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Abstract Scientific workflows are becoming increas-
ingly important for complex scientific applications.
Conducting real experiments for large-scale work-
flows is challenging because they are very expensive
and time consuming. A simulation is an alternative
approach to a real experiment that can help evaluat-
ing the performance of workflow management sys-
tems (WMS) and optimise workflow management
techniques. Although there are several workflow sim-
ulators available today, they are often user-oriented
and treat the cloud as a black box. Unfortunately,
this behaviour prevents the evaluation of the infras-
tructure level impact of the various decisions made
by the WMSs. To address these issues, we have
developed a WMS simulator (called DISSECT-CF-
WMS) on DISSECT-CF that exposes the internal
details of cloud infrastructures. DISSECT-CF-WMS
enables better energy awareness by allowing the study
of schedulers for physical machines. It also enables
dynamic provisioning to meet the resource needs of
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the workflow application while considering the pro-
visioning delay of a VM in the cloud. We evaluated
our simulation extension by running several workflow
applications on a given infrastructure. The experi-
mental results show that we can investigate different
schedulers for physical machines on different numbers
of virtual machines to reduce energy consumption.
The experiments also show that DISSECT-CF-WMS
is up to 295x faster than WorkflowSim and still
provides equivalent results. The experimental results
of auto-scaling show that it can optimise makespan,
energy consumption and VM utilisation in contrast to
static VM provisioning.

Keywords Scientific workflow - Workflow
management systems - Simulation - Distributed
computing - Energy-awareness - Infrastructure as a
service

1 Introduction

Scientific workflows are an increasingly important
area in the study of complex distributed applications.
Workflows can be run on distributed platforms such
as HPC [23, 38, 43], Grid [3, 8, 37] and Cloud [27,
32]. Montage [18], CyberShake [20] and LIGO [1]
are scientific workflow applications used in astron-
omy, earthquake science, and gravitational physics,
respectively. They require workflow management sys-
tems (WMS) such as Pegasus [18] and Kepler [2])
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that allow them to run on any of these distributed
computing resources. A WMS manages and handles
workflow execution through resource selection, job
scheduling, appropriate resource allocation and data
management. Such systems help to improve perfor-
mance metrics such as throughput [21, 30], latency [4,
42], and reliability [16, 26].

Cloud computing has become an important plat-
form for executing workflows because it provides the
ability to rent resources on demand and in a simple
way. Running workflows on Infrastructure as a Ser-
vice (IaaS) leads to the challenge of determining the
number of virtual machines (VMs) to back the jobs of
the workflow. At each stage of the workflow, there are
a different number of jobs, all of which may require a
different amount of computing resources. Static pro-
visioning (i.e., where a fixed set of VMs are provided
for the execution of the workflow from the beginning
of its execution to the end) may reduce resource waste
and financial expenditure, but it can not improve the
performance of the workflow. WMSs must not only
manage the available infrastructure, but also decide
when and how to allocate the resources needed to exe-
cute a workflow and how to use them effectively. This
requires dynamic provisioning approaches (such as
Amazon Auto Scaling!) to dynamically add or remove
resources based on the workload of the workflow’s
stages.

Conducting real-world experiments to improve
WMS behaviour is challenging when they have to
run large-scale workflows. Especially when a statis-
tically significant number of experimental results are
required to inform us about possible WMS improve-
ments. This limits the scope of WMS research and
development. Therefore, to substantiate research with
real measurements, researchers can run a relatively
small number of scenarios. Moreover, it is very expen-
sive to reproduce experimental results in different
real-world scenarios due to resource costs. Therefore,
researchers often turn to simulations.

Simulation is an emerging area for cloud comput-
ing that allows evaluating system performance and
improve the behaviour of cloud-based applications.
Workflow management systems also use simulation
to optimise workflow techniques (e.g., scheduling
algorithms). Scientific workflow applications can be
evaluated in a simulation environment, resulting in
a repeatable and controlled environment. Although

Uhttps://aws.amazon.com/autoscaling/
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the accuracy and validity of simulated results always
requires final validation in reality, simulation still
offers many advantages, such as: reproducibility of
results, cost efficiency and flexibility. Although many
workflow simulators [11, 22, 40] are available today,
they cannot meet the requirements of workflow man-
agement systems. These requirements include infor-
mation about the creation and placement of the virtual
machine, as well as scheduling the state of the physical
machine. Other cloud simulators [10, 32, 35] are often
user-focused and treat clouds as black boxes. Unfortu-
nately, this behaviour prevents the study of the impact
of the various decisions made by WMSs at the infras-
tructure level. Even if a simulator provides insight
into the internal workings of clouds, it focuses on
some areas (such as precise CPU or network sharing
and energy modelling) and ignores others. They thus
limit the use cases for these simulators in cloud-aware
WMSs [41]. Many workflow simulators [9, 15, 19, 34]
do not take into account the provisioning delay of a
VM in the cloud. This can have a significant impact
on simulation results, especially with auto-scaling that
needs to provision and de-provision VMs while a
workflow is running in the infrastructure. In contrast
to the above problems, DISSECT-CF [27] captures the
internal details of cloud infrastructures, which can be
used to develop a more informed WMS simulation. It
also provides information about virtual machine cre-
ation and placement, as well as schedulers for the
physical machine. However, DISSECT-CF alone does
not provide workflow support.

To address this gap, in this paper, we present
DISSECT-CF-WMS, which is built on DISSECT-CF.
It was developed to run scientific workflow simulations
and investigate internal IaaS behavioural knowledge.
First, DISSECT-CF-WMS enables the evaluation of
the impact of three physical machine schedulers of a
given infrastructure on energy consumption. In addi-
tion, it enables better energy awareness by exposing the
choice of physical machine schedulers. Second, it is
also able to perform large-scale workflows with good
execution simulation performance. Finally, DISSECT-
CF-WMS has been integrated with the auto-scaling
mechanism of DISSECT-CF to execute scientific
workflows allowing WMSs to consider the provision-
ing delay of a VM in the cloud.

Our extension of DISSECT-CF consists of a parser,
an engine, a scheduler and a JobRunner component.
The parser reads and parses the workflow definition in
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the DAG representation and stores information about
the tasks and their dependencies. The engine is used
to detect when a task is ready for execution and when
a workflow is complete. The scheduler receives tasks
and schedules them based on a user customisable
scheduling algorithm (e.g., HEFT [39], MinMin [5]
and MaxMin [6]) to the appropriate resources. The
JobRunner orchestrates the execution of the task and
its input/output transfers using the core simulator.

We evaluated our extension by running differ-
ent workflow applications with the three pre-existing
physical machine schedulers of DISSECT-CF and
comparing their energy consumption. For our evalu-
ation, we decided to use the well-known workflows:
Montage, CyberShake, LIGO and SIPHT. This makes
our results comparable with future studies. They have
been used in the past for various benchmarks and
performance evaluations [25]. We have demonstrated
the integration of the auto-scaling mechanisms into a
larger-scale Montage workflow. Finally, we compared
the experimental results of DISSECT-CF-WMS with
those of WorkflowSim [15] in terms of simulation
accuracy and performance.

The experimental results show that workflow
researchers can investigate different PM schedulers of
a given infrastructure with different numbers of VMs
to achieve lower energy consumption. DISSECT-
CF-WMS has better performance than WorkflowSim
when the number of tasks in the workflow is increased.
The experiments also show that DISSECT-CF-WMS
is up to 295 x faster than WorkflowSim and still pro-
duces equivalent results to it. The experimental results
of the auto-scaling mechanism show that the integra-
tion has the potential to optimise makespan, energy
consumption and VM utilisation compared to static
deployment.

The rest of the paper is organised as follows:
Section 2 provides background information and the
work that currently exists. The details of the design
and implementation of the DISSECT-CF-WMS simu-
lator are given in Section 3. We show the performance
evaluation of our approach in Section 4. In Section 5,
we conclude the paper and future work.

2 Background Knowledge and Related Works

In this section, the scientific workflow concept and
some of its scheduling algorithms are presented first.

Then an overview of the architecture and functions of
DISSECT-CF is given. The section concludes with a
problem statement through related work.

2.1 Background Knowledge

A workflow can be represented as a directed acyclic
graph (DAG) consisting of a collection of atomic
tasks. As shown in Fig. 1, the vertices of the workflow
are a set of tasks {Ty, T, ..., T,}, while the work-
flow edges represent data dependencies between these
tasks. For example, during the execution of the work-
flow, the successor task 74 waits for its predecessor
task T to complete its processing and produce its out-
put data. When 7 finishes, some of its data outputs
become input dependencies for 74. When 7y is sched-
uled, its data input dependencies are sent to its target
host to enable the successful execution of 7.

2.1.1 Workflow Scheduling

Workflow scheduling is an increasingly important
area for WMS. It plays a critical role in the optimal
allocation of resources to all tasks. The problem of
scheduling in distributed environments is known to
be NP-hard [41]. Therefore, no algorithm can achieve
an optimal solution in polynomial time, while some
algorithms can give approximate results in polynomial
time. There are several known algorithms for schedul-
ing; we will use the following three in the rest of the

paper:

MaxMin [6] is a three-stage heuristic algorithm for
scheduling. First, it filters all ready tasks (i.e., those
for which all input dependencies met). Then, it sorts
the filtered tasks in ascending order according to
the length of their expected running time. Finally,
it schedules the task with the longest expected run-
time on the best available resource. Consequently,
it favours tasks with long runtime over those with
short runtime.

MinMin [5] is a very similar heuristic algorithm
to MaxMin, the difference being mainly in the
sort order: unlike MaxMin, MinMin sorts tasks in
descending order (again, by their expected run-
time). The task with the shortest expected runtime
is then selected to run again on the best available
resource. This heuristic aims to create an optimal
local path to reduce the total execution time.

@ Springer
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Fig.1 A sample workflow

Heterogeneous Earliest Finish Time algorithm - HEFT
[39]- calculates the average expected execution
time of each task on the resources (VMs) and the
average communication time of two tasks between
all resources. In the first phase, it uses a ranking
function to rank the tasks based on the sum of the
average execution time and communication time.
In the second phase, it assigns a task with the high-
est ranking value (highest priority) to a resource
that would result in minimum execution time.

2.1.2 Infrastructure Simulation

A simulation-based approach is of great interest in the
field of scientific workflow research. DIScrete event-
based Energy Consumption simulaTor for Clouds
and Federations (DISSECT-CF) has been successfully
used to simulate the internals of cloud infrastructures.
Figure 2 shows the architecture of the currently avail-
able? 0.9.6 version. The figure groups the main com-
ponents into subsystems, indicated by dashed lines.
Each subsystem is implemented as independently as
possible from the others. To perform such simula-
tions, DISSECT-CF has five major subsystems, each
responsible for a particular aspect of internal IaaS

Zhttps://github.com/kecskemeti/dissect-cf
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functionality: (i) event system - for a unified time ref-
erence; (ii) unified resource sharing - for solving low-
level bottleneck situations; (iii) energy modelling -
for analysing the energy utilisation patterns of indi-
vidual resources (e.g.., network connections, CPUs) or
their aggregations; (iv) infrastructure simulation - for
modelling PMs, VMs and networked entities; and (v)
infrastructure management - to provide infrastructure
management

Using these subsystems, simulations can estimate
energy consumption and network behaviour, as well as
the impact of virtual machine sharing CPU in a vari-
ety of scenarios. DISSECT-CF has shown promising
performance gains over some popular simulators (e.g.
CloudSim, SimGrid). Finally, and most importantly
for our workflow simulation goals, DISSECT-CF also
provides a simplified network model that allows mod-
elling of data transfers between workflow tasks. As a
result, scheduling techniques based on DISSECT-CF
can lead to improved workflow execution times.

This type of information is at best only partially
available in current commercial and academic cloud
(ware) offerings - e.g. Amazon EC2,> OpenNebula
[31] - but DISSECT-CF enables the analysis of user-
side schedulers from new perspectives. Based on the
results of this analysis, IaaS providers will be able to
provide the most useful information to such schedulers
in the future.

To optimally support workflows, cloud systems are
often used in the background. To increase cost and
energy efficiency, workflow systems could build on
auto-scaling mechanisms that are integrated into the
clouds. DISSECT-CF’s ecosystem also offers several
auto-scaling mechanisms that aim to meet the require-
ments of the application running on the infrastructure.
In our case, the application would be either a single
workflow instance or all workflow instances man-
aged by a particular WMS. Since the simulator’s auto
scaling mechanisms are essential for the modern sim-
ulation of workflow systems, in the next paragraph we
give an overview of the existing approaches provided
by the DISSECT-CF-examples project.*

The existing auto-scaling mechanisms consider the
possible changes to the virtual infrastructure hosted
in the cloud every two simulated minutes. Here we
discuss the way the changes are decided. The system

3https://aws.amazon.com/ec2

“https://github.com/kecskemeti/dissect-cf-examples
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Fig. 2 Architectural view of DISSECT-CF [27]

automatically collects usage metrics (e.g., CPU usage
percentage) for all VMs in the virtual infrastructure.
There are three different auto-scaling mechanisms that
currently use this data. First, the ThresholdBasedVI
mechanism destroys underutilised VMs and creates a
new one only when all other VMs are heavily utilised.
The threshold that determines which VM is under-
utilised can be set by the user of the mechanism. Sec-
ondly, the VMCreationPriorityBasedVI mechanism
applies the same thresholds but favours the creation
of VMs over their destruction. Finally, the PoolingVI
mechanism keeps some unused VMs in the virtual
infrastructure. So, unlike the previous approaches that
have to queue tasks, the Pooling approach can accept
new jobs at any time during the simulation (since it
always has some free virtual machines to which it can
direct new jobs). As soon as no more tasks need to
be executed by the WMS, the virtual infrastructure is
completely dismantled.

2.2 Related Works

A number of simulators [15, 22, 30, 33, 40] have
been developed for modelling the execution of sci-
entific workflows on distributed platforms such as
HPC, Grid, and Cloud. Some simulators [28, 34]
have integrated with a particular WMS to obtain more
advanced simulation.

Although several workflow simulators [11, 22, 40]
exist today, they cannot meet the requirements of
workflow management systems. These requirements
include physical machine state scheduling, virtual
machine creation details, and virtual machine place-
ment. This behaviour does not allow analysing the
impact of the various decisions made by workflow
management systems at the infrastructure level. In
addition, many workflow simulators [9, 15, 19, 34]
do not take into account the provisioning delay of a
VM in the cloud. This can have a significant impact
on simulation results. This is especially true for auto-
scaling, which requires VMs to be provisioned and
deprovisioned while a workflow is running in the
infrastructure.

Workflow integration has been demonstrated for
DISSECT-CF by GroudSim and ASKALON [28].
It was shown to be able to improve GroudSim’s
network model and cloud infrastructure simulation
accuracy. This was achieved by introducing inter-
nal IaaS behavioural knowledge into GroudSim using
DISSECT-CF. The integration allowed ASKALON
WMS to interact with the simulated cloud in the same
way as with real systems. An evaluation using a 3000-
core simulated cloud showed the potential to improve
ASKALON behaviour in networking, energy meter-
ing, VM instantiation, and CPU partitioning accuracy.
On the other hand, this integration caused significant

@ Springer
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additional work due to the required joint coordina-
tion between the two simulators and ASKALON. In
contrast, our newly developed DISSECT-CF-WMS
simulator extension relies directly on DISSECT-CF
without incurring any coordination overhead. This
new direct extension approach also enables the use
of previously unavailable auto-scaling mechanisms
that can be integrated into the execution of workflow
applications on simulation infrastructures.

In [15], the authors presented the WorkflowSim
simulator as an extension of the CloudSim simula-
tor. It is designed to run scientific workflows and
investigate scheduling and clustering techniques. It
includes a task/job fault generator and monitor. It adds
queuing/clustering delays to the workflow simulation
to more accurately estimate the total execution time
of the workflow. WorkflowSim does not capture all
the relevant details of the system and its execution
[13]. In comparison, we developed a WMS simula-
tor on DISSECT-CF that captures the internal details
of the cloud infrastructure and enables the evaluation
of WMS execution on three PM schedulers. In addi-
tion, DISSECT-CF-WMS has better performance than
WorkflowSim when the number of tasks in the work-
flow is increased. Finally, WorkflowSim does not sup-
port an auto-scaling technique or a delay in deploying
VMs to the cloud, while DISSECT-CF-WMS does.

In [13], the authors introduced the WRENCH
simulator, which builds on SimGrid [12], a versatile,
accurate, and scalable simulator. WRENCH was
designed to be an accurate, scalable, and easy-to-
develop simulation software. It implemented the Pegasus
production WMS as a case study. When compared to
WorkflowSim, it was found to be slower by a factor
of ~1.81 for 10,000 task workflows. This was consid-
ered acceptable since WorkflowSim’s simulation results
were found to be inaccurate. However, we show that
our simulator approach is significantly faster than
WorkflowSim. Transitively, based on the measure-
ments of [13] measurements, we can conclude that our
approach would also be faster than WRENCH.

NetworkCloudSim [19] is a CloudSim extension
mainly used for simulating scheduling mechanisms. It
does not support dynamic auto-scaling and provision-
ing delay of a VM in the cloud. In contrast, DISSECT-
CF-WMS has dynamic auto-scaling that takes into
account the start-up time of a virtual machine in the
cloud.

@ Springer

ElasticSim [9] is a toolkit based on CloudSim for
simulating workflows with support for auto-scaling
techniques. It does not take into account the start-up
time of a virtual machine in the cloud, which could
have a major impact on simulation results. DISSECT-
CF-WMS, on the other hand, has auto-scaling mech-
anisms that take into account the time needed to
provision a VM in the cloud.

To overcome the above limitations, we developed
DISSECT-CF-WMS as an extension of DISSECT-
CF for analysing internal IaaS behavioural knowl-
edge. This extension enables the evaluation of three
physical machine schedulers of a given infrastructure
through fine-grained modelling of energy consump-
tion. Furthermore, it is also able to perform large-scale
workflows with good execution simulation perfor-
mance. Finally, it provides an auto-scaling mechanism
to dynamically provision and de-provision resources
when running workflows, taking into account the pro-
visioning delay of a VM in the cloud.

3 The DISSECT-CF Workflow Management
System

This section first explains the design and imple-
mentation of DISSECT-CF-WMS. Then the section
concludes with the DISSECT-CF-WMS functions for
scientific workflows.

3.1 Workflow Management System Simulation

We implemented our WMS simulation approach on
DISSECT-CF, a simulator that focuses on internal
infrastructure. We chose DISSECT-CF because of its
compact API: (i) enables easy extensibility, (ii) sup-
ports laaS energy consumption evaluation, and (ii7)
enables quick evaluation of different scenarios for
TaaS scheduling and internal behaviour. The APIs of
DISSECT-CF support modelling of cloud computing,
network resources, job executions and file transfers.
DISSECT-CF allows the definition of many the types
and quantities of physical machines, energy consump-
tion properties and custom VM and physical machine
schedulers. In addition, DISSECT-CF provides a vir-
tual machine abstraction that includes migration and
consolidation features. DISSECT-CF therefore pro-
vides all the basic abstractions required to implement
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classes of cloud resources relevant to the execution of
scientific workflows.

DISSECT-CF-WMS handles all interactions
related to the execution of workflows with DISSECT-
CF, e.g., transferring data, executing jobs and
completing notifications. The DISSECT-CF-WMS
API provides a higher level simulation focused on
WMS research. This API provides several relevant
higher-level interactions with the DISSECT-CF
simulator:

— To characterise the datacentre configurations for
the simulated workflows, details of networks,
hosts and data centre-level scheduling (e.g. VM
placement policies and PM schedulers) must be
provided.

— To enable parsing of workflow descriptions. This
allows loading and handling of task details and
dependencies.

— To provide a custom workflow scheduling algo-
rithm. Researchers can develop new approaches
for mapping tasks to the virtual infrastructure
supporting the workflow.

— To specify and set up the auto-scaling mechanism
that manages the simulated virtual infrastructure
hosting and running the workflow.

— To select the time to start the workflow. This
helps to identify the transient behaviour of the
workflow.

— To instrument the simulation for future analysis.
For example, it is possible to configure the col-
lection of details such as the total execution time
of a workflow, energy consumption, resource util-
isation and information about custom VM and
physical machine schedulers.

The shaded part of Fig. 3 shows the main com-
ponents of the DISSECT-CF-WMS architecture. The
figure also shows the main connections between the
existing components of the simulator and our new
WMS extensions. The figure shows how virtual infras-
tructures are used by the scheduler to send workflow
jobs to. While the figure also shows that the vir-
tual infrastructures are modelled on pre-configured
clouds, our additions and their detailed connections
with DISSECT-CF are explained in the following sub-
sections. The first three components (parser, engine
and scheduler) are built in such a way that they are
decoupled from the others as much as possible. There-

fore, simulation developers can integrate them into
other simulators.

The right side of Fig. 3 shows the relevant com-
ponents of DISSECT-CF, which manage all models
for computation, storage, network and data location.
The architectural novelty of our simulation extension
is its use of the Virtuallnfrastructure class (instead
of directly interacting with lower level components),
which enables static and dynamic provisioning of
VMs. Dynamic provisioning allows down- or up-
scaling of VMs while the workflow is running. Virtual
infrastructures can instantiate and terminate a specific
type of VM when a user’s resource needs are more
dynamic and sometimes unpredictable. The Virtual-
Infrastructure class provides interfaces to all relevant
internal components to create clouds, storage and vir-
tual machines. The Timed class provides time-related
notifications and enables control of the entire simu-
lation. The IaaSService class represents a single [aaS
cloud that can host the virtual machines for our vir-
tual infrastructure and workflows. The tasks of the
TaaSService are to maintain and manage the physi-
cal machines and schedule VM requests among PMs.
Through the TaaSService class, DISSECT-CF-WMS
supports the cloud as one of the most common execu-
tion environments, such as a commercial cloud (e.g.,
Amazon Web Services (AWS)S) and private cloud
infrastructures (e.g., those managed by OpenStack®).
The Repository class represents the storage entities
in the system and is responsible for modelling data
dependency. Data storage is also simulated by such
repositories. The VirtualMachine class simulates the
behaviour of a virtual machine on a physical machine.

DISSECT-CF has two types of events: time-
dependent and state-dependent. First, the time-
dependent events are placed in the event queue of the
Timed class. The event subsystem of DISSECT-CF
is used to maintain time within the simulated sys-
tem. Second, the state-dependent events are fired by
the entities whose states have been observed. We have
used state-dependent events in our WMS that allows
to DISSECT-CF-WMS to be notified when a task
has been completed during the execution of a work-
flow. The DISSECT-CF-WMS simulator subscribes
to all tasks to be notified when a task is completed.

Shttps://aws.amazon.com

Shttps://www.openstack.org/
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Fig. 3 Class diagram shows the DISSECT-CF-WMS simulator and its connection to DISSECT-CF. The covered area in white colour

is supported by the DISSECT-CF simulator and Helper

This allows DISSECT-CF-WMS to provide the exe-
cution time of each task within the workflow and the
input/output times of the data transfer files of their
data dependency.

3.1.1 Parser

The parser component reads the workflow defini-
tion from widely used DAX files (Pegasus’ workflow
description [17]). Parsing creates a list of Work-
flowJob instances based on the workflow description
files. The WorkflowJob class is an extension of the
original Job class of the DistSysJavaHelpers project,’
which allows the capture of job usage metrics, but
lacks the dependency-related information required for
workflows. Each instance of WorfklowJob stores the
important information needed to process each task,
such as runtime, predecessor tasks and data dependen-
cies (input/output files). Some tasks have one or more
data files that are not from their predecessor tasks.
Therefore, we modelled these task inputs by transfer-
ring them from a data staging site to the selected task
execution site (VM). Generally, the data staging site
is a shared file system at the execution site, such as
NFS, or in some cases a file storage service near the

"https://github.com/kecskemeti/DistSysJavaHelpers
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execution site, such as Amazon S3. This site is mod-
elled as a central data storage and it is used to stage
data in and out for a workflow. Then, the next com-
ponent will maintain task dependency constraints for
managing the scheduling process.

3.1.2 Engine

After the Parser component reads the workflow defini-
tion information, the Engine component receives and
processes the information by checking the predecessor
tasks of each task. The Engine has information about
the complete structure of the workflow. It’s main task
is to determine which tasks are ready for execution. A
task can only be ready in two ways: (i) A task without
predecessors is always ready. (ii) A task with prede-
cessors is only ready when all its predecessors have
finished their execution.

To simplify the engine’s task, our engine only
checks the first readiness criterion on its own. To
ensure that we still process all ready tasks of the sec-
ond criterion, we ensure that DISSECT-CF notifies the
engine of task completion for all previously detected
ready tasks. When the engine receives notification
of task completion, it updates the task’s successor
tasks and removes itself from the predecessor list of
successors. This allows the successors to be eligi-
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ble for scheduling by the workflow scheduler cho-
sen by the user of the simulator. Our WMS extension
also provides different task states. Figure 4 shows the
sequence of task states from an unavailable state (not
a ready task) to a ready state when all predecessor
tasks have been completed. Next, it is either in a run-
ning state if it is scheduled on a resource (VM) or in a
waiting state if no resource is available.

One of the problems in developing a WMS is how
to deal with failures. Computing resources have a
small likelihood of failure during the execution of
the WMS. As demonstrated via the DCF-Exercises
project,> DISSECT-CF is able to mimic arbitrary
infrastructure failures by using a random failure gen-
erator. Our WMS extension builds on this capability
by also specifying a failure cause for each failure,
that allows triggering a task if its computation fails.
This capability is introduced in the Engine compo-
nent, which monitors the status of a task and takes
appropriate action, i.e., a failed task is automatically
resubmitted for execution after a timeout. For exam-
ple, if a task fails, our WMS sends it to the queue
and resubmits it to another computing resource. This
method is part of DISSECT-CF-WMS and can be
used to simulate VM failure probability and error
handling capabilities for simulated workflow execu-
tions. This can be used to create more robust fault
tolerance mechanisms. Finally, the task is in its com-
pleted state when it has successfully finished its
execution.

3.1.3 Scheduler

The scheduler receives ready tasks in a local queue
from the Engine component to schedule them. In this
step, we need to select appropriate resources for the
ready tasks using the scheduling algorithm specified
by the user. This algorithm can be implemented by the
user, or it can be one of the pre-implemented solu-
tions, i.e., HEFT [39], MinMin, [5], and MaxMin,
[6] (these were introduced in Section 2.1). We sup-
port two types of scheduling algorithms: static (e.g.,
HEFT) and dynamic (e.g., MaxMin, MinMin and
DataDependency). Static algorithms start with the
assignment of tasks to VMs in the workflow plan-
ning stage. Assignment of tasks to VMs occurs before
the start of workflow execution. In this case, the

8https://github.com/kecskemeti/dcf-exercises

Engine component is still responsible for releasing
tasks whose predecessor tasks have completed exe-
cution. But the Scheduler component assigns a task
to its assigned resource beforehand. In contrast, the
dynamic algorithms start assigning tasks to VMs dur-
ing workflow execution. Tasks are assigned to VMs
when the tasks are ready and VMs are free during
the workflow execution phase. We have developed the
DataDependency scheduling algorithm that takes into
account data transfers. It selects several ready tasks
from a list of task objects stored in the data struc-
ture for execution based on the free available resources
(VMs). The scheduler component is also responsible
for storing information about which VM to execute
each task on. This informs the JobRunner compo-
nent about the location of files with data dependencies
(e.g., where the predecessors stored their outputs).
This step enables the actual execution of the task
on a virtual machine, which is covered in the next
section.

3.1.4 JobRunner

The JobRunner component is responsible for the exe-
cution of each task on a previously selected resource
(VM). It transfers all files on which a task depends
to the execution VM. The transfer is done using the
network APIs of DISSECT-CF. If a task is assigned
to the same VM that executed a predecessor task, the
corresponding dependency transfer does not take
place. After notification of the completion of the
dependency transfer, the execution of the task on
the VM begins. The task-level resource sharing and
execution model is provided by DISSECT-CF. This
allows DISSECT-CF-WMS to obtain accurate and
reliable information about task completion. If nec-
essary, JobRunner transfers the output files from
an execution site to the central storage site (stag-
ing data out) after a task is completed. After all
these activities are completed, the JobRunner noti-
fies the Engine component that the task is complete.
This step enables the engine to schedule successor
tasks.

3.1.5 Dynamic Behaviour
Figure 5 shows the basic interaction required in

our extension to execute a single workflow task.
DISSECT-CF-WMS simulates the exchange of a large
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Fig. 4 A task state diagram

Unavailable

number of messages between its components about
the state of the task. When the process is com-
plete, the Engine component receives the details of
the workflow information in a data structure. It then
forwards the ready tasks to the scheduling process.
Before scheduling takes place, the Scheduler retrieves
information about the available resources (VMs) from
the Virtuallnfrastructure component of DISSECT-CF.
Based on the dynamic information about resource
availability, a ready task is assigned to a VM using
the selected workflow scheduler. Then the JobRun-
ner component manages the transfer of files with data
dependencies to an execution site (VM) to start the
execution of a task. Finally, the JobRunner component
sends a task completion notification to acknowledge
the engine component. This allows the successor tasks

Completed

of the completed task to update their precedence
conditions and be ready for scheduling. Therefore,
the scheduling process continues till all tasks are
scheduled. The Engine component is also responsi-
ble for completing the execution of the workflow.
It counts the number of completed tasks. Once all
parsed tasks have received a completion notification
of execution from JobRunner, the Engine shuts down
the other WMS components (i.e., the Scheduler and
the Job Runner) associated with the execution of the
workflow.

3.2 Auto-Scaling Mechanism

We integrated the DISSECT-CF-WMS simulator with
the existing auto-scaling mechanisms of DISSECT-CF.

| Scheduler |

| JobRunner | | DISSECT-CF
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|
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Fig. 5 The interactions between the DISSECT-CF-WMS components and DISSECT-CF for the task’s lifecycle till it completed
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We have adapted DISSECT-CF-WMS to provide auto-
scaling for a workflow execution environment. We
have taken into account the delay in provisioning
a VM in the cloud, which can have a significant
impact on simulation results. After a virtual machine
is requested, it is not immediately available for use.
The provisioning delay of a VM is the time it
takes to be provisioned and booted on a physical
host. This enables analysis of dynamic provision-
ing of resources while running scientific workflows
in the cloud to overcome issues of under- or over-
utilisation of resources. The auto-scaler behind our
WMS extension provides dynamic provisioning and
de-provisioning of the number of VM instances based
on user-selected criteria. We have integrated our WMS
into the virtual infrastructure of an auto-scaler, which
is able to automatically scale up or down resources
based on the auto-scaling approach to better meet
the demands of newly arrived tasks. We modified the
JobRunner component to accommodate data transfers.
Since the auto-scaled virtual infrastructure creates and
destroys VMs at will, the memory of these VMs
is volatile and cannot be used for long-term stor-
age of data dependencies during workflow execution.
Therefore, our approach places data files in a cen-
tral data storage for staging data to and from for a
workflow. DISSECT-CF provides three basic mecha-
nisms for auto-scaling (we discussed these in detail
in Section 2.1). When configuring workflow exper-
iments, the auto-scalers can be selected and their
effects on the WMS analysed.

Auto-scaling provides a dynamic and scalable way
of scheduling multiple workflows simultaneously with
different virtual machine images to facilitate the exe-
cution of a number of tasks from a variety of workflow
applications. Users can develop novel auto-scaling
policies by extending the base Virtuallnfrastructure

Fig. 6 The overview of the m= = = =

class to override its methods, such as the three mecha-
nism classes (PoolingVI, VMCreationPriority VI, and
ThresholdBasedVI), as shown in Fig. 6. Users can
develop an approach to store their intermediate data
on the VMs used for execution, but the data on a
particular VM should be moved to central storage
when a mechanism needs to de-provision that VM.
Some users require a dynamic provisioning technique
for developing some workflow scheduling algorithms
that need this technique. This concept is applicable to
algorithms that use either static or dynamic resource
provisioning. This technology allows algorithms to
dynamically adjust the number and type of virtual
machines used to schedule jobs while workflows are
running.

DISSECT-CF-WMS can query the CPU utilisation
for any period during workflow execution to iden-
tify the current VM utilisation pattern. Therefore,
this behaviour results in either deprovisioning some
unused VMs or provisioning VMs when the current
VM utilisation is high, e.g. when the three auto-
scaling mechanisms use this feature (VM request, VM
termination). More mechanisms could be added to
reflect the environment in real life.

4 Evaluation

We demonstrate the capabilities of DISSECT-CF-
WMS using the following evaluation experiments.
First, we evaluated how the pre-existing three physical
machine schedulers influence the energy consump-
tion of various workflows. Second, we compared the
simulation of DISSECT-CF-WMS with WorkflowSim
in terms of simulation accuracy and performance.
Third, we have shown the advantages of using the
auto-scaling mechanisms of DISSECT-CF-WMS to

DISSECT-CF-WMS 1
simulator integrated with 1

the auto-scaling e — - " ——— -
mechanisms of the I Auto-Scaling Mechanisms :
DISSECT-CF simulator ' VMCreationPriorityBasedV! || ThresholdBasedV! || PoolingVI |,
I
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optimise makespan, energy consumption and VM util-
isation over static provisioning. Finally, we evaluated
the three built-in scheduling algorithms with four
popular workflow applications in terms of energy con-
sumption. The simulations were run on a laptop with
12 CPUs of Intel Core 17-8750H CPU @ 2.20GHz,
16GB RAM and 119GB SSD.

All experiments were evaluated with synthetic
workflows derived from the Montage (astronomy),
CyberShake (earthquake science), LIGO (gravita-
tional physics) and SIPHT (biology) applications, tak-
ing into account data transfers. The Montage [18]
workflow is an astronomy application used to gen-
erate custom mosaics of the sky based on a set of
input images. The CyberShake workflow is used to
characterise earthquake hazards by generating syn-
thetic seismograms. The Laser Interferometer Grav-
itational Wave Observatory (LIGO) [7] workflow is
used to analyse data from the coalescing of com-
pact binary systems such as binary neutron stars
and black holes. The sRNA Identification Proto-
col using High-throughput Technology (SIPHT) pro-
gramme [29] uses a workflow to automate the search
for SRNA encoding- genes for all bacterial replicons
in the National Center for Biotechnology Information
(NCBI) database. Figure 7 presents the structure of
four workflows.

CyberShake

To simplify the configuration of the simulated
cloud, we used the DCCreation class from DISSECT-
CF. We configured the simulated infrastructure for
our WMS experiments by setting up a homogeneous
cloud with 100 physical machines (each configured
with 32 CPU cores, 256 GiB of memory and 256GB
of storage, and a linear power model ranging from an
idle power draw of 296 watts to a maximum power
draw of 493 watts) and also configured a central data
storage of 36 TB. The machines and central storage
were simulated to be connected via a single switch
(we set the bandwidth between the machines and the
switch to 2 Gbit). All created physical machines are
connected via a cloud-level network. The physical
machines are potentially controlled by three physical
machine schedulers.

To evaluate the energy efficiency, we used
the TaaSEnergyMeter class from DISSECT-CF, that
allowed us to monitor the energy of the entire IaaS
system generated by the DCCreation class. We set up
our energy metre to monitor the entire cloud and col-
lect energy-related details in every simulated hour. In
addition, we used the HourlyVMMonitor class, which
can monitor the utilisation of each VM’s CPU in an
hourly rate.

We collected the data centre metrics after the first
task of the workflow was started. We instrumented

’\, // \ /3\\ \l/ l\l
A\ \J/
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Fig. 7 The structure of the Montage, CyberShake, LIGO and Sipht workflows
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the following simulation experiments to capture the
following metrics: (i) the makespan (total workflow
execution time), i.e., the start time of the first task to
the completion time of the last task, (i7) the average
VM utilisation, i.e., the average of the hourly reports
for each VM during the complete execution of a work-
flow, and (iii) the total energy consumption of the
data centre in kilowatt hours (kWh) as reported by the
laaSEnergyMeter.

4.1 Utilisation of Internal Cloud Infrastructure Details

We configured a virtual infrastructure with a static
number of VMs (in a single experiment, we set
the number of VMs between 30 and 100; all VMs
were homogeneous in terms of the number of CPU
cores and memory). We used FirstFitScheduler as
VM scheduler and the DataDependency algorithm
as task scheduler on VMs. The FirstFitScheduler is
a VM scheduler that implements one of the sim-
plest VM schedulers. It places each VM at the
first PM that would actually accept it. We ran each
static virtual infrastructure on the cloud mentioned
above, but we replaced the schedulers for the physical
machines with the three offered by the simulator: (7)
AlwaysOnMachines (AOM), (ii) SchedulingDepen-
dentMachines (SDM) and (iii) MultiPMController
(MPMCO). First, AlwaysOnMachines ensures that all
PMs are controlled so that they always remain on.
Second, SchedulingDependentMachines increases or

Fig. 8 The total power

decreases the power of the PM set according to
the requirements of the VM scheduler (this sched-
uler changes the power of the PM set by one PM
at a time). Finally, MultiPMController is very sim-
ilar to SDM, but immediately increases the number
of machines needed to run the current infrastructure
(i.e. if 4 newly powered-on PMs are needed to host
the current demand of VMs, all 4 are powered on
immediately). We set a linear model for DISSECT-
CF-WMS, which assumes that power consumption
depends on the degree of use of CPU, ranging from
an idle power consumption of 296 watts to a maxi-
mum power consumption of 493 watts. We recorded
the power consumption for DISSECT-CF-WMS from
the start time of the first task to the completion time of
the last task of the workflow.

Figures 8, 9, 10 and 11 show the collected energy
consumption for each experiment of DISSECT-CF-
WMS when running 1000 tasks each of the Montage,
CyberShake, Sipht and LIGO workflows. With a small
number of 30 VMs (4 cores) using only slightly less
than 4% of the total infrastructure, the MPMC and
SDM schedulers have much better energy consump-
tion than the AOM scheduler (i.e., they consume more
than 11 times, 15 times, 7 times, and 8 times
of energy for the same computation of the Mon-
tage, CyberShake, Sipht and LIGO workflows, respec-
tively). This pattern repeats (with smaller advantages)
for almost all larger VM numbers, except when the
VMs use the entire infrastructure. In all cases, AOM’s
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Fig. 9 The total power
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strategy of switching on all machines regardless of
workload pays off, as it makes all VMs available for
workflow at the earliest opportunity. In contrast, the
SDM and MPMC schedulers achieve a large reduction
in energy consumption, as SDM’s strategy of switch-
ing on all machines in the data centre one by one
(at a time) results in a long overall simulation time
due to the provisioning delay, as shown in Fig. 12.
The MPMC policy, on the other hand, immediately
switches on the number of machines needed for the

Fig. 10 The total power
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current operation of the infrastructure. Static VM allo-
cation policies for workflows are not suitable for data
centres using a PM scheduler such as SDM.

First, AOM has the same energy consumption pat-
terns for all workflow applications because it never
considers switching off machines and thus it results
in energy consumption for the entire infrastructure,
even for the PMs that do not host VMs. Second, all
PM schedulers have the same energy consumption
when using the entire infrastructure, as they use all
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@ MultiPMController

# SchedulingDependentMachines

40 VMs (8 cores) 50 VMs (16 cores) 100 VMs (32 cores)
64GiB of RAM 128GiB of RAM 256GiB of RAM
Number of VMs



Developing a Workflow Management System Simulation for Capturing Internal laaS...

Page 15 0f 26 2

Fig. 11 The total power

, 18000
consumption of PM
schedulers for the LIGO 16000
workflow on =
DISSECT-CE-WMS with = 14000
different numbers of VMs =
.2 12000
L
o
g 10000
w
&
O 8000
3
E 6000
o
4000
2000
0

30 VMs (4 cores)
32GiB of RAM

machines. Moreover, the MPMC and SDM schedulers
have similar patterns for the Montage and CyberShake
applications. However, the Sipht and LIGO applica-
tions have reduced energy consumption by increasing
the number of VMs because they have not used all
the statically created VMs at all times, except for the
Sipht experiment with 100 VMs, which only uses a
maximum utilisation of VMs 70% because Sipht has
some tasks with significant differences in their run-
ning times, so that the time difference can be as much
as 19x. This results in idle time in other resources and

Fig. 12 The provisioning
time of VMs for three PM
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scheduling gaps between tasks in the workflow, lead-
ing to the highest energy consumption. This pattern is
repeated in LIGO’s experiments, but the time differ-
ence can be as high as 3 x, resulting in lower energy
consumption.

If we compare the experiments from the cloud
users’ point of view, the results show the advantage of
the AOM and MPMC schedulers. As our base WMS
waits for all statically allocated VMs to start up, the
VMs behind our workflows can start faster thanks to
AOM’s always-ready physical machines. This reduces
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VM provisioning time, as shown in Fig. 12. Note
that despite AOM’s significant energy penalty, the
improvements in provisioning time are equally sig-
nificant. The weakness of the SDM strategy is also
evident in the waiting time. Our WMS has to wait sig-
nificantly longer for the requested VMs to be ready
before it can assign tasks to them. The waiting time
difference can be as high as 17x as shown in Fig. 12.
The differences are mainly due to the fact that SDM
is very slow in starting machines. As a result, the exe-
cution of the entire workflow is delayed with many
fewer physical machines turned on (but those few are
turned on for a significantly longer time, as shown by
the provisioning times in Fig. 12). These differences
show that for dedicated private cloud infrastructures
it is advisable to switch on all PMs required for the
workflow. This way we get the results back the fastest
and also do not consume too much energy during
the runtime of the workflow, like the MPMC sched-
uler. Thus, DISSECT-CF-WMS is able to offer insight
for analysing different workflow execution scenar-
ios and instrument the execution environment to gain
insight into the impact of the chosen infrastructure
configuration.

4.2 Simulation Times

Now that we have demonstrated the benefits that a
WMS simulation extension can provide for the evalua-
tion of WMS behaviour, we move on to the evaluation
of the core functions of the WMS. We have compared
the performance and accuracy of the simulation results
of our system with version 1.1.0 of WorkflowSim,
using the same laptop as mentioned above. DISSECT-
CF-WMS does not use logging mechanisms, but we
printed the execution details as messages. To ensure a
fair comparison, WorkflowSim’s logging mechanisms
were disabled. We made sure to run two experiments,
one in each simulator with exactly the same settings.
First, we made sure that the simulated data centres
had the same characteristics. Again, we used the same
cloud mentioned earlier. We requested a static VM
configuration that occupied the entire data centre:
100 virtual machines with 32 cores each. For our
WMS, we used FirstFitScheduler as the VM sched-
uler, AOM as the PM scheduler and DataDependency
as the scheduling algorithm. For WorkflowSim, we
used DATA as the scheduling algorithm, LOCAL as
the local file system for storing the data dependency

@ Springer

files and the time-shared model as the policy for VMs
and jobs. We have now evaluated both simulators with
synthetically generated Montage workflows of differ-
ent sizes (the number of tasks ranged from 1K to
15K).

We compared the total execution times reported
by both simulators for all the workflows. We have
obtained very similar execution times in both simu-
lators. The difference between the two had a mean
absolute percentage error (MAPE) of less than 0.16%.
This difference in execution time is due to the fact
that our workflow scheduler in DISSECT-CF-WMS
assigns tasks to VMs in a slightly different way than
the approach taken by WorkflowSim. As a result, the
transfer time of the dependent data may be diffe-
rent. Despite the accurate and more detailed simula-
tion (i.e., we provide more insight into the internals
of the data centre behind the workflow), DISSECT-
CF-WMS delivers the results in significantly less
time. Figure 13 illustrates the performance differences
between the simulators. We see that our measure-
ments of the real duration of the simulation show
that the performance advantage of DISSECT-CF-
WMS is between 18 and 295x (i.e., we can get to
the same quality results at most 2 orders of mag-
nitude faster). Moreover, WRENCH took 13 minutes
to simulate an Montage workflow with 10,000 tasks
[14], while DISSECT-CF-WMS took about 5 seconds
to simulate the execution of the same workflow.

WorkflowSim builds on CloudSim, which uses a
process-based paradigm where each entity in the sys-
tem has its own thread, resulting in poor scalability
as the number of entities in the system grows [36].
DISSECT-CF, however, requires only one simulation
thread (instead of one thread per entity). As a result,
our WMS outperforms WorkflowSim, as shown in
Fig. 13.

4.3 Simulation versus Execution

The previous simulation experiment demonstrated the
performance and accuracy of our system’s simulation
results to WorkflowSim. We compared our simulation
result to an existing execution of a real-world Pega-
sus workfolw (Montage-2.0) on the AWS-m5.xlarge
platform to validate the simulation environment [14].
The Montage workflow contains 1240 tasks, and we
compared the real execution of five traces to the
simulated one. We replicated the identical execution
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Fig. 13 The simulation time of DISSECT-CF-WMS and WorkflowSim simulators with different numbers of tasks in Montage

workflows

environment, which performs similarly to Amazon
EC2 mb5.xlarge instances. The execution environment
includes a submission node that runs Pegasus and
DAGMan, as well as four worker nodes (4 cores per
node with a shared file system). In these instances, the
bandwidth between the data node and the submit node
was 0.44 Gbps, while the bandwidth between the sub-
mit and worker nodes was 0.74 Gbps and 1.24 Gbps,

pegasus

Tasks

AR

0 1000 2000 3000
Makespan (s)

Fig. 14 Task execution Gantt chart for sample real-world
(“pegasus”) execution of the Montage-2.0 workflow on the

AWS-m5 xlarge platform [14]

respectively. Figure 14 depicts Gantt charts of the real
execution, whereas Fig. 15 depicts the simulated exe-
cution. On the vertical axis, task executions are shown
as a line segment on the horizontal time axis, cover-
ing the time interval between the task’s start and end

Dissect-cf-WMS
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v
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Fig. 15 Task execution Gantt chart for simulated Dissect-cf-

WMS executions of the Montage-2.0 workflow on the AWS-
mS5.xlarge platform
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times. Different kinds of tasks (executables) are indi-
cated by different colours. We have tried to assign the
same colours to these task types as in the real execu-
tion. The average time for real-world execution was
2911.8 seconds, whereas the average time for simu-
lated execution was 2980 seconds. The results of the
experiment demonstrate that the scheduling and exe-
cution of the simulated workflow are similar to the
actual workflow execution. The runtime difference of
68.2 seconds is due to the errors of the prediction ser-
vice utilised for choosing the activity and file transfer
execution timings in the simulation, which inaccuracy
is within a 3% range.

All tasks of the same type in this workflow have
the same priority and are independent. For exam-
ple, the shapes of the yellow areas differ in the two
figures. The implementation-based behaviour of the
workflow scheduler explains these differences. Dur-
ing the execution of the workflow, it is often possible
to select several ready tasks for execution, e.g., groups
of independent tasks on the same workflow level. If
the number of computing resources, n, is less than the
number of ready tasks, the scheduler immediately exe-
cutes n ready tasks. In the majority of WMSs, these
tasks are selected from the first n tasks returned during
iteration through the data structures in which the task
objects are placed. To create an identical replica of a
WMS, you would need to develop and use the same
data structures as the real implementation. Depend-
ing on the data structures, languages, and/or libraries
used, this can be tedious or impossible. In this Pegasus
case study, the real DAGMan scheduler uses a custom
priority list to hold ready tasks, while our simula-
tion version stores workflow tasks in a Java hashmap
indexed by task string IDs. The consequence of this is
that the real scheduler, when selecting the first n ready
tasks, generally selects different tasks than the simu-
lated version of the scheduler. The differences that can
be seen in Figs. 14 and 15 can be attributed to this
factor.

4.4 Auto-Scaling Mechanism

We focused on demonstrating the benefits of the auto-
scaling mechanisms behind DISSECT-CF-WMS. We
re-ran our large-scale (15K tasks) montage workflow.
We used the same cloud we mentioned earlier. We
compared the dynamic VM allocation strategies of the
different auto-scalers with the completely static virtual
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infrastructure allocation (thus allowing a comparison
to the previously acquired statically allocated Work-
flowsim Scenario). In the static scenario, we set up 50
virtual machines with 2 cores each in advance of the
workflow and kept all VMs till the end. For this exper-
iment, we used FirstFitScheduler as the VM scheduler,
MPMC as the PM scheduler, and the DataDependency
algorithm as the task scheduler. DISSECT-CF also
simulates a single repository for a specific type of vir-
tual appliance from which all VMs can be derived. The
virtual appliance repository can significantly reduce
the time required to create virtual machines. In this
experiment, we modified the Pooling VI to ensure
the efficiency of the auto-scaling mechanism. First,
we adjusted the pooling VI to have 50 VMs with 2
cores each at the beginning of the workflow execution,
since Montage has 12,495 tasks in the first and sec-
ond phases. Second, we set the threshold for pooling
VI to 80 VMs to reduce the cost while maintaining the
makespan. Finally, the number of VMs is reduced to
two if the single-threaded tasks of the Montage work-
flow are executed sequentially. In this case, one VM
is used while the second is idle, because Pooling VI
is designed to have a certain number of completely
unused VMs available for executable jobs.

Figure 16 shows the results of executing the work-
flow. Pooling VI has the shortest total execution time
in contrast to a dedicated cluster and the other of the
auto-scaled virtual infrastructures. In terms of VM
resource utilisation, Fig. 17 also shows that pooling VI
has the best average VM utilisation across all mecha-
nisms and static 50 VMs. This is because pooling VI
has been configured to always keep one VM ready
in the virtual infrastructure (so this is a compromise
between the fully static and dynamic scenarios that the
others implement). It is also worth noting that Pooling
VI follows an almost static allocation of VMs, while
the other two approaches frequently destroy and recre-
ate VMs (in fact, they only reuse VMs for about six
tasks before discarding them). These approaches thus
significantly increase execution time, as most work-
flow tasks initially have no VMs to execute and must
wait for their respective VMs to come to life. It should
also be noted that the additional transfers required
for staging data also lengthen execution, unlike the
static VM allocation approach. In addition, the VMs
access the same central storage to read and write the
data dependency files. Montage is a data-intensive
scientific workflow. However, the network bandwidth
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is fast enough to avoid bottlenecking the tasks that
access the same central storage to store and retrieve
the data files. Montage data sizes range from 4 to 1031
MB, with most of them being 4.2 MB, but a few are
over 4.2 MB.

Auto-scaling Mechanisms with Static Allocation of VMs

A similar concept to Amazon EC2 is being consid-
ered, where VMs are rented on demand and charged
on an hourly basis, with partial hours rounded up to
the next full hour. We find that Pooling VI reduced
total billed hours by 41.5% compared to the dedicated
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Fig. 17 Resource consumption patterns of auto-scaling mechanisms and static 50 VMs with a large-scale Montage workflow (15000

tasks)
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cluster with 50 VMs, as shown in Fig. 18. The Mon-
tage workflow consists of six single-threaded tasks
executed sequentially, with a total execution time of
about 4.5 hours. As a result, when VMs were stati-
cally allocated, only one VM was used for 4.5 hours,
while the other VMs were idle due to the single-thread
tasks. Another consideration was related to Pooling
VI, which describes the ability of mechanisms to allo-
cate a number of VMs efficiently. Static provisioning
is inefficient when the number of VMs remains con-
stant over time. In this case, the scheduling algorithm
does not provide a way to increase or decrease the
number of VMs in response to a dynamic workload
of workflows. In Fig. 19, Pooling VI reduced energy
consumption by more than 82% compared to static
allocation. In addition, Pooling VI is reduced by about
54% compared to the other auto-scaling mechanisms.
Although Pooling VI has used the largest total num-
ber of VMs compared to static allocation and the other
mechanisms (see Figs. 20 and 21), it has the lowest
total number of hours billed, as shown in Fig. 18.

4.5 Scheduling Experiments

Finally, we compared the three aforementioned
scheduling algorithms on DISSECT-CF-WMS with-
out considering data transfers between VMs. We
tested the algorithms on the same cloud that we
defined earlier. We tested the three algorithms with
the workflow applications on ten VMs. The VMs were
heterogeneous in terms of the number of CPU cores

Fig. 18 The total 450
accounted for hours of
virtual machines of

auto-scaling mechanisms 375
and static 50 VMs with a
large-scale Montage
workflow (15000 tasks) 300
= 234
g2
=
150
75
0

PoolingVI
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from 1 to 10, with the first VM having one core
while the last VM had ten cores. We collected the
energy consumption of DISSECT-CF-WMS as shown
in Fig. 22. We specifically note the need to collect
energy consumption data for scheduling algorithms
to evaluate their impact on energy consumption. We
used the MPMC scheduler of the infrastructure and
FirstFitScheduler as the VM scheduler. The algo-
rithm HEFT has the best energy consumption over the
other algorithms for all workflow applications except
CyberShake, where MaxMin reduced energy con-
sumption by 8% over HEFT. HEFT reduced energy
consumption of LIGO by 45% and 50% over MaxMin
and Minmin, respectively. Also HEFT has reduced
the energy consumption of Sipht by 9% and 10%
compared to MaxMin and MinMin respectively.

5 Conclusion and Future Works

A scientific workflow application consists of a large
number of dependent jobs with complex priority con-
straints between them. Cloud workflow simulators do
not currently provide sufficient support for the under-
lying virtualised infrastructure. This includes physical
machine state scheduling, virtual machine creation
details and virtual machine placement. Other simu-
lators are often user-centric and treat the cloud as
a black box. Unfortunately, this behaviour prevents
the assessment of the impact on the infrastructure
of the various decisions made by the WMS. In this

400
267 269 I

ThresholdBasedVl  VMCreationPriorityVI Static 50 VMs

Auto-scaling Mechanisms with Static Allocation of VMs
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Fig. 19 The total power consumption (kWh) of auto-scaling mechanisms and static 50 VMs with a large-scale Montage workflow
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paper, we present DISSECT-CF-WMS, a workflow user-side behaviour of the clouds, while DISSECT-
management system simulation built on DISSECT- CF focuses on the internal behaviour of the IaaS
CF. We developed DISSECT-CF-WMS to focus on the systems. It enables better energy awareness by allow-
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ing investigation of physical machine schedulers and of the workflow application as it runs on the infras-
customisable consumption characteristics. It also pro- tructure, taking into account the provisioning delay of
vides dynamic provisioning to meet the resource needs a VM in the cloud. We evaluated our simulator by
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Fig. 22 The total power consumption of four workflow applications with three scheduling algorithms of DISSECT-CF-WMS on
heterogeneous VMs
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running several workflow applications with different
schedulers of physical machines for a given infras-
tructure. The experimental results show that work-
flow researchers can investigate different PM sched-
ulers on infrastructure configurations to achieve lower
energy consumption. The experiments also show
that DISSECT-CF-WMS is up to 295x faster than
WorkflowSim and still delivers accurate results. The
experimental results of the auto-scaling mechanism
show that the integration has the potential to optimise
makespan, energy consumption, and VM utilisation
over static provisioning. This work also allowed us
to investigate Internal IaaS behavioural knowledge,
such as different scheduling strategies for physical
machines in a simulated environment; DISSECT-CF-
WMS proved very useful.

In the future, we will further extend the DISSECT-
CF-WMS scheduling algorithm for dynamic provi-
sioning so that we can consider cost, makespan,
resource utilisation and energy consumption simulta-
neously. Multi-objective optimisation is a hot research
area in workflow scheduling. Users can create algo-
rithms for multi-objective scheduling optimisation by
leveraging their knowledge of IaaS internals. These
insights can be used to optimise key workflow objec-
tives (such as energy consumption, time and resource
utilisation). DISSECT-CF-WMS offers opportunities
for scientific workflow applications that can be used
for the upcoming research areas:

Resource Usage. The new feature of DISSECT-CF
makes it possible to identify different physical
machines (PMs) for instantiated VMs. To gain
insight into WMS usage in private cloud deploy-
ments, workflow schedulers can collect information
from PM schedulers and VM placement mecha-
nisms. This enables an accurate knowledge of VMs
sharing the same PM. Therefore, workflow sched-
ulers can schedule tasks with high data dependency
files for these VMs. As a result, these VMs can
reduce data transfer times because they share the
same PM or are close to each other (in terms of the
network). In addition, different allocation strate-
gies of PMs to VMs can be developed to study
their impact on performance, resource utilisation,
energy consumption and fairness of workflows.
More mechanisms could be added to reflect the
environment in real life. An open research topic
that cannot be discussed with commercial cloud

companies because their VM placement technique
is not public is the impact of background load
on virtual resource performance. When there are
multiple instances on a physical machine, per-
formance degradation is always possible. If the
network, memory or CPU become bottlenecks, vir-
tual machine performance can be affected by this
behaviour.

Power Consumption. Energy awareness is very
much needed to support energy-efficient data cen-
tres. It is not enough to focus on data centre
operators when we are looking at energy effi-
ciency. It is important that our applications that use
these data centres are also energy-aware. To enable
energy awareness for workflow schedulers, mea-
surements provided by DISSECT-CF can lead to
optimisation of workflow execution by considering
energy consumption alongside traditional cost and
time objectives. These alternatives, which are closer
to energy-optimal plans, increase the potential to
reduce energy consumption and lower data centre
operating costs.

The use of the underlying PM and its resources
has a greater impact on energy consumption. For
example, data centres can reduce the perceived
energy consumption of a virtual CPU for customers
who are under-utilising their VMs by allocating
fractions of real CPUs from the PMs hosting those
VMs. For example, some PM schedulers from
DISSECT-CF are able to shut down machines when
the VM queue is empty and there are some physical
machines with no load. Therefore, this behaviour in
cloud systems could be exploited in future WMSs
by optimising energy consumption.

Data Centre Configurations. The DISSECT-CF
simulator allows the properties of data centres
(DCs) to be specified using the CloudLoader
class. For our workflow executions, we can define
both homogeneous and heterogeneous computing
resources. Therefore, the base simulator allows
evaluating different types of data centres to find
out which could be the best option for a spe-
cific type of workflow application. This allows
the impact of the DC configuration on scientific
workflow applications to be investigated through
a series of experiments. The rest of the DISSECT-
CF-WMS configuration remains the same, but the
DC features change from one experiment to the
next. DISSECT-CF-WMS provides a federated
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cloud that transparently aggregates different cloud
computing providers. This allows users to use the
federated cloud by developing an approach to run
workflows that are compute and data intensive
applications. They have different requirements for
the tasks that are suitable for execution on multiple
TaaS cloud providers.

Background Load. Virtualization is an important
component of IaaS because it isolates access to
resources through virtual machines and allows
users to share physical resources securely. While
IaaS clouds offer some ability to manage a virtual
ensemble of resources (called virtual infrastruc-
tures), they offer no way to accurately track the
status, utilisation or performance of their resources.
The physical layer is completely hidden. Due to the
multi-tenant nature of clouds, application perfor-
mance can be severely impacted by other, unknown
and invisible processes, known as background
workload. For this reason, DISSECT-CF-WMS can
be used to add background load to a simulation by
interfacing with the Grid Workload Archive file for-
mat [24]. If required, background load can be added
to resources, either by using traces from real back-
ground loads, such as the Grid Workload Archive,
or from synthetic workloads.

Performance Metrics. DISSECT-CF-WMS pro-
vides the following types of performance metrics,
such as CPU utilisation, disc read and write
throughput, incoming network data, outgoing net-
work data and average queue time. They can be
collected during workflow execution preiodically
at a user-specified interval. This information helps
to understand and compare the actual resource
consumption during workflow execution under
different conditions, e.g. with a different number
of resources or using different resource configura-
tions. We can also conclude from this information
that the execution phases of a workflow are CPU
-intensive, memory-intensive and I/O-intensive.
Therefore, the observed metrics can help users
when they need to execute their workflows in the
real context of cloud computing, such as the num-
ber of resources, network bandwidth and memory
size.
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