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ABSTRACT: Runoff generated by land surface models (LSMs) is extensively used to predict future river discharge under
global warming. However, the structural bias of LSMs, the precipitation bias of the climate model, and other factors could
cause the runoff to be biased. A model intercomparison study can help understand LSM behavior. Traditional model inter-
comparison can discover output variation and evaluate performance, but explaining the reason for the difference is chal-
lenging. This study developed a novel method to identify the reasons for disparities and suggest improvements.
Consequently, we investigated the impacts of model settings by adopting the settings of another model in one model until
it can mimic similar features in its output. Hence, we developed a process called the “emulation model.”We employed two
LSMs [Simple Biosphere with Urban Canopy (SiBUC) and Meteorological Research Institute Simple Biosphere model
(MRI-SiB)] in the Thai River basin. SiBUC produced a higher surface runoff than MRI-SiB, and the development of the
MRI-SiB emulation revealed the cause of this variation. The differences in runoff characteristics affected streamflow esti-
mation. For instance, the SiBUC peak discharge was faster and higher than observed in the dry year. Conversely, there
was a tendency to underestimate the flow estimated by MRI-SiB runoff during the transition from dry to wet seasons. In-
corporating other model settings can alleviate the shortcomings of each model. Overall, the proposed method can identify
the strengths and weaknesses of a model and enhance the reproducibility of the hydrological characteristics of the observed
discharge in the basin.

SIGNIFICANCE STATEMENT: This study aims to develop a new methodology for model intercomparison to iden-
tify the reasons for model output variation. Understanding why models behave differently is important to enhancing
the reliability of model prediction. Our findings guide what affects disparities in land surface model runoff-based
streamflow estimation, which will help reduce the uncertainty of future flood and drought predictions.
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1. Introduction

The risks associated with water availability and water-
related hazards will continue to increase due to the intensifica-
tion of the hydrological cycle because of climate change (IPCC
2022). Climate models are important tools for projecting future
changes in the climate and their effects. These numerical mod-
els use a three-dimensional grid to simulate physical processes
in the atmosphere, ocean, ice, and land surface across the globe.
The land surface model (LSM), a part of the climate model
that represents the land surface, is an important component for
simulating hydrological cycle. The LSM divides the available
energy into sensible and latent heat, and separates precipitation
into evaporation, runoff, and water storage components.

For climate change studies, runoff output from the LSM
has shown broad applications in predicting changes in future
river discharge under global warming, such as in the studies
by Nohara et al. (2006), Hirabayashi et al. (2013), and Dottori
et al. (2018). These studies report runoff bias when simulating

river flow, which might be attributed to precipitation bias from
the climate models when simulating precipitation or structural
bias owing to missing key processes in the runoff generation
schemes of the LSM.

Furthermore, different LSMs have shown large variability in
runoff output (Nohara et al. 2006; Hirabayashi et al. 2013),
leading to uncertainty in streamflow prediction. Differences in
parameterization, representation of physical processes in the
model, numerical schemes, and other factors could cause these
disparities. A method called “model intercomparison” makes it
possible to analyze the variation in model output by driving
multiple models with a common dataset and subjecting the out-
put to a mutual comparison.

Extensive studies on comparing LSMs have been under-
taken, often to determine how different the LSMs are in simu-
lating the energy budget and/or water budget, including the
Project for the Intercomparison of Land-Surface Parameteriza-
tion Schemes (PILPS; Henderson-Sellers et al. 1995), the Rhône-
Aggregation Land Surface Scheme Intercomparison Project
(Boone et al. 2004), the African Monsoon Multidisciplinary
Analysis Land SurfaceModel Intercomparison Project (ALMIP;
Boone et al. 2009), and the Asian Dryland Model Intercompari-
son Project (ADMIP;Asanuma et al. 2013).

These projects have helped improve the understanding of
the abilities of the models to simulate the land surface pro-
cesses. Furthermore, comparing the performance of one model
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with that of other models helps identify which model performs
better than the other models while also providing a direction of
improvement for the lower-performing models. Some reasons
for differences in model output could be due to complex inter-
actions between model components (Koster and Milly 1997),
or human errors in the modeling, for example, inadequate
documentation during model development (Menard et al.
2021). However, analyzing why LSMs behave differently is
challenging, and intercomparison results do not always
explain why LSM simulations differ from one another or
observations (Best et al. 2015). Therefore, this study aims
to develop a new model intercomparison methodology to
provide a better understanding of the reasons for output
variation among LSMs.

The rest of the paper has six sections. Section 2 describes
the developed model intercomparison approach, followed by
the design framework in section 3. Section 4 provides the re-
sults of the intercomparison analysis, and section 5 addresses
the model evaluation and improvement. Finally, sections 6
and 7 describe discussion and conclusions, respectively.

2. Model intercomparison methodology

a. Past research on model intercomparison

Previous research on model intercomparison has mainly fo-
cused on model comparison and evaluation, performed by
comparing the performance of one model to that of other
models and observations. Conventional methods of model in-
tercomparison typically involved running multiple models with
the same meteorological forcing (Materia et al. 2010; Getirana
et al. 2017). It also occasionally includes a common set of land
surface parameters (e.g., soil and vegetation parameters) into
the participating models (Henderson-Sellers et al. 1995; Boone
et al. 2004).

The intercomparison results revealed significant differences
in how the models simulated the energy and/or water balances
(Pitman et al. 1999; Asanuma et al. 2013; Boone et al. 2004;
Materia et al. 2010; Getirana et al. 2017). These differences
can be attributed to different types of flux partitioning (Boone
et al. 2004, 2009), different complexities of the land surface
schemes (Materia et al. 2010), and insufficient or missing rep-
resentation of key processes in some models (Getirana et al.
2017).

Even though it can be challenging to explain why the model
outputs vary, it is crucial to comprehend the reasons behind
the scatter because large uncertainties in model prediction re-
duce its reliability (Pitman et al. 1999). Furthermore, without
understanding the underlying causes of such disparities, de-
veloped models may become more similar to other models,
but not always closer to the observations (Best et al. 2015).

b. Model intercomparison approach developed in
this study

In this study, we developed a new methodology for model
intercomparison to address the limitations of conventional
methods, which have difficulty explaining the reasons for dis-
crepancies among model outputs. Figure 1 compares the tra-
ditional methods of model intercomparison with the proposed
approach. Figure 2 shows a detailed flowchart of the proposed
method.

The approach in this study seeks to investigate the causes of
the spread of LSM output and propose improvements. First,
various settings for LSMs (e.g., land surface parameters, repre-
sentative of physical processes, and numerical schemes) were
examined. To find a direction for improvement, one must un-
derstand the impact of the model settings on the output esti-
mation. This study analyzed those impacts by adopting the
settings of one model in another.

As an illustration, we consider the intercomparison of two
LSMs: LSM 1 and LSM 2. To suggest improvement strategies
for LSM 2, for example, the impacts of model settings on output
estimation are investigated by incorporating some settings from
LSM 1 into LSM 2. If this process is repeated until LSM 2 can
mimic the features of LSM 1 output, the settings that have a
major impact on the LSM behavior and the source of their out-
put discrepancy can be identified. This iterative process repre-
sents developing an emulation model. In this case, the LSM 1
emulation model is constructed by adopting its settings into
LSM 2 until it produces an output comparable to LSM 1. First,
one setting of LSM 1 is adopted to LSM 2 and evaluate its re-
sults. If one LSM 1 setting does not produce similar results to
LSM 1, a different model setting should be tested. When a sin-
gle setting fails to produce a desired outcome, a combination of
two or more settings should be examined. In contrast to tradi-
tional intercomparison methods, in which the simulation of
each model is undertaken by its corresponding modelers or

FIG. 1. Comparison of traditional model intercomparison methods vs the method developed in this study.
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experts, constructing the emulation of one model is advanta-
geous because it makes an intercomparison analysis possible
without directly carrying out the simulation using another LSM.

In the second step, we evaluated the performance of each
model by comparing its output to observation. We investigated
the strengths and weaknesses of the model in reproducing ob-
served data and suggested some strategies for overcoming this
limitation. For example, the disadvantages of the LSM 2 can be
alleviated by considering some settings of LSM 1. Simulta-
neously, proposing solutions for improving LSM 1 is feasible
when the emulation model of LSM 1 can properly replicate the
behavior of LSM 1, for instance, by incorporating LSM 2
settings.

The developed methodology applies to all output variables.
This study focuses its constructed method on the ability of the
LSM to simulate runoff and its performance in reproducing
observed streamflow.

3. Design framework

a. Land surface models

This study employed two LSMs: Simple Biosphere model
including Urban Canopy (SiBUC; Tanaka 2005) and Meteoro-
logical Research Institute Simple Biosphere model (MRI-SiB;
Hirai et al. 2007). The SiBUC LSM uses a mosaic scheme to
account for a mix of land use, paddy fields, and irrigation sys-
tems. In this model, land use is separated into three categories:
green area, urban area, and water body. In contrast, MRI-SiB
is a land surface model developed by the Meteorological Re-
search Institute and Japan Meteorological Agency. The two
LSMs have been developed based on the Simple Biosphere
model (SiB; Sellers et al. 1986). Therefore, the basic structures
are similar, for example, soil discretization into three layers, and
using Richard’s equation to describe the governing equations
for soil moisture. However, the detailed structures, including
the number of vegetation layers, surface and subsurface runoff

calculation, and vertical soil water flux estimation, differ because
different institutions developed them independently. The follow-
ing section discusses the differences between them.

b. Hydrometeorological forcing data

The first part of this study used hydrometeorological output
data (including precipitation, air temperature, surface pres-
sure, humidity, shortwave and longwave radiation in the
downward direction, and wind speed) from the atmospheric
general circulation model MRI-AGCM 3.2S (Mizuta et al.
2012) to conduct an intercomparison analysis. The MRI-SiB
was embedded in this climate model. The simulation by the
MRI-AGCM 3.2S model was applied to the entire globe with
20-km spatial resolution. The output data were generated for
25 years of historical climate (1979–2003) and future climate
under the RCP8.5 scenario (2080–99). In this study, only the
historical data were utilized for the simulation.

The second part used satellite rainfall from Climate Hazards
Group Infrared Precipitation with Station data (CHIRPS; Funk
et al. 2015) and the atmospheric reanalysis dataset JRA-55
(Kobayashi and Iwasaki 2016) as forcing for both LSMs. The
datasets included air temperature, humidity, shortwave and
longwave radiation in the downward direction, wind speed,
and surface pressure. The CHIRPS dataset has a high spatial
resolution of 0.058, whereas the JRA-55 output has a 60-km
spatial resolution. We interpolated the JRA-55 data from ap-
proximately 60 to 5 km using the weighted average method.
The CHIRPS dataset had a temporal resolution of 1 day, and
that of the JRA-55 was 3 h. We linearly interpolated the JRA-55
data from 3 to 1 h to create hourly input forcing. We then
used the JRA-55 hourly rainfall to interpolate the CHRIPS
daily data.

c. Flow routing model

We used 1K-FRM, a distributed flow routing model devel-
oped based on the one-dimensional kinematic wave theory, to

FIG. 2. Flowchart of the model intercomparison method in this study.
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convert LSM runoff into river discharge. The source codes and
manual operations are available on the Hydrology and Water
Resources Research Laboratory Kyoto University website
(http://hywr.kuciv.kyoto-u.ac.jp/products/1K-DHM/1K-DHM.
html). This study used SiBUC coupled with 1K-FRM (Yorozu
and Tachikawa 2015). This coupled model can investigate the
interaction effect between flow routing and land surface pro-
cesses. The 1K-FRMwas also used to estimate streamflow using
MRI-SiB runoff.

d. Study area

Figure 3a shows the topography of the Chao Phraya River
basin in Thailand. The Chao Phraya River basin consists of the
confluence of the Ping, Wang, Yom, and Nam River basins.
The catchment area is approximately 159 000 km2, which ac-
counts for about 30% of the land surface area in Thailand.
There are two major dams in this basin: Bhumibol Dam, built
in the Ping River basin, and Sirikit Dam in the Nan River
basin.

Thailand experiences strong interannual variability of rain-
fall. Flood disasters frequently occur during the rainy season
and drought in the dry or early rainy season. Thailand re-
cently experienced severe flood and drought cycles. For in-
stance, in 2011, the country suffered severe flood damage due
to unprecedented rainfall, in contrast to the low rainfall in the
previous year (Pavelic et al. 2012). Predictions indicate that
these water-related hazards will worsen due to global warm-
ing (Hunukumbura and Tachikawa 2012).

We conducted numerical experiments for this study in the
upper part of the Ping River basin. The basin covers an area
of approximately 26 100 km2. We used the observation inflow
at the outlet of the Bhumibol Dam, located at 17.24258N,
98.97228E, and obtained daily discharge data from the Elec-
tricity Generating Authority of Thailand (EGAT) available
from June 1964, when the Bhumibol Dam began operation.
Several smaller dams (e.g., Mae Ngat Somboon Chon Dam)

located in the upper part of this basin may influence runoff
observations.

Figure 3b shows the climatological mean (from 2003 to
2012) basin average monthly rainfall, runoff height, and in-
flow at the Bhumibol Dam. Runoff height is the volume of in-
flow per unit area of the catchment. The average annual
rainfall in this basin, estimated from the CHIRPS dataset, is
approximately 1300 mm.

This basin has distinct rainy and dry seasons, with roughly
90% of the precipitation falling during the rainy season and
the rest in the dry season. The wet season is from May to
October, and the dry season is from November to April. The
rainy season can be divided into an early rainy season from
May to July and a late rainy season from August to October.
Despite comparable precipitation, the observed discharge in
the early rainy season was much lower than in the late rainy
season. In this basin, more than 80% of the total rainfall is
evapotranspiration; thus, the runoff ratio is low. It is crucial to
develop a hydrological model that can reproduce such basin
characteristics to minimize the impacts and manage the risks
of future flood and drought disasters in this area.

4. Investigation of the cause of the disparity in
the LSM output

a. Analysis of different settings among LSMs

Earlier research (Tinumbang et al. 2020, 2021) examined
different settings related to runoff generation schemes among
SiBUC and MRI-SiB. Table 1 presents a summary of the
comparison, while Fig. 4 provides a schematic image of each
LSM. The outline below provides detailed descriptions.

1) LAND SURFACE PARAMETERS

LSMs generally require numerous input parameters, in-
cluding soil parameters (e.g., saturated hydraulic conductivity
Ks, saturated water content us, soil depth), and vegetation

FIG. 3. (a) Topography (m) of Thailand and its surrounding countries (shown at left) and the upper part of Ping
River basin (shown at right). The catchment boundary is shown by the red line. Major rivers and dams are shown in
blue lines and black triangles, respectively. The location of the capital city of Bangkok is shown with a black cir-
cle. (b) The 10-yr-mean (2003–12) monthly observed rainfall (blue bars), runoff height (orange bars), and inflow
(black line) at the Bhumibol Dam. The runoff height is the inflow volume per unit area of the catchment.
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parameters (e.g., greenness fraction, leaf area index, the frac-
tion of photosynthetically active radiation). In SiBUC and
MRI-SiB, users can define the land surface parameters. The
soil hydraulic properties in SiBUC were set for each soil class
and its parameter value was following Cosby et al. (1984). We
used the Ecoclimap dataset (Masson et al. 2003) to derive the
soil class in SiBUC. In MRI-SiB, all soil parameters were as-
signed to each vegetation class. Table 1 compares soil and
vegetation parameters between the two LSMs for the upper
part of the Ping River basin. The soil characteristics parame-
ters displayed in this table correspond to the basin’s major
soil or vegetation. In SiBUC, clay loam soil is the primary soil
type, while forest vegetation predominates in MRI-SiB.

The two LSMs have different vegetation schemes. In
SiBUC, canopy and ground cover are modeled as a single
canopy layer, as opposed to MRI-SiB, which treats each sepa-
rately. Therefore, the parameters related to vegetation in both
LSMs were assigned differently, depending on the vegetation
layer.

2) STRUCTURE FOR DIRECT INFILTRATION

InMRI-SiB, there is a structure that enables rainwater to flow
directly from the ground surface into the root zone (second soil
layer). This scheme, P2, was employed to alleviate the defect in
the conventional infiltration scheme resulting from insufficient
vertical resolutions and an integration time step (Nakaegawa
and Sugi 2001). In SiBUC, such a scheme does not exist. This
structure has an impact on the saturation–excess runoff calcula-
tion. In MRI-SiB, it is computed when the surface soil layer and
the root zone have saturated, whereas it is determined in SiBUC
when the surface layer reaches saturation.

3) SOIL WATER FLUX BETWEEN ADJACENT SOIL LAYERS

In SiBUC, the transfer of water between soil layers, Qi,i11,
is calculated using Darcy’s law by considering hydraulic diffu-
sion and gravitational drainage of water in soil, as expressed
in Eq. (1a). MRI-SiB neglects gravitational drainage and esti-
mates the soil water flux based on hydraulic diffusion, as

TABLE 1. Comparison of parameterization and land surface schemes between SiBUC and MRI-SiB. One asterisk indicates the
dominant value in the target basin corresponds to clay loam soil; two asterisks indicate the dominant value in the target basin
corresponds to the forest vegetation type.

Settings SiBUC MRI-SiB

1) Land surface parameters User defined User defined
Soil parameters Based on soil types Based on vegetation types
Saturated hydraulic conductivity Ks (m s21) 1.44 3 1026* 2.00 3 1025**
Matric potential of saturation cs (m) 20.63* 20.086**
Saturated water content us 0.478* 0.42**
Soil wetness parameter B 8.41* 7.12**
Depth of surface layer, root zone, and recharge layer (m) 0.02, 1–5, 2.7–12.5 0.02, 0.5–1.5, 1.5–3.5

Vegetation parameters For canopy layer For canopy, ground-cover layer
Greenness fraction 0.6–0.99 0.075–0.98, 0.075–1.0
Leaf area index (LAI) 0.2–6.5 0.04–6.5, 1.0 3 1024

–4.8
Fraction of photosynthetically active radiation (FPAR) 0.1–0.9 0.02–0.93, 1.0 3 1024

–0.73
2) Structure for direct infiltration into root zone } Incorporated

Saturation–excess surface runoff generation Surface soil is saturated Surface soil and root zone are saturated
3) Soil–water flux between adjacent soil layers Eq. (1a) Eq. (1b)
4) Subsurface runoff calculation Eq. (2a) Eq. (2b)
5) Numerical scheme for updating soil moisture Explicit–midpoint Semi-implicit, Eq. (3)

FIG. 4. Schematic image of (a) MRI-SiB, (b) SiBUC, and (c) MRI-SiB emulation. The red lines highlight processes in SiBUC modified by
MRI-SiB settings.
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expressed in Eq. (1b). The method of calculating vertical soil
water flux without considering gravitational flow is peculiar,
but explaining why is outside the scope of this study. In both
LSMs, hydraulic conductivity and matric potential are func-
tions of soil moisture based on the formulae of Clapp and
Hornberger (1978):

Qi,i11 5 K
c

z
1 1

( )
(i 5 1, 2), (1a)

Qi,i11 5 K
c

z

( )
(i 5 1, 2), (1b)

where K, c, i, and z indicate hydraulic conductivity, matric po-
tential, soil layer, and soil depth, respectively.

4) SUBSURFACE RUNOFF CALCULATION

SiBUC computes the subsurface runoff, Q3, only based on
gravitational drainage, expressed in Eq. (2a). However, the
calculation in MRI-SiB considers the gravitational drainage
and potential gradients between the second and third soil
layers, as expressed in Eq. (2b):

Q3 5 sin%sKsW
2B13
3 , (2a)

Q3 5 sin%sKsW
2B13
3 1 1

c2 2 c3

D3

( )
, (2b)

where sin%s, B, W3, and D3 express the topographic slope,
Clapp and Hornberger equation shape parameter, soil wet-
ness, and soil depth of the third soil layer, respectively.

5) NUMERICAL SCHEME FOR UPDATING SOIL MOISTURE

In SiBUC, an explicit midpoint (modified Euler) method was
used to update the soil moisture in each time step. This method
was employed to solve the differential equation for soil mois-
ture, matric potential, and hydraulic conductivity at the mid-
point between the current and the next step. In MRI-SiB, a
semi-implicit method was implemented for matric potential by
linearizing the soil moisture using a Taylor expansion, as ex-
pressed in Eq. (3):

c t1Dt
i 5 c t

i 1
c t

i

Wt
i

Wt
i

t
Dt: (3)

b. Investigation of the impacts of model settings by
developing an emulation model

By incorporating MRI-SiB settings into SiBUC, the effects
of the model settings were examined. Trial and error were
used to iterate this process until SiBUC replicated similar fea-
tures of MRI-SiB runoff. We started by investigating the effect
of each setting and identifying which variables most affected
the runoff. We also examined combinations of land surface pa-
rameters with another setting because their impacts on runoff
could be large. Then, all variations related to runoff genera-
tion were combined to evaluate their impacts. A version of

SiBUC that adopts the MRI-SiB settings and can reproduce
runoff its features is the MRI-SiB emulation model.

It was not possible to run the simulation by MRI-SiB di-
rectly; therefore, constructing the MRI-SiB emulation was nec-
essary to perform the intercomparison analysis. Appendix A
describes the advantages and disadvantages of each model in
reproducing observed river discharge in this basin. As a forcing
for SiBUC, the atmospheric output from the MRI-AGCM 3.2S
datasets, simulated under the historical climate from 1979 to
2003, was employed. This dataset also contained the runoff out-
put produced by MRI-SiB. A 25-yr numerical simulation was
run, with the period from 1994 to 2003 being used to analyze
the long-term trends of hydrological characteristics of this ba-
sin, and the rests as spinup. Because this basin is dry (more
than 80% of rainfall becomes evapotranspiration), we set the
spinup period rather long based on the assumption that the soil
subsystem takes a long time to reach equilibrium. The spatial
and temporal resolutions of both LSMs were approximately
20 km and 1 h, respectively.

Since both LSMs used the same atmospheric data, we as-
sumed the cause of the difference in runoff output was the var-
ious settings between the two LSMs. However, the MRI-SiB
was simulated by considering the interaction with the atmo-
spheric model in the MRI-AGCM 3.2S (commonly known as
an “online simulation”). SiBUC, nevertheless, was run without
considering such interaction, which is generally referred to as
an “offline simulation.” Although such differences may influ-
ence the output estimation, they are outside the scope of this
investigation. The process of constructing the MRI-SiB emula-
tion model also ignored the land–atmosphere interaction in
MRI-AGCM 3.2, which was largely impacted by soil moisture,
soil temperature, and other factors. Thus, it might have af-
fected the amount of evapotranspiration and subsurface run-
off. Therefore, this study focused on the reason for the
differences in runoff characteristics between the two LSMs in-
stead of water budget’s reproducibility.

Table 2 lists the experimental settings of the MRI-SiB emu-
lation model. The control experiment was a simulation using
the default settings of SiBUC. We conducted six experiments
to investigate the impact of the individual or combined MRI-
SiB settings on SiBUC. Experiments a and b employed SiBUC
and MRI-SiB parameters, respectively. We based the design
of experiments 1–4 and 6 on previous studies (Tinumbang et al.
2020, 2021).

1) EFFECTS OF MODEL SETTINGS ON WATER BUDGET

Figure 5 compares the 10-yr-mean water budgets calculated
by MRI-SiB, SiBUC with default settings (control), and each
experiment to develop the emulation model. Figures B1a and
B1b in appendix B show the spatial pattern of the total soil
depths of MRI-SiB and SiBUC, respectively. SiBUC with de-
fault settings estimates 4% less evapotranspiration and 30%
more runoff than MRI-SiB. In terms of runoff components, it
generated approximately 15-fold higher surface runoff than
MRI-SiB. Approximately one-third of the total runoff of SiBUC
is surface runoff, as opposed to predominantly subsurface
runoff for MRI-SiB. SiBUC estimated approximately 8%
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higher evaporation and 14% lower transpiration than MRI-
SiB did for the evapotranspiration components. Appendix C
briefly discusses the effects of changing model settings on the
energy budget.

The experimental results reveal that altering the model
settings affected the runoff characteristics. For instance,
when we used MRI-SiB parameters (experiment 1), the sur-
face runoff increased by 2.6-fold, whereas the subsurface
runoff decreased by one-third compared with the control.
The increase in surface runoff was probably because of the
thinner soil depth, which reduced the capacity of soil to
store rainwater. In contrast, surface runoff decreased when
the P2 structure was adopted (experiment 2) because rain-
water could infiltrate directly into the second soil layer.

The effects of neglecting gravitational drainage for calculat-
ing the soil water flux (experiment 3) varied depending on the
parameter settings. When we utilized SiBUC settings, surface
runoff increased, whereas the MRI-SiB parameters caused a
decrease. However, there was a reduction in the subsurface
runoff when the potential gradient between the root zone and
the recharge layer was considered when estimating the sub-
surface runoff (experiment 4). This outcome was mainly be-
cause the soil moisture in the root zone was lower than the
recharge layer.

The impacts of the numerical schemes for updating soil mois-
ture (experiment 5) on runoff estimation also differed depend-
ing on the soil parameters. When SiBUC parameters were used
from a different scheme, the runoff components showed no ap-
parent change. However, they significantly varied when we em-
ployed different numerical schemes with MRI-SiB parameters.
A detailed investigation (results not provided) demonstrated
that soil moisture predicted by the two schemes differed greatly
during rainfall events, mostly due to the saturated hydraulic
conductivity (Ks) settings.

These results demonstrate that when we used only a single
setup (e.g., parameters, structures, or time integration method),
we couldnot reproduce similar runoff featuresbyMRI-SiB.How-
ever,whenallMRI-SiBvariableswereconsidered(experiment6),
SiBUCmimicked characteristics of runoff byMRI-SiB, indicating
anegligible amountof surface runoff andpredominanceof sub-
surface runoff. SiBUC adopting the settings of experiment 6 is
the“MRI-SiBemulationmodel.”Figure4c shows theMRI-SiB
emulationmodelschematic.Overall, therunoffandevapotrans-
piration predicted by the emulationmodelwere approximately
43% greater and 7% lower than MRI-SiB, respectively. This
outcomewas primarily due to a lower estimate of transpiration,
influenced by the difference in canopy and ground cover layer
treatmentsbetweenthetwoLSMs.Intheemulationmodel,only
MRI-SiBparameters for the canopywere employed, leading to
significantly less transpiration in the grid cells dominated by
groundcover.

2) IMPACTS OF MODEL SETTINGS ON STREAMFLOW

ESTIMATION

We investigated the impacts of model settings on stream-
flow simulated by runoff from each LSM by comparing the
hydrographs and examining the variation in lag time and vol-
ume of peak discharge.

Figure 6 shows the mean of daily discharge simulated by the
runoff from SiBUC, MRI-SiB, and the MRI-SiB emulation

TABLE 2. Experimental settings to develop MRI-SiB emulation by SiBUC. The applied settings are indicated by open circles.
Experiments 1–4 followed Tinumbang et al. (2020), and experiment 6 was according to Tinumbang et al. (2021).

Experiments

Changing SiBUC to MRI-SiB settings Control 1 2a 2b 3a 3b 4a 4b 5a 5b 6

Land surface parameters } � } � } � } � } � �

Direct infiltration structure } } � � } } } } } } �

Calculation for soil-water movement } } } } � � } } } } �

Calculation for subsurface runoff } } } } } } � � } } �

Numerical scheme for updating soil moisture } } } } } } } } � � �
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FIG. 5. The 10-yr-mean annual water budget (mm). Surface runoff
(Qs), subsurface runoff (Qsb), evaporation (E), transpiration (T),
and soil moisture changes (delSM) are represented by purple, green,
red, orange, and gray bars, respectively. The x and y axes represent
each simulation and the annual mean of each variable (mm), respec-
tively. The total soil depth of (a) MRI-SiB and (b) SiBUC pa-
rameters are 1.5–3.5 and 2.7–12.5 m, respectively, with the spa-
tial pattern shown in Fig. B1. SiBUC is the experiment with
default settings (control). Raw data from 20 years of results of ex-
periments 1–4 and 6 have previously been published (Tinumbang
et al. 2021, 2022).
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model using MRI-AGCM 3.2S forcing. The comparison of the
climatological mean of daily discharge was based on the method
used by Getirana et al. (2017). In general,MRI-AGCM3.2S rain-
fall (Fig. 6) could reproduce seasonal patterns of observed rainfall
in this catchment (Fig. 3), with approximately 84% of the rainfall
falling during the wet season (May–October) and the rest falling
during the dry season (November–April). In addition, the early

rainy season (May–July) and the late rainy season (August–
October) have comparable rainfall ratios. The discharge simulated
by SiBUC runoff was approximately 1.4-fold higher than that of
MRI-SiB, owing to higher runoff and lower evapotranspiration.
In particular, the estimated discharge by SiBUC in the dry,
early, and late rainy seasons were 2.0-, 3.2-, and 1.1-fold
higher than those of MRI-SiB, respectively. Thus, the dispar-
ity between the two LSMs is noticeable during the early rainy
season.

Conversely, the streamflow estimated by MRI-SiB emulation
runoff was 47% and 7% higher than MRI-SiB and SiBUC, re-
spectively. Although the emulation model overpredicted the
discharge by MRI-SiB runoff, it closely reproduced its features,
particularly during the early rainy season when it was consider-
ably lower than the SiBUC discharge.

Figure 7a depicts a time series of daily discharge, and
Figs. 7b and 7c indicate the time lag of the simulated dis-
charge in 1994 and 1998, respectively. The timings of peak
discharge in response to peak rainfall of SiBUC and MRI-
SiB are sometimes similar, as in 1994 and 1996, but signifi-
cantly different in others, such as 1998 and 2000–02. The
difference in peak discharge timing can be investigated by
calculating the lag time. It is defined as the time elapsed
between peak rainfall and peak discharge. Here, the peak
rainfall and discharge are the annual maximum daily rainfall
and discharge.

In 1994, the peak rainfall occurred on 22 August, and the
peak discharge by both SiBUC and MRI-SiB were produced
3 days later. This occurrence was because of the enormous
amount of antecedent precipitation that saturated the drain-
age basin in this case, which reduced infiltration and increased
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surface runoff. Rainfall reaches the river more quickly and
produces a short lag time because surface runoff is quicker
than subsurface runoff. The peak volumes of the two LSMs
were comparable, with a difference of only 7%.

In contrast, the hydrograph responses of the two LSMs dur-
ing the heavy rainfalls of 1998 varied significantly. We also ob-
served a substantial difference in the peak volume, with the
SiBUC peak discharge being approximately 3.4-fold higher
than the MRI-SiB. The amount of antecedent rainfall in 1998
was far lower than that in 1994. Peak rainfall occurred on
31 July and SiBUC peak discharge was produced 3 days later.
The MRI-SiB peak discharge formed 54 days after SiBUC.
The varied lag times of the two models, and the difference
in the early rainy season (Fig. 6), resulted from different runoff
characteristics caused by the variation in infiltration capacity.
SiBUC had lower infiltration rates than MRI-SiB and generated
a surface runoff thin surface soil was saturated. As a result, the
peak discharge was produced predominantly by surface runoff,
resulting in a short lag time. Conversely, the infiltration rate in
MRI-SiB was higher and rainwater infiltrated directly into the
second soil layer. Therefore, the impact of catchment wetness
could be observed because subsurface runoff dominated the run-
off component in MRI-SiB. Precipitation was used to saturate
the soil, and the discharge began to rise as the soil became satu-
rated. Thus, the time required for the simulated discharge by
MRI-SiB runoff to reach the stream was substantially longer
than that for SiBUC.

Although the emulation model tended to have a higher dis-
charge than the MRI-SiB, it successfully mimicked this fea-
ture of the MRI-SiB discharge. The correlation coefficient
score of the time series of daily discharge between MRI-SiB
and the emulation model is 0.989, indicating a nearly perfect
correlation.

5. Model evaluation and improvement

a. Introduction

In this section, we evaluated the ability of SiBUC and
MRI-SiB emulation model to reproduce observed river dis-
charge and proposed strategies to improve the performance
of each model. Both models were driven by the CHIRPS rain-
fall and JRA-55 reanalysis datasets. The spatial and temporal
resolutions of both LSMs are 0.058 and 1 h, respectively. The
numerical simulations were run from 1981 to 2012, with the
results from 1981 to 2002 discarded as spinup and those from
2003 to 2012 were used to analyze the long-term hydrological
features of this basin. As stated in the previous section, we set
the spinup time to be rather long for the soil subsystem to
achieve an equilibrium state in this dry basin.

The performance indices used to evaluate the simulated
daily discharge over 10 years are the Nash–Sutcliffe efficiency
(NSE; Nash and Sutcliffe 1970), root-mean-square coefficient–
observations standard deviation ratio (RSR), bias, coefficient
of variation (CV), Pearson correlation coefficient (r), and
Kling–Gupta efficiency (KGE; Gupta et al. 2009). Appendix D
shows the equation of each index.

b. Model evaluation

Figure 8 compares the water budget simulated by SiBUC
(default settings) and MRI-SiB emulation. Figure B1c shows
the spatial patterns of the total soil depth in experiments 2
and 3. SiBUC estimated 4% higher evapotranspiration and
20% lower runoff than the MRI-SiB emulation. The ratio of
evaporation to transpiration was similar in both LSMs, but
the runoff characteristics were opposite. The surface runoff
by SiBUC accounted for approximately 70% of the total run-
off, with the remainder as subsurface runoff. Subsurface

   0

  10

default exp1a exp2a exp3a

delSM

   0

  10

default exp1b exp2b exp3b

   0

 500

1000

A
nn

ua
l m

ea
n 

[m
m

]

E T

   0

 500

1000

    0
  100
  200
  300

(a) Simulation by SiBUC
Qs Qsb

   0
 100
 200
 300

(b) Simulation by MRI-SiB emulation

FIG. 8. As in Fig. 5, but for water budget using observed forcing data. The average annual rainfall is 1316 mm. In
experiments 2 and 3, the total soil depth of both models is 1.5–5 m, with the spatial pattern shown in Fig. B1c.

T I N UMBANG E T A L . 825MAY 2023

Unauthenticated | Downloaded 09/29/23 06:40 PM UTC



runoff was the dominant runoff component in the MRI-SiB
emulation default settings, accounting for approximately 97%
of the runoff. Appendix C briefly presents the impacts of
modifying model settings on the energy budget.

Table 3 shows the evaluation scores for each simulation.
Figures 9 and 10 show a time series of daily discharge from 2003
to 2012 and a 10-yr mean of daily discharge between observation
and each simulation, respectively. Overall, the simulated flow
with default SiBUC settings outperforms the emulation model
in terms of NSE and bias scores. However, because the emula-
tion model produced a higher runoff than the original MRI-SiB,
this contributed to an overestimated bias by the emulation
model. Other performance indices, including the correlation co-
efficient and KGE scores, were comparable, indicating that both
model settings could reproduce the observed discharge.

In terms of seasonal patterns, SiBUC typically reproduced the
actual discharge well. However, it underestimated the peak flow
in September while significantly exceeding the observed flow in
October. We thought that the underestimation in September re-
sulted from insufficient subsurface runoff contribution. In contrast,
the overestimation in October was due to excessive surface runoff
generation in response to intense rainfall events over this period.

Similarly, the discharge simulated by the MRI-SiB emula-
tion showed seasonal patterns close to the observed inflow.
However, it significantly underestimated the observed inflow,
particularly from April to May. Because the subsurface runoff
dominated the runoff by MRI-SiB emulation, the precipita-
tion during this transition period between the dry and rainy
seasons was mainly used to saturate the soil, resulting in a
considerably low discharge. Similar to SiBUC, the discharge
by the emulation model also overestimated the observed
flow in October. However, the reproducibility of peak flow
in September was better than that of SiBUC.

We also evaluated the discharge simulated by the two
LSMs by comparing the lag time and peak volume based on
observation. We investigated the performance of each model
for each year to comprehend the model behavior based on
the difference in rainfall amount because this catchment has a
strong interannual variability in rainfall. Using a 10-yr mean
annual rainfall (1316 mm) set as the threshold, we classified
the annual rainfall into wet and dry years. We defined wet
years as those with annual precipitation that exceeded the cli-
matological mean rainfall, whereas dry years were those with
less than the threshold. In this study, we selected 2004 and
2011 as the representative dry (annual rainfall of 1205 mm)
and wet years (annual rainfall of 1645 mm), respectively.
During the 10-yr analysis period, 2011 experienced the high-
est rainfall. However, we considered 2004 for the dry-year
analysis even though 2003 had less annual rainfall (988 mm)
because both LSMs performed significantly better.

Figure 11 depicts a time series of daily discharge during
peak rainfall events in 2004 (dry year) and 2011 (wet year). It
also presents the difference in lag time and the peak volume
between the observed and simulated discharge. During the
dry year of 2004, the peak rainfall occurred on 7 September,
and the peak of observed discharge occurred 13 days later.
SiBUC peak flow happened 6 days after the peak rainfall, a
week earlier than the observed peak discharge. This duration
was because SiBUC settings had a limited infiltration capacity,
leading to a fast-rising limb of the hydrograph owing to excessive
surface runoff generation. However, the lag time of the peak dis-
charge by the emulation model was closer to the observation.
The longer lag time for the MRI-SiB emulation peak discharge
compared with SiBUC resulted from predominant subsurface
runoff. Nevertheless, the volume of peak discharge by both
LSMs considerably exceeded the observed peak flow.

TABLE 3. Evaluation scores of simulated daily discharge from 2003 to 2012.

LSM SiBUC MRI-SiB emulation

Experiments Default 1a 2a 3a Default 1b 2b 3b

NSE 0.54 0.44 0.48 0.62 0.34 0.52 0.57 0.65
RSR 0.68 0.75 0.72 0.62 0.81 0.70 0.66 0.59
r 0.78 0.68 0.83 0.82 0.77 0.82 0.77 0.82
CV 0.97 0.99 0.99 0.99 1.06 1.11 0.99 1.04
Bias (%) 7.62 219.88 26.63 5.19 19.00 9.26 29.79 26.51
KGE 0.77 0.63 0.68 0.81 0.70 0.77 0.75 0.80
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Peak precipitation in the wet year of 2011 occurred on
30 September and observed peak flow was recorded 3 days later.
Peak discharge simulated by SiBUC runoff reproduced this be-
havior well, whereas MRI-SiB emulation occurred 2 days later
than observed. The runoff characteristics of the two LSMs influ-
enced these variations. The SiBUC peak discharge was close to
the observed peak flow in terms of volume, as opposed to MRI-
SiB emulation, which underestimated the observation.

c. Model improvement for SiBUC

Based on the evaluation results from the previous section,
we identified the strengths and weaknesses of each LSM in

reproducing the observed river flow. Because the limitations
of one model are the strengths of another model, it is possible
to devise improvement strategies by adopting one LSM set-
ting for another LSM. We performed three trial experiments
to improve the simulated discharge by SiBUC runoff, as indi-
cated in Table 4, experiment a. Table 3 and Figs. 8, 10, and 11
display the results of the performance scores, water budget,
time series of the mean of daily discharge, and simulated dis-
charge in the dry (2004) and wet (2011) years, respectively.

The evaluation showed that SiBUC runoff could reproduce
the seasonal patterns of observed discharge well; however, the
September peak flow was underestimated. SiBUC matched the
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FIG. 10. As in Fig. 6, but for 10-yr-mean (2003–12) daily discharge using observation forcing.
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FIG. 11. (top) Daily discharge from 2 to 30 Sep 2004 (dry year) and (bottom) daily discharge from 20 Sep to 12 Oct 2011 (wet year) for
simulations by (left) SiBUC and (right) MRI-SiB. The x and y axes represent the day of the year and mean daily discharge (m3 s21), re-
spectively. Observation; simulation with default settings; and experiments 1, 2, and 3 are represented by black dots and light blue, green,
yellow, and pink lines, respectively.
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observed flow in the wet year of 2011, whereas in the dry year of
2004, it produced a substantially faster and higher peak flow
than observed flow. The results suggest that one of the main rea-
sons for the shortcomings of SiBUC is its low infiltration capac-
ity, leading to excessive generation of surface runoff.

The SiBUC trial experiments were performed using MRI-
SiB settings to alleviate its deficiencies by increasing infiltration
capacity. The first experiment was conducted by incorporating
the MRI-SiB direct infiltration structure P2. Compared with the
default SiBUC, leveraging this scheme reduced surface runoff
while increasing subsurface runoff. However, the SiBUC per-
formance did not improve by adopting this structure because
the predicted discharge was far below the observation. SiBUC
soil depth was set rather deep (as much as 12.5 m); hence, satu-
rating the soil took a long time, leading to increased water loss
through evaporation and decreased runoff.

In experiment 2a, we attempted to increase the runoff by re-
ducing the root zone depth from 1–5 to 0.5–2.5 m and the re-
charge layer from 2.7–12.5 to 1.5–5 m. Surface runoff increased
due to a lower capacity to store rainwater in thinner soil, and
subsurface runoff increased because the thinner depth resulted
in faster saturation. Overall, this setting improved the peak flow
in September while increasing the overestimated discharge in
October because of excessive surface runoff generation in re-
sponse to heavy rainfall events. In this regard, increasing the
runoff by lowering the soil depth provides a way to enhance the
outcome of experiment 1a.

The two prior settings were combined to conduct experiment
3a. Surface runoff decreased by two-thirds, and subsurface run-
off increased by 2.5-fold when compared to the default settings.
Overall, this setting slightly improved the bias of the simulated
discharge and increased the peak volume in September by
20%. Furthermore, the lag time of peak flow in the dry year of
2004 became closer to the observation. For the wet year of
2011, the lag time remains unchanged, despite the peak flow de-
creasing by 9% relative to the observed peak flow.

d. Improvement direction for MRI-SiB

Because the MRI-SiB emulation model could mimic similar
features of the MRI-SiB output, it is possible to suggest im-
provements for MRI-SiB. For instance, the simulated discharge
by MRI-SiB emulation significantly underestimated the ob-
served flow during the transition between the dry and rainy sea-
sons. The predominant subsurface runoff generation by the
MRI-SiB settings appears to be the cause of this limitation.

Three tests were done, as shown in Table 4, experiment b,
by adopting some SiBUC settings in the MRI-SiB emulation
model to increase the considerably low discharge in the transition
between dry to rainy seasons and reduce the overestimated

mean discharge. Table 3 and Figs. 8, 10, and 11 show all the
results.

In the first experiment, we changed the soil characteristics
parameters (Ks, cs, us, and B) for the forest vegetation used in
MRI-SiB to those for clay loam soil used in SiBUC. As a re-
sult of the lower infiltration rates, overall runoff fell by 10%,
with surface runoff increasing 6.6-fold and subsurface runoff
decreasing by one-fourth. Despite being lower than the obser-
vation in May, which marks the beginning of the early rainy
season, the discharge by this setting has increased by 30%
compared with the default level. The lag time of the peak dis-
charge in the wet year of 2011 also improved.

In the second trial, the depths of the root zone and recharge
layer for the forest vegetation type were increased from 1.5 to
2.5 m and from 3.5 to 5 m, respectively. However, the dis-
charge by the MRI-SiB emulation model tended to overpre-
dict the observation. This outcome may also result from
overestimating the runoff by the emulation model compared
with the original MRI-SiB. Owing to the greater capacity of
soil to hold water and delay soil saturation, increasing the soil
depth in this context reduced subsurface runoff by one-fourth,
despite no substantial change in surface runoff. Although the
discharge in the early rainy season did not improve, it lowered
the overestimated discharge in October by 50%.

We performed the third experiment by combining the
previous two experiments. Similar to the outcome of the
first test, the discharge in May increased by 30%, and im-
provements were made to the peak flow bias and the lag
times in 2004 and 2011.

6. Discussion

In this study, we developed an approach for model compari-
son to help identify the reason for the model output disparity.
This strategy is beneficial for identifying model behavior and
the potential for structural bias in each model, recognizing the
strengths and weaknesses of the model, and determining how to
enhance it. Currently, SiBUC is used to construct an MRI-SiB
emulation model by incorporating MRI-SiB settings to generate
similar features of MRI-SiB runoff, which has a low surface run-
off and a predominant subsurface runoff. Although we have not
validated this process, we believe it is possible to develop a
SiBUC emulation model by integrating the SiBUC settings into
MRI-SiB. By adopting SiBUC parameters, which have a low sat-
urated hydraulic conductivity, and removing a direct infiltration
structure in MRI-SiB, we can produce the characteristics of
SiBUC runoff with high surface runoff and low subsurface runoff.

The developed method has been evaluated only for LSMs
using similar schemes. However, future work would require
testing this method using more diverse LSM schemes.

TABLE 4. Simulation settings by each LSM.

Experiments Changing settings for SiBUC Experiments Changing settings for MRI-SiB emulation

Default No change Default No change
1a Incorporating P2 structure 1b Adopting soil characteristics parameters of SiBUC
2a Reducing soil depth 2b Increasing soil depth
3a Combining 1a and 2a 3b Combining 1b and 2b
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In addition, emulation model development helps identify
model settings impacts and understand the causes of disparities
among LSMs. Although the emulation model could mimic simi-
lar features of the MRI-SiB runoff, it could not precisely repro-
duce the MRI-SiB water budget. Consequently, the performance
of the emulation model, which tended to overestimate the origi-
nal MRI-SiB runoff, influenced the MRI-SiB emulation’s find-
ings in reproducing the actual river flow. Further studies would
need to clarify the assessment results and the proposed improve-
ment to the original MRI-SiB embedded in MRI-AGCM 3.2S.

Moreover, the enhancement strategies proposed in this study
are based only on the existing schemes (parameters or struc-
tures) of the model involved. Future research should test some
new schemes, such as integrating groundwater flow, incorporat-
ing lateral flow, and addressing the heterogeneity of the soil
profile, to obtain a more robust performance.

The bias of the simulated discharge may also be inherited
from the satellite rainfall bias or the atmospheric reanalysis
datasets. Several measures can reduce the uncertainties pro-
vided by the input data, such as bias correction of satellite
rainfall or using rainfall data from multiple sources. However,
such consideration is beyond the scope of this study.

Furthermore, we only tested this method in a selected basin
with distinct dry and rainy seasons.When applied to another basin
with different geography and climate features, such as snowfall or
aridity, the performance of each LSMmay vary.Applying this ap-
proach to other basins should be beneficial in further discovering
model strengths and weaknesses. However, the strategy to de-
velop an emulation model may differ because the key mecha-
nisms driving runoff may vary. For instance, in a basin where
snowmelt dominates the river discharge, the phase change of pre-
cipitation or other essential elements should be considered.

7. Conclusions

We developed and used a new methodology for model
comparison to improve the accuracy of LSM runoff-based
streamflow simulations. Unlike conventional intercomparison
methods, which mainly focus on finding differences in model
output and evaluating model performance, the proposed
method can determine why the differences exist and provide
feedback for improvement.

In particular, we investigated the reasons for the output differ-
ences between LSMs by examining the impacts of model settings
by transferring certain settings from one LSM to another. Once
the model that incorporated the settings of another model was
able to duplicate similar characteristics of certain target outputs of
the other LSM, we could discover the model setting with substan-
tial impacts on the LSM behavior and the reason for the output
discrepancies. The iterative process of adopting and investigating
model-settings effects is developing an emulationmodel.

We applied the developed approach using two Simple Bio-
sphere model–based LSMs: SiBUC and MRI-SiB, to improve
the accuracy of the runoff-based simulated streamflow in the
upper part of the Ping River basin, Thailand. The variations in
model settings between the two LSMs were investigated by
constructing an MRI-SiB emulation model. This was done
by adopting MRI-SiB settings in SiBUC until SiBUC could

reproduce similar features to those of MRI-SiB runoff. The
runoff features produced by the two LSMs varied: SiBUC
tended to predict a larger surface runoff than MRI-SiB,
whereas subsurface runoff was predominantly produced by
MRI-SiB. One explanation for such variations is that MRI-SiB
has a larger infiltration capacity owing to its higher hydraulic
conductivity and a direct infiltration structure into deep soil,
resulting in most runoff being subsurface runoff.

The differences in runoff characteristics affect the simulated
discharge, particularly the lag time and peak volume. In the
case of severe rainfall events with little antecedent rainfall, the
peak discharge predicted by SiBUC runoff was generated rap-
idly and at a high volume because of surface runoff generation.
In contrast, MRI-SiB peak discharge was produced with a sub-
stantially longer lag time and lower peak volume because most
of the precipitation was used to saturate the soil.

Overall, the discharge simulated using both settings repro-
duced the seasonal patterns of the observed flow. However,
the MRI-SiB emulation had a more significant bias, which
may be affected by the tendency of the emulation model to
overstate the runoff of the original MRI-SiB. Furthermore, we
made some suggestions for enhancing their performance. For
instance, SiBUC, which generated excessive surface runoff,
produced a significantly faster and greater peak discharge than
that was observed during the dry year. Therefore, integrating
a structure for direct infiltration into a deep soil layer and re-
ducing the soil thickness can reduce surface runoff while in-
creasing subsurface runoff, resulting in a longer lag time and
reducing the peak volume bias. Conversely, MRI-SiB simu-
lated discharge, mainly from subsurface runoff, tended to un-
derestimate the observation significantly during the transition
from dry to wet seasons. This shortcoming could be alleviated
by reducing infiltration rates by adjusting the soil parameters
based on soil type to increase the discharge during this period.

The proposed method can adequately identify the disparity
between the runoff outputs of LSMs and the cause. It can also
improve the reproducibility of the hydrological characteristics
of observed discharge in this basin. However, the method has
only been tested on LSMs with similar schemes, and the pro-
posed improvement follows the existing schemes of the partic-
ipating models. Future research should apply this method to
more diverse LSMs, consider new schemes for more robust
performance, and implement this method in a different basin
with diverse geography and climate factors.
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APPENDIX A

LSM Performance in Reproducing Observed
River Discharge

The models employed in this study have their advantages
and limitations in reproducing observed river discharge.
Figure A1 compares a 10-yr-mean (1994–2003) monthly ob-
served inflow at the Bhumibol Dam outlet to discharge esti-
mated by MRI-SiB and SiBUC runoff driven by MRI-AGCM
3.2S atmospheric output. Overall, the SiBUC runoff simulates

streamflow well; however, there is a significant underesti-
mation of the September peak flow. Compared to that of
SiBUC, the MRI-SiB peak discharge is closer to observa-
tion despite mostly showing a lower discharge. To enhance
the SiBUC performance, we selected SiBUC to emulate MRI-
SiB to discover which runoff generation processes affect these
differences and to alleviate SiBUC limitation by incorporating
MRI-SiB advantages.

APPENDIX B

Spatial Pattern of the Total Soil Depth

Figure B1 shows a spatial pattern of total soil depth of
MRI-SiB and SiBUC for simulations in section 4 and experi-
ments 2 and 3 in section 5.

APPENDIX C

Effects of Model Settings on Energy Budget

Figure C1 shows the climatological mean of the energy
budget driven by MRI-AGCM 3.2S (section 4) and observed
forcing (section 5). When the model settings were modified,
both latent and sensible heat fluxes changed slightly. The
Bowen ratio (B), which represents the ratio of sensible to la-
tent heat, expresses the partitioning of the net radiation at a
surface. A study by Kim et al. (2014) reported that the mean
monthly Bowen ratio in the northern Thailand varies with
seasons: in wet seasons, the range of B is 0.25 6 0.08,
whereas, in dry seasons, it is 0.83 6 0.28. Based on this report,
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FIG. A1. Comparison of a 10-yr-mean (1994–2003) monthly ob-
served inflow at the Bhumibol Dam outlet (black line) and dis-
charge simulated by MRI-SiB runoff (green) and SiBUC runoff
(red) driven by MRI-AGCM 3.2S atmospheric output.

FIG. B1. Spatial pattern of total soil depth of (a) MRI-SiB, (b) SiBUC, and (c) modified depth of experiments 2 and 3 in section 5.
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the energy fluxes estimated by changing the model settings in
this study appear to be within a reasonable range.

APPENDIX D

Performance Indices

We used the following indices to evaluate the simulated
daily discharge over 10 years. In the following equations, Mi

and Oi represent the simulated and observed discharges, re-
spectively, and M and O represent the mean value of each.

a. Nash–Sutcliffe efficiency

The NSE is a popular metric for evaluating the perfor-
mance of hydrological models, calculated as one minus the
model’s error variance divided by the variance of the observa-
tion. The NSE values range from 2‘ to 1, with one being the
best fit and values less than zero indicating poor performance:

NSE 5 1 2

∑
N

i51
(Oi 2 Mi)2

∑
N

i51
(Oi 2 O)2

:

b. Root-mean-square coefficient–observations standard
deviation ratio

The RSR was calculated as the ratio of the root-mean-square
error and standard deviation of measured discharge. It had a
best RSR value of 0, with lower scores indicating better model
performance:

RSR 5

�������������������
∑
N

i51
(Oi 2 Mi)2

√
������������������
∑
N

i51
(Oi 2 O)2

√ :

c. Bias

Bias is the difference between the predicted and observed
streamflow and indicates whether the simulated value is greater
or less than the reference value. It had an optimal value of zero:

bias 5
∑
N

i51
(Mi 2 Oi)

∑
N

i51
Oi

:

d. Coefficient of variation

The CV of a time series is the ratio of the standard devi-
ation d to the mean of that time series. The equation below
is the d of the time series of simulated discharge (dM), and
the observed discharge was calculated in the same manner:

CVM 5
dM
M

, dM 5

����������������������������
1

N 2 1
∑
N

i51
(Mi 2 M)2

√
:

e. Pearson correlation coefficient

The r calculates the degree of a linear relationship be-
tween observed and simulated data. If r 5 0, no linear rela-
tionship exists, whereas if r 5 1 or 21, there is a perfect
positive or negative linear relationship:

r 5
1

N 2 1

∑
N

i51
(Mi 2 M)(Oi 2 O)

dMdO
:

f. Kling–Gupta efficiency

The KGE assesses the agreement between the simulated
and observed discharge. It divides the mean squared model
error into three parts: r, the variability ratio of the simulated
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FIG. C1. The 10-yr-mean energy budget (Wm22) driven by (a) MRI-AGCM 3.2S and (b) observed forcing. The brown and green bars repre-
sent the latent heat (Qle) and sensible heat (Qh), respectively. The points represent the Bowen ratio (sensible heat to latent heat ratio).
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to observed discharge, and the bias of the simulated dis-
charge. Each of these elements has an ideal value of one:

KGE 5 1 2

������������������������������������������������
(r 2 1)2 1 CVM

CVO

2 1

( )2
1

M

O
2 1

( )2√√√
:
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