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Abstract

Background: Artificial intelligence (AI) models provide advanced applications to many scientific areas, including the prediction of
the pathologic grade of tumors, utilizing radiology techniques. Gliomas are among the malignant brain tumors in human adults,
and their efficient diagnosis is of high clinical significance.
Objectives: Given the contribution of AI to medical diagnoses, we investigated the role of deep learning in the differential diagnosis
and grading of human brain gliomas.
Methods: This study developed a new AI diagnostic model, i.e., EfficientNetB0, to grade and classify human brain gliomas, using
sequences from magnetic resonance imaging (MRI).
Results: We validated the new AI model, using a standard dataset (BraTS-2019) and demonstrated that the AI components, i.e., convo-
lutional neural networks and transfer learning, provided excellent performance for classifying and grading glioma images at 98.8%
accuracy.
Conclusions: The proposed model, EfficientNetB0, is capable of classifying and grading glioma from MRI sequences at high ac-
curacy, validity, and specificity. It can provide better performance and diagnostic results for human glioma images than models
developed by previous studies.
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1. Background

Brain glioma tumors are among the most prevalent
malignancies, and early management is important in pa-
tients’ survival (1, 2). Gliomas are classified into 4 grades
based on the histopathologic characteristics (3). The World
Health Organization (WHO) has categorized gliomas into 2
main groups of high and low grades, each subdivided into
grades 1 to 4, depending on the invasiveness (4). Grade 4
gliomas, termed glioblastoma multiform, are the most in-
vasive type with the lowest survival rate (4). Thus, making
a correct diagnosis of the tumor’s grade is the critical ele-
ment of the effective treatment plan (5, 6).

Radiologic images obtained via MRI, using T1, T1c, T2, or
fluid-attenuated inversion recovery (FLAIR) methods, pro-
vide the standard information and assist in the clinical de-
cisions for an effective treatment plan (7). Grading gliomas
by histopathology is costly and time-consuming. In re-
cent years, modern non-invasive, rapid, safe, and inexpen-

sive methods of making an efficient diagnosis, by combin-
ing artificial intelligence (AI) algorithms, are becoming in-
creasingly popular in the management of brain tumors,
including gliomas. Specifically, using the AI approach is a
prudent step, since making the diagnostic and treatment
decisions based on MRI scans alone may be difficult and
associated with irreversible errors (8). One popular AI ap-
proach is machine learning, which uses the known pat-
terns of human brain data processing for solving complex
problems (9, 10). Also, other AI components, i.e., deep
learning and convolutional neural networks (CNN) com-
bined with sequences from MRI have shown promising
outcomes, thus making significant contributions to the
complex task of pathological grading and classification of
gliomas (9, 10).

Even though various AI methods have been signifi-
cantly helpful to the practice of diagnostic radiology, fu-
ture advancements are needed to improve the lesion de-
tection, segmentation, and classification of brain tumors
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including gliomas (11). This is a challenging goal when it
comes to choosing appropriate deep learning methods to
detect and classify gliomas that may occur in the brain (12).
Both machine learning and deep learning offer great po-
tentials to contribute advances to the radiologic diagnosis
of gliomas (8, 13-15). To date; however, today there are cer-
tain questions on the role of AI in the grading and classifi-
cation of human gliomas that remain unanswered, which
are the impetus behind our planning for and undertaking
this study.

2. Objectives

This study was conducted to develop a transfer learn-
ing model to efficiently and accurately grade glioma tu-
mor sequences, using established data derived from the
MRI scans of patients with gliomas.

3. Methods

3.1. Study Design

The study design was approved by the Ethics Commit-
tee, Dept. of Information Technology Management, Fac-
ulty of Management and Economics, Science and Research
Branch, Islamic Azad University, Tehran, Iran (Ethics Code:
IR.IAU.SRB.REC.1399.052). This study only involved in the
collection and analysis of data from an original dataset
entitled BraTS-2019, which had been developed and vali-
dated in 2019 by the Center for Biomedical Image Comput-
ing & Analytics, Perelman School of Medicine, University of
Pennsylvania, Philadelphia, PA, USA. All of the human data
that were derived from the original dataset were anony-
mous and kept strictly confidential during and after the
completion of this study.

3.2. Literature Review

To select an appropriate deep learning method, we con-
ducted a review of credible online literature. Initially, 190
published articles were identified based on their titles and
keywords. Upon a careful review of the articles, 35 of them
were found to be appropriate as the criteria for choosing a
deep learning method.

3.3. Training the Model

The model was trained with the BraTS-2019 dataset,
originally derived from the standard MRI scans from 335
patients with brain gliomas. Of the 26,904 images in the
dataset, 20% were used for the validation with the other
80% for the training of the proposed model. The anony-
mous images were divided into two groups, consisting of
259 high-grade (HGG) and 76 low-grade gliomas (LGG). To

create a balance between the two groups of images, simi-
lar numbers of 2-D sequences from the HGG (n = 13,233) and
LGG (n = 13,671) were used to train our proposed model.

3.4. Deep Learning Models

Deep learning models are normally constructed by two
approaches:

a) A model with all of the associated layers developed
by the researchers. This was not our choice due to its high
cost and being time-consuming.

b) A model known as transfer learning is used with
the layers adopted from other pretrained models. Such
a model is developed by well-known suppliers and is cur-
rently popular in AI applications. We used one of the small
models from this AI family, called EfficientNetB0, for the
current study. Figure 1 illustrates the schematic view of the
proposed transfer learning model, and the processing of
input images through the initial and advanced layers. Af-
ter process, the input MRI scans were graded and catego-
rized into two groups of either LGG or HGG images.

3.5. Image Data Analyses

To include the images and edit them before training
the model, the 3-D images were converted to 2-D ones by
a data enhancement technique, using random flip and ro-
tation methods, based on specific codes and parameters.
Then, we designed the network layers, and accurately re-
fined the parameters for transfer learning. Subsequently,
we utilized a pretrained convolutional neural network (Ef-
ficientNetB0) as our base model (16), which is the most re-
cent and efficient transfer learning model for image clas-
sification. Upon training the model, we analyzed the re-
sults for accuracy, sensitivity, specificity, and precision. As
indicated earlier, 20% of the entire images (n = 26,904)
were used for validation, with 80% remaining used for the
model training.

3.6. Normal vs. Abnormal Images

The proposed model did not read normal images due
to hardware and software limitations. Otherwise, it would
require additional training before it could differentiate
normal from abnormal ones. Thus, we excluded the pro-
cessing of normal images.

3.7. Experimental Setup

For each patient, there were 5 brain tumor sequences
available in the original dataset. We used 3 of the se-
quences; i.e., T1ce, T2, and fluid-attenuated inversion recov-
ery (FLAIR). The latter is an MRI sequence with the inver-
sion recovery set to null fluids. Also, one MRI sequence
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Figure 1. The schematic view of the proposed transfer learning model

was assigned as the ground truth. The format for all se-
quences was Neuroimaging Informatics Technology Initia-
tive (NIFTI), with the length, width, and slice numbers be-
ing 240, 240, and 155, respectively. The image size for inclu-
sion in the proposed model was 240× 240, with the batch
size being 32. Details are shown in Table 1.

Table 1. The Study’s Dataset of Qualified Glioma Scans

Glioma Type HGG LGG Total

Number of patients a 259 76 335

Number of 3-D images b 777 228 1005

Number of 2-D images b 13,233 13,671 26,904

Abbreviations: HGG, high-grade glioma; LGG, low-grade glioma.
a Number of patients in the original dataset.
b Extracted data from the original dataset.

Also, we utilized Mango software for the initial image
visualization. The model was implemented in Python pro-
gramming language, using Keras library and Tensorflow
backend. Also, we took advantage of the SimpleITK library
to read the MRI scans, and the Matplotlib library to il-
lustrate images. Further, we processed each image to 50
epochs only, due to hardware limitations (Table 2).

3.8. Image Reading Process

Finally, we employed Google Colab to execute the im-
age readings. This step provided an environment for writ-
ing and implementing the Python codes based on Cloud,
and enabled access to GPU and a variety of P100s, P4s, T4s,
and Nvidia K80s.

Table 2. Stages and Parameters of the Prediction Model

Stage and Hyper-parameters Values

Initialization

Bias 0.1

Adam optimizer

β1
a 0.9

β2
b 0.999

Epsilon 1e - 07

Training

Learning rate 0.01

Batch size 32

Epoch c 50

Stage

Loss function Binary cross-entropy

a Momentum 1.
b Momentum 2.
c Number of rounds the dataset training completed to process each image.

4. Results

Based on the methods, the proposed model was capa-
ble of predicting the tumor grades for the images at high
accuracy. Details of the results via the model and its perfor-
mance are presented below:

4.1. Validity and Versatility

Assuming that employing multiple sequences would
provide more useful data for grading than using a single
sequence, the obtained data to initiate the grading were
based on T1ce, T2, and FLAIR sequences. Since we used the
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T1ce sequences, the T1 counterparts were not used, other-
wise, additional hardware was needed, which we lacked.
Table 1 presents the number of qualified images used for
grading the HGG and LGG images. Based on the codes and
parameters, and by image augmentation, we correctly in-
cluded the MRI scans in the proposed model (Table 2).

Figure 2 illustrates the axial MRI views of LGG and HGG
taken at axial angles, based on FLAIR sequences. Figure
3 shows a series of altered MRI scans of gliomas with the
augmentation technique after being processed by the pro-
posed model.

4.2. Performance Assessment

To assess whether the model was overfitting, we used a
cross-validation technique, for which the images were di-
vided into separate training and validation sets. Figures
4 and 5 represent the performance of the model during
the training processes. The proposed model was ready for
grading tumor sequences after 50 epochs of training. As
the training epochs increased, the accuracy of model also
improved further (Figure 4). Therefore, both the training
and test curves progressed together consistently at a simi-
lar rate. Also, by increasing the number of training epochs,
the network loss declined exponentially, so both the train-
ing and test plots approached zero level at similar rates
(Figure 5).

Upon developing and training, the model was capable
of predicting the grades and classes of tumor sequences
that had not been seen before or during the dataset train-
ing. The architecture, image dimension base datasets, and
the accuracy of the model for classifying HGG and LGG
images versus those achieved by seven earlier models be-
tween 2018 and 2020 have been compared, as are shown in
Table 3.

The accuracy of the old models was the reason behind
comparing their performance and accuracy with those of
the proposed model. The performance and accuracy of the
earlier models fell between 0.8550 and 0.9978%. The accu-
racy of our EfficientNetB0 model was 0.9887. Our proposed
model was also evaluated for its training capacity and va-
lidity of the graded images (Table 4).

5. Discussion

The proposed model accurately classified the HGG and
LGG images compared to those achieved in earlier studies
(Table 3), which justifies our decision to choose the results
achieved in the earlier studies versus those of our model.
Specifically, our model was able to reliably classify the im-
ages with an accuracy of almost 99%, whether they be-
longed to the LGG or HGG group. The model performance

was consistent with the acceptable validity level suggested
by numerous earlier studies on grade-prediction and clas-
sification models (3, 8, 9, 12, 13, 17, 18, 24). One of the weak-
nesses of machine learning is the extraction and classifica-
tion of specific data from the images it reads. The capa-
bility of deep learning has resolved this issue, hence the
reason for its popularity. Also, the large number of images
used in the deep learning dataset provides for better train-
ing and prevents the overfitting the model.

5.1. Validity and Versatility

Our decision to convert 3-D to 2-D images was justified
by the fact that one 3-D image can be segmented into 150
slices of 2-D images, before being used for model train-
ing. The basis for feeding a total of 26,904 qualified 2-D im-
ages of either HGG or LGG gliomas into the model was that
the more images used for training, the more efficient the
model became. The use of T1ce, T2, and FLAIR sequences to
develop the model, made it more versatile for reading im-
ages from MRI sequences compared to using a single MRI
sequence. Also, based on its excellent performance, the
proposed model is capable of being further enhanced for
its tumor grading validity. This may be further improved
by feeding it with additional images or training it with
other advanced datasets.

5.2. Comparison of Deep Learning Models

The proposed model is not only comparable to older
models (19, 22) in terms of validity, accuracy, and per-
formance but may also be a better tool to assist in the
grading of gliomas. The model detects extra image de-
tails since it was trained on greater MRI sequences. A re-
cent study (21) developed a diagnostic model based on the
BraTS-2018 dataset and TCIA, using both 2-D and 3-D CNN
models, and slightly achieved better results from the 3-D
than the 2-D images. In a similar study (24), the 2-D model
achieved an almost 99% validity for grading various grades
of gliomas. An earlier study (20) used local datasets and
the transfer learning method to train the pretrained net-
works (GoogleNet & AlexNet) and compared their predic-
tive and diagnostic performances. This study achieved bet-
ter results from GoogleNet than from AlexNet.

5.3. Image Classification, Segmentation & Grading

The use of 2-D images in our study was justified since
enough 3-D images were not available to us. Thus, we ex-
panded the dataset of the study by converting the limited
3-D images into 2-D ones. Further, using 3-D images to train
a model requires a large memory, which limits the net-
work’s resolution and lowers its representation capability
(7, 25). Also, using 3-D images increases the computational
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Figure 2. Glioma images, LGG and HGG, taken at axial angles. LGG, low grade glioma (A) and HGG, high grade glioma (B)

Table 3. Comparison of Earlier Models with the Proposed Model by the Current Study

Study Model’s Architecture Dimension Dataset Accuracy

(17) Transfer Learning (VGG-16) 2D TCIA 0.9500

(18) CNN 3D
TCIA 0.9125

In-house 0.9196

(19) CNN 2D

Brats-2013 0.9943

BraTs-2014 0.9538

BraTs-2015 0.9978

BraTs-2016 0.9569

BraTs-2017 0.9778

ISLES-2015 0.9227

(20)

Transfer Learning (AlexNet)

2D In-house

0.8550

Transfer Learning (GoogLeNet) 0.9090

Pre-trained AlexNet 0.9270

Pre-trained (GoogLeNet) 0.9450

(21)
CNN (2D Mask R-CNN) 2D

BraTs-2018 TCIA
0.9630

CNN(3DConvNet) 3D 0.9710

(22) Multi-stream CNN 2D BraTs-2017 0.9087

(23) 3D CNN 3D BraTs-2018 0.9649

Proposed Model Transfer learning(EfficientNetB0) 2D BraTS-2019 0.9887

cost and requires GPU memory (19). A recent study (18) de-
veloped a machine learning model for diagnosing benign
from malignant gliomas, using a pretrained CNN model
and validating on multiple versions of BraTS datasets.

5.4. The 2D vs. 3D Advantages

Our main reason behind using the 2-D images was to
develop a non-invasive and highly accurate transfer learn-
ing model and to validly diagnose the grades of 2-D MR
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Figure 3. Altered images with data augmentation technique

Table 4. Evaluation of the Proposed Model

Performance Training Set Validation Set

Accuracy 0.9905 0.9887

Precision 0.9915 0.9898

Sensitivity 0.9934 0.9886

Specificity 0.9920 0.9879

glioma images. This approach allowed us to generate a
large number of 2-D images from a single 3-D image, which
improved the prediction accuracy of the model to almost

99%. Despite previous research, the role of the deep learn-
ing method in the improvement of tumor grading needs
further exploration (8). A recent study has achieved ex-
cellent validity, accuracy, and specificity for this impor-
tant purpose, using a transfer learning model that was pre-
trained with a CNN model based on the TCIA dataset (18).

5.5. Limitations

This study had limited access to the hardware and soft-
ware required for processing 3-D images, therefore, it was
more practical for us to convert the 3-D images into 2-D
ones.
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5.6. Conclusions

The proposed model developed by this study can clas-
sify and grade glioma MRI sequences at high accuracy, va-
lidity, and specificity. Also, its performance is consistent
with those suggested by numerous earlier studies on tu-
mor grading and classification. In the absence of hard-

ware and technical limitations, it is plausible to achieve fu-
ture diagnostic models applicable to MRI sequences with
accuracy and performance superior to the currently ex-
isting deep learning AI models. Presumably, using the
largest model of the EfficientNet family (i.e., Efficient-
NetB7), which has ample trainable capacity, is likely to pro-
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vide researchers with the means of developing future AI di-
agnostic models with superior accuracy, performance, and
versatility.
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