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Abstract. Combining imaging and genetic information to predict disease presence and progression is being
codified into an emerging discipline called “radiogenomics.” Optimal evaluation methodologies for radiogenom-
ics have not been well established. We aim to develop a decision framework based on utility analysis to assess
predictive models for breast cancer diagnosis. We garnered Gail risk factors, single nucleotide polymorphisms
(SNPs), and mammographic features from a retrospective case-control study. We constructed three logistic
regression models built on different sets of predictive features: (1) Gail, (2) Gail + Mammo, and (3) Gail +
Mammo + SNP. Then we generated receiver operating characteristic (ROC) curves for three models. After
we assigned utility values for each category of outcomes (true negatives, false positives, false negatives,
and true positives), we pursued optimal operating points on ROC curves to achieve maximum expected utility
of breast cancer diagnosis. We performed McNemar’s test based on threshold levels at optimal operating points,
and found that SNPs and mammographic features played a significant role in breast cancer risk estimation. Our
study comprising utility analysis and McNemar’s test provides a decision framework to evaluate predictive mod-
els in breast cancer risk estimation. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.2.4.041005]
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1 Introduction
Effective clinical decision making about screening, diagnosis,
surgery, and preventive intervention for breast cancer relies
on accurate assessment of a patient’s cancer risk, which has
prompted the development of a number of cancer risk predictive
models.1–9 The “Breast Cancer Risk Assessment Tool” (the
Gail model) is a prominent risk predictive model based on
self-reported demographic risk factors including age, age at
menarche, age at first live birth, number of first-degree relatives
with a diagnosis of breast cancer, and number of previous breast
biopsies,2 which has limited discriminatory power. Recent
advances in genome-wide association studies (GWAS) and suc-
cesses with cost reduction in genome-sequencing have paved
the road for developing predictive models to potentially estimate
breast cancer risk on the basis of both demographic risk factors
and genetic variants. On the other hand, there is a long history of
risk estimation for breast cancer by using imaging findings.10–13

Now, it is widely agreed that imaging findings, in concert with
genetic variants will likely be necessary for accurate assessment
of a patient’s breast cancer risk. A promising new paradigm,

“radiogenomics,” delves into the analysis of the interaction of im-
aging findings and genetic variants for estimating cancer risk.14–17

The performance of predictive models in radiogenomics has
typically been evaluated with the area under the receiver oper-
ating characteristic (ROC) curve (AUC).14 Although AUC is
a popular statistical measure, the technique has several weak-
nesses.18–20 AUC does not take into account the prevalence of
disease or the consequence of decisions, which heavily influences
the ultimate outcomes of medical decisions. In addition, AUC
considers the entire ROC curve while in reality, just a single
threshold point matters in decision making. A physician con-
sciously or subconsciously chooses one threshold level of
sensitivity/specificity for recommending further management.
The recent emphasis on cost-effective medical practice has
also strengthened the need to seek the optimal threshold level
in ROC curve analysis. Moreover, prior studies have demon-
strated that the incremental improvement in AUC is only moder-
ate when some genetic variants that are strongly associated with
disease are added to models possessing good discrimination.3,21,22

Utility analysis, a fundamentally complementary component
of ROC analysis, offers a solution to address weaknesses of
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AUC analysis. Utility analysis explicitly considers the clinical
consequences of decisions by summing the utility of each
possible outcome [true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN)] weighted by the prob-
ability of that outcome. The maximization of expected utility
occurs at the operating point where a rational physician should
make a clinical decision.23 However, utility analysis has
received relatively little attention in practical settings because
it requires agreement upon the utility of each outcome.24,25 In
order to sidestep this difficulty, some prior studies have defined
a ratio of utilities and estimated the ratio from clinical studies.25–27

Recent efforts have specified the utilities of different outcomes
in breast cancer research,28 which has engendered the enthusi-
asm that utility analysis will contribute to the evaluation of pre-
dictive models in radiogenomics.

In this study, we aim to develop a decision framework by
employing utility analysis to identify optimal operating points
and optimally balancing sensitivity and specificity, which allows
us to accurately assess predictive models in breast cancer risk
estimation. We demonstrate the framework by using an example
of imaging findings from mammography and germline genetic
variants.

2 Materials and Methods
The Marshfield Clinic Institutional Review Board approved the
use of Marshfield Clinic’s Personalized Medicine Research
Project (PMRP) cohort in the study.

2.1 Subjects

We used data from a retrospective case-control study from
Marshfield Clinic, the details of which have been previously
published.29 Women of western European heritage with an avail-
able plasma sample, a mammogram, and a breast biopsy within
12 months after the mammogram were included. Subjects
having no mammography reports were excluded from the
study. Subjects having BRCA1 or BRCA2 mutations were also
excluded. Cases were defined as women having a confirmed
diagnosis of breast cancer obtained from the Institutional
Cancer Registry. In our case cohort, we included both invasive
breast cancer and ductal carcinoma in situ. Controls were con-
firmed through the electronic medical records (and absence from
the cancer registry) as never having had a breast cancer diagno-
sis. We employed an age matching strategy, selecting a control
whose age was within 5 years of the age of each case in order
to ensure similarity in age distribution in the case and control
cohorts.

2.2 Risk Variables

2.2.1 Demographic risk factors

For each subject, we collected demographic risk factors (Gail
risk factors): age (at biopsy), age at menarche, number of pre-
vious biopsies, and family history of breast cancer. Age at first
live birth was not available in our cohort so parity (number of
pregnancies) was used instead in our predictive models because
of its known association with breast cancer risk and correlation
with age at first birth.30

2.2.2 Genetic variants

For germline genetic variants, we collected 10 commonly used
single nucleotide polymorphisms (SNPs) in line with prior

large GWAS,31,32 and used them to predict breast cancer risk
(Table 1). We focused on high-frequency/low-penetrance genes
that affect breast cancer risk (minor allele frequency >25%) as
opposed to low frequency genes with high penetrance (BRCA1
and BRCA2) or intermediate penetrance (CHEK-2). For each
SNP, we quantified how many risk alleles were present (0, 1,
or 2 risk alleles) as the value.

2.2.3 Mammographic features

At the Marshfield Clinic, mammography results were recorded
as free text reports in the electronic health record. We used a
parser to extract Breast Imaging-Reporting and Data System
(BI-RADS)33 mammographic features from free text reports.34

After extraction, every mammographic feature takes the value
“present” or “not present.” From these features, we selected the
most predictive abnormality descriptors based on the literature:13

mass margin, microcalcification shape, microcalcification mor-
phology, and architectural distortion. For microcalcification fea-
tures, we consolidated the suspicious morphology descriptors
(linear, amorphous, and pleomorphic) and suspicious distribu-
tion descriptors (clustered, segmental, linear) into the “present”
category; cases lacking any of these descriptors in their records
were assigned to the “not present” category. Breast composition
was discretized into the four values defined by BI-RADS:
predominantly fatty, scattered fibroglandular, heterogeneously
dense, or extremely dense. This is regularly reported in mammo-
gram reports, and we consider it as a mammographic feature in
this study for predicting breast cancer risk.

2.3 Utility-Based Decision Framework

We first constructed three logistic regression models built on
different sets of risk variables: (1) Gail model constructed with
demographic risk factors only, (2) Gail + Mammo model con-
structed with demographic risk factors and mammographic fea-
tures, and (3) Gail + Mammo + SNP model constructed with
demographic risk factors, mammographic features, and SNPs.
We employed a 10-fold cross-validation to help confirm the

Table 1 Common genetic variants associated with breast cancer.

Single nucleotide
polymorphisms (SNPs) Chromosome Gene Risk allele

RS1045485 2 CASP8 C

RS13281615 8 Unknown G

RS13387042 2 Unknown G

RS2981582 10 FGFR2 T

RS3803662 16 TOX3 T

RS3817198 11 LSP1 C

RS889312 5 MAP3K1 C

RS10941679 5 Unknown G

RS999737 14 RAD51L1 T

RS11249433 1 Unknown C
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validity of predictions. We generated ROC curves, and obtained
the AUC as a measure of predictive performance based on the
probabilities of malignancy predicted by each of the three mod-
els. The AUCs of the models were compared by using the
DeLong method.35 We used a P-value of 0.05 as the threshold
for statistical significance testing.

Then we assigned utility values for each category for the out-
comes of TN, FP, FN, and TP) as follows:

• We chose TN outcomes as our baseline and assigned a
utility of zero.

• We assigned a loss of 4.7 days to the utility of FP, UFP

based on the literature.36,37

• We used the University of Wisconsin Breast Cancer
Simulation (UWBCS) model38 to estimate the utility of
FN as a loss of 2.52 years.28

• For TP, we assumed that its utility was UFN × ð1 − αÞ,
0 ≤ α ≤ 1, where α is an unknown parameter representing
the overall effectiveness of breast cancer treatment. In this
study, we chose α as 0.86, the 5-year survival rate from
Surveillance Epidemiology and End Results39 program
for breast cancer.

The expected utility of a predictive model f is defined as
follows:

EQ-TARGET;temp:intralink-;sec2.3;63;450E½UðfÞ� ¼ p × ½UTP × TPRþ UFN × ð1 − TPRÞ� þ ð1 − pÞ
× ½UFP × FPRþ UTN × ð1 − FPRÞ�;

where E½� is the expected value of UðfÞ. FPR (false positive
rate) and TPR (true positive rate) are the coordinates of a point
in ROC space for a given threshold level and p is the prevalence
of breast cancer. We considered p to be fixed with a typical
value of four breast cancers per 1000 women screened.40 The
maximum expected utility (MEU) is defined as the expected
utility at the optimal operating point where the line with slope
S is tangent to the ROC curve

EQ-TARGET;temp:intralink-;sec2.3;63;306S ¼ UTN − UFP

UTP − UFN

×
1 − p
p

:

After binormal ROC curves were generated using ROCKIT
software,41,42 we pursued finding optimal operating points on
ROC curves to achieve the MEU of breast cancer diagnosis. We
obtained sensitivity, specificity, and threshold level at the opti-
mal operating point. For comparison, we also found sensitivity,
specificity, and threshold level when the sum of sensitivity and
specificity was maximized. After threshold levels were speci-
fied, we used McNemar’s test to determine the effects of SNPs
and mammographic features in breast cancer risk estimation.

3 Results
We succeeded in identifying 373 cases and 395 controls. The
age range (at biopsy) for the subjects in this study was 29 to
90 years of age (mean ¼ 62, standard deviation ¼ 12.8). There
were more young people (age < 50) in the case group than in the
control group, and the proportion of elderly people (age ≥ 60)
was roughly the same in the case group and in the control group
(Table 2).

To better demonstrate the effects of different risk factors on
breast cancer, some exploratory analysis was provided. We sum-
marized the distribution of the subjects by demographic risk
factors (Table 2), genetic variants (Table 3), and mammographic
features (Table 4).

We found that mammographic features augmented the base-
line Gail model in terms of AUC (0.713 versus 0.597) and the
P-value was less than 0.001 based on DeLong method (Fig. 1).
With threshold levels at optimal operating points when MEU
was achieved, subjects were reclassified according to their
risk of breast cancer. Using McNemar’s test, we found that a
statistically significant change in proportions from reclassifica-
tion occurred between the Gail model and the Gail + Mammo

Table 2 Distribution of the subjects by demographic risk factors.

Variables
Controls
(N ¼ 395)

Cases
(N ¼ 373)

All subjects
(N ¼ 768) Odds ratio

Age (years)

39 and below 8 (2.03%) 16 (4.29%) 24 (3.12%) Reference

40 to 49 54 (13.67%) 71 (19.03%) 125 (16.28%) 0.66

50 to 59 128 (32.41%) 82 (21.98%) 210 (27.34%) 0.32

60 to 69 91 (23.04%) 85 (22.79%) 176 (22.92%) 0.47

70 and
above

114 (28.86%) 119 (31.90%) 233 (30.34%) 0.52

Age at menarche

≥14 32 (8.1%) 89 (23.9%) 121 (15.8%) Reference

12 to 13 98 (24.8%) 157 (42.1%) 255 (33.2%) 0.58

7 to 11 26 (6.6%) 63 (16.9%) 89 (11.6%) 0.87

Missing 239 (60.5%) 64 (17.2%) 303 (39.5%) NA

No. of biopsies

0 337 (85.62%) 303 (81.23%) 640 (83.33%) Reference

1 52 (13.16%) 60 (16.09%) 112 (14.58%) 1.28

≥2 6 (1.52%) 10 (2.68%) 16 (2.08%) 1.85

No. of pregnancies

0 42 (10.63%) 31 (8.31%) 73 (9.51%) 0.62

1 to 2 125 (31.65%) 126 (33.78%) 251(32.68%) 0.85

3 to 5 168 (42.53%) 163 (43.70%) 331 (43.10%) 0.82

≥6 44 (11.14%) 52 (13.94%) 96 (12.50%) Reference

Missing 16 (4.05%) 1 (0.27%) 17 (2.21%) NA

No. of first-degree relatives with breast cancer

0 325 (82.28%) 268 (71.85%) 593 (77.21%) Reference

1 57 (14.43%) 91 (24.40%) 148 (19.27%) 1.93

≥2 13 (3.29%) 14 (3.75%) 27 (3.52%) 1.30
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model (P-value <0.001), which was in concert with the results
using the DeLong method. When additional SNPs were added to
the Gail + Mammo model, AUC increased to 0.733 and the
P-value was 0.071 based on the DeLong method. However,
using McNemar’s test after optimal operating points were speci-
fied with utility analysis, we found the P-value was 0.045,
which indicated that SNPs might play a significant role in breast
cancer risk estimation.

We also identified operating points on ROC curves when the
sum of sensitivity and specificity was maximized. With thresh-
old levels at these operating points, we found that reclassifica-
tion resulted in a statistically significant change in proportions
between the Gail model and the Gail + Mammo model by using
McNemar’s test (P-value ¼ 0.0127). For the Gail + Mammo

Table 3 Distribution of the subjects by individual genetic variants.

SNPs
Controls
(N ¼ 395)

Cases
(N ¼ 373)

All subjects
(N ¼ 768) Odds ratio

RS1045485

CC 7 (1.77%) 4 (1.07%) 11 (1.43%) Reference

CG 86 (21.77%) 79 (21.18%) 165 (21.48%) 1.61

GG 302 (76.46%) 290 (77.75%) 592 (77.08%) 1.68

RS13281615

AA 154 (39.0%) 121 (32.4%) 275 (35.8%) Reference

AG 184 (46.6%) 181 (48.5%) 365 (47.5%) 1.25

GG 57 (14.4%) 71 (19.0%) 128 (16.7%) 1.59

RS13387042

AA 89 (22.5%) 126 (33.8%) 215 (28.0%) 2.08

AG 206 (52.2%) 179 (48.0%) 385 (50.1%) 1.28

GG 100 (25.3%) 68 (18.2%) 168 (21.9%) Reference

RS2981582

CC 151 (38.2%) 134 (35.9%) 285 (37.1%) Reference

CT 192 (48.6%) 173 (46.4%) 365 (47.5%) 1.02

TT 52 (13.2%) 66 (17.7%) 118 (15.4%) 1.43

RS3803662

CC 209 (52.91%) 176 (47.18%) 385 (50.13%) Reference

CT 156 (39.49%) 169 (45.31%) 325 (42.32%) 1.29

TT 30 (7.59%) 28 (7.51%) 58 (7.55%) 1.11

RS3817198

CC 31 (7.85%) 36 (9.65%) 67 (8.72%) 1.35

CT 170 (43.04%) 170 (45.58%) 340 (44.27%) 1.16

TT 194 (49.11%) 167 (44.77%) 361 (47.01%) Reference

RS889312

AA 196 (49.62%) 175 (46.92%) 371 (48.31%) Reference

AC 179 (45.32%) 160 (42.90%) 339 (44.14%) 1.00

CC 20 (5.06%) 38 (10.19%) 58 (7.55%) 2.13

RS10941679

AA 232 (58.73%) 182 (48.79%) 414 (53.91%) Reference

AG 141 (35.70%) 164 (43.97%) 305 (39.71%) 1.48

GG 22 (5.57%) 27 (7.24%) 49 (6.38%) 1.56

RS999737

CC 243 (61.52%) 230 (61.66%) 473 (61.59%) 2.18

Table 3 (Continued).

SNPs
Controls
(N ¼ 395)

Cases
(N ¼ 373)

All subjects
(N ¼ 768) Odds ratio

CT 129 (32.66%) 133 (35.66%) 262 (34.11%) 2.37

TT 23 (5.82%) 10 (2.68%) 33 (4.30%) Reference

RS11249433

CC 69 (17.5%) 62 (16.6%) 131 (17.1%) 0.97

CT 187 (47.3%) 182 (48.8%) 369 (48.0%) 1.05

TT 139 (35.2%) 129 (34.6%) 268 (34.9%) Reference

Table 4 Distribution of the subjects by mammographic features.

Variables
Controls
(N ¼ 395)

Cases
(N ¼ 373)

All subjects
(N ¼ 768)

Odds
ratio

Breast composition

Fatty 11 (2.78%) 12 (3.22%) 23 (2.99%) Reference

Scattered 29 (7.34%) 18 (4.83%) 47 (6.12%) 0.57

Heterogeneous 171 (43.29%) 173 (46.38%) 344 (44.79%) 0.93

Extremely
dense

5 (1.27%) 13 (3.49%) 18 (2.34%) 2.38

Missing 179 (45.32%) 157 (42.09%) 336 (43.75%) NA

Mass margin

Circumscribed 36 (9.11%) 16 (4.29%) 52 (6.77%) 0.59

Obscured 14 (3.54%) 8 (2.14%) 22 (2.86%) 0.76

Ill-defined 48 (12.15%) 47 (12.60%) 95 (12.37%) 1.30

Spiculated 4 (1.01%) 82 (21.98%) 86 (11.20%) 27.27

Calcification
shape

79 (20.00%) 63 (16.89%) 142 (18.49%) 0.81

Calcification
distribution

117 (29.62%) 79 (21.18%) 196 (25.52%) 0.64

Architectural
distortion

21 (5.32%) 50 (13.40%) 71 (9.24%) 2.76
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model and the Gail + Mammo + SNP model, the P-value was
0.0265 from McNemar’s test, which provided evidence that
SNPs had a significant predictive effect. These results harmon-
ized with our findings when the expected utility was maximized
to pursue optimal operating points.

We specified operating points on ROC curves when MEU
was achieved or when the sum of sensitivity and specificity
was maximized (Fig. 1), at which we found sensitivities and
specificities for the three predictive models (Table 5).
Sensitivities generated by utility analysis were lower than
those by the method maximizing the sum of sensitivity and
specificity. For specificities, utility analysis produced higher
values than the method maximizing the sum of sensitivity and
specificity.

4 Discussion
We have developed a decision framework combining utility
analysis and McNemar’s test to evaluate predictive models in
breast cancer risk estimation. With traditional ROC analysis and
the DeLong method, we found that SNPs augmented the Gail +
Mammo model in terms of AUC (0.733 versus 0.713, P-value ¼
0.071), but the improvement was nonstatistically significant.
With our proposed framework, including ROC analysis, utility
analysis, and McNemar’s test, we found SNPs might play a sig-
nificant role in breast cancer risk estimation (P-value ¼ 0.045).

The difference of the results between the two approaches indi-
cates that the utility framework may have some merits in assess-
ing predictive models.

Our decision framework could be utilized to achieve two
important goals in breast cancer risk prediction. One goal is
to identify novel biomarkers to improve the accuracy of breast
cancer diagnosis in clinical practice. The other goal is to specify
optimal operating points in decision making since a physician
consciously or subconsciously chooses one threshold point for
recommending an operation. There are many methods of iden-
tifying the optimal operating points. However, most of them are
short of a theoretical foundation.43 In practice, maximizing the
sum of sensitivity and specificity is widely used to identify an
operating point in ROC space. Breast cancer is a low prevalence
disease which typically results in more FP than TP. In clinics,
physicians should select an operating point that yields fewer FP.
In ROC space, such an operating point should be chosen from
the lower-left quadrant. As we can see in Table 5, specificities
generated by using our utility decision framework are higher
than those by the method maximizing the sum of sensitivity
and specificity, which is in concert with clinic intuition. For
identification of optimal operating points, we prefer utility
analysis to the method that maximizes the sum of sensitivity
and specificity. Utility analysis in our framework leads us to
identify optimal operating points by considering different clini-
cal outcomes with scientific justification.

The AUC is a summary of an ROC curve, representing the
overall performance of all possible FP fractions, and it is simple
for implementation. We believe that AUC analysis will still play
an important role in assessing predictive models despite some
limitations demonstrated in this study. Our decision framework
is not the intent to replace AUC analysis, but rather to augment
AUC analysis. Our decision framework provides a new
approach for the assessment of predictive models by identifying
optimal operating points from a decision analytic standpoint,
which creates the opportunity to validate and demonstrate the
value of novel and effective biomarkers in breast cancer risk
estimation.

The ongoing discovery of new risk factors presents oppor-
tunities and challenges to evaluate these risk factors and incor-
porate them into predictive models. Each SNP will likely
contribute a small increase in the predictive ability of these mod-
els. Many SNPs with this low-level information will need to
substantially improve risk prediction.20 Prior studies have
identified the challenges of using AUC to evaluate the added
predictive ability of a new biomarker, and have proposed
net reclassification improvement (NRI) analysis to assess the
improvement in model performance offered by the new bio-
marker.21,22,44 NRI analysis treats each outcome equally but it
is rare that different outcomes have the same effect on a patients’
quality of life in clinic. Our framework improves NRI analysis
by explicitly considering the utility of each outcome to specify
optimal operating points. We determine threshold levels at opti-
mal operating points to assess breast cancer predictive models
with McNemar’s test.

There are several limitations in our study. First, due to the
inherent difficulty of collecting a rich multimodality data set,
the sample size is small compared with large-scale GWAS.
Second, we use logistic regression models to estimate breast
cancer risk. A possible line of future research is to employ
other predictive models such as Bayesian network, artificial neu-
ral network, or support vector machine for validating our results.

Fig. 1 Receiver operating characteristic curves for the three predic-
tive models. Solid curve, the Gail model; dashed curve, the Gail +
Mammo model; dotted curve, the Gail + Mammo + SNP model.
Square data points, optimal operating points by maximizing expected
utility; round data points, operating points by maximizing the sum of
sensitivity and specificity.

Table 5 Comparison of sensitivity and specificity between the method
maximizing expected utility and the method maximizing sensitivity and
specificity.

Models

Maximizing expected
utility

Maximizing the
sum of sensitivity
and specificity

Sensitivity Specificity Sensitivity Specificity

Gail 0.147 0.912 0.610 0.525

Gail + Mammo 0.432 0.887 0.564 0.775

Gail + Mammo + SNP 0.467 0.865 0.603 0.750

Journal of Medical Imaging 041005-5 Oct–Dec 2015 • Vol. 2(4)

Wu et al.: Developing a utility decision framework to evaluate predictive models. . .



Third, we employed 10-fold cross-validation to help confirm the
validity of predictions. The Delong method might not be appro-
priate for comparing AUCs here.45 We will explore the possibil-
ities of using other statistical tests to compare AUCs. Finally, we
obtained the utility of FP from the literature and the utility of TP
from the domain knowledge. We plan to use the UWBCS model
to obtain both utilities. We also plan to implement sensitivity
analysis to demonstrate the robustness of our decision frame-
work to variations in utility specification.

5 Conclusion
Genetic variants and mammographic features have the potential
to lead to substantial improvements in breast cancer risk predic-
tion. Our proposed decision framework could be used as a gen-
eral technique to characterize optimal thresholds and to quantify
the potential predictive power of different imaging modalities
and biomarkers.
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