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Designing efficient traffic signal controllers has always been an important concern in traffic engineering. This is owing
to the complex and uncertain nature of traffic environments. Within such a context, reinforcement learning has been
one of the most successful methods owing to its adaptability and its online learning ability. Reinforcement learning
provides traffic signals with the ability to automatically determine the ideal behaviour for achieving their objective
(alleviating traffic congestion). In fact, traffic signals based on reinforcement learning are able to learn and flexibly
react to different traffic situations without the need of a predefined model of the environment. In this research,
actor—critic is used for adaptive traffic signal control (ATSC-AC). Actor-critic has the advantages of both actor-only and
criticconly methods. One of the most important issues in reinforcement learning is the trade-off between exploration
of the traffic environment and exploitation of the knowledge already obtained. In order to tackle this challenge, two
direct exploration methods are adapted to traffic signal control and compared with two indirect exploration methods.
The results reveal that ATSC-ACs based on direct exploration methods have the best performance and they
consistently outperform a fixed-time controller, saving average travel time by 21%.

Notation

P(s, a)
Q":(s,a) — R

S¢8'

Veh i

V1)

Vn+ 1 (t]
V".S— R
xl1)
X,,+1(l)

a

finite action space

action

action at time ¢

maximum deceleration desired by vehicle n
number of visits for state s,

mathematical expectation

number of actions

distance from front bumper to front bumper
at rest

probability of going from state s, to s” after
taking action a

exploitation term

state-action value function

average reward for the transition from state s, to
s’ by taking action a

return

reward signal

state space

state of the environment at time step ¢
reaction time of vehicles

time step

number of vehicles on the ith approaching street
of the associated intersection

speed of preceding vehicle () at time ¢
speed of vehicle n + 1 at time ¢

state value function

position of vehicle » at time ¢

position of vehicle n+ 1 at time ¢

learning rate of critic

p learning rate of actor

r exploration factor

y discount factor

Ors1 TD-error

€ probability of taking an exploration action
n constant

T policy

x(s, a) exploration term

o] parameter controlling exploration rate in

Boltzman exploration method

1. Introduction

Population growth and thus the increase in social and economic
activities in cities lead to an increase in the demand for transpor-
tation (Bhatta, 2010). The increase in demand for transportation
in cities renders current infrastructures incapable of responding
to transportation needs. Also, in today’s world, which is the era
of speed, advances and novel technologies, the number of vehicles
is rapidly increasing. This increase in the demand of transpor-
tation and the number of vehicles has led to the emergence of
traffic congestion in cities. This congestion imposes large
expenses on societies at different levels and in various aspects.

One of the most effective solutions to this challenge is to
employ intelligent transportation systems (ITS) (Bazzan and
Kliigl, 2013a; Chowdhury and Sadek, 2003). ITS, without the
imposition of large expenses for constructing new streets, plays
an effective role in improving the traffic congestion issue.
Moreover, it provides a flexible approach to effectively manage
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and control traffic (Chowdhury and Sadek, 2003). Traffic
control consists of different components, of which traffic signal
control is the key to success of ITS. The main focus of this
study is developing adaptive traffic signal control (Araghi
et al., 2015; Bazzan and Kliigl, 2013b).

Adaptive traffic control has been performed based on two
approaches over previous decades: (a) a centralised approach;
(b) a distributed approach. In the first approach, there is a
central unit which directly monitors the performance of the
whole system and tunes traffic signal parameters in response
to traffic fluctuations. The centralised framework is used in
most control algorithms and the use of a single central unit for
calculating the optimal control parameters makes this
approach so appealing. However, there are several drawbacks
to the first approach. First, it primarily needs a reliable
network connectivity to the central unit and this means that a
communication network is always required, and any failure in
the communication network leads to reverting to the fall-back
plan, which is usually a stand-alone traffic control. The second
handicap is its poor scalability for expanding the network
size. In fact, the central computer is required to be largely
updated in the case of adding extra traffic signal controllers.
The computational complexity is another drawback of the
centralised approach which prevents a system from updating its
optimal control parameters on-line (NCHRP, 2010). The
Sydney coordinated adaptive traffic system (Sims and Dobinson,
1980) and the split cycle offset optimisation technique (Hunt
et al., 1981) are examples of a centralised approach.

In the second approach, each controller is responsible for its
local decision making. The controllers are generally similar to
the first approach with regard to adapting to traffic fluctuations;
however, they have several advantages. They are not required to
broadcast compulsory real-time control commands over the
communication network. Thus, the system is able to work even
during communication breakdown. They are computationally
less demanding because of their locality characteristics. They are
scalable and easy to expand in such a way that new controllers
can be added without complicated algorithm design. Also, the
failure of one controller would not result in the failure of the
whole system (robustness) (Busoniu et al., 2008). The distributed
approach can be broadly categorised into two types: (a) classical
distributed approach and (b) modern distributed approach.

The main idea of the classical distributed approach is based on
upstream vehicle detection and a reliable estimation/prediction
of queue length and traffic flow. Examples of a system that
uses a distributed approach are the optimised policies for adap-
tive control strategy (Gartner, 1983), the real-time hierarchical
optimised distributed effective system (Head et al., 1992) and
Prodyn (Henry et al., 1983). They usually assume that the
routing choice of vehicles is constant, whereas in real traffic
patterns there is a variable route choice because of the traffic
fluctuations.

The modern distributed approach is based on self-learning in
multi-agent systems (MAS) (Weiss, 1999). In this context,
reinforcement learning as a type of machine learning method that
does not need initial knowledge of the environment is beneficial
(Sutton and Barto, 1998). In reinforcement learning, agents never
see examples of the correct behaviour, but instead receive reward
signals indicating the quality of the selected action in the given
traffic condition (Aslani et al., 2017; Kaelbling et al., 1996;
Sutton and Barto, 1998). The agents try to find the best sequence
of actions that maximises the long-term rewards (return).

Wiering (2000) proposed a framework based on model-based
reinforcement learning. Waiting times at junctions are learned/
estimated, and used to select the traffic light settings. Waiting
times are also propagated to individual vehicles to enable them
to modify their routes. In fact, there is co-learning between
traffic signals and vehicles; that is, value functions are learned
by both traffic signals and vehicles. The results indicated that the
proposed method outperforms different fixed-time controllers.
Choy et al. (2003) proposed an MAS for traffic control in which,
at the lowest level, each agent is responsible for controlling an
isolated intersection and, at the middle level, there are some
coordinator agents that coordinate multiple agents at the lowest
level. Finally, at the highest layer, one agent controls all of the
middle-level agents. The implementation of agents rests on
neural network and fuzzy logic methods. In Medina et al.
(2010), reinforcement learning was employed to control traffic
signals. The state space includes the number of vehicles on
approaching streets and the numbers of vehicles stopped on
departing lanes approaching adjacent intersections. The pro-
posed method was benchmarked against a fixed time controller.
The results showed that the proposed method has better per-
formances in terms of delay time and the number of stops. Jin
and Ma (2015) employed Q-learning and state action, reward
state action for adaptive signal control in the context of a group-
based phasing technique. The proposed method was tested on a
four-legged intersection. Simulation of urban mobility, an open-
source traffic simulation tool, was used to simulate the traffic of
the intersection. The results indicated that the learning-based
adaptive signal controller outperforms a fixed time controller.

In reinforcement learning, agents should select actions in such a
way that they efficiently explore the environment, and meanwhile
exploit their obtained knowledge to avoid obtaining low signal
rewards (Miyazaki et al., 1997; Sledge and Principe, 2017).
Owing to these two conflicting objectives, the exploration—
exploitation trade-off is an important issue in reinforcement
learning. In order to tackle this issue, two direct exploration
methods that consider the agent’s history in the environment to
guide exploration are adapted and compared with two indirect
exploration methods (Thrun, 1992; van Otterlo and Wiering,
2012). Also, among all the different reinforcement learning
methods, the actor—critic method (Konda and Tsitsiklis, 2003) is
selected because of its suitable convergence features (Berenji and
Vengerov, 2003). In all of the above-mentioned work, the
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simulated traffic system is quite simple and far from reality.
In the current research an attempt is made to simulate traffic
and drivers’ behaviours as closely to reality as possible.

The rest of this paper is organised as follows: Section 2 describes
the principles of reinforcement learning. The proposed adaptive
traffic signal controllers based on the actor—critic algorithm and
the direct exploration methods are presented in Section 3. The
microscopic traffic simulation and the traffic network used are
presented in Section 4. Experimental results are presented in
Section 5 and finally the paper is concluded in Section 6.

2. Introduction of reinforcement learning
Reinforcement learning is a field of machine learning in which
an agent aims to learn optimal behaviour by trial-and-error
interactions with a dynamic environment. In other words,
reinforcement learning is a promising approach to find optimal
decisions in an unknown environment through interaction
(Sutton and Barto, 1998).

At each time step (¢), first the agent receives information about
the state of the environment (s)) from the state space (S)
through its sensors, it then selects an action (¢,) from a finite
action space (As). The selected action changes the state of
the environment to a new state (s.+;). After taking an action,
the agent receives a scalar reward signal (r,+1) depending
on whether its action has led it closer to realising its
objective. The goal of the agent is to collect as much reward
as possible. In fact, the agent learns the optimal behaviour
(policy) that maximises the sum of rewards in the future
(return). The optimal policy is defined as the policy that receives
the highest expected discounted cumulative reward (Equation 1).

1. Rz:"t+l+}’rt+2+}’2”t+3+"'

In this equation, R, is return, and 0<y<1 is the discount
factor that represents the difference in importance between
future rewards and instant rewards. y=0 makes the agent
myopic by only considering the current reward, while y— 1
will make it far-sighted.

A policy, 7 (s, a) = Pr{a, = a| s, = s}, maps state s to a prob-
ability distribution over actions. Being in search of an optimal
policy, an actor—critic method needs to rank states, in order to
decide on a good action. A common way to rank states is by
computing and using a so-called state value function V*.S — R.
The state value function estimates the return that can be
expected when starting in a specific state s and taking actions
determined by policy 7. The state value function can be esti-
mated by Equation 2, where « is an action of the agent, s, is the
current state of the environment, P, is the probability of going
from state s, to s after taking action a, and R is the average
reward for the transition from states s, to s’ by taking action a.

2. V() = Zn’ (8¢,a) Z P[RS+ V()]

a

P, and R{ are defined according to Equation 3.

3. Ry, = E{ruls, a,s;1 =5}, Py =Pr{sy1 =5|s;, a}

518"

In reinforcement learning, an attempt is made to find the optimal
policy that maximises the state value function (Equation 4).

4. 7* =argmax,(V*(s)) Vs

Since the optimal action should be selected in each state in
control problems, it is also necessary to define a state—action
value function Q™:(s, a) — R. The state—action value function
estimates the expected sum of the discounted rewards for an
agent starting at state s, taking action a and then following
policy 7 thereafter (Equation 5).

5. Qn(sfv a) = Z Pg,s’ [Rg,s’ + yVn(S/)]

Both the state value function and the state-action value func-
tion can be represented in tabular form. For a tabular form,
storing and updating values are simple and fast. A well-known
method for estimating value functions (state values or state—
action values) is temporal-difference learning. Temporal-
difference learning is a model-free method for policy evalu-
ation that adjusts the estimated value of a state based on the
immediate reward and estimated value of the next state. In
fact, in temporal-difference learning, the value function is
bootstrapped from the next time-step. The temporal-difference
(TD)-error ;41 =11+ yV(s+1) — V(sy) is measured between the
value at state s,, and the value at the subsequent state s,.;, plus
any reward r,.; accumulated along the way (Sutton, 1988).
Different reinforcement learning methods have been proposed
based on temporal-difference learning. As described before,
the actor—critic method is employed in this research.

3. Adaptive traffic signal control based on
actor—critic (ATSC-AC)

ATSC-AC is a learning traffic signal controller that is able
to adaptively handle different traffic situations through the
actor—critic method. The actor—critic algorithm is one of the
promising approaches in traffic signal control because of its
advantages over actor-only methods and critic-only methods
(Grondman et al., 2012). The actor—critic method has a separ-
ate memory structure for the policy and the value function.
The critic monitors the ATSC-AC performance and estimates
the value function, which is then used to update the actor’s
policy parameters in order to improve the performance of
ATSC-AC. In other words, the actor shapes the policy = and
selects the actions and the critic predicts the expected return
while following the policy z. The value function is estimated
using temporal-difference learning. In actor—critic, the policy
is not directly deduced from the value function. Instead, the
policy is updated using only a small step size (f) — that is, a
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drastic change in the value function will not lead to oscillatory
behaviour in the policy.

At the beginning of each phase, each ATSC-AC located at each
intersection senses the traffic state at its own intersection (s;),
then selects a green time duration as an action (a;) based on the
knowledge acquired from the environment. It waits to the end
of the phase whose duration is the sum of the selected green
time duration and a yellow time duration (5 s). At the end of
the phase, ATSC-AC receives a reward signal from the environ-
ment (r1), that describes the quality of the selected action in
the traffic environment. The new traffic state (s;+1) is also
sensed at the end of the phase (beginning of the next phase).

3.1 State definition

The state definition plays an important role in the learning
ability of ATSC-AC. Different state representations with
various state space sizes can be defined according to diverse
views. ATSC-AC with a big state space needs more trials in
order to converge to the optimal or near-optimal policy. Yet a
state space that is too small prevents ATSC-AC from finding
the best policy due to the lack of enough information from the
environment. Another point is the matter of practicality of the
state definition — that is, it should not require complex input
information that cannot be provided by the traffic control
infrastructure. In this research, the state space is represented by
a vector in which each of its elements is the number of vehicles
on each approaching street. Through this state definition, the
traffic load is encoded to some extent.

3.2  Action definition

In order to define the action space of each ATSC-AC, first, the
minimum and maximum green time durations are specified.
Then, the interval between them is split into k discrete values.
In this research, the minimum and maximum green time dur-
ations are set to 10 and 90 s These values were obtained by a
trial-and-error process. The interval is split into nine different
values: [10, 20, 30, 40, 50, 60, 70, 80, 90] s. In fact, ATSC-AC
selects a green time duration among the mentioned values.

3.3 Reward definition

The immediate reward signal is defined as the negative total
number of vehicles waiting on all approaching streets to the
associated junction (Equation 6).

N

6. rq1=->» (Veh)

i=1

where Veh; is the number of vehicles on the ith approaching
street of the associated intersection. This reward function leads
to the overall objective of having the smallest amount of
vehicles waiting at each intersection.

3.4  Critic and actor update
After the reward signal is received, the state value function is
updated based on temporal-difference learning (Equation 7).

V(s:) =V (s) + alreer +yV (se41) — V(s1)]
:V(S[) + (x§[+1, 0<a < 1

where a is the learning rate. In fact, the critic assesses the new
state (s,+1) based on the TD-error (J,+1) to determine whether
conditions have gone better or worse than expected. If d,4; >0,
the tendency to select @, should be strengthened for the future,
but if d,+; <0 the tendency should be weakened. The strength-
ening or weakening can be implemented by increasing or
decreasing P(s;, @,) in the actor (Equation 8).

8. P(s, a;) = P(sy, a;) + Porsa

where 0 < <1 is the learning rate of the actor.

3.5 Trade-off between exploration and exploitation
ATSC-AC needs to make a trade-off between exploration of
different actions in the environment and exploitation of the
obtained information. In order to increase the average return
and state values during learning, ATSC-AC should select the
best actions — that is, actions with the highest P(s, a). However,
ATSC-AC cannot find the best actions (policy) without
exploration. Also, it cannot be certain that the best action in
short-term optimisation is really the optimal action in long-
term optimisation without exploring different actions.
Therefore, ATSC-AC should be assured that all actions are
tried often enough (exploration) while still following a good
policy.

There are two approaches for exploration: («) indirect explora-
tion, which is mainly driven by randomness without consider-
ing the previous history of the learning process; (b) direct
exploration, which uses further knowledge (the ATSC-AC
history in the environment) in order to influence the parts of
the environment that ATSC-AC will further explore. Clearly,
the more efficiently ATSC-AC explores, the less time is
required for learning. It has been indicated (Thrun, 1992) that
direct exploration approaches are superior to indirect methods
in terms of learning time and cost. Various direct exploration
strategies have been proposed in the literature (van Otterlo and
Wiering, 2012). In direct exploration, actions are evaluated
based on the combination of their values (exploitation term,
P(s, a)) and an exploration term y(s, @) according to
Equation 9, where T'>0 is the exploration factor that is
decreased over time to converge to a greedy policy.

9.  Eval(s, a) =P (s,,a)+T y (s, a)
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In each time step, the action having the maximum evaluation
(Eval) is chosen. In this research, two different direct explora-
tion strategies are empirically studied and compared. The first
direct exploration technique is the state counter-based method
proposed by Thrun (1992). In this method, the exploration
term considers the number of visits of the current state and
that of the successor state (Equation 10).

C(sy)

10.  Eval(s,a)=P(s,a) 4 ————F——
G @) = P TR (o

In Equation 10, C (s,) is the number of visits for state s, and
E[C ($1+1),, a] is the expected counter value for the state that
results from taking an action. It is estimated by Equation 11
during the learning process where # is a constant factor
(Wyatt, 1997).

11. E,+1[C (Se41)]s1, a] = (1 — W)Et[c (511) 54, a]
+1C (s141)

Algorithm 1 indicates how each ATSC-AC performs based on
the state counter-based method.

Algorithm 1. ATSC-AC

Initialise «, f, T and 5
Initialise V(s), P(s, a), C(s)
A =10, 20, 30, 40, 50, 60, 70, 80, 90] (s) is the action set
t—0
loop
;> a—Iinitial state and action of the episode
Clsy) — Cls) +1
repeat
Set T’
Set the current phase duration to a, + yellow time
Wait to the end of the phase
Observe the number of vehicles on each approaching
street
Calculate reward r, = — Zf\; | (Vehy)
Perceive the state s,
Csprr) — Clsi+) +1
O & Tt Ty Vs1) — Visy)
Vis)) <= V(so) + adpey
P(s;, ag) — P(sy, ar) + oy
EHI [C(Swl)n ﬂz} —(1- ﬂ)ét[C(S,+1),, ﬂz} +7C (sr41)
Eval (s;, a;) = P(s, a;) + 1"%
E[C (se41),, @i
a,+1 < argmax, Eval (s+1, @)
t—1t+1
until s, in terminal

end loop

The second exploration method, which is called the state—
action counter-based method, keeps track of the number of
visits of state—action pairs (C (s, @)) instead of states (C (s)). In
this method, which is simpler than the state counter-based
method, the actions are evaluated by Equation 12. It is evident
that this method does not need to estimate the expected
counter-value of the next state.

12.  Eval(s;,a) = P(s;, a) =T (c(sy, a))

In this research, the mentioned direct exploration techniques
are compared with two indirect exploration methods, namely
Softmax and e-greedy (Sutton and Barto, 1998), in order to
investigate how the direct exploration methods can affect the
performance relative to indirect ones. The idea behind e-greedy
is that the best action (action with the highest value,
argmax,eq, P (s, ') is exploited with the probability of 1 —e
and other actions are randomly uniformly explored with the
probability of € in each trial according to Equation 13, where
|4, is the number of actions. The value of € decreases by time
as the controller gains more knowledge in order to turn its
attention towards the obtained knowledge.

1 —€e+
13.  Pr(s, a)= €

45"

€ .
m, if a = argmax, g4, P (s, a')
s

else

Softmax selects actions based on their probability proportion
of the estimated values (P (s, @)). In fact, Softmax offers a
more structured exploration by selecting actions in proportion
to their estimated values (Equation 14).

exp (0 (s:,4))

14, Pr(s, a) =
Zj:l exp (00 (s1, 4;))

where k is the number of actions, and the parameter @ controls
the exploration rate. The @ variable is small at first in order to
ensure enough exploration, but over time it increases to give a
higher probability of choosing the optimal action in order to
exploit more. In this research ATSC-ACs based on different
exploration techniques are developed through the application
programming interface of Aimsun (Aimsun, 2008; transporting
simulation systems).

4. Microscopic traffic simulation

Nowadays, microscopic traffic simulation plays an important
role in designing and evaluating traffic control strategies such
as traffic signal control. The reason is that a mathematical
treatment of a problem has been found to be inadequate owing
to the complex nature of traffic. In microscopic traffic simu-
lation, the flow of traffic is analysed by modelling driver—
driver and driver—street interactions. Driver—driver interactions
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show how drivers react to other drivers (vehicles) on the streets
and driver—street interactions describe how drivers react to
different features of a street. In fact, the individual base
elements (e.g. driver) of the traffic system are first specified in
more detail. These elements are then linked together to form a
complete top-level traffic system. The traffic network, the
drivers (vehicles) and traffic signals are the three main com-
ponents of a microscopic traffic simulation.

Figure 1 presents the traffic network employed, which consists
of nine intersections and 48 streets. Each intersection is con-
trolled by one ATSC-AC. The phase sequence is fixed in each
ATSC-AC (Figure 2) and ATSC-AC determines the length of
phases at the beginning of each phase (algorithm 1). The
length of each street is 250 m with two lanes at each side and
a 50 km/h speed limit. In order to make the traffic environ-
ment non-stationary, the traffic demand from each source
sequentially switches from 250 (Veh/h) to 450 (Veh/h), and
then to 650 (Veh/h) every 20 min. The values have been
selected such that they prevent the network from being over-
saturated during the simulation. In each junction, 33:3% of all
vehicles go straight on, 33-3% turn left and 33-3% turn right.
The traffic simulation is carried out for 400 h.

Driver behaviour models describe the actions — for example,
acceleration, deceleration and lane change — of each driver in

response to its surrounding traffic environment. In fact, the
idea behind driver behaviour modelling is that drivers would
like to travel at their desired speed on each street section, but
their surrounding traffic environment (i.e. preceding vehicle,
adjacent vehicles and traffic signals) limits their behaviour. In
the driver behaviour modelling, at each simulation step, the
position and speed of each vehicle is updated according to
lane changing, acceleration and deceleration models (Barcelo,
2010; Panou et al., 2007).

Regarding lane changing, there are basically two motivations
for a driver changing driving lanes: (¢) to reach the desired
speed when a vehicle ahead is driving slowly; (b) to get into the
turning lane. The vehicle that would like to turn at the next
turning point needs to get closer to the turning lane so that it
can turn. For more information about the employed lane-
changing model, readers can refer to Gipps (1986a, 1986b). In
order to model deceleration of vehicles, an approach that is
based on collision avoidance is employed (Gipps, 1981). The
idea behind this approach is that a driver tries to keep at a dis-
tance from the lead vehicle in such a way that, in the case of
any emergency stop by the vehicle ahead, the follower can come
to a complete stop without any collision. Based on this idea, the
maximum allowed speed of the follower is calculated by
Equation 15 (Gipps, 1986b), where T is the reaction time of the
vehicles, L, is the distance from the front bumper to the front

250 m
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Figure 1. Traffic network
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Figure 2. Order of phases

bumper at rest, x,,+(¢) is the position of vehicle n+ 1 at time ¢,
x,(¢) is the position of the preceding vehicle (1) at time ¢,
V,1(2) is the speed of vehicle n+1 at time ¢, V,(t) is the
speed of the preceding vehicle (n) at time 7, and b, (<0) is
the maximum deceleration desired by vehicle n. Acceleration
represents the intention of a vehicle to achieve a certain desired
speed.

noted that these values were obtained by trial and error.
Moreover, the value of I' (exploration factor) gradually
0-0 during the first 300 h
(training period) and then it is kept constant at 0-0 over the
last 100 h (hours between 300 and 400, the test period) in
order to evaluate the learning performance of the system.

decreases from 10 to

Regarding Softmax exploration, the value of @ increases from

15. V,?ff(z +T)=Thy + \/T2 bﬁﬂ(t) — b1 [2(0(2) = X1 (1) = L)) = T Vit (£) —

V()
by

The maximum speed to which a vehicle (n) can accelerate
during the time period (¢, ¢+ T') is calculated by Equation 16
(Gipps, 1981), where Voey (¢) is the desired speed of the vehicle
n+1 (the speed that a driver would like to drive), and a,+; is
the maximum acceleration of vehicle n + 1.

0-0 to 10-0 over the first 300 simulation hours and then it is
kept constant at 10.0 over the last 100 h. In the e-greedy
exploration method, the value of e decreases from 0-§ to
0-0 over the first 300 h and then it is set to 0-0 during the
last 100 h.

Vit ([) Vi (l)
16. V’fcc(t—l— T)= Vy(t) +25a, 1T{1 — T } 0-025 + —
" ' ' Via( Via(
The final speed of the vehicle will be the minimum of speed in 5. Results

acceleration and deceleration mode (Equation 17).

17. VIRl 4 T) = Min{VAS(t + T), VP (r + T)}

n+1 n+l1 n+l1

In the microscopic traffic simulation of this research, the reac-
tion time (7') is set to 1 (s), the maximum acceleration (a,,) is
set to 3 (m/s?), the maximum deceleration is drawn from a
Gaussian distribution with a mean of 6 (m/s?) and a standard
deviation of 0-5 (m/s?) and the minimum headway is randomly
selected from [1-5, 2-5] (s).

Traffic signals, the third component of the microscopic
traffic simulation, are controlled by actor—critic (ATSC-AC).
As is clear from Section 3.5, each ATSC-AC has a couple of
parameters that should be tuned in order to achieve the best
performance. The best value found for the learning rate of the
actor and critic is 0-01. The discount factor is set to 0-99. 5,
the constant factor in Equation 11, is set at 0-5. It should be

Two performance indices, namely average travel time (s/km)
and average delay time (s/’km), are employed in order to
evaluate the performance of the proposed ATSC-ACs based
on the different exploration techniques. The average travel
time is the average time that a vehicle needs to travel 1 km.
The average delay time is the difference between the expected
travel time (the time it would take to traverse the traffic
network under ideal conditions) and the travel time. Figure 3
compares the performance of different exploration techniques
in terms of the above-mentioned indices during 400 h of
simulation.

It is evident that the direct exploration methods (counter-based
methods) outperform indirect ones (e-greedy and Softmax)
over the last 100 episodes. Also, ATSC-AC with the state—
action counter-based method has the best performance. For a
better representation of the results, the average performances
of ATSC-AC in terms of average travel time and delay time
over the last 100 episodes (test period) in which ATSC-ACs act
in a greedy manner are presented in Table 1.
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Figure 3. The learning performance of different ATSC-ACs (average of five times simulation): (a) average delay time; (b) average

travel time

Table 1. Average performance and standard deviations over the
last 100 episodes (results are averaged over five simulations)

Average travel Average delay

Controller time: s/km time: s/km

ATSC-AC, State counter-based 3799 313x9

ATSC-AC, State—action 367+6 3016
counter-based

ATSC-AC, e-greedy 385+7 319+7

ATSC-AC, Softmax 385+6 319+6

As is clear, ATSC-AC with the state-action counter-based
exploration method outperforms others because of suitable
exploitation—exploration of different state-action pairs. In
order to verify the performance of the proposed method, the
best ATSC-AC is benchmarked against a fixed-time controller.
The fixed-time controller employs a predetermined signal
timing plan without considering the changes of traffic con-
ditions (traffic fluctuations). In the fixed-time controller, the

time intervals are the same every time the signal cycles, regard-
less of variations in traffic loads. It gives the longest green time
to the heaviest traffic movement based on the historical infor-
mation (Roess et al., 2010). Table 2 compares the performance
of the best ATSC-AC and the fixed time method in terms of
average travel time and delay time. It is clear that the best
ATSC-AC leads to saving average travel time and average delay
time by 21% and 23%, respectively.

6. Conclusion

In this paper, an adaptive traffic signal controller based on
actor—critic (ATSC-AC) was presented. Actor—critic has the
advantages of both actor-only and critic-only. Also, it has
more suitable convergence properties in comparison to actor-
only and critic-only. Each ATSC-AC tries to alleviate the
traffic congestion of its intersection. At the beginning of each
phase, the algorithm senses the current traffic condition and
selects a green time duration based on its knowledge obtained
through interaction with the traffic environment.
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Table 2. Comparison of ATSC-AC with fixed-time controller

Average travel Average delay

Controller time: s/km time: s/km
ATSC-AC, State—action 367 301
counter-based
Fixed-time 465 393
Percentage improvement 21% 23%
ATSC-AC compared with
fixed-time

Since ATSC-ACs do not possess enough knowledge of the
traffic environment at the beginning of the simulation, they
explore different green time durations regardless of their
values. As time goes by and ATSC-ACs gain enough knowl-
edge, they tend to exploit more by selecting those green times
that have a fairly high value. In fact, they make a trade-off
between exploration and exploitation. In order to do so, two
direct exploration methods were adapted and their perform-
ances were compared with two indirect exploration techniques.
In order to evaluate the proposed ATSC-AC, a 3 x 3 traffic
network was employed, although the proposed method can be
easily applied to larger traffic networks. The results indicate
that ATSC-AC with direct exploration is the best controller
and outperforms the fixed-time controller.
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