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Application of chemical �ooding in petroleum reservoirs turns into hot topic of the recent researches. Development strategies of the
aforementioned technique are more robust and precise when we consider both economical points of view (net present value, NPV)
and technical points of view (recovery factor, RF). In current study many attempts have been made to propose predictive model
for estimation of e�ciency of chemical �ooding in oil reservoirs. To gain this end, a couple of swarm intelligence and articial
neural network (ANN) is employed. Also, lucrative and high precise chemical �ooding data banks reported in previous attentions
are utilized to test and validate proposed intelligent model. According to the mean square error (MSE), correlation coe�cient, and
average absolute relative deviation, the suggested swarm approach has acceptable reliability, integrity and robustness. 
us, the
proposed intelligent model can be considered as an alternative model to predict the e�ciency of chemical �ooding in oil reservoir
when the required experimental data are not available or accessible.

1. Introduction


e oil and gas upstream industries are recently encoun-
tered with the di�culties and challenges of dealing with
hydrocarbon resources whose productionswith conventional
technologies are following an upward trend of technical
limitations. It is because of achieving the stage of decline
phase by most of oilelds around the world. 
erefore,
how to postpone the abandonment of reservoirs has tuned
into the priority of researchers in the worldwide. 
eir
researches normally highlight the concept of great necessities
for inventions of new techniques, normally classied as
tertiary oil recovery methods, having abilities of maintaining
the economic production rate [1–3].

Chemical enhanced oil recovery approaches as one of
the most e�ective subsets of tertiary methods are known
as a key to unlock the exploitation of referred resources.
Di�erent methods for this process have been developed,
such as polymer, surfactant/polymer (SP), and alkaline/sur-
factant/polymer (ASP) �ooding. 
ese methods are applied

to increase the rate of oil production through focusing on
both lowering the interfacial tension and reducing the water
mobility. In more details, it has enormously been declared
in previous literatures that in order to design, manage,
and run a chemical enhanced oil recovery operation it is
highly required to set very expensive and time-consuming
but precise experimental procedures which their generated
results must be gained to plan e�ectively the process of
injecting chemical materials [4–9].


e laboratorial generated outputs are then used to con-
clude two parameters, recovery factor (RF) and net present
value (NPV), which are used to evaluate the performance
of the chemical �ooding which is one of the most popular
methods of chemical enhanced oil recovery. Having knowl-
edge about these two parameters is essentially vital to make
decisions if it is benecial to run the referred operation.
Unfortunately, there are no global methods to interpret
simultaneously both aforementioned factors although there
are numerous numbers of di�erent so�ware and numerical or
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Table 1: Statistical analysis of the implemented chemical �ooding data samples [9].

Parameter Unit Type Min. Max. Average Standard deviation

Surfactant slug size PV Input 0.097 0.259 0.177 0.072

Surfactant concentration Vol. fraction Input 0.005 0.03 0.017 0.011

Polymer concentration in surfactant slug wt.% Input 0.1 0.25 0.177 0.067

Polymer drive size PV Input 0.324 0.648 0.482 0.144

Polymer concentration in polymer drive wt.% Input 0.1 0.2 0.148 0.044�
V
/�ℎ ratio — Input 0.01 0.25 0.129 0.107

Salinity of polymer drive Meq/mL Input 0.3 0.4 0.349 0.045

Recovery factor (RF) % Output 14.82 56.99 39.67 9.24

Net present value (NPV) $ MM Output 1.781 7.229 4.45 1.53

analytical methods which are capable of making very precise
quantitative decisions about the amount of one of the RF or
NPV [10–12].

Hence, there is a great need in oileld for having access
to a solution or model which can predict the amount of
these two parameters at the same time. 
e major aim of
current study is to execute new kind of articial intelligence
approaches to suggest robust and accurate predictive method
to forecast e�ciency of the chemical �ooding through
petroleum reservoirs. To gain successfully this referred goal,
hybridization of articial neural network and particle swarm
optimization (PSO) was executed on the previous literature
data bases. 
e integrity and performance of the proposed
predictive approaches in estimating recovery factor (RF) and
net present value (NPV) from the literature are described in
details.

2. Data Gathering


edata utilized throughout this research have been gathered
from previous attentions [9] in which chemical �ooding
had been simulated in Benoist sand reservoir, by executing
UTCHEM simulator. 
at reservoir has been produced
under primary and secondary processes over �y years. 
e
original dataset contained 202 data. Each data had 7 inputs:
surfactant slug size, surfactant concentration in surfactant
slug, polymer concentration in surfactant slug, polymer drive
size, and polymer concentration in polymer drive, �

V
/�ℎ

ratio, and salinity of polymer drive. In addition, the outputs
were RF and NPV.
e ranges of implemented data banks are
reported in Table 1 [9].

3. Artificial Neural Network and Particle
Swarm Optimization

Articial neural network (ANN) includes simple nodes,
named as neurons, which are bonded to each other to
construct a network model. Indeed, the biological nervous
systems can be simulated with the ANN system, somehow.
Characterization of an ANN model is normally performed
through three ways including (a) certain patterns between
various layers, (b) connection between input and output via
activation function, and (c) updating the interconnection
weights through training process [13–24].

In fact, the main purpose of an ANN model is to
determine target function through internal computation
during the training phase if the values of input variables are
provided. 
e most common type of ANN is the multilayer
feed forward neural network which is made up of group
of interconnected neurons organized in the form of layers:
input layer, hidden layer(s), and output layer where each layer
comprises a group of neurons as presented in Figure 1. 
is
network is strictly an acyclic type since signals propagate only
in a forward direction from the input neurons to the output
neurons and no signals are allowed to be fed-back among
the neurons. 
e number of neurons in the input and output
layers is decided by the number of input and output variables
that are planned for the predictive tool. However, the optimal
number of neurons in hidden layer(s) is a strong function of
nonlinearity and dimensionality of the problem under study
[13–24].


e articial neuron is the fundamental part of the neural
networks. Each articial neuron—excluding neurons at the
input layer—takes and processes inputs gathered from other
neurons. Given further information, each articial neuron is
a mathematical information-processing unit. 
e processed
information is presented at the output end of the neuron.
Figure 2 addresses the procedure inwhich an articial neuron
treats the data and information entered in the model. Each
input signal (��) is primarily multiplied by the corresponding
weight value (���) and the resultant products are summed
up to generate a total weight in the form of ��1�1 + ��2�2 +⋅ ⋅ ⋅ + �����. 
e sum of the weighted inputs and the bias

(�� = ∑��=1 ��� ⋅ �� + ��) forms the input to the activation
function, 	. An activation function processes this sum and
gives out the output, 
�. Indeed, the resulting sum is processed
by a neuron activation function to obtain the ultimate output
of the neuron as follows [13–26]:


� = 	 (��) = 	( �∑
�=1
��� ⋅ �� + ��) . (1)


is output will be the input signal for the neurons in the fol-
lowing layer. 
e linear (purelin) transfer, tan-sigmoid (tan-
sig) activation, and log-sigmoid (logsig) activation functions
are mostly employed in the practical cases with applications
in science and engineering disciplines. 
e corresponding
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Figure 1: Architecture of multilayer feed forward neural network. 
e symbol ���� denotes the synaptic weight between the output of the�th neuron in the hidden layer and the input of the �th neuron in output layer. 
e symbol ��� denotes the bias of the �th neuron in hidden
layer. 
e superscript � stands for output layer.
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Figure 2: Information processing by an articial neuron.

relationships for these functions are dened, respectively, by
(2)–(4), as given below [13–27]:

	 (�) = �, (2)

	 (�) = �	 − �−	�	 + �−	 , (3)

	 (�) = 11 + �−	 . (4)


e weight factors are generally considered as the adaptive
parameters in the network to obtain the strength of the
input signals. A bias is characterized with a weight which
is not responsible for connecting an input of two neurons
to an output. A particular level of a neuron output signal
is represented by a set of bias that does not depend on the
input signals. 
e weight factors and biases are tuned during
the course of training phase such that the network is able to
forecast the accurate target parameter for a given set of inputs.

ere are a number of training algorithms with di�erent
methodologies in the context of intelligence system. A variety
of optimization tools such as particle swarm optimization
(PSO) [15, 18, 19], genetic algorithm (GA) [21], hybrid genetic

algorithm and particle swarm optimization (HGAPSO) [13,
16], unied particle swarm optimization (UPSO) [14], and
imperialist competitive algorithm (ICA) [17, 20, 23] for
weight training of neural networks have been used.

Kennedy [27] introduced the PSO as a strong stochastic
optimization technique which simulates the social manners
of birds within a group, based on population concept. It
searches for an optimum solution by iteratively updating a
swarm of particles.


emodel originally includes a group of randomparticles
(solutions). A random velocity is attributed to each candidate
particle which �ies within the problem space. 
e solutions
consist of memory and try to attain the best position or/and
tness. 
is parameter is symbolized by “�best” that is linked
only to a specic particle. 
e model also retains the best
tness, known as “�best,” which is found among the entire
solutions (particles) in the swarm. 
e candidate particle
that obtains this tness is the global best in the population
[25–28]. In the current study, a particle’s tness is calculated
through determination of the network output for every point
in the training part and then computing the sum of squares
of the resultant errors (MSE) for performance evaluation.
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Figure 3: PSO-based algorithm �owchart in optimization of the weights of ANN.


e basic PSO theory involves variation of each particle
velocity toward its �best and �best locations at each time
interval. 
e particles’ new velocity and position are updated
according to the following equations [13–28]:

V

�+1 = �V
� + �1�1� [�
,�best� − �
�]

+ �2�2� [�best� − �
�] , (5)

�
�+1 = �
� + V
�+1, (6)

where V

� and V


�+1 are velocities of particle � at iterations� and � + 1; �
� and �
�+1 are positions of particle � at
iterations � and � + 1; � represents the inertia weight that
directs the exploitation and exploration of the search space
as it continuously updates velocity; �1 and �2 are termed
as cognition and social components, respectively. 
ey are
considered as the acceleration constants which alter the
velocity of a solution in the direction of�best and�best [13–28];
and �1� and �2� refer to the two random variables uniformly
distributed in the interval of [0, 1].

Herein, PSO algorithm has been used in evolving weights
of multilayer feed forward neural network. In this case, a
particle’s position at any iteration is described as a particle
whose coordinates are connection weights. 
e vectors of
weights for each particle � will be called �
. 
roughout
the training process the above equations (equations (5) and
(6)) will customize the network weights until a criterion
is met. In this case, a lower MSE, as a su�ciently good

tness, is achieved; nevertheless, a maximum number of
iterations are used to terminate the iterative search process
if no improvement is observed over a number of consecutive
generations in an appropriate time.
e �owchart of the PSO-
based training algorithm for the ANN is shown in Figure 3.


e PSO utilizes a random procedure in the search space
of the problem such that particles in the population are
directed toward optimum positions but not in or between
optimal areas [27]. 
us, PSO can be used to train neural
networks with nondi�erentiable (even discontinuous) neu-
rons activation functions. It can be also implemented in cases
where gradient or error information is not accessible. PSO
is easy to implement and there are few parameters to be
adjusted. However, the uniqueness of the algorithm lies in the
dynamic interactions among the particles that turn it into a
social-psychological model of knowledge management [27].

4. Results and Discussion

According to the study accomplished by Cybenko [29], a
network that consists of only one single hidden layer has the
ability to approximate nearly any kind of nonlinear function.
However, determination of the ideal number of neurons in
the hidden layer is a challenging task; few neurons will not
give adequate precision and too many hidden neurons may
lead to overtting. It means that the training data might be
tted adequately; however considerable oscillations between
the points are noticed in the tting curve, resulting in poor
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Figure 4: E�ect of number of hidden neuron on PSO-ANN accuracy of (a) recovery and (b) NPVpredictions in terms ofMSE and�-squared.
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Figure 5: Performance plot of the suggested network model for determining recovery factor of chemical �ooding owing to correlation
coe�cient (�2): (a) training phase and (b) testing phase.

interpolation and extrapolation. 
e network performance
is evaluated as demonstrated in Figure 4, when di�erent
number of neurons is tested. A smart model with one hidden
layer (including just one neuron) was primarily built in the
current study to predict the recovery factor and net present
value (NPV) of chemical �ooding in oil reservoirs. Prediction
accuracy was further analyzed by an increase in the number
of neurons to 10 to decide on the most precise technique.
As clear from the results demonstrated in Figure 4, a 3-6-
1 architecture (6 neurons in the hidden layer, 3 neurons
in the input layer, and one neuron in output layer) o�ers
the best model for recovery factor and net present value

(NPV) prediction in terms ofMSE and�2, since the optimum
structure achieved by the trial and error procedure has a very
low mean squared error of MSE = 0.0012 and a satisfactory

coe�cient of determination of �2 = 0.9996, on the basis of
comparison between the predicted and real data.


e generated results of the proposed intelligent approach
are depicted through Figures 5 to 10. 
e existing contrasts
between suggested intelligent approach and related recovery
factor (RF) of the chemical �ooding in oil reservoir in the
regression plot have been depicted in Figure 5. As shown
in Figure 5 which is a graphical and scatter presentation

of the PSO-ANN results versus corresponding determined
recovery factor (RF) data, the PSO-ANN outputs lie over
the line � =  , the fact that indicates the identity of
outputs gained from suggestedPSO-ANNmodel and relevant
recovery factor data samples. To serve better understanding
about generated results of the proposed PSO-ANN model,
the comparison between gained recovery factor from the
addressedmodel and real recovery factor data versus relevant
data index has been illustrated in Figure 6. As illustrated in
Figure 6, the obtained results of proposed model are as close
as possible to real recovery factor (RF) data samples. To put it
another way, the outputs of the PSO-ANN approach have the
same behaviour as actual data do.
e high considerable level
of e�ciency and accuracy related to the PSO-ANN approach
in prediction of the recovery factor dataset of chemical
�ooding has once again been certied in Figure 6. Moreover,
the robustness of the PSO-ANN has been demonstrated
in terms of the relative deviations of PSO-ANN model
outputs from corresponding determined recovery factor data
in Figure 7. As could be observed in Figure 7, the highest
deviations of the suggested approach results are subjected to
the early boundary of recovery factor data samples. 5% is the
maximum degree of relative deviation shown in Figure 7.
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Figure 6: Comparison between suggested network model and recovery factor versus relevant data index: (a) training phase and (b) testing
phase.
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Figure 7: Relative error distribution of the proposed approach versus actual recovery factor (RF).


e draw parallel between our proposed intelligent PSO-
ANN model results and related net present value (NPV) of
the chemical �ooding in oil reservoir in the regression plot
has been shown in Figure 8. As shown in Figure 8 which
is a graphical and scatter presentation of the PSO-ANN
results versus corresponding determined net present value
(NPV) data, the PSO-ANN outputs lie over the line � =  ,
the fact that indicates the identity of outputs gained from
suggested PSO-ANN model and relevant net present value
(NPV) data samples. 
e comparison between generated net
present value (NPV) from the addressed approach and real
net present value (NPV) data versus relevant data index
has been shown in Figure 9. As illustrated in Figure 9, the
obtained results of proposed model are as close as possible
to net present value (NPV) data samples. To put it another
way, the outputs of the PSO-ANN approach have the same
behaviour as actual data do. Furthermore, the e�ectiveness
of the proposed intelligent model has been depicted in
terms of the relative deviations of PSO-ANN model outputs

Table 2: Statistical parameters of the proposed approaches in pre-
diction of e�ciency of chemical �ooding in oil reservoirs.

PSO-ANN

RF NPV

Correlation coe�cient (�2) 0.9997 0.9996

Mean square error (MSE) 0.0012 0.0015

Mean absolute error (MAE) 0.098 0.0206

from corresponding indicated net present value (NPV) data
in Figure 10. As can be seen from Figure 10, the highest
deviations of the suggested approach results are subjected to
the early boundary of net present value (NPV) data. 6% is the
maximum degree of relative deviation depicted in Figure 10.


e performance e�ciency of the selected network is
assessed using the various error analysis parameters. Table 2
tabulates the PSO-ANNaccuracy in terms of correlation coef-

cient (�), coe�cient of determination (�2), mean absolute
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Figure 8: Performance plot of the suggested network model for determining net present value (NPV) of chemical �ooding owing to corre-
lation coe�cient (�2): (a) training phase and (b) testing phase.
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Figure 9: Comparison between suggested network model and net present value (NPV) versus relevant data index: (a) training phase and (b)
testing phase.
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error (MAE), and mean squared error (MSE), which are
dened as follows:

� = ∑�
=1 ("�
 − "�) ("�
 − "�)
√∑�
=1 ("�
 − "�)2∑�
=1 ("�
 − "�)2

,

�2 = 1 − ∑�
=1 ("�
 − "�
)
2

∑�
=1 ("�
 − "�)2
,

MAE = 1%
�∑

=1

&&&&&"�
 − "�
&&&&& ,

MSE = 1%
�∑

=1
("�
 − "�
)2,

(7)

in which % represents the total number of data points
including either training, testing, or whole data set (input and

output pairs), "�
 refers to the actual value at the sampling

point �,"�
 is the �th output of themodel, and"� and"� stand
for the average magnitudes of the actual and predicted data,
respectively.

5. Conclusions

Owing to the gained results of this contribution the following
major conclusions can be drawn.

(1) Adequate agreement between gain dew point pres-
sure from the developed intelligent model and cor-
responding real recovery factor/net present value
(NPV) values is observed. In other words, the con-
ventional approaches fail to monitor real recovery
factor/net present value (NPV) of chemical �ooding
dedicated to the gained statistical criteria such as
mean square error (MSE) and correlation coe�cient.

(2) 
e evolved intelligent network model for monitor-
ing real recovery factor/net present value (NPV) of
chemical �ooding is user friendly, fast, and cheap
for implementation. Moreover, it is very useful and
user friendly for evolving the accuracy and robustness
of the commercial reservoir simulators like ECLIPSE
and computer modelling group (CMG) so�ware for
enhanced oil recovery (EOR) from oil reservoirs.

Nomenclature

Abbreviations

ANN: Articial neural network
BP: Back propagation
GA: Genetic algorithm
HGAPSO: Hybrid genetic algorithm and particle swarm

optimization
ICA: Imperialist competitive algorithm

MAE: Mean absolute error (MAE)
MSE: Mean squared error (MSE)
PSO: Particle swarm optimization
PSO: Particle swarm optimization�2: Coe�cient of determination
UPSO: Unied particle swarm optimization.

Variables

"�: 
e average of the predicted data"�: 
e average of the actual data��: Bias�1: Cognition component�2: Social components%: 
e total number of data points
�: Output�1� and �2�: Two random numbers��: Sum of interconnection weights

V
: Velocity of particle �'�
: Interconnection weights in network model�
: Position of particle �"
�: 
e �th output of the model"
�: 
e actual at the sampling point �.
Greek Letters

*: Absolute relative error	: Activation function�: 
e inertia weight.
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