t T f

LMP P
GC D

 =
 = +

= 
 

 (9b) 

, , , , , ,, :
G
i

g g N
i t i t sg i t sg i t

sg

GC p i t T 


=    (9c) 

, , , ,, :
G
i

g N
i t i t sg i t

sg

Pg p i t T 


=    (9d) 

, , , , , , , , , ,, :
D D
i i

d d d d N
i t i t sd i t sd i t sd i t sd i t

sd sd

DC p p i t T  + + − −

 

= +      (9e) 

, , , , , , ,, :
D D
i i

Sch Ex d d N
i t i t i t sd i t sd i t

sd sd

Pd Pd p p i t T + −

 

− = −      (9f) 

, , , , :
D D
i i

i
d d N
i t sd i t sd

t T t Tsd sd

p p i + −

  

=      (9g) 

, , , ,, :Sch Sch N
i t i t i t i tQd Pd i t T =     (9h) 

( ), , 1 , , ,, :Ch DCh N Bi
i t i t i t i t i t

i

SoC SoC Pb Pb i t T
Eb
eff

−= + −     (9i) 
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, , , , , ,

,, :

Sch DCh Ch N
i t i t i t i t i t i t

i t

p Pg Ps Pd Pb Pb i

t T 

= + − + − 


 (9j) 

, ,0, :trans
i t t i tp P i t T = =   (9k) 

, , , ,, :Sch N
i t i t i t i tq Qg Qd i t T = −     (9l) 

( ) ( )2 2
, , , , ,

,

,

, :

2
i

N

i t

A i t i t i i t i i t i t i i i

t T

v v r PF x QF l r x

O

 



= + + + +
 (9m) 

( ), , , , , , ,:,
i

j i t j i t j i t i t i t
j

N

C

miPF l r p PF t T


+ − =  (9n) 

( ), , , , , , ,:,
i

j i t j i t j i t i t i t
j

N

C

niQF l x q QF t T


+ − =  (9o) 
,

, , , , ,, ,0 :N G
i

g g Max g
i t sg i sg i t sgi t T sgp p        (9p) 

, ,
, , ,, : 0 ,NG Min G G Max G G

i i t i i t i ti t TQ Q Q  − +      (9q) 

, , , ,

,
, , , , , , ,0 ,

: 0 ,

N D
i

d d
i t sd i t sd

d d d Max
i t sd i t sd i sd i t T sdp p p

 − +

− +      


 (9r) 

,
,

, , : 00 N Ch
i t

Ch Ch Max
i t i i t TPb Pb  +      (9s) 

,
,

, ,0 : 0N DCh
i t

DCh DCh Max
i t i i t TPb Pb  +      (9t) 

, ,, , : 0 ,N B B
i t i t

Min Max
i i t i i t TSoC SoC SoC  − +      (9u) 

and (3b)-(3f).  
The objective function (9a) aims to minimize the operational 

cost of each agent over the worst-case scenario, while reducing 
the gap associated with global and local variables as a 
consensus measure. Equation (9c) represents the total 
generation cost of the DG unit, where , ,

g
i t sg and , ,

g
i t sgp  

respectively present the cost and active power generation in 
each segment G

isg . Furthermore, , ,
d
i t sdp + and , ,

d
i t sdp − show the 

positive and negative deviation of load demand in each segment 
D
isd . Moreover, 0

, , , , , , , , , , ,{ , , , , , , , , , ,i t i t i t i t i t i t i i t i t i t i tf f         

, ,, , , , , , , , , , , , , , , ,, , , , , , , , , , , , }Ch DCh
i t i t

g G G d d B B B
i t i t i t i t sg i t sg i t sg i t sd i t sd i t i t i tO m n          + +− + − + − +  

are the Lagrangian multipliers associated with (9b)-(9u).  
The developed max-min optimization model (9) could be 

reformulated into a single optimization utilizing duality theory. 
In this regard, the inner minimization problem of (9) has the 
following form: 

1min
2

T T

x
x Cx p x+  

s.t ;Ax b   
0x    

(10) 

where   is the Lagrangian multiplier and C is a positive 
semidefinite matrix based on its diagonal form with positive 
elements. It is noteworthy that the positive semi-definiteness 
feature of the C matrix assures that (10) is convex; therefore, 
it’s respective dual model would converge to a global optimum 
[28]. In this respect, the dual model could be formulated as 
follows: 

1max
2

T Tu Cu b


− +  

s.t ;TA Cu p x −   
0   

(11) 

In this regard, the max-min optimization model (9) could be 
recast into a max optimization model as presented in (12).  

( )
, , , , , , ,

, , ,
, , , , , , , , , ,

2 2

, , ,

,

, ,

2

,

,max (
2 i t j i t

G

A i ti

D
i

i

i

Ex
i t i t

d Max d d g Max G Min G
i t sd i t sd i t sd i sg i t sg i i t

sd sg

G Max G Ch Ma

C

x Ch a

Ex
x x v

i

i t i t
t

DCh M x Ch
i i t i t i i t

j

Ps

p p Q

Q Pb Pb S

u u u Pd 

   



 

 

− + −

 

+ +



−

 
− + + −  −

− + − +

− − −


 

+



 



,

, )

Min B
i i t

Max B
i i t

oC

SoC





−

+−

 (12a) 

s.t.   
0
,

,

0,

0,

1 if 0, :
1 if 0, :

i t

i t

i t

i t

f i t T OF

f i t T OF
=



 = 

  





 (12b) 

, , ,0 , :N
i t i t i tf i t T GC− −     (12b) 

, , ,0 , :N
i t i t i ti t T Pg +     (12c) 

,
, , , , , , , ,

, ,

0 ,

, :

g g Max g N
i t i t sg i t i t sg i t sg

G g
i i t sg

p i t T

sg p

   − + −   


 (12d) 

, , , ,0 , :N
i t i t i t i ti t T Qg  − ++ −     (12e) 

, , ,0 , :N
i t i t i tf i t T DC− −     (12f) 

, , , , ,0 , :N Sch
i t i t i t i t i ti t T Pd   − − −     (12g) 

, , , , , ,0 , , :d d N D d
i t i i t i t i t i i t sdi t T sd p    + + ++ − +      (12h) 

, , , , , ,0 , , :d d N D d
i t i i t i t i t i i t sdi t T sd p    − − −− − − +      (12i) 

, ,, 0 0, : Sch
ti t i t ii t T Qd − =   (12j) 

0
0, 0, :0 trans

tt t i t tLM if TP P = =− =   (12k) 
, , 0, ,,0 : ti t i t i t

N
im i t T p  = − − =   (12l) 

, ,, ,0 :N
i t ii t tn i t T q − =    (12m) 

, , 1 , , ,0 , :B B B B N
i t i t i t i t i ti t T SoC   − +

+− + + −     (12n) 

, , , ,0 , :B Ch N Chi
i t i t i t i t

i

eff i t T Pb
Eb

   +− −     (12o) 

, , , ,0 , :B DCh N DChi
i t i t i t i t

i

eff i t T Pb
Eb

   +− + −     (12p) 

,

1
, , , ,, :

i t

Nz
i t v i t i t i ti t TO u v v     −  −   (12q) 

( ) ,

2 2 2
, , , ,, :

i t

Nz
i i i t l i t i t i ti t Tr x O u l l    + −  −  (12r) 

,

3
, , , , ,,2 :N

i t

z
i i t i t PF i t i t i ti t TrO m u PF PF     + −  −  (12s) 

,

4
, , , , ,,2 :N

i t

z
i i t i t QF i t i t i ti t Tx O n u QF QF     + −  −  (12t) 

,, , , , ,, :
A t i ii

Nz
i t v i t A t A i ti t TO u v v     − −  −  (12u) 

, ,

1
, , , , , ,, , :

i i t

N
i

z
i i t i i t l i t j t j i ti j C t Trm x n u l l      − − −  −  (12v) 

, , , ,
2
, , , , :N

ii i t j i t
z

i PF i t j t i j C t T PFm u PF      − − = −  (12w) 

, , , ,
3
, , , , :N

ii i t j i t
z

i QF i t j t i j C t T QFn u QF      − − = −  (12x) 
and (3b)-(3f).  

Where the primary variables associated with each constraint 
are represented in the developed dual formulation (12). The 
optimization model (12) is a non-linear problem regarding the 
product of , ,.Ex

i t i tPd   and , ,.Ex
i t i tPs   in (12a). However, the 

solution of the robust optimization model would be located in 
extreme points of the uncertainty set; therefore, new binary 
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variables, i.e. , , , ,, , ,d d s s
i t i t i t i tI I II+ − + − , as shown in (13) are defined 

to explore the optimal solution on the vertices of the uncertainty 
set [15].  

, , , , ,, ,Nd d
i t i

Ex Ex Ex E
t

x
i t i t i t i t i t TP Id Pd Pd I Pd+ −   = +  −   (13a) 

, , , , ,, ,Ns s
i t i

Ex Ex Ex E
t

x
i t i t i t i t i t TP Is Ps Ps I Ps+ −   = +  −   (13b) 

 , , , ,,, , 0,1 ,d d s s N
i t i t i t i tI TI I tI i+ − + −     (13c) 

, ,  Γd d
i t i t

N

t

D
iI I i+ −+     (13d) 

, ,  Γs s
i t i t

N

t

S
iI I i+ −+     (13e) 

In this regard, the nonlinear terms in (12a) could be 
reformulated as (14) considering (13a). 

, , , , , ,, , ,. .( ) ,Ex Ex Ex d d N
i t i t i t i t i t i t i t i ti tPd Pd Pd I I i t T   + −= +  −    (14a) 

, , , , , ,, , ,. .( ) ,Ex Ex Ex s s N
i t i t i t i t i t i t i t i ti tPs Ps Ps I I i t T   + −= +  −    (14b) 

The nonlinear terms , , , , , , , ,, , ,d d s s
i t i t i t i t i t i t i t i tI I I I   + − + −  in (14) 

originated from the product of continuous and binary variables, 
which cause the overall problem to be nonlinear. In this respect, 
big-M method is deployed to recast these nonlinear terms into 
linear terms as follows: 

, , , , , , ,. . .( )Ex Ex Ex
i t i t i t i t i t i t i tPd Pd Pd   + −= +  −  (15a) 

, , , , , , ,. . .( )Ex Ex Ex
i t i t i t i t i t i t i tPs Ps Ps   + −= +  −  (15b) 

where , , , ,, , ,i t i t i t i t   + − + −  are: 

, , ,MI. MI.d d
i t i t i tI I+ + +−    (16a) 

, , ,MI. MI.d d
i t i t i tI I− − −−    (16b) 
, , ,MI. MI.s s

i t i t i tI I+ + +−    (16c) 
, , ,MI. MI.s s

i t i t i tI I− − −−    (16d) 

, , , , ,MI.(1 ) MI.(1 )d d
i t i t i t i t i tI I  + + +− −   + −  (16e) 
, , , , ,MI.(1 ) MI.(1 )d d

i t i t i t i t i tI I  − − −− −   + −  (16f) 
, , , , ,MI.(1 ) MI.(1 )s s

i t i t i t i t i tI I  + + +− −   + −  (16g) 
, , , , ,MI.(1 ) MI.(1 )s s

i t i t i t i t i tI I  − − −− −   + −  (16h) 
It is noteworthy that the MI value in the big-M method should 

be selected larger than , ,,i t i t  . In this regard, merging (15) 
and (16) with (12) results the complete x-update optimization 
model which would be conducted by each agent in the ADMM 
procedure.  
2) z-update 

The formulation of z-update optimization that is run by each 
agent in the ADMM procedure could be modeled as below:  

2

2 2,

2

2,
2

min   

  
2

i
i

i

i

T
i
T

i i j iz
j C

i i ii A i j i
j

z
i

z

C

z z v

x z x z v v

  







− − −

 
+ − + − + −  

 




 (17a) 

s.t.   
2 2

, , , ,( ) ( ) ,z z Nz
i t i i t i t
z

tPF QF v l i t T+      (17b) 

, ,Nz
i i t i i t Tv v v      (17c) 

The objective function (17a) strives to determine global 
variables taking into account the results of x-update 
optimization and the inequality power flow constraints of the 
distribution grid (17b)-(17c). Note that the z-update 
optimization has a max-min form similar to x-update 
optimization; however, the z-update optimization model is 
independent of the uncertain variable of the robust scheduling 
model, i.e., ,

e
i tp . In this regard, the max-min optimization model 

is recast into a single min optimization model (17). In other 
words, the proposed distributed energy management 
framework and the corresponding formulation have facilitated 
the integration of robust optimization concept into the ADMM 
algorithm in order to enable distributed energy management of 
a multi-agent distribution system considering uncertainty 
associated with its respective agents.  It is noteworthy that the 
proposed framework copes with the independent operation of 
agents and so addresses the privacy concerns in distribution 
systems with multi-agent structures. 

The communication requirements of the ADMM procedure 
are depicted in Fig. 2. In this regard, prior to conducting x-
update optimization of node i, i

z
Av and i are taken from the 

ancestor node, whereas zj and μj are taken from child nodes. 
Moreover, prior to the z-update optimization, . ii Ax and i  are 
collected from the ancestor node, while ,i jv and j  are taken 
from child nodes.  

 
Fig. 2 Communication requirements of the ADMM procedure. 

IV. NUMERICAL RESULTS 
In this section, the proposed ADMM-based robust day-ahead 

scheduling scheme is implemented on the modified IEEE 37-
bus distribution system [29] in order to analyze the 
effectiveness of the framework on the distributed management 
of multi-agent systems. The topology of the 37-bus distribution 
system is shown in Fig. 3, in which each node of the system is 
considered to be an independent agent. The operational data of 
the load profile, LMP, conventional DG units, the discomfort 
cost, PV units, and BES units are adopted from [3], [30]-[31] 
and presented in [32]. Figure 4 depicts the price of purchased 
power from the transmission network, i.e. LMP, and the per unit 
load profile associated with a workday in the winter utilized in 
the simulation process. The operational horizon T is assumed to 
be 24 hours with 1-hour time slots. It is considered that load 
demands are allowed to deviate up to 20% from their expected 
value, i.e., ADi=20%. This would improve the flexibility of each 
agent in order to minimize its respective operational cost. 
Additionally, the robustness budget 6D S

i i =  =  as well as the 
maximum forecast error , 10%Ex

i tPd =  and , 20%Ex
i tPs =  are 

considered as base values. Finally, a sensitivity analysis is taken 

AgentAi 

Agenti 

Agentj1 Agentj2 

x-update 
z-update 𝑣𝐴𝑖𝑧 ,  𝛾𝑖 𝑥𝑖,𝐴𝑖 ,  𝜇𝑖 

𝑧𝑗1,  𝜇𝑗1 𝑣𝑖,𝑗2,  𝛾𝑗2 
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into account to investigate the effects of values of robustness 
budget, maximum allowed deviation, and maximum forecast 
error on the operational scheduling of the multi-agent system.   

 
Fig. 3.  The modified IEEE 37-bus distribution network. 

 
Fig. 4 Load profile and locational marginal price. 

As mentioned, each node of the system is considered as an 
independent agent that participates in the proposed distributed 
robust scheme to schedule its local resources while 
communicating non-critical information with its neighbors in 
order to reach a consensus. As a result, power injection of 
nodes, i.e. ,i tp , and the power purchased from transmission 
level, i.e. trans

tP , are iteratively determined taking into account 
the worst-case realization of uncertain parameters. In this 
regard, the amount of power injection of node 32 per iteration 
at 10:00 and 20:00 is presented in Fig 5. The acquired results 
indicate that implementing the proposed approach enables the 
agents to determine their optimal robust scheduling in an 
iterative manner without a central coordinator. Moreover, Fig. 
6 shows the power purchased from transmission network per 
iteration at 10:00, 18:00, and 20:00. The primal and dual 
residuals per iteration, i.e. rk and sk, are depicted in Fig. 7. The 
obtained results show that the power purchased from 
transmission system converges to its optimum value and the 
residuals reach insignificant values as the framework proceeds; 
which demonstrates a strong performance of the proposed 
ADMM-based scheme.  

 
Fig. 5 Amount of power exchange of node 32 per iteration at 10:00 and 20:00. 

 
Fig. 6 Power purchased from transmission system per iteration at 20:00. 

 
Fig. 7 Primal and dual residual of the ADMM process at 10:00, 20:00, and 

22:00. 

Figure 8 presents the operational scheduling of agent 32 over 
the time horizon. In this respect, the expected amount of 
demand ( ,

Ex
i tPd ), robust expectation of demand ( ,

Ex
i tPd ), 

scheduled demand ( ,
Sch
i tPd ), the expected power production by 

PV units ( ,
Ex
i tPs ) and robust expectation of PV production ( ,

Ex
i tPs

), as well as the energy stored by BES unit are shown in Fig. 8. 
Note that the difference between ,

Sch
i tPd  and ,

Ex
i tPd  is based on 

the agent’s flexibility which would finally minimize its 
respective cost. The robustness budget 32 326, 4D S

i i =  = , 
maximum forecast error 32, 32,10%, 20%Ex Ex

i t i tPd Ps =  = , and 
maximum allowed deviation ADi32=20% are considered by 
agent 32 to determine its scheduling. As can be traced in this 
figure, the worst-case realization for demand is determined in 
time slots 8:00, 12:00 and 17:00-20:00; when the amount of 
load demand as well as the price of purchasing power from the 
transmission system, i.e. LMP, reach their respective maximum 
values. The scheduled demand by the agent is shifted from time 
periods with high LMP values to periods with lower LMP 
values in order to minimize the total operational cost of the 
agent. Furthermore, the worst-case scenario for PV power 
production is determined in time slots 11:00-14:00; when the 
amount of expected amount of PV production and LMP value 
are relatively higher. In addition, the scheduling results for 
agent 9 is represented in Fig. 9. It is noteworthy that each agent 
independently adjusts the robustness of its scheduling by 
selecting the robustness budget and the forecast error interval. 
In this respect, agent 9 is considered to be more conservative 
than agent 32 with robustness budget 9 8D

i = , maximum 
forecast error 9, 15%Ex

i tPd = , and maximum allowed deviation 
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ADi9=15%. It could be seen that the worst-case realization for 
load demand occurs in time slots 7:00-9:00 and 17:00-21:00. 
Moreover, the DG unit of node 9 is not committed during 
0:00—5:00 due to low LMP values, and reaches its maximum 
generation during 7:00-12:00 and 17:00-21:00 due to high LMP 
values.  

 
Fig. 8 Power scheduling of node 32 over time horizon. 

 
Fig. 9 Power scheduling of node 9 over time horizon. 

To investigate the effects of the robustness budget, maximum 
allowable deviation of power injections, and conceived forecast 
errors on the operational costs of the system, sensitivity analysis 
is conducted as shown in Figs. 10-13. Note that in the case 
studies stated as “without framework”, the agents’ flexibility is 
not taken into account in the optimization of the multi-agent 
system.  In this regard, Fig. 10 presents the total operational cost 
of the system in case of increasing the robustness budget from 
0 to 12. The results show that implementing the proposed 
framework would decrease the operational cost of the multi-
agent system. Moreover, the results presented in Fig. 11 
indicate the decrease in the total operational cost of the system 
by increasing the maximum allowed deviation from 0% to 30%. 
In addition, the increase of the total operational cost associated 
with the distribution system by increasing the forecast error 
from 0% to 30% could be traced in Fig. 12. Regarding Fig. 11, 
employing the proposed framework would result in decreasing 
the total operational cost of the system in the studied forecast 
errors. It is noteworthy that while the increase in maximum 
allowed deviation approximately decreases the operational cost 
of the system by 5.5%; the increase in forecast error increases 
the total operational cost by 15.4%. Finally, the effect of 

scheduling parameters in operational cost of the system is 
summarized in Fig. 13.   

 
Fig. 10  Total operational cost of the distribution system considering different 

robustness budgets. 

 
Fig. 11 Total operational cost of the distribution system considering different 

amounts of allowed load deviation. 

 
Fig. 12 Total operational cost of the distribution system considering different 

forecast errors. 

 
Fig. 13 The sensitivity analysis for total operational cost of the distribution 

system considering different scheduling parameters. 
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V. CONCLUSION 
This paper provides an efficient distributed robust energy 

management framework for distribution systems with multi-
agent structures. The proposed scheme relies on ADMM 
approach to coordinate the operational scheduling of 
independent agents in a distributed manner, while considering 
operational constraints associated with distribution networks. 
In this regard, the communication of each agent is limited to 
non-critical information with its adjacent neighbors to address 
the privacy and cyber-security concerns in a multi-agent 
system. Moreover, integrating the robust optimization concept 
in the ADMM algorithm enables the agents to conduct their 
operational scheduling considering the worst-case realization of 
uncertain parameters. In this context, a robustness budget 
parameter is employed to model the robustness level in 
operational scheduling of the agents. The developed framework 
is implemented on the modified IEEE 37-bus network to 
investigate the effectiveness of the scheme in distributed robust 
operational scheduling of multi-agent distribution systems. In 
addition, sensitivity analysis is taken into consideration to 
analyze the effects of input parameters on the operational 
scheduling of the system.     
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