
Developing a Drama Management Architecture
for Interactive Fiction Games

Santiago Ontañón, Abhishek Jain, Manish Mehta, and Ashwin Ram

Cognitive Computing Lab (CCL)
College of Computing, Georgia Institute of Technology

Atlanta, GA 30332/0280
{santi ,abhishek, mehtama1, ashwin}@cc.gatech.edu

Abstract. A growing research community is working towards employ-
ing drama management components in interactive story-based games.
These components gently guide the story towards a narrative arc that
improves the player’s experience. In this paper we present our Drama
Management architecture for real-time interactive story games that has
been connected to a real graphical interactive story based on the An-
chorhead game. We also report on the natural language understanding
system that has been incorporated in the system and report on a user
study with an implementation of our DM architecture.

1 Introduction

There has been a growing interest in creating story-based interactive fiction
games where the player is considered an active participant in the ongoing nar-
ratives. The component in charge of guiding the complete dramatic experience
is called Drama Manager (DM) [2] or Director [4]. The DM employs a set of ac-
tions provided at appropriate points in the ongoing game whereby the player is
guided towards certain aspects of the story. Previous approaches to drama man-
agement have either not been connected to a concrete world [11] or have been
evaluated without using real human players interacting with a real game [7].
In our previous work [9] we evaluated search based DM techniques in a simple
implementation of the game Anchorhead [3]. Anchorhead, created by Michael
S. Gentry, is a game with a complicated story and several subplots, making it
amenable for drama management studies.

Previously, we have shown that player modeling is a key component for the
success of drama management based approaches [8] and DM should take into
account player’s previous gaming experience and player experience with the cur-
rent game in its use of strategies. We have also reported [9] that the player model
should not only be built using the feedback on interestingness of intermediate
game events but also on the player feedback on various strategies used by DM
that were visible to the player during the interaction. In this paper we will focus
on three main goals. First, we tackle the problem of using search-based DM tech-
niques in real-time games. The vast majority of commercial interactive stories

In 1st Joint International Conference on Interactive Digital Storytelling, Erfurt, Germany



2

Fig. 1. A screenshot of our graphical implementation of Anchorhead.

are real-time, so it is very important to take this issue into account. Second,
most search-based DM techniques assume a limited set of actions the player can
execute (in order to cut down the size of the search space that the DM has to
explore), in this paper we will explore how to apply DM techniques to a game
where the number of actions the player can execute is increased as a natural
language interface (in our game) creates a more open ended input action space.
Finally, we report a user study with an implementation of our DM architecture
and an initial analysis of the study. This report is useful in two ways: a) it sup-
ports that our DM architecture is effective in real-time games, with open ended
user actions, and b) provides guide for future development of our research.

The rest of the paper we will first present a brief introduction to the game
we have used as our testbed, Anchorhead and present our interactive stories
architecture. After that, we introduce our technical approaches to NLU, player
modeling and drama management, followed by the results from the player eval-
uations. Finally, we conclude the paper with some final thoughts and future
directions.

2 Interactive Stories Architecture

Anchorhead is an interactive story game created by Michael S. Gentry [3]. We
have developed a subset of the complete game and it includes a graphical inter-
face for interaction with the player. Graphical as well as text descriptions of the
current scenario are presented to the player, who then enters commands in tex-
tual format, e.g. “enter the mansion” or “take the key”. For this paper we have
focused on a subpart of the story, identified by [7] as interesting for evaluating
drama management approaches. Figure 1 shows a screenshot of our Anchorhead

In 1st Joint International Conference on Interactive Digital Storytelling, Erfurt, Germany



3

NLU

Player
Modeling

Drama
Manager

Player
Trace

Player
ModelDM

actions

Player

Story
state

History

Physical
state

Game State

Player 
Trace

casecase

case case

CBR
System

Player Model
0.9
0.3

0.7

Confidence: 0.6

Player 
Trace

like
dislike

indifferent

Overall Score: 6/10
Confidence: 8/10

pp1
pp2

ppn

pp1
pp2

ppn

Expectimax

Story
Evaluation

General Story Heuristics
and Author-specified Rules

Plan

current state

state state state

state

DM
action

state

DM
action

state

action

state

action

state

action

state

action

Plan

Game and Story State

DM Actions

next DM action

DM
action

DM
action

DM
action

Game
Engine

Graphical
Interface

like
dislike

like

dma1
dma2

dman

0.9
0.3

0.7

dma1
dma2

dman

Player Model
0.9
0.3

0.7
Confidence: 0.6

pp1
pp2

ppn

0.9
0.3

0.7

dma1
dma2

dman

Case
Base

Game
Experience

Player 
Tracecasecase

case case

examine

move

pick up

examine

move

pick up

examine

talk

talk

move

buy

examine

T1T2

T02 T01

Number of moves: 1
Number of examine: 2
Number of pick up: 1
Number of talk: 0
Number of use: 0
Number of buy: 0
Number of give: 0
Unique actions: 4
Duplicated actions: 0
Most duplicated: 1
Time per action: 25s
PP visited: 
• found-silver-locket

Number of moves: 2
Number of examine: 1
Number of pick up: 1
Number of talk: 0
Number of use: 0
Number of buy: 0
Number of give: 0
Unique actions: 4
Duplicated actions: 0
Most duplicated: 1
Time per action: 15s
PP visited: 
• found-silver-locket

Distance = 0.055

Fig. 2. Overview of the main modules and their relations in our interactive story
architecture.

implementation. To evaluate our approach we developed a generic interactive
stories architecture and implemented a graphical version of Anchorhead with it.
Our architecture consists of five modules (shown in Figure 2), namely:

– Graphical Interface (GUI): through which the user interacts with the system,
shows a graphical representation of the game (see Figure 1), and allows the
player to enter commands in English.

– Natural Language Understanding (NLU): parses the English text and gen-
erates a representation that can be understood by the game engine.

– Game Engine (GE): responsible for running the game, maintaining the phys-
ical state, story state and a history of what happened during the game.

– Player Modeling (PMM): develops a player model using case-based reasoning
techniques from the player actions.

– Drama Manager (DMM): takes the player model and the current game state
and generates drama manager actions (DM actions) in order to influence the
course of the game towards more interesting plots for the current player.

All the modules in our architecture are developed independently and are
domain independent. In order to define a game, the author has to specify (using
XML files) the initial state, graphics, the set of plot points and the set of DM
actions available.

A game executes in the following way. When the system is launched, the
player specifies his previous playing experience (in a 5 point scale) and the
number of previous times he has played the game (this is used as part of the
player model). Then the player starts playing the game. Each time the player
enters an action, the current player trace is updated and the player modeling
module updates the player model. The drama manager runs in parallel with
the game and constantly is performing time-bounded searches for appropriate
DM actions to execute. Each time the DM finishes a search, it executes the
resulting DM action, and each time the player performs an action, the DM checks
whether the action invalidates its search process or not, and restarts the process
appropriately. When the game is over, the player is presented with a feedback
form, where he can specify which parts of the game he enjoyed and which parts
he didn’t. The form allows the player to provide feedback for plotpoints as well
as for observable drama manager actions (like hints). The result of the form is
stored in the case base of the player modeling module for future games.

In 1st Joint International Conference on Interactive Digital Storytelling, Erfurt, Germany



4

NLU Submodule Submodule Output

User Input Could you take me to the living room

Semantic Analyzer <action name=go to>
<attribute name=location value=livingroom>
<attribute name=dialogact value=question>

User Input give me the flask please i need it

Semantic Analyzer <action name=give>
<attribute name=topic value=player>
<attribute name=object value=flask>

Table 1. Two Examples of processing inside the NLU.

2.1 Natural Language Understanding

The text typed by the user is sent to the NLU module where it creates a semantic
representation for the input that can be further used by the game engine. The
NLU approach is based on techniques used previously in [5, 6]. The NLU consists
of two main parts: a key phrase spotter and a semantic analyzer. The first stage
of processing inside the NLU involves detecting multi-word expressions from a
stored set of words labeled with semantic and syntactic tags. After detecting
the keyphrases from the user utterance, the processed utterance is sent to the
semantic analyzer for further processing. Here, dates, age, and numerals in the
user utterance are detected while both the syntactic and semantic categories
for single words are retrieved from a lexicon. Relying upon these semantic and
syntactic categories, grammar rules are then applied to the utterance to help
in performing word sense disambiguation and to create a sequence of semantic
and syntactic categories. At the same time, the NLU calculates a representation
of the user utterance in terms of dialog acts. Generic rules are defined inside
the semantic analyzer for detecting dialog acts. These dialog acts provide a
representation of user intent like types of question asked (e.g., asking about a
particular place or a particular reason), opinion statements (like positive, neg-
ative or generic comments), greetings (opening, closing). The final output is a
semantic representation consists of the action that the player wants to conduct
in the game and various properties of the actions encoded as attribute-value
pairs. Attributes of the actions are things like the location at which the action
needs to be conducted, object to which the action should be applied and so on.
Table 1 provides two examples of processing inside the NLU.

2.2 Player Modeling Module

The player modeling module (PMM) maintains a player model for the current
player based on the feedback provided by players at the end of each game. This
feedback contains player opinions on the game, including the parts they enjoyed
and those that were not interesting from their perspective. At the end of each
interaction, the PMM stores this player feedback along with the corresponding
trace of player actions during the game. When a new player interacts with the

In 1st Joint International Conference on Interactive Digital Storytelling, Erfurt, Germany



5

game, the stored feedback of previous players is used to predict which storylines
and game elements would be enjoyable for the new player.

Specifically, before starting the game, the player enters his overall gaming
experience and the number of times he has played the Anchorhead game, and
at the end of each game, the player is presented with a sequence of the plot
points that he visited over the course of the entire game episode. From the
list, the player is asked to select his preference of the plot points based on a
5 point Likert scale: strongly like, like, indifferent, dislike and strongly dislike.
After that, the player is presented with the list of observable DM interventions
(mostly hints) that occurred during the game. The player rates them on a 5
points scale as well. Finally, the player rates the game as a whole.

We use a case-based reasoning (CBR) approach [1] for the PMM module.
Based on the feedback provided by the player, the systems builds a player pref-
erence model that models the stories and DM actions that the player is likely
to enjoy. CBR works by reusing previous experiences (called cases) to solve new
problems. In our CBR approach for player modeling each time a player plays a
game and provides feedback, the trace of the game plus the feedback is stored in
the form of a case. As a particular player is playing the game, his current trace is
compared to the traces in the different cases stored in the case base. The PMM
retrieves the most similar traces and creates a player model by aggregating the
player feedback contained in them. The assumption made here is that the trace
of a player captures its playing patterns, and that players with similar playing
patterns will have similar preferences. Specifically, cases in the PMM consist
of the following elements: a) Player gaming experience, on a 5 point scale; b)
number of times the player had played Anchorhead before; c) the game trace,
consisting of a sequence with single action that the player executed, and each
DM action that the DM executed in the game; and d) all the information pro-
vided by the player in the feedback form: overall experience rating, confidence,
plot-point preference and DM action preference.

The two key processes in the PMM are: a) how to compare the trace of the
current player with the traces stored in the cases in the case base, and b) once
a subset of cases have been identified as relevant, how are they used to generate
a player model. Let us explain those two processes in detail.

Case Retrieval Case retrieval works by computing a distance metric among
the current player and previous players (stored as cases) and selecting a subset
of k cases with the minimum distance. In order to compute such distance metric,
the PMM uses 4 different distance metrics, that are averaged in order to compute
the final distance: a) difference in player gaming experience, b) difference in the
number of times the player has played the game before, c) difference of the player
action traces, and d) difference of the DM action traces.

Each of the distance metrics generates a number between 0 and 1. The metrics
for gaming experience and number of times the player has played the game are
simple, so let us explain how do we compute distances among traces.

In 1st Joint International Conference on Interactive Digital Storytelling, Erfurt, Germany



6

NLU

Player
Modeling

Drama
Manager

Player
Trace

Player
ModelDM

actions

Player

Story
state

History

Physical
state

Game State

Player 
Trace

casecase

case case

CBR
System

Player Model
0.9
0.3

0.7

Confidence: 0.6

Player 
Trace

like
dislike

indifferent

Overall Score: 6/10
Confidence: 8/10

pp1
pp2

ppn

pp1
pp2

ppn

Expectimax

Story
Evaluation

General Story Heuristics
and Author-specified Rules

Plan

current state

state state state

state

DM
action

state

DM
action

state

action

state

action

state

action

state

action

Plan

Game and Story State

DM Actions

next DM action

DM
action

DM
action

DM
action

Game
Engine

Graphical
Interface

like
dislike

like

dma1
dma2

dman

0.9
0.3

0.7

dma1
dma2

dman

Player Model
0.9
0.3

0.7
Confidence: 0.6

pp1
pp2

ppn

0.9
0.3

0.7

dma1
dma2

dman

Case
Base

Game
Experience

Player 
Tracecasecase

case case

examine

move

pick up

examine

move

pick up

examine

talk

talk

move

buy

examine

T1T2

T02 T01

Number of moves: 1
Number of examine: 2
Number of pick up: 1
Number of talk: 0
Number of use: 0
Number of buy: 0
Number of give: 0
Unique actions: 4
Duplicated actions: 0
Most duplicated: 1
Time per action: 25s
PP visited: 
• found-silver-locket

Number of moves: 2
Number of examine: 1
Number of pick up: 1
Number of talk: 0
Number of use: 0
Number of buy: 0
Number of give: 0
Unique actions: 4
Duplicated actions: 0
Most duplicated: 1
Time per action: 15s
PP visited: 
• found-silver-locket

Distance = 0.055

Fig. 3. Computation of player action trace distance.

To compute how different a player action trace is from another we perform
some preprocessing (as shown in Figure 3). Specifically, if we are comparing a
trace T1 with a trace T2, having n1 and n2 actions respectively, we only consider
the first min(n1, n2) actions of each trace. Let’s call these reduced traces T ′

1

and T ′
2. Now, T ′

1 and T ′
2 have the same number of actions and can be properly

compared. The rationale behind this process is that when a player has just
started to play the game and has performed only a few actions, it does not make
sense to compare its trace against the full trace of another player.

From T ′
1 and T ′

2, we compute a set of features consisting on: the number
of different kinds of actions (movement, talking, using, etc.), number of unique
actions, number of duplicated actions, the highest number of times a player
has repeated an action, the average time a player takes to decide an action,
and the difference among the set of plot points explored in T ′

1 and T ′
2. Each of

those features define a number, and to compare two traces we simply compute
a normalized Euclidean distance, which generates a number between 0 and 1.

In order to compare two DM action traces, we perform the same preprocessing
as for player action traces and obtain the reduced DM traces, and define an
analogous set of features.

Player Model Generation The output of the retrieval process is a subset of
k cases (k = 3 in our experiments) relevant to the current player: c1, ..., ck, and
their distances to the current player d1, ..., dk. A player model in our system
consists only of three elements: a) a list of predicted plot point interestingness,
b) a list of predicted DM action interestingness, and c) a confidence value in the
interval [0, 1], corresponding to how sure the PMM is that the current module is
correct. To build such model, the interestingness value for each plot point, and
DM action is computed by aggregating the interestingness values from cases by

In 1st Joint International Conference on Interactive Digital Storytelling, Erfurt, Germany



7

using the similarity metrics to weight the individual interestingness values, i.e.
the interestingness values in case ci have di as their weight. The confidence is
computed in the same way by averaging the confidences in the cases weighting
them by their distances. The output of the PMM is a player model that consists
of the predicted interestingness of each plot point for the current player and also
a confidence on this player model.

2.3 Drama Management Module

Given the player preference model, the current game state, and optionally some
author specified story guidelines, the Drama Management Module (DMM) plans
story arcs that maximize both the player model and the author specified story
guidelines. The DMM module constantly starts searches in parallel with the game
using this information to select, if necessary, a particular action to influence the
story towards the story arc identified by the DMM as the most interesting.
The game author specifies a set of drama manager actions (DM actions). These
actions represent the things that the drama manager can carry out to influence
the game, e.g. “prevent the player from entering the library by locking the door”
or “make the bar keeper start a conversation with the player about the suspicious
person”. The DM actions can be classified in several groups:

– hints: actions that has no direct effect on the game, but hint the player
towards a particular direction.

– causers: forces something to happen in the game instead of waiting for the
player to do it.

– deniers: prevents the player from doing something.
– temporary deniers: only prevent the player from doing something temporally.
– reenablers: reenables a previously denied line of action.

Notice that some of the actions (such as deniers or causers) have to be subtle
so that the player does not feel manipulated.

Each DM action consists of several elements: a name, the type, a set of
preconditions, and a set of effects. The preconditions of a DM action are boolean
expressions that can test whether some plotpoints have already been visited, if
the player is in any particular location, or has a particular object, etc. The
effects that a DM action can have are: causing characters in the game to execute
actions, firing plotpoints, directly modifying the game state, or hinting actions.

An example of DM action in our implementation is “bum hints crypt key is in
basement”, that has as preconditions that the player is in the park, that the

player has bribed the bum and that the player does not have the crypt key. The
effects of the actions is causing a particular character in the game, the bum, to
tell the player that there is a key hidden in the basement. Specifically, this action
is a hint. As the game is going on, the DM will choose to execute this action if it
realizes that by providing the key to the player, it will cause the player to reach
enjoyable plot points.

The algorithm used the the DMM is a variation of the algorithm explained
in [9], based in an expectimax method, but adapted to real-time games in which
the player can type actions through natural language.

In 1st Joint International Conference on Interactive Digital Storytelling, Erfurt, Germany



8

Current
Game State

dma1
dma2

dma3

0.2

0.4

0.3

0.3
0.5

0.2

0.4

0.1
0.3

0.3

Ply1 (exp)

Ply2 (max)

Time 0

Time 10

Time 20

Time 30

0.2

0.3

Time 40
Montecarlo search

Exhaustive search

User model and author 
specified guidelines used to 

compute interestingness

Fig. 4. Visualization of the search process performed by the DMM, where the DMM
had to decide among three DM actions.

Searching For an Interesting Story Arc In order to decide which DM ac-
tions to execute, the DMM performs a search in the space of possible stories.
Such search is represented as a search tree with alternating DM actions and
player actions. The result of the search is an expected degree of interestingness
of the different stories that will unfold depending on which DM action the DMM
executes. Then, the DMM will select the DM action that maximizes such inter-
estingness. Note that the no-op DM action (that represents executing no DM
action) is always one of the DM actions considered.

In order to perform this search, the DMM uses a hybrid montecarlo expec-
timax algorithm, illustrated in Figure 4. The expectimax algorithm performs
search by alternating two types of nodes in the search tree: max nodes and exp
nodes. In the leaves of the search tree, the DMM will evaluate the interesting-
ness of the story that unfolded to reach that leaf, and the interestingness value
will be propagated up. In the max nodes, the interestingness is assigned as the
maximum of the interestingness of the children nodes, and in the exp nodes, it
is assigned as the average of the interestingness of the children nodes. Naturally,
exp nodes will be nodes where the DMM is considering player actions, and max
nodes correspond to nodes where the DMM is considering DM actions. The first
node corresponds to the current game state, and is a max node. The next set
of nodes is expanded by taking into account each possible DM action that can
be performed in the current game state. This generates the first layer of nodes
(ply1), where all the nodes are exp modes, as shown in Figure 4. The second set
of nodes is generated by considering all the possible player actions, this generates
the second layer (ply2), where all nodes are max nodes.

Since searching in such search tree has a very high cost, the DMM only
performs exhaustive search for a predefined number of layers (set to 3 in our ex-
periments). After that, the DMM performs montecarlo search. Montecarlo search
estimates the interestingness value by expanding single branches at random, but

In 1st Joint International Conference on Interactive Digital Storytelling, Erfurt, Germany



9

at a very hight depth (set to 20 in our experiments). The number of branches
that the montecarlo part of the DMM expands is variable and depends on the
amount of time left for search (as explained in the next section). At the end
of each one of the montecarlo branches, the DMM uses the player model and
the set of author specified guidelines to compute an interestingness value for
that branch. Such interestingness is computed in the following way: first, the
DMM uses the player model to predict the interestingness of each plotpoint vis-
ited in that branch, and each visible DM action executed in that branch, this
gives a value pmi. Second, the DMM uses the author specified guidelines to com-
pute a second interestingness value asi. The final interestingness is computed as
i = c× pmi + (1− c)×asi, where c is the confidence in the player model. As fig-
ure 4 shows, such interestingness values are propagated up the search tree, and
finally the DMM will select the DM action that maximizes the interestingness.
In the example shown in Figure 4, that corresponds to DM action dma1, that
achieves an interestingness value of 0.4.

Search-Based Drama Management on Real-Time Games Previous search-
based drama management approaches have been implemented in turn-based
games, where each time the player executes an action, the DM has time to
perform a search and return a DM action. In our game the DMM is constantly
running in parallel with the game as it evolves. In order to support this, the
DMM constantly executes time bounded searches (2 seconds per search in our
experiments). Each time a search is finished the DMM executes the proposed
DMM action (if any). Each time the player (or any character in the game) exe-
cutes an action, the DMM verifies that this action does not invalidate the search,
and in case it is invalidated the search is restarted. In order to use the search
time efficiently, the DMM uses an iterative deepening method that searches first
only at depth 1, then depth 2, etc. As soon as the maximum level for exhaustive
search is reached, then the DMM executes more and more montecarlo samplings,
until the time is over.

Another challenge faced is that actions in our game take time, i.e. moving the
character from a location to another takes some time (depending on the distance
it has to travel), thus the DMM cannot just open a search tree where each node
is a cycle of the game. In order to solve this, we incorporated the concept of
stable game state. A stable game state is one where no character in the game
is executing any action. The DMM always starts its search in a stable game
state, and when an action is selected in a branch of the search, the game state is
simulated until we reach another stable game state, from where the search can
continue. Figure 4 illustrates the effect of this. On the left hand side we have the
number of game cycles, and we can see that each level of the search tree does
not correspond exactly with a particular game cycle.

The last challenge is related to the amount of actions the player can execute.
Since in our game the set of actions is practically unbounded (the player can
potentially command anything through natural language, restricted only by the
limitations imposed by our NLU module and by the set of primitive actions

In 1st Joint International Conference on Interactive Digital Storytelling, Erfurt, Germany



10

supported by our game engine). Notice for instance, that the player can type
actions such as “go to the bar”, “examine the ground”, “say hello to the bum” or
“ask the bum about his past”; just the set of possible communication actions to
interact with other characters is unbounded. Since the DMM uses search based
techniques (similar to those used in Chess playing programs), it needs a set of
actions that the player can execute to perform the search. In our system, the
DMM analyzes the set of plotpoints and the current game state to generate the
set of actions that can affect the story. The rest of actions are considered as
“no-effectors” by the DMM and are not considered in the search. Using this
method, the author does not have to specify any list of possible actions (as in
most previous DM approaches), the DMM can figure them out by itself.

3 Evaluation and Initial Analysis

We conducted our experiments in two batches. In the first, we invited five of
the participants from [9] who had previously played an earlier turn-based text
version of the game with an earlier version of our architecture. The second batch
of ten participants had never played Anchorhead before.

The players in the first batch were interviewed at the end to get feedback
on the usability improvements we made from the earlier version of our system
namely shifting to a new graphical interface and employing a natural language
based interaction modality. The first users acted as pilot subjects that helped
us improve the graphical interface, NLP and DM modules. The suggested im-
provements from the first batch were implemented before the second batch of
participants played the game. One of the improvement from their interaction was
to improve the performance of the NLU by adding more lexical entries and rules.
During their interaction, the users felt that the language based interface seemed
like a more natural way of interaction and was much more interesting than the
text based interface (where the user simply selected from a fixed list of possible
actions presented to him as a choice list). However, the open ended nature of the
NLU made it difficult for the users to figure out appropriate actions. In order
to make it easier for users to find right set of actions, we improved the language
interface with a help screen that provided them with example commands and
their usage. We also added some more DM hints to help the next batch of users
at the points where the first batch of users seemed to be generally lost.

After the improvements, we carried out a study with a second batch of par-
ticipants to measure the effect of DM strategies on player’s experience. For this
batch of the study, we recruited 10 participants with a range of genders (2 females
and 8 males). Each player was provided with an explanation on Anchorhead and
asked to sign a consent form before starting the game. The player filled a back-
ground questionnaire to obtain information such as previous gaming experience
or types of games they liked to play. During each episode, a researcher logged
his observation of player actions and any unusual reactions. Each player played
twice, once with DM active and another one without DM. On an average, the
complete player interaction (both game playing episodes) lasted for about 45

In 1st Joint International Conference on Interactive Digital Storytelling, Erfurt, Germany



11

minutes each. At the end of each episode, the player was asked to provide an in-
terestingness value and an associated confidence value on a 5 point Likert scale
for the overall game experience as well as the intermediate story events that
were encountered during the interaction. At the end of both gaming episodes,
participants were interviewed about their experience. The evaluation accounted
for the order in which players played with and without DM by making half of
the subject play first with DM and then without it, and the other half play first
without DM and then with it. We transcribed the player responses from the
interviews and observed players actions during the game episodes and analyzed
them using a well-known qualitative analysis method, Grounded Theory [10] as
used in [9]. Next we present results from qualitative analysis. We are planning
to conduct a complete quantitative analysis in the future.

Concerning the interaction with the game, players found the natural language
interface easy to use, although sometimes it was hard for them to figure out the
appropriate actions due to the open ended NLU. Most players preferred the NLU
interface to the choice-based interface (although a minority complained that it
was annoying to type the commands). Further, having an open ended NLU
interface made the players more engaged in the game as successfully taking an
action was more rewarding (in the choice based interface it was obvious to figure
out which actions to take next). Some players were frustrated as the open-ended
NLU interface made them believe that they could interact freely with other
characters, and in reality those character had very limited conversational topics
(the characters in our game trigger responses or actions if the player talks to
them about certain keywords or gives them certain objects).

Concerning the observable DM interventions some players felt that the DM
was providing too many hints. Others liked the hints as they guided them in
the game (when played without the DM some players were totally lost). Some
other players felt that some hints were too blunt and told more than expected.
(which points out that the DM should have several degrees of hints from more
subtle to more blunt). Most players followed the hints and were able to finish the
game when the DM was active, whereas without the DM most of them got stuck.
Players felt a positive effect of the system’s interventions on their interaction,
when they saw that when playing without DM they ended up in an ending they
didn’t like, whereas playing with DM, the system (DM) prevented that ending
from happening resulting in a more enjoyable experience. The DM hints also
allowed certain players, who were stuck otherwise to finish the game.

4 Conclusions

In this paper we have presented an improved version of the drama management
architecture initially presented in [9]. Specifically, our improvements include:
real-time drama management, improved user modeling including preferences
about DM actions, natural language interface for open ended user interaction
(improving the DM to support this), and a graphical representation that is more

In 1st Joint International Conference on Interactive Digital Storytelling, Erfurt, Germany



12

appealing to non-gamers. We performed a user evaluation and initial qualitative
analysis with 15 users (5 users who had used the old system, and 10 new users).

The main conclusion we can draw from our experiments is that DM tech-
niques are applicable to real-time games, and that DM generally improves player
experience. Moreover, our user evaluation reinforced the fact that the DM should
take into account player experience when deciding how to influence the story and
also when deciding which hints to provide to the player.

As future work, we are in the process of conducting a quantitative analysis of
our new DM architecture to measure how much the player experience improves
with and without DM, and also how much it is due to the improved DM ar-
chitecture with respect to the one reported in [9]. We are also in the process of
developing a bigger game based on our architecture and plan to make it avail-
able on-line in order to have a larger number of players and perform further and
better evaluations of the system.

References

1. A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues, methodolog-
ical variations, and system approaches. Artificial Intelligence Communications,
7(1):39–59, 1994.

2. J. Bates. Virtual reality art and entertainment. The Journal of Teleoperators and
Virtual Environments, 2(1):133–138, 1992.

3. M. S. Gentry. Anchorhead. available online at
http://www.wurb.com/if/game/17.html, 1998.

4. B. Magerko, J. Laird, M. Assanie, A. Kerfoot, and D. Stokes. AI characters and
directors for interactive computer games. In Proceedings of the 2004 Innovative
Applications of Artificial Intelligence Confercence, 2004.

5. M. Mehta and A. Corradini. Understanding spoken language of children inter-
acting with an embodied conversational character. In Proceedings of the Com-
bined Workshop on Language-Enabled Educational Technology and Development
and Evaluation of Robust Spoken Dialog Systems at ECAI 06, pages 51–58, 2006.

6. M. Mehta and A. Corradini. Developing a conversational agent using ontologies.
In Proceedings of the International Conference on Human Computer Interaction,
pages 154–164, 2007.

7. M. Nelson, M. Mateas, D. Roberts, and C. Isbell. Declarative optimization-based
drama management in interactive fiction. IEEE Computer Graphics and Applica-
tions, 26(3):33–41, 2006.

8. M. Sharma, M. Mehta, S. Ontañón, and A. Ram. Player modeling evaluation for
interactive fiction. In AIIDE 2007, Workshop on Optimizing Player Satisfaction.
AAAI Press, 2007.

9. M. Sharma, S. Ontañón, M. Mehta, and A. Ram. Drama management evalua-
tion for interactive fiction games. In AAAI-07 Spring Symposium on Intelligent
Narrative Technologies. AAAI Press, 2007.

10. A. Strauss and J. Corbin. Basics of Qualitative Research: Grounded Theory Pro-
cedures and Techniques. Sage, 1990.

11. P. Weyhrauch. Guiding Interactive Drama. PhD thesis, Carnagie Mellon Univer-
sity, 1997.

In 1st Joint International Conference on Interactive Digital Storytelling, Erfurt, Germany


