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Abstract

Background: This paper presents a portable phenotyping system that is capable of integrating both rule-based

and statistical machine learning based approaches.

Methods: Our system utilizes UMLS to extract clinically relevant features from the unstructured text and then

facilitates portability across different institutions and data systems by incorporating OHDSI’s OMOP Common Data

Model (CDM) to standardize necessary data elements. Our system can also store the key components of rule-based

systems (e.g., regular expression matches) in the format of OMOP CDM, thus enabling the reuse, adaptation and

extension of many existing rule-based clinical NLP systems. We experimented with our system on the corpus from

i2b2’s Obesity Challenge as a pilot study.

Results: Our system facilitates portable phenotyping of obesity and its 15 comorbidities based on the unstructured

patient discharge summaries, while achieving a performance that often ranked among the top 10 of the challenge

participants.

Conclusion: Our system of standardization enables a consistent application of numerous rule-based and machine

learning based classification techniques downstream across disparate datasets which may originate across different

institutions and data systems.

Introduction

The Electronic Health Record (EHR) is often described

as “a longitudinal electronic record of patient health

information generated by one or more encounters in any

care delivery setting. Included in this information are

patient demographics, progress notes, problems, medica-

tions, vital signs, past medical history, immunizations,

laboratory data and radiology reports.” [1] As medical

care becomes more data-driven and evidence-based,

these EHRs become essential sources of health informa-

tion necessary for decision-making in all aspects of pa-

tient assessment, phenotyping, diagnosis, and treatment.

These EHRs contain both a) structured data such as

orders, medications, labs, diagnosis codes and unstruc-

tured data such as textual clinical progress notes, radi-

ology and pathology reports. While structured data may

not require significant preprocessing to derive know-

ledge, Natural Language Processing (NLP) techniques

are commonly used to analyze unstructured data. This un-

structured data can feed into a variety of secondary ana-

lysis such as clinical decision support, evidence-based

practice and research, and computational phenotyping for

patient cohort identification [2, 3]. Additionally, manual

labeling of a large volume of unstructured data by the

experts can be very time-consuming and impractical when

used across multiple data sources. Automated information

extraction from unstructured data through NLP provides

a more efficient and sustainable alternative to the manual

approach [2].
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As summarized in a 2013 review by Shivade et al. [4],

early computational phenotyping studies were often for-

mulated as supervised learning problems wherein a

predefined phenotype is provided, and the task is to con-

struct a patient cohort matching the definition’s criteria.

Unstructured clinical narratives may summarize patients’

medical history, diagnoses, medications, immunizations,

allergies, radiology images, and laboratory test results, in

the form of progress notes, discharge reports etc. and

provide a valuable resource for computational pheno-

typing [5]. While we refer the readers to reviews such

as [4, 6] for more details on phenotyping methods, we

point out that information heterogeneity in clinical narra-

tives asks for development of portable phenotyping algo-

rithms. Boland et al. [7] highlighted the heterogeneity

apparent in clinical narratives due to the variance in physi-

cians’ expertise and behaviors, and institutional environ-

ments and setups. Studies have applied Unified Medical

Language System (UMLS) or other external controlled

vocabularies to recognize the various expressions of

the same medical concept and standard UMLS anno-

tations are generally considered a must for portable

phenotyping [8, 9].

Our main aim was to introduce portability to the on-

going research efforts on NLP-driven phenotyping of

unstructured clinical records. To this end, we leveraged

a well-defined phenotyping problem, i2b2 Obesity Chal-

lenge, to perform a pilot study and introduced new steps

to this multi-class and class-unbalanced classification

problem for portability. We extracted structured infor-

mation from 1249 patient textual discharge summaries

by parsing each record through a context-aware parser

(MetaMap [10]) and mapped all of the extracted features

to UMLS’s Concept Unique Identifiers (CUIs). Meta-

Map’s output was then stored in a MySQL database

using the schemas defined in the Observational Medical

Outcomes Partnership (OMOP) Common Data Model

(CDM), a data standardization model championed by

the Observational Health Data Sciences and Informatics

(OHDSI) collaborative.

We recognize the usefulness of existing rule-based

(e.g., RegEx-driven) NLP systems and enable our system

to introduce/improve their portability by storing key

components of rule-based NLP systems as stand-off

annotations [11] using the format defined in the OMOP

CDM. We explore the tradeoff between phenotyping ac-

curacy and portability, which has been largely ignored

but of critical importance. We evaluated a combination

of rule-based (RegEx-driven) and machine learning

approaches to assess the trade-off through an iterative

manner for obesity and its 15 comorbidities. We ran

four types of machine learning algorithms on our

dataset, and conducted multiple iterations of optimiza-

tions for a balanced trade-off between classification

performance and portability. In particular, Decision Tree

resulted in the best performance with the F-Micro score

for intuitive classification at 0.9339 and textual classifica-

tion at 0.9546 and the F-Macro score for intuitive classi-

fication at 0.6509 and textual classification at 0.7855.

Methods

Our portable NLP system is based on sequential activ-

ities that form an NLP pipeline with six major compo-

nents: a) Data Preparation and Environmental Setup, b)

Section and Boundary Detection, c) Annotation Feature

Extraction and Mapping, d) Regular Expression matches

as Annotations, e) Classification and f) Performance

Tuning.

Environmental setup and data preparation

Data preparation, as often is the case, can be the most

time-consuming part of any data analytics project and

our system development journey was not an exception

to the rule. Our dataset, a single file with textual

discharge summaries of 1249 patients, needed data

clean-up and data staging for further data reduction. In

the data clean-up step, we identified multiple abbrevia-

tions that were used to explain clinical or demographical

features within our master file. While these abbrevia-

tions are useful for expediting the note taking process,

they need to be translated back to full terms for the

context-aware MetaMap parser to properly label them

as a medical concept. For this deabbreviation, we used

popular deabbreviation Perl script that was created by

Solt et al. [12]. The Perl script relies on Regular Expres-

sion (RegEx) pattern matching and replacement to deab-

breviate terms back to long form. However, the script

required us to first convert our text file into XML

format. For this, we created a Python script to read each

record and convert it to an XML document.

The next step was to split the master file into individ-

ual patient records. We utilized Python and RegEx to

search for the end of record tags and utilized that infor-

mation to formulate new files for each record. Individual

patient files are required by MetaMap as it tracks the

position of each concept from the start of each patient

record. Our end of record keyword was ‘[record_end]’

that facilitated boundary detection and the downstream

split into new files. A master file with 1249 patient

records has been split into 1249 individual patient files.

Section and boundary detection

Post data-preparation, our goal was to obtain a certain

structure from the unstructured data. Upon visual inspec-

tion of patient documents, we observed the presence of

sections within each document such as ‘PRINICIPAL

DIAGNOSIS’ and ‘HISTORY OF PRESENT ILLNESS’.

Based on our clinical knowledge and visual inspection of
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our records, we compiled a list of 15 such sections with

section heading and an auto-generated unique section id.

Each patient record was then parsed using string match-

ing in Python against the compiled dictionary to detect

section boundary.

For each of the 1249 patient files, we conducted string

matching from the list of pre-coded sections mentioned

above. Once a section heading was detected, we noted

the index of the section start position (i.e. section1start).

We continued to parse the file until we identify the

starting index of a new section (i.e. section2start). There-

fore, the section1end boundary was defined as section2-

start – 1. We retained all identified sections and their

boundaries for each record temporarily in our Python

code.

Annotation feature extraction and mapping

MetaMap is an excellent tool that can map clinical text

to the UMLS Metathesaurus concepts, which can be

regarded in general as NLP (automated) annotations.

MetaMap uses a knowledge-intensive approach based on

symbolic, NLP and computational-linguistic techniques

[10]. Each patient file (Fig. 1) was sequentially passed

through the MetaMap parser and its output was stored

in individual output files (Fig. 2). We then mapped rele-

vant MetaMap output elements to the OMOP CDM

“Note_NLP” Table 1.

By utilizing the Common Data Model, we introduced

standardization and portability in our system. Our

system then sequentially parses each output file to load

identified concepts (CUIs) including their offset (pos-

itional index) into the database. Then each loaded row,

based on the offset, gets assigned to a specific section id.

It is important to tag concepts to specific sections

because based on the section, that concept may or may

not be included as a feature for the classification.

Regular expression matches as annotations

Rule-based systems, and in particular systems that use

regular expressions, often prove to be highly effective in

tackling medical NLP problems. For example, in the

i2b2 Obesity challenge, Solt et al. [12] built a completely

rule-based system that ranked first place in the intuitive

task and second place in the textual task and overall first

place. We value the usefulness of many existing

rule-based systems and recognize the importance to

introduce or improve their portability for them to be

reused, adapted or extended to new corpora or pheno-

typing problems. This motivates us to store the key

components (e.g., regular expression matches) as anno-

tations in a common data format. For a medical record,

there usually are a number of words or sentences in the

record that highly suggest its category, while most of the

other words or sentences are uninformative or even

misleading. For example, if we capture a phrase “no evi-

dence of coronary artery disease” from the record, it

should probably be assigned as ‘Absent’ of CAD. We

want to record the position of the key sentences or

phrases that can help to make the classification decision.

As Solt’s rules [12] can achieve better classification re-

sults, we follow Solt’s rule to match the category-related

words or sentences. We additionally record the position

of the key words or phrases when matching a RegEx,

which can help to locate the key words in the original

medical record. Solt’s did not record the location of the

word, he just removed the matched phrase from the ori-

ginal document for the next step match. This would

change the position of the words and will make the re-

cording of the original position difficult. For example,

the Q-classifier-based rules remove the uncertainty

phrases from a document before the document goes to

the N-classifier for ‘Absent’ classification. Thus, when we

record the position of an ‘Absent’-related word, it is no

longer the position in the original record. To overcome

the difficulty of recording word positions in the original

document, instead of removing the matched RegEx, we

replace the matched RegEx with a blank string of the

same length to keep document length unchanged. Then,

successive RegEx match can record the position of a

word in the original text. Our word position recording

process together with the document annotation process

is outlined in Fig. 3. Figure 3 recaps the rule-based

classification in Solt’s paper [12], and further adds our

regular expression match location algorithms in order to

persist the RegEx matches to OMOP CDM tables. Our

design can take as input any text span. For any text span

passed to the system, our algorithm will return the regu-

lar expression match position in this text span.

Fig. 1 A snippet of the patient input file
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For each document, there can be 3 tables to save the

key phrases corresponding to ‘Questionable’, ‘Absent’ and

‘Present’. For each of the tables, there are 3 fields de-

scribed as follows.

� disease: the name of the disease.

� dis_alias: the matched alias name of the disease.

� dis_pos: the matched position of this match in the

original document (start and end position by

character offset).

For ‘Questionable’ and ‘Absent’ categories, the context

of the matched disease alias is also very important. The

matched RegEx should be in a sentence related to uncer-

tainty or negation respectively. Thus, we add two more

fields in the tables for words related ‘Questionable’ and

‘Absent’ to save the context of the matched RegEx. The

two fields are described as follows.

� sentence: the sentence or phrase containing this

match.

� sen_pos: the position of this sentence or phrase in

the original document (start and end position by

character offset).

Figure 4 shows a sample of the three tables. From these

three tables, we can easily populate the OMOP CDM’s

“NOTE_NLP” Table 1. For example, columns offset (in the

whole record) and snippet are readily computed from

dis_pos and sen_pos. The column lexical_variant can be

populated with dis_alias.

Classification

Since rule-based (RegEx-driven) approaches are regarded

less portable between different EHR systems, we develop

a machine learning based approach to improve the port-

ability, and evaluated a range of rule-based approaches,

machine learning algorithms and their mixtures to assess

the trade-off between phenotyping accuracy and

portability.

For each patient record, we obtain all the CUIs from

the MetaMap parser. We then count the number of each

CUI. This will represent the frequency of occurrence of

the CUI in a medical record and serves as a feature of

the record. Thus, we can construct the feature matrix

based on the records and their corresponding CUIs’ fre-

quency. We train a classification model on this feature

matrix and the labels corresponding to training records

and then evaluate the model using the feature matrix

corresponding to the test records. In our experiment

tasks, the class labels are ‘Present’, ‘Absent’ and ‘Ques-

tionable’ for intuitive judgments, and ‘Present’, ‘Absent’,

‘Questionable’ and ‘Unmentioned’ for textual judgments.

To systematically evaluate the trade-off between model

accuracy and portability on these data, we implement

four classification methods for the classification tasks,

Fig. 2 A snippet of MetaMap output record

Table 1 Note_NLP table data elements

Column name Description

note_nlp_id A unique identifier for each term extracted from a note. A randomly generated
auto-incremented number.

note_id A foreign key. The note_id from the Note table from the note the term was
extracted from.

section_concept_id The representation of the section that extracted concept belongs to.

snippet A small window of the text that extracted concepts belong to.

offset Provided by the MetaMap in the output file.

lexical_variant The actual phrase text that MetaMap generates.

note_nlp_concept_id The concepts or CUIs.

nlp_system NLP tool.

nlp_date_time Date and Time of creation/running
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i.e., logistic regression (LR) [13], support vector machine

(SVM) [14], decision tree (DT) [15, 16] and random

forest (RF) [17].

Performance tuning

For the classifiers, there are some parameters to be

tuned to get better classification results. In our experi-

ments, the parameters of the classifiers are tuned by the

3-fold cross-validated grid-search over a parameter grid

[18, 19]. For the 4 classifiers we implemented, their

parameter grids are defined in Table 2. For each classi-

fier, we performed the classification for six iterations to

find a better configuration for classification: a) with all

CUIs, b) eliminate features from unnecessary sections, c)

restrict features from clinically relevant semantic types;

restrict classification to classes with statistically signifi-

cant samples and then again run d) classification with all

CUIs, e) eliminate features from unnecessary sections,

and f ) restrict features from clinically relevant semantic

types.

Results and discussion

In our experiments, the classification performances were

evaluated using micro- and macro-averaged precision

(P), recall (R), and F-measure (F) [20]. Because the ma-

chine learning methods may not very effective for small

sample classifications, we conducted two experiments

for classification for all classes and only for the major

(more populated) classes, respectively, and compared

their results. In the case of classification for all classes,

this setting uses standard UMLS CUI features to classify

all classes for all disease phenotypes, and is considered

most portable. On the contrary, entirely using Solt’s

rule-based system is considered the least portable as it

Fig. 3 The word position recording process in our work
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contains the most amount of customization (and cer-

tainly it produces the top results among challenge par-

ticipants). In the middle of the spectrum, there is the

case of classification only for the major classes, as it in-

tegrates rule-based features using a minimal principle

(where there is simply not enough training data) while

retaining the standard annotation features as much as

possible. Much of our results and discussions should be

interpreted in the context of exposing the trade-off be-

tween portability and accuracy, as well as the parameter

optimization when taking the middle-ground approach

of combining rule-based features and standard UMLS

CUI features.

Classification for all classes

Based on the above settings we obtain the classification

results for all CUIs in Table 3 (We only list the overall

classification results here). From Table 3, we find that

decision tree can achieve the best classification results

among these classifiers.

To disclose how a section (e.g. Family History) in the

records can affect the classification results, we filter out

the family history related CUIs and perform the classifi-

cations. The results are listed in Table 4. Comparing

Tables 3 and 4, all the classifiers except LR can achieve

higher performances without the family history than per-

formances with it, which may indicate that family history

may mislead the classification when only considering the

record text for classification.

We also conduct experiments on a list of selected

CUIs without family history. We restrict our features in

15 types of CUIs which are considered most related to

clinical tasks, based on clinical experiences [21] (Table 5).

The classification results are shown in Table 6. Compar-

ing Tables 4 and 6, except for DT which can achieve the

highest performances among the 4 classifiers, all other

classifiers can achieve better classification performances

Fig. 4 A sample of the matched regex tables. a the table for words related to ‘Questionable’; (b) the table for words related to ‘Absent’; (c) the

table for words related to ‘Present’

Table 2 The parameter grids for grid search

Classifier Parameter grid

LR ‘C’:[0.01,0.1,1,10,100]

SVM ‘C’:[0.01,0.1,1,10,100],
‘kernel’:[‘linear’, ‘rbf’]

DT ‘criterion’:[‘gini’,'entropy’]

RF ‘n_estimators’:[5,10,30,50,80,100],
‘criterion’:[‘gini’,'entropy’]

Table 3 The classification results on all CUIs corresponding to

the original records

P-Micro P-Macro R-Micro R-Macro F-Micro F-Macro

Intuitive

LR 0.8719 0.5792 0.8719 0.5509 0.8719 0.5618

SVM 0.8727 0.5776 0.8727 0.5537 0.8727 0.5632

DT 0.9281 0.6113 0.9281 0.6116 0.9281 0.6115

RF 0.8524 0.5626 0.8524 0.5349 0.8524 0.5454

Textual

LR 0.8846 0.4379 0.8846 0.4195 0.8846 0.4268

SVM 0.8886 0.4384 0.8886 0.4243 0.8886 0.4300

DT 0.9436 0.5127 0.9436 0.5115 0.9436 0.5121

RF 0.8621 0.4220 0.8621 0.4044 0.8621 0.4112

For each task, the best results are bolded

Sharma et al. BMC Medical Informatics and Decision Making 2019, 19(Suppl 3):78 Page 84 of 114



than the performances with all CUIs. This may indicate

that the 15 clinically relevant semantic types of CUIs are

quite informative for classification.

Classification for major classes

Though machine learning based approaches are port-

able, compared with the total rule-based classification

results listed in Table 7, total machine learning based

classification cannot achieve good performance. Hence,

we may combine rule-based approaches and machine

learning algorithms to balance the classification per-

formance and portability.

Due to the limitation of machine learning methods on

small samples, in this section, we perform the classifica-

tion only on the major classes that have enough samples

to train a machine learning model. The class labels of

the minor classes that have only a few samples are gen-

erated following Solt’s rule-based method [12]. For intui-

tive judgments, we only use the ‘Present’ and ‘Absent’

records in the training data to train the classification

model. For textual judgments, we only consider the

‘Present’ and ‘Unmentioned’ records. The classification

results for major classes can be found in Tables 8, 9

and 10 corresponding to results for all the original

CUIs, all the CUIs without family history and the se-

lected 15 types of CUIs without the family history. In

Tables 8, 9 and 10, the best results are bolded, and

the underlined results can achieve the top 10 results

reported in [20].

From Tables 8, 9 and 10, we can draw a consistent

conclusion with previous analysis that the Family

History section may mislead the classification and

the 15 clinically relevant semantic types of CUIs can

be useful for these classifiers except DT. In addition,

by combining the rule-based approach and machine

learning based approaches, we can achieve a com-

parable classification performance with the total

rule-based approach, and more importantly, this

method can be portable between different EHR sys-

tems. This is as expected due to the limitation of

machine learning methods on small samples. Thus,

in our portable phenotyping system, we can use the

rule-based method for the minor class classification

and use machine learning methods for the major

class classification. In the future, we plan to explore

Table 4 The classification results without family history related

CUIs

P-Micro P-Macro R-Micro R-Macro F-Micro F-Macro

Intuitive

LR 0.8716 0.5794 0.8716 0.5503 0.8716 0.5615

SVM 0.8735 0.5780 0.8735 0.5546 0.8735 0.5640

DT 0.9331 0.6159 0.9331 0.6149 0.9331 0.6154

RF 0.8627 0.5685 0.8627 0.5462 0.8627 0.5551

Textual

LR 0.8836 0.4372 0.8836 0.4189 0.8836 0.4262

SVM 0.8895 0.4391 0.8895 0.4248 0.8895 0.4306

DT 0.9475 0.5284 0.9475 0.5199 0.9475 0.5238

RF 0.8618 0.4210 0.8618 0.4049 0.8618 0.4112

For each task, the best results are bolded

Table 5 Fifteen semantic types selected for clinical feature

representations [21]

CUI Semantic group Semantic type description

T017 Anatomy Anatomical Structure

T022 Anatomy Body System

T023 Anatomy Body Part, Organ, or Organ Component

T033 Disorders Finding

T034 Phenomena Laboratory or Test Result

T047 Disorders Disease or Syndrome

T048 Disorders Mental or Behavioral Dysfunction

T049 Disorders Cell or Molecular Dysfunction

T059 Procedures Laboratory Procedure

T060 Procedures Diagnostic Procedure

T061 Procedures Therapeutic or Preventive Procedure

T121 Chemicals & Drugs Pharmacologic Substance

T122 Chemicals & Drugs Biomedical or Dental Material

T123 Chemicals & Drugs Biologically Active Substance

T184 Disorders Sign or Symptom

Table 6 The classification results without family history on 15

types of selected CUIs

P-Micro P-Macro R-Micro R-Macro F-Micro F-Macro

Intuitive

LR 0.9024 0.6040 0.9024 0.5763 0.9024 0.5874

SVM 0.9077 0.6055 0.9077 0.5831 0.9077 0.5924

DT 0.9299 0.6131 0.9299 0.6129 0.9299 0.6130

RF 0.8784 0.5849 0.8784 0.5559 0.8784 0.5671

Textual

LR 0.9145 0.4560 0.9145 0.4410 0.9145 0.4472

SVM 0.9227 0.5832 0.9227 0.4532 0.9227 0.4607

DT 0.9452 0.4878 0.9452 0.4785 0.9452 0.4807

RF 0.8830 0.4353 0.8830 0.4195 0.8830 0.4258

For each task, the best results are bolded

Table 7 The best rule-based classification results reported in

[20]

P-Micro P-Macro R-Micro R-Macro F-Micro F-Macro

Intuitive 0.9590 0.7485 0.9590 0.6571 0.9590 0.6745

Textual 0.9756 0.8318 0.9756 0.7776 0.9756 0.8000
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whether a richer CDM may help improve the com-

putational phenotyping performance [22].

Conclusion

Recently, increasing amount of patient data is becoming

electronically available. To handle the explosion of EHR

data, healthcare professionals and researchers will

increasingly rely on automated or semi-automated com-

putational techniques to derive knowledge from these

data. Significant effort has been devoted to the imple-

mentation of open-sourced, standard-based systems to

improve the portability of electronic health record

(EHR)-based phenotype definitions (e.g., eMERGE

[23] and PhEMA [24]). We developed a portable

phenotyping system that is capable of integrating both

rule-based and statistical machine learning based phe-

notyping approaches. Our system can mine and store

both standard UMLS features and the key features of

rule-based systems (e.g., regular expression matches)

from the unstructured text as NLP annotations using

the format defined by the OMOP CDM, in order to

standardize necessary data elements. Comparing to

file system based pipelines such as UIMA CAS stacks

and BioC, the OMOP CDM uses a database as the

persistent storage and has the advantages offered by

database management systems. This includes

well-defined schemas, remote queries and query opti-

mizations. We demonstrated that we can store NLP

annotations including those from concepts from

standard pipelines (e.g., MetaMap), regular expression

matches, and section annotations in CDM tables,

which can later be used for computational phenotyp-

ing. Our system can thus enable the development of

new standard UMLS feature-based NLP systems as

well as the reuse, adaptation and extension of many

existing rule-based clinical NLP systems. Given the

highly variable nature of unstructured biomedical data

and evolving machine learning techniques, future re-

searchers may also benefit from adopting a similar it-

erative approach to optimizing their classification and

by using mixed classification methods. However, vari-

ation in data models and coding systems used at dif-

ferent institutions make it difficult to conduct a

large-scale analysis of observational healthcare data-

bases. Our system is a first step to address that prob-

lem and enhances its portability by utilizing the

OMOP CDM and its standardized terminologies.

Once data (raw input and processed output) from

multiple sources get harmonized into the Common

Data Model, researchers can conduct systematic ana-

lysis at a larger scale to perfect these new secondary

research techniques in biomedical data mining, Nat-

ural Language Processing, Machine Learning etc. By

breaking down the barriers of institutional variability

with portable systems and standardized terminologies,

we can unlock the hidden potential in our biomedical

and health data. We note that we have not explored

Table 8 The classification results for major classes on all CUIs

corresponding to the original records

P-Micro P-Macro R-Micro R-Macro F-Micro F-Macro

Intuitive

LR 0.8709 0.6457 0.8709 0.5733 0.8709 0.5960

SVM 0.8724 0.6444 0.8724 0.5770 0.8724 0.5981

DT 0.9311 0.6804 0.9311 0.6374 0.9311 0.6488

RF 0.8466 0.6226 0.8466 0.5559 0.8466 0.5765

Textual

LR 0.8882 0.7846 0.8882 0.7085 0.8882 0.7397

SVM 0.8930 0.7858 0.8930 0.7135 0.8930 0.7434

DT 0.9545 0.8167 0.9545 0.7636 0.9545 0.7854

RF 0.8882 0.7846 0.8882 0.7085 0.8882 0.7397

For each task, the best results are bolded. The underlined results can achieve

the top 10 results reported in [20]

Table 9 The classification results for major classes without

family history related CUIs

P-Micro P-Macro R-Micro R-Macro F-Micro F-Macro

Intuitive

LR 0.8723 0.6473 0.8723 0.5741 0.8723 0.5970

SVM 0.8732 0.6448 0.8732 0.5780 0.8732 0.5989

DT 0.9339 0.6829 0.9339 0.6392 0.9339 0.6509

RF 0.8559 0.6317 0.8559 0.5623 0.8559 0.5838

Textual

LR 0.8886 0.7854 0.8886 0.7083 0.8886 0.7398

SVM 0.8938 0.7865 0.8938 0.7139 0.8938 0.7439

DT 0.9546 0.8164 0.9546 0.7640 0.9546 0.7855

RF 0.8640 0.7665 0.8640 0.6934 0.8640 0.7233

For each task, the best results are bolded. The underlined results can achieve

the top 10 results reported in [20]

Table 10 The classification results for major classes without

family history on the 15 types of selected CUIs

P-Micro P-Macro R-Micro R-Macro F-Micro F-Macro

Intuitive

LR 0.9001 0.6695 0.9001 0.5979 0.9001 0.6206

SVM 0.9074 0.6725 0.9074 0.6065 0.9074 0.6274

DT 0.9285 0.6783 0.9285 0.6355 0.9285 0.6467

RF 0.8690 0.6417 0.8690 0.5740 0.8690 0.5952

Textual

LR 0.9188 0.8037 0.9188 0.7303 0.9188 0.7608

SVM 0.9273 0.8060 0.9273 0.7388 0.9273 0.7669

DT 0.9538 0.8160 0.9538 0.7633 0.9538 0.7849

RF 0.8864 0.7823 0.8864 0.7081 0.8864 0.7386

For each task, the best results are bolded. The underlined results can achieve

the top 10 results reported in [20]
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how the CDM can be applied to tasks other than

phenotyping/classification tasks and will leave it as fu-

ture work to explore how CDM can lend value to

other types of tasks as well.
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