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Abstract: Digital Holographic Tomography (DHT) has recently been established as a means of
retrieving the 3D refractive index mapping of single cells. To make DHT a viable system, it is
necessary to develop a reliable and robust holographic apparatus in order that such technology can be
utilized outside of specialized optics laboratories and operated in the in-flow modality. In this paper,
we propose a quasi-common-path lateral-shearing holographic optical set-up to be used, for the first
time, for DHT in a flow-cytometer modality. The proposed solution is able to withstand environmental
vibrations that can severely affect the interference process. Furthermore, we have scaled down the
system while ensuring that a full 360◦ rotation of the cells occurs in the field-of-view, in order to
retrieve 3D phase-contrast tomograms of single cells flowing along a microfluidic channel. This was
achieved by setting the camera sensor at 45◦ with respect to the microfluidic direction. Additional
optimizations were made to the computational elements to ensure the reliable retrieval of 3D refractive
index distributions by demonstrating an effective method of tomographic reconstruction, based on
high-order total variation. The results were first demonstrated using realistic 3D numerical phantom
cells to assess the performance of the proposed high-order total variation method in comparison
with the gold-standard algorithm for tomographic reconstructions: namely, filtered back projection.
Then, the proposed DHT system and the processing pipeline were experimentally validated for
monocytes and mouse embryonic fibroblast NIH-3T3 cells lines. Moreover, the repeatability of these
tomographic measurements was also investigated by recording the same cell multiple times and
quantifying the ability to provide reliable and comparable tomographic reconstructions, as confirmed
by a correlation coefficient greater than 95%. The reported results represent various steps forward in
several key aspects of in-flow DHT, thus paving the way for its use in real-world applications.

Keywords: holographic microscopy; phase-contrast tomography; single-cells analysis

1. Introduction

Nowadays, the in-flow analysis of cellular populations is a fundamental step for a
whole host of technologies, ranging from well-established clinical trials to new tools that
are currently being developed. The gold standard in this field is the commercially available
Fluorescence-Activated Cell Sorter (FACS), which is a high-throughput flow cytometer
able to sort cell subpopulations with high efficiency [1]. FACS has high specificity, which is
based on the combined detection of morphological differences mainly obtained through
fluorescence labeling. The main drawbacks of marker-based technologies arise from the
a-priori knowledge of the targets to be labeled, the several biological protocols needed
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for sample preparation, and the massive use of chemical reagents. Moreover, the inva-
sive and destructive nature of staining processes constitutes a significant motivation for
researchers to develop label-free tools. Innovative no-contact and marker-free strategies
have been modeled and tested in microfluidics and optics [2–6], and are set to become the
key technologies in the biomedical field. Among them, Quantitative Phase Imaging (QPI)
is a promising technique because the retrieved images quantitatively measure the optical
thickness [7,8]. QPI technologies were first developed on adherent samples [9,10]. Never-
theless, in the last few years, the possibility of combining QPI with microfluidic strategies
for high-throughput screening has started to be investigated [11–14]. Basic QPI techniques
retrieve the integrated phase along the light-propagation direction, thus neglecting the 3D
sample structure. Deep and detailed insight into single-cell anatomy is feasible if methods
of phase-contrast tomography are incorporated, in order to exploit angular-dependent
observations of the studied specimen. In particular, Digital Holographic Tomography
(DHT) provides the 3D refractive index (RI) distribution of the investigated sample, as is
encoded within the measured optical path difference maps. Data processed in DHT consist
of multiple angular-dependent acquisitions of the sample, with the scanning realized by a
variable oblique illumination, a sample rotation, or a combination of both approaches, lead-
ing to improved resolution isotropy [15]. Standard experimental realizations of DHT are
mostly based on modifications of the Mach–Zehnder interferometer architecture [16–21].
In the case of the static illumination beam, the sample rotation approach is commonly
assumed. Recently, a completely new step forward has been demonstrated for obtaining
phase-contrast tomography images in a flow-cytometry modality by having cells flowing
along microfluidic channels [22–26]. The flowing cells can experience self-rotation, thanks
to the shear flow or rolling on the channel-side wall [24], allowing the 3D phase-contrast
tomography of every flowing cell within the field of view (FoV). This concept simplifies
tomographic microscopes to a remarkable degree, as the cell is probed along multiple direc-
tions as it passes through the FoV. The optical arrangement assumed in [26] is based on a
Mach–Zehnder interferometer. The main challenge is faces concerns the implementation
of a robust strategy for the rotation angle recovery [27] in order to apply the propagation
algorithms for 3D tomographic imaging, which is the slice-by-slice distribution of the RI
inside the volume of each flowing cell. Even if the target has been successfully achieved
in recent years, in-flow phase-contrast tomography requires a bulky setup, intended for
use in optical laboratories with highly skilled personnel; the main hardware equipment
is based on an oil-immersion 40x objective with a high numerical aperture (i.e., NA = 1.3)
and a 5120 × 5120 pixel camera for large FoV inspection [26], thus guaranteeing both
high-resolution and high-throughput imaging. Moreover, the main disadvantage of Mach–
Zehnder based optical systems concerns the independent optical paths of the mutually
coherent signal and reference waves that are subsequently mixed to create the interference
record. This approach exhibits high sensitivity to mechanical vibrations because both
separated waves face uncorrelated disturbances, causing additional amplitude-phase noise
during the recording of the interference pattern (i.e., the digital hologram). The loss of
temporal stability can be overcome by incorporating common-path approaches, where
interfering waves share identical or similar optical paths [28–30], thus compensating for
environmental vibrations. In common-path configurations, increased attention has to be
paid to designing a uniform reference wave, allowing for the primary classification of
common-path approaches [31–35] as point diffraction or lateral shearing, which are appro-
priate for compact optical systems. The Shearing Device (SD) is incorporated in lateral
shearing approaches, introducing the spatial carrier frequency and duplicating the FoV. A
portion of the observed area of the sample acts as a reference wave, thus just part of the
FoV is exploited, making these methods suitable for imaging spatially sparse and bounded
samples. Various SDs have been implemented, including a beam splitter with mirrors in
Michelson [36,37] or Sagnac [38] geometry, a thick glass plate [39–41], a specially oriented
beam splitter [42], a Wollaston prism [43], a beam displacer [44], a Rochon polarizer [29], a
Fresnel biprism [45], and diffraction grating [46]; here, the critical step was resolved, allow-
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ing the shearing distance to be adjusted independently on the interference fringes. Here,
we show a comprehensive approach for optimizing various critical issues of a DHT system
in combination with a microfluidic cytometer. In order to achieve a more compact and
easy-to-use device, the key issues are a long-working-distance objective, and a camera with
a relatively small sensor area and a lower recording frame rate than that of the previous
bulk configurations [26]. For the first time, we designed and tested an experimental layout
based on a quasi-common-path lateral-shearing architecture, which optimizes the optical
configuration for DHT in flow mode. Furthermore, we resolved particular computational
issues necessary for the accurate retrieval of 3D R-I tomograms. Experimental tests were
conducted on monocyte and mouse embryonic fibroblasts NIH-3T3 cells lines to validate
the overall system for DHT operation, i.e., to validate the combination of optical hardware
design and a new processing pipeline for tomographic reconstruction. Moreover, we found
a new experimental strategy for testing the system’s reliability by assessing the repeatability
of the DHT apparatus.

2. Materials and Methods
2.1. Experimental Setup

Figure 1 shows a simplified sketch of the implemented laboratory setup where the
spatially filtered and collimated laser beam (Sapphire SF, λ = 488 nm) illuminates the sample
inside the microfluidic chip (MC, Straight 4-channel Mini-Luer Chip (P/N 10000091)). The
MC is a part of the whole flow-cell unit (not fully sketched in Figure 1), consisting of
the pressure controller (Elbeflow OB1), which is linked to the plastic syringe with the
sample, thus serving as the input reservoir, the MC, the plastic outlet tube, and the waste
glass. The regular sample flow is achieved by employing the controller in the constant-
pressure mode. The flowing sample is subsequently imaged by a microscope objective (MO;
Nikon, 20×/0.50) directly into the plane of the camera’s chip (CMOS; UI-3370CP-M-GL,
2048 × 2048, 5.5 µm square pixels). Here, the SD consists of a beam splitter (BS) and two
mirrors M2 and M3; thus, two duplicated images of the studied sample are created. The first
image arises from the optical path BS→M2→BS, and the second arises following the path
BS→M3→BS. These two replicas are directed towards the camera with slightly different
inclination angles and lateral displacements, due to the different tilts of the mirrors M2
and M3. Consequently, a portion of the observed field (Figure 1a; area1) serves as a signal
beam, while the sample-free area in the replica (Figure 1a; area2) serves as a reference beam.
If the coherence conditions of the interfering waves are satisfied, the interference fringes
arise (Figure 1b), thus enabling single-shot off-axis holographic recordings and subsequent
numerical reconstructions. In the present experimental configuration, the lateral shift
among both replicated images is comparable to the dimensions of the used CMOS chip,
so only one of the replicas is observed in a snapshot image. However, in principle, it is
feasible to exploit both replicas to enhance the quality of the retrieved complex amplitude
of the studied object, as was proposed in [47]. The Iris diaphragm (I), inserted between
the MO and CMOS, reduces the amount of unwanted back-reflections and stray light. The
lateral magnification of the imaging system, measured by a positive USAF 1951 amplitude
line target, was established as 55, and the expected theoretical lateral resolution in the
object space can be approximated as 0.82λ/NA ≈ 0.8 µm. In the proposed setup, the
channel is tilted with respect to the camera; thus, the flow direction of the cell in Figure 1b
(highlighted in yellow) is tilted 45 degrees with respect to the y axis of the introduced x–y
reference system.
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Figure 1. (a) Sketch of experimental arrangement. MO—microscope objective; MC—microfluidic
chip; Ms—mirrors; I—iris diaphragm; BS—beam splitter; CMOS—camera; SD—shearing device. The
image in front of the MO provides a zoom into the MC with cells rolling on the channel-side wall.
Inserts in front of the CMOS illustrate replicas arising from the SD. The highlighted image portions
(area1 and area2) represent overlapping areas detected by the CMOS, providing correct holographic
performance. (b) Interference snapshot with a cell flowing inside the diagonally oriented (45 degrees)
microfluidic channel. The zoom of the interference fringes is reported as inset within the draw of the
magnifying glass.

2.2. Sample Preparation

In our experiments, we use two cell lines: monocytes THP-1 and mouse embryonic
fibroblasts NIH-3T3. THP-1 is a monocyte isolated from peripheral blood from an acute
monocytic leukemia patient. This cell line can be used in immune-system-disorder re-
search, immunology research, and toxicology research. The base medium for this cell line
is ATCC-formulated RPMI-1640 Medium (Life technologies, ref 31870-025, Carlsbad, CA,
USA). To make the complete growth medium, the following components are added to
the base medium: fetal bovine serum to a final concentration of 10% (Life Technologies
10270), 2mM L-Glutamine (Lonza, Cat N.: BE17-605E, Basel, Switzerland), and 1% Peni-
cillin/Streptomycin (Lonza, Cat N. DE17-602E). It is then maintained in cell culture flask
(Corning, product number 353018, Corning, NY, USA) at 37 ◦C in a humidified atmosphere
with 5% CO2. On the day of the experiment, they are harvested from the cell culture flask
and transferred into a centrifuge tube containing 7.0 mL complete growth medium, and
spun at approximately 125× g for 5 min; they are then resuspended in the complete medium
and injected into the microfluidic channel at a final concentration of 3 × 105 cells/mL.
Mouse embryonic fibroblasts NIH-3T3 are cultured in Dulbecco’s modified Eagle’s medium
(DMEM), which contains 4.5 g L−1 D-glucose, and integrated with 10% fetal bovine serum
(FBS) (Life Technologies, Carlsbad, CA, USA), 100 units per mL penicillin, and 100 µg mL−1

streptomycin (Sigma, St. Louis, MO, USA). They are harvested from the tissue culture
flasks by incubation with a 0.05% trypsin–EDTA solution (Sigma, St. Louis, MO, USA)
for 5 min, and centrifuged and resuspended in phosphate buffered saline (PBS). The final
concentration is fixed to 2 × 105 cells per mL. Finally, the addition of 20 mM HEPES
(Sigma-Aldrich, St. Louis, MO, USA) is made to provide extra buffering capacity, thus
ensuring the right conditions for the cell culture medium during the manipulation outside
the CO2 incubator.

2.3. Hologram Processing

The recorded holograms are numerically processed to obtain in-focus complex ampli-
tudes of the rolling cells. First, the selected interference record H (Figure 2a) is apodized
using the tapered cosine function to reduce border effects, and subsequently Fourier trans-
formed. The valuable diffraction order is extracted from the remaining spectral terms
(Figure 2b), centered, and inverse-Fourier transformed. The retrieved complex amplitude,
say U(x, y, z), is further numerically propagated by the angular spectrum approach [48]
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up to the in-focus plane z = z, which can be recovered by minimizing a suitable image
sharpness metric. In our case, we employ the Tamura coefficient [49]:

TC{|U|}(z) =

√
σxy{|U|}(z)

µxy{|U|}((z))
, (1)

where σxy{|U|}(z) and µxy{|U|}((z)) are the standard deviation and the mean opera-
tors calculated over the amplitude |U| along the (x, y) variables, respectively, which are
functions of the reconstruction depth z.

Figure 2. Steps of numerical processing. (a) recorded hologram, (b) Fourier spectrum, (c) recon-
structed amplitude (d) reconstructed wrapped-phase distribution, (e) TSI used to individuate the
θ = 360◦ phase map, including unwrapped phase images, (f) scheme illustrating the coordinate
system and parameters for the rolling angle retrieval.

It should be noted that the object–plane distance z was established from the first frame
containing the studied cell, and preserved for all subsequent holograms in the sequence.
Moreover, the reference cell-free hologram Hre f in the evaluated region was selected from
the in-flow sequence and processed identically to H to remove optical aberrations and
reduce the channel sharp edges, thus making cell tracking more comfortable. The tracking
was performed following the cell’s centroid at every frame. A square area containing the
cell at its center was selected, where the 2π-modulo phase map was unwrapped using the
PUMA algorithm [50]. Subsequently, a denoising procedure, based on two-dimensional
windowed Fourier transform filtering [51,52], was applied over the quantitative phase map
(QPM) to attenuate the correlated speckle noise.

2.4. The Rolling Angle Recovery

To recover the projection angles of the cell, we applied the approach proposed in [27],
but adapted for the 45-degree-tilted FoV. First, the frame corresponding to a full 360 degree
rotation was found for all the QPMs, according to the metrics of the Tamura Similarity
Index (TSI). The first QPM was associated to θ = 0 without loss of generality (Figure 2e),
while the 360 frame is assigned as the one that minimizes the TSI.
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Assuming the proportionality between the rotation and the translation motions, and
considering the reference cartesian coordinates x,y centered over the centroid of the cell
present in the first frame, the angular sequence was reconstructed according to the formula:

θk = 0 ⇔ k = 1 and θk = 360
lk

L360
⇔ k > 1 (2)

where θk is the angle corresponding to the kth frame (Figure 2f) and lk is the distance
between the centroids of the cell in the first and the kth frame. Due to the tilt configuration,
lk is calculated as

lk =
√

xk
2 + yk

2, (3)

where xk and yk are the coordinates of the centroid at the kth frame in the introduced
coordinate system, and L360 is the same quantity as lk but specified for the frame where θ

reaches 360◦. Given the reduced framerate of the setup in use (i.e., 30 fps), an average of
35 projections is available from 0 to 360 degrees. Notice that, in the current microfluidic
setting, the rotation velocity of the cells is not under control. This means that it is possible
to miss the full rotation event, thus making a mistake in assigning the 360◦ frame. This
scenario was already investigated in [27], in which it was demonstrated that, in similar
microfluidic conditions and cell velocity ranges, the possible error in estimating the rotation
angles provided negligible distortions in the reconstructed tomograms. Of course, in
principle, it is possible to overcome this limitation by engineering the microfluidic module,
allowing the behavior of cells’ motion to be predictable and precisely controlled. Then, a
match between the frame rate and the velocity of the rotation can be set. The employed
tomographic processing technique is discussed in the next section.

2.5. Reconstructions by Total Variation Minimization

Once the projection angles are retrieved, the tomogram can be accomplished em-
ploying a suitable retrieval algorithm. The filtered-back projection (FBP) is a standard
inversion algorithm based on the inverse Radon transform, which is fast and exhibits low
computational costs. However, when a reduced number of noisy projections are available
from measurements, as happens for the set-up presented here, the inversion can perform
poorly, introducing artifacts into the tomographic reconstruction. Various approaches can
be considered to tackle this problem when only a few projections are available. One of
them is to exploit the total variation minimization (TVM) approach [53]. TVM consists of
minimizing a function, enforcing a regularized solution with an l1 penalty term applied to
the so-called TV norm. TVM minimizes the following function:

min
µ

2
‖Ax− b‖2

2 + ‖TV(x)‖1, (4)

where A represents the system matrix, b stands for the input data (the sinogram for the
tomographic reconstruction case), x is the unknown to be searched for, µ

2 represents the
weighting factor, and TV(x) represents the TV norm of x, defined as TV(x) = ∇x, with ∇
as the gradient operator.

The TV algorithm has become a popular algorithm thanks to its denoising and de-
blurring robustness, and its capability to preserve sharp edges in the function being re-
constructed [54]. It is based on the piecewise constancy hypothesis of data, otherwise TV
reconstructions can provide solutions with undesirable staircase behavior [55]. In the case
of our area of interest, the subcellular structures may not satisfy the piecewise constancy hy-
pothesis. In fact, in general, conventional TV reconstruction works efficiently in recovering
the cell’s external geometry, but not the internal parts, thus forcing them into a piecewise
constant map. In recent studies [56–58], approaches based on using TVM as a constraint
within more sophisticated algorithms have allowed the hypothesis of piecewise constant
function to be lifted. In other frameworks [59], the TV regularization is combined with a
different tomographic solver (in the case mentioned, SART), where the derivative of the TV
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norm is used to adjust the estimated solution obtained via SART. Recently, to overcome
the limitations of the conventional TVM method, high-order TV (HOTV) regularizers have
been developed [54]. The idea behind HOTV approaches is to recover solutions balanc-
ing sharp edge discontinuities with but piecewise polynomial behaviors in the smooth
regions. In the present case, we used the approach proposed in [60], where Polynomial
Annihilation (PA) regularization [61,62] is utilized. At variance with classical TV, which
encourages piecewise constant solutions, i.e., zeroth polynomials over the smooth regions,
PA regularization promotes solutions of polynomial behavior of a prefixed degree in the
smooth regions, allowing for a better retrieval of fine structures even for limited data, but
with sparse boundary regions. The degree k of the searched polynomial is called the order
of the HOTV. According to the PA regularization paradigm, Equation (4) is modified as:

min
µ

2
‖Ax− b‖2

2 + ‖PAkx‖1 (5)

where PAk represents the k-order PA regularization term, which is computed as the k-
derivative of the solution x along each of its dimensions. A formal mathematical description
of PA regularization can be found in [60,62]. Note that, for k = 1, the PA reduces to the
standard TV. In this paper, the solver used for the HOTV is that proposed by [63], based
on the strategy developed in [64]. Furthermore, to reduce the search space, all of the
reconstructions are performed under the non-negativity constraint [63].

2.6. Numerical Assessment of the Performance of HOTV

In order to assess the performance of the considered regularization scheme, and to
tune the parameters of the HOTV reconstruction, we developed a suitable numerical model
of the cell. The model was created to provide a realistic tomogram as it would appear at
the end of a tomographic reconstruction pipeline. Specifically, the RI distribution was sim-
ulated to have random Gaussian values within the range of [1.334 1.410], without defining
recognizable internal structures with easy detectable RI distribution. The randomness of
the RI values has the purpose of making the simulation more robust and more realistic,
as compared to typical tomograms of suspended cells. Figure 3a illustrates the central
slice and the isolevel visualization of a sample of the proposed model, representing the
ground truth RI distribution. Regarding the isolevel visualization, two internal thresholds
were employed, set as 0.33 and 0.66, respectively, of the simulated maximum RI value. The
performance of the FBP and HOTV reconstructions were compared, considering HOTV
of the first (HOTV-1), the second (HOTV-2), the third (HOTV-3) and the fourth (HOTV-4)
order, respectively. Notice that HOTV-1 corresponds to the conventional TVM approach.
The HOTV reconstruction method was controlled by several parameters [63] linked to the
peculiar approach used for the minimization of Equation (5) [64]. Among others, impor-
tant parameters are the data fidelity (DF), used to balance the data and the regularization
terms; the order k of the HOTV; the number of iterations used in the minimization process,
factorized in inner and outer loops; and the tolerances used to terminate the iterations. All
the parameters available were left at their default settings, as reported in [63,64], except
for the number of inner and outer iterations, which were both set equal to 30, and the DF
parameter. The latter was tuned to optimize the performance in terms of the fidelity of the
tomographic reconstruction with respect to the ground truth [65]. In our investigation, the
optimal values of DF are DF = 24 for HOTV-1, DF = 48 for HOTV-2, DF = 96 for HOTV-3,
and DF = 192 for HOTV-4. Moreover, all the reconstructions were performed under the
non-negativity constraint, and the projection angles were in the range [0◦, 360◦]. The simu-
lations were carried out considering the different angular steps ∆θ = θk+1 − θk = 6◦ (say,
case A, Figure 3b) and ∆θ = 16◦ (say, case B, Figure 3c), corresponding to the mean and the
maximum angular steps measured over realistic sequences, respectively. In particular, in
case A, 60 projections contributed to the tomogram retrieval process while, in case B, just
22 projections were available.
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Figure 3. Monocyte simulation. (a) 3D (top) and isolevel (bottom) visualization of the simulated
monocite, (b) horizontal cut through the central slice of the reconstructed tomograms for ∆θ = 6◦

and ∆θ = 16◦, considering different solvers, (c) top row: central slice of the reconstructed tomograms
considering different solvers for ∆θ =16◦, bottom row: difference slice between the reconstructions
obtained with different solvers and the simulated model. Length of the reference scale bar is 5 µm.

In both of the considered cases, FBP suffered from noise, especially in the external
regions of the retrieved tomogram (see bottom insets of Figure 3b,c). Unlike FBP, the HOTV
solvers (Figure 3b,c) smooth the noise in the external region. Furthermore, in case B, FBP
suffered from the reduced number of data, and did not recover the RI structures of the
simulated cell accurately, as it is clearly observed in Figure 3c, bottom row. As expected,
even HOTV-1 produced an unsatisfactory result, since it induces a piecewise constant
behavior in the solution, not appropriate for describing the typical cell anatomy. On the
contrary, the HOTV-2, -3, and -4 solvers performed successfully, since they were able to
reconstruct the RI distributions quite accurately (Figure 3b,c), as expected. To compare the
performance of the considered solvers, the structural similarity index (SSIM) between the
ground truth and the reconstruction method was calculated over the entire tomogram. The
FBP reaches SSIMFBP = 0.7808, the HOTV-1 reaches SSIMHOTV-1 = 0.8694, the HOTV-2
reaches SSIMHOTV-2 = 0.9908, the HOTV-3 reaches SSIMHOTV-3 = 0.9884, and the HOTV-
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4 reaches SSIMHOTV-4 = 0.9724. These results confirm the better accuracy of HOTV-2
and HOTV-3 with respect to both HOTV-1 and FBP, showing slightly better results of
HOTV-2 against HOTV-3. HOTV-4 reconstructions appear slightly less accurate due to
some artifacts, resulting from the wider variability of searched-for unknowns. HOTV-2
is selected as it definitively had the best performance among the numerically analyzed
HOTV algorithms.

3. Results

The obtained QPMs and the retrieved angular sequence were used as the input pa-
rameters of both the gold-standard FBP and HOTV tomographic reconstruction algorithms,
respectively. Specifically, the FBP and HOTV-2 approaches were employed for the tomo-
gram reconstruction using QPMs corresponding to the cell orientation range from 0◦ to
360◦. Notice that, in order to correctly use the implemented code for both methods, the
QPM was rotated 45 degrees to align the flow direction along the y-axis, and the ultimate
square area of 20× 20 µm2 containing the cell in the center was established. This procedure
was repeated for all of the images in the sequence of the studied single cell. The recon-
structions obtained with both algorithms are reported in Figure 4, comparing the results
obtained to the real data. First, tomograms of four different monocytes, observed rolling in
the diagonally tilted microfluidic channel, were reconstructed.

Figure 4. Tomograms of the four different monocytes examined. For every panel (a–d), cross-section
slices from the HOTV-2 tomographic reconstruction (subfigures a1–d1), cross-section slices from the
FBP tomographic reconstruction (subfigures a2–d2), and the absolute value of the difference between
the two cross-section slices (subfigures a3–d3) are presented, together with isolevel visualizations
for the HOTV-2 (subfigures a4–d4) and FBP reconstructions (subfigures a5–d5). The length of the
reference scale bar is 5 µm.

Cross-section slices of the tomograms obtained using HOTV-2 are reported in Figure 4a1–d1.
In contrast, the same slices reconstructed using FBP are presented in Figure 4a2–d2. In the
HOTV-2 reconstructions, a homogeneous reconstructed background can be observed which
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is opposite to that seen for FBP, as was previously discussed for the numerical simulations
(Figure 3). Additionally, HOTV-2 seems to exhibit higher RI contrast than the FBP, which
provides smoother RI profiles. This beneficial effect of the HOTV-2 algorithm compared
to the FBP is clearly visible when considering the absolute difference between the two
cross-section slices (Figure 4(a3–d3)), in which the ability of the HOTV-2 to reduce the
artifacts introduced by the FBP in both the internal region of the cell and the background is
highlighted. Insights into the cells’ anatomy are visualized in the isolevel plots for both
algorithms, HOTV-2 (Figure 4(a4–d4)) and FBP (Figure 4(a5–d5)). Finally, Figure 5 shows
histograms of conventional morphological features, such as the average RI (Figure 5a), the
biovolume (Figure 5b), the equivalent diameter (Figure 5c), and the dry mass (Figure 5d),
evaluated over the entire number of monocytes examined, in the case of HOTV-2 recon-
structions. These features have been demonstrated to be the most informative ones for
label-free single-cell analysis, encoding the measurements of cells cycles and becoming
decisive in cell phenotyping and disease identification [66,67]. We also evaluate the mean
value µ and the standard variation σ of such histograms, finding that they are comparable
with the expected tabular ones reported in other studies [68,69].

Figure 5. Histograms computed over the monocytes under examination; (a) average refractive index,
(b) biovolume, (c) equivalent diameter, (d) dry mass.

To further validate the proposed approach, the presented analysis was also conducted
on a second cell line, namely mouse embryonic fibroblasts NIH-3T3. Figure 6 reports the
results obtained in this case. Figure 6a,b and relative subfigures present the details of the
reconstructions of two cells. As in the first case, FBP and HOTV-2 solvers were considered,
with the latter showing the advantages previously discussed. Figure 6c reports the his-
tograms relative to the same morphological parameters evaluated in Figure 5, calculated
over the entire population of examined NIH-3T3 cells. The obtained values fall into the
expected range according to literature [26].
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Figure 6. Tomograms of two NIH-3T3 cells. For both panels (a,b), cross-section slices from the
HOTV-2 tomographic reconstruction (subfigures a1,b1), cross-section slices from the FBP tomo-
graphic reconstruction (subfigures a2,b2), and the absolute value of the difference between the
two cross-section slices (subfigures a3,b3) are presented, together with isolevel visualizations for
the HOTV-2 (subfigures a4,b4) and FBP reconstructions (subfigures a5,b5). (c) Histograms of aver-
age refractive index, biovolume, equivalent diameter, and dry mass, computed over the NIH-3T3
under examination.

The morphological features reported in Figures 5 and 6 can be used to visualize the
main differences between the two analyzed cell lines. Therefore, as a direct comparison
between them, Figure 7a–f show the scatterplots among the four features calculated above.
Notice that the biovolume and the equivalent diameter are strongly correlated with each
other, as highlighted by the quasi-linear trend of the scatterplot in Figure 7f. This means
that the pair of scatterplots in Figure 7b,d, as well as in Figure 7c,e, represent similar popu-
lation distributions. It is evident that the NIH-3T3 cell line shows a wider morphological
variability compared to monocytes, as shown by the more widely spread values in the
scatterplots. This corresponds to a wide heterogeneity within the NIH-3T3 population. In
order to investigate the possibility of performing data clustering, we report in Figure 7g,h
the two most-used methods for inspecting high-dimensional data, i.e., principal component
analysis (PCA) and t-distributed stochastic neighbor embedding (T-SNE) visualization.
Even if the clustering of the two analyzed cell populations appears feasible using only the
four the morphological features calculated here, as clearly visualized in Figure 7g,h, the
accurate classification of different cells would require deeper tomographic data analysis,
mainly focused on the engineering and selection of advanced 3D image features, and/or
suitable artificial neural networks.
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Figure 7. Data analysis comparing monocytes and NIH-3T3 cell lines; (a–f) display the scatterplots
between each pair of the conventional morphology features calculated for the analyzed cell lines, i.e.,
average RI, dry mass, biovolume, and equivalent diameter. In particular, the subfigure (f) shows a
quasi-linear trend, due to the obvious correlation between biovolume and equivalent diameter. This
renders redundant the information content provided by the pair of subfigures (b) and (d) as well as
(c) and (e), which display similar population distributions. Reported in (g,h) are two of the most
popular methods for inspecting high-dimensional data, i.e. PCA analysis and the T-SNE visualization,
respectively; these have the effect of removing such redundancy and show the spatial separation of
the two analyzed cell populations, thus demonstrating the possibility of clustering them.

Repeatability of the Experimental Reconstruction Process

In our experimental setting, there is also the possibility of imaging the same cell
multiple times. In fact, the flow cell unit used here (see ‘Experimental setup’) enables fluent
pressure settings inside the microfluidic chip; thus, the speed of the in-flow cells is driven
in a controlled way. If the flow unit apparatus is appropriately adjusted, the cell-rolling
direction can be reversed, and both forward and backward flow directions are achieved by
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changing the pump pressure. In this way, the cell was moved into its initial position and
observed repeatedly, considering the same flow direction.

Subsequently, rolling angles for five various observations of the same monocyte cell
were calculated, leading to the five independent tomographic reconstructions (Figure 8a,b).
Cross-sections through the tomograms obtained by employing HOTV-2 are reported in
Figure 7a, where the top row represents the central x-z slice for every occurrence: the
same internal structure is observed. The bottom row represents a different x-z slice, in
which a peculiar feature of the external shape of the reconstructed cell is highlighted. It
should be noted that similarity among individual observations may be reduced by effects
influencing the cell anatomy, e.g., cell deformation by hydrodynamic forces or adhesion to
the channel [70]. Nevertheless, the repeatability of the measurements was established using
the correlation coefficient as a similarity measure among all five individual tomograms,
reaching a mean value of 96.6%. The established correlation matrix (Figure 8c) reports a
good accordance for all values, higher than ≈95%, thus indicating the robustness of the
experimental recordings and the numerical processing. Finally, the correlation coefficient
was calculated between the tomogram of Figure 8a in the case of column A and the
tomograms present in Figure 4, obtaining a mean value of 75.53%, thus referencing all the
above calculations.

Figure 8. (a–c) Repeatability of the experimental reconstruction process. (a) Comparison between
reconstructions of the same tomograms for five different observations of the same cell [A–E] which
is rotated five times through the channel: central (top row) and peripheral (bottom row) x-z slices
of the tomograms obtained by HOTV-2; (b) retrieved angular sequences for the five considered
experiments; (c) correlation matrix calculated between the tomograms reconstructed for the five
considered independent observations.
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4. Discussion and Conclusions

In this work, we reported a complete and thorough investigation into a DHT system
suitable for in-flow tomographic cytometry. The apparatus was realized using a common-
path lateral-shearing digital holographic microscope with conventional components—a
method proposed here for the first time. Experimental measurements were acquired using
a relative low-resolution microscope objective (NA = 0.5) and an ordinary CMOS camera,
thus reducing the financial costs incurred by the equipment. Such reduced optical perfor-
mance allowed us to make a further step towards the setup of a Lab-on-Chip device, but
posed several limitations, making the tomographic reconstructions challenging. Particular
care was paid to dealing with the reduced frame rate of conventional cameras, which
provide a few tens of projections for the considered system, while still ensuring constant
flow conditions. Hence, an unconventional approach with a diagonally tilted microfluidic
channel was adopted, allowing the detected path to be elongated for the established experi-
mental arrangement, which allowed us to measure more projections for cells flowing close
to the channel’s center, regardless of cells flowing close to the periphery. The experimental
investigation was performed by considering monocyte and mouse embryonic fibroblast
NIH-3T3 cells lines, which were reconstructed using numerical algorithms suitable for
reduced datasets. The high-order total variation approach was applied to in-flow tomo-
graphic cytometry for the first time, and its superiority with respect to the standard filtered
back projection and first-order total variation approaches was demonstrated, employing a
numerically modeled cell as a ground truth. Moreover, various living cells were recovered
with their characteristics, including an average refractive index, biovolume, equivalent
diameter, and dry mass, achieving results that concur with the tabular values. In addi-
tion, the repeatability of the overall experimental numerical performance was proved by
independent observations of the same monocyte cell, guided by the controlled in-flow
conditions. The retrieval robustness was quantified using the correlation coefficient as a
metric, which found ~97% similarity among five independent observations, proving the
consistency of the overall tomographic retrieval process. Overall, the achieved results
show that an optimized configuration of both optics and the computational key aspects
could be used for a DHT in-flow cytometry model for lab-on-chip and label-free biomedical
applications in the future.
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