
����������
�������

Citation: Yang, H.; Cao, J.; Lin, X.;

Yue, J.; Zieneldien, T.; Kim, J.; Wang,

L.; Fang, J.; Huang, R.-P.; Bai, Y.; et al.

Developing an Effective

Peptide-Based Vaccine for COVID-19:

Preliminary Studies in Mice Models.

Viruses 2022, 14, 449. https://

doi.org/10.3390/v14030449

Academic Editor: Zoltan Vajo

Received: 21 January 2022

Accepted: 21 February 2022

Published: 22 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Article

Developing an Effective Peptide-Based Vaccine for COVID-19:
Preliminary Studies in Mice Models
Haiqiang Yang 1,†, Jessica Cao 2,†, Xiaoyang Lin 1, Jingwen Yue 3,4, Tarek Zieneldien 1, Janice Kim 1,
Lianchun Wang 3,4, Jianmin Fang 5, Ruo-Pan Huang 5, Yun Bai 6, Kevin Sneed 1 and Chuanhai Cao 1,*

1 Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida,
Tampa, FL 33612, USA; haiqiangyang@usf.edu (H.Y.); xlin3@usf.edu (X.L.); tarekz@mail.usf.edu (T.Z.);
janicekim1@usf.edu (J.K.); ksneed@usf.edu (K.S.)

2 Department of Kinesiology, Wiess School of Natural Sciences, Rice University, Houston, TX 77005, USA;
jessica.a.cao@rice.edu

3 Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida,
Tampa, FL 33612, USA; yuejingwen@gmail.com (J.Y.); lianchunw@usf.edu (L.W.)

4 Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South
Florida, Tampa, FL 33612, USA

5 RayBiotech Life, Inc., 3607 Parkway Lane Suite 200, Peachtree Corners, GA 30092, USA;
david@raybiotech.com (J.F.); rhuang@raybiotech.com (R.-P.H.)

6 MegaNanoBioTech, Inc., 3802 Spectrum Blvd. Suite 122, Tampa, FL 33612, USA; ybai@megananobiotech.com
* Correspondence: ccao@usf.edu; Tel.: +1-813-396-0742
† These authors contributed equally to this work.

Abstract: Coronavirus disease 2019 (COVID-19) has caused massive health and economic disasters
worldwide. Although several vaccines have effectively slowed the spread of the virus, their long-
term protection and effectiveness against viral variants are still uncertain. To address these potential
shortcomings, this study proposes a peptide-based vaccine to prevent COVID-19. A total of 15 B
cell epitopes of the wild-type severe acute respiratory coronavirus 2 (SARS-CoV-2) spike (S) protein
were selected, and their HLA affinities predicted in silico. Peptides were divided into two groups
and tested in C57BL/6 mice with either QS21 or Al(OH)3 as the adjuvant. Our results demonstrated
that the peptide-based vaccine stimulated high and durable antibody responses in mice, with the T
and B cell responses differing based on the type of adjuvant employed. Using epitope mapping, we
showed that our peptide-based vaccine produced antibody patterns similar to those in COVID-19
convalescent individuals. Moreover, plasma from vaccinated mice and recovered COVID-19 humans
had the same neutralizing activity when tested with a pseudo particle assay. Our data indicate that
this adjuvant peptide-based vaccine can generate sustainable and effective B and T cell responses.
Thus, we believe that our peptide-based vaccine can be a safe and effective vaccine against COVID-19,
particularly because of the flexibility of including new peptides to prevent emerging SARS-CoV-2
variants and avoiding unwanted autoimmune responses.

Keywords: COVID-19; peptide; spike protein; vaccine; adjuvant; T and B cells; neutralizing activity

1. Introduction

Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory coronavirus
2 (SARS-CoV-2), which is a single-strand positive RNA virus that enables the host cell to directly
synthesize proteins upon viral entry and uncoating [1]. This enables viral replication and the
rate of viral spread to occur much more rapidly than other types of viruses [2]. Given this
alarming rate of transmission, many countries were unable to implement an effective and timely
approach to curb the spread of the virus, and the worldwide economic impacts of COVID-19
have been historically devastating [3].

Other viral outbreaks, such as SARS-CoV and Middle East respiratory syndrome coron-
avirus (MERS-CoV), have led to the development of several treatment strategies [4–6]. Drugs
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such as Nafamostat, Camostat, Chloroquine, Imatinib, Hydroxychloroquine, Ivermectin, and
Remdesivir have either been studied, evaluated, or have received limited approvals by the U.S.
Food and Drug Administration (FDA) to treat severe cases of COVID-19 [4,7]. Infected patients
have also been treated with convalescent sera, purified antibodies from sera, or generated
monoclonal antibodies from patients [8,9]. While these methods are effective, they are not viable
large-scale solutions, since resources for convalescent sera therapy are limited, and producing
monoclonal antibodies is time consuming and expensive [9–14].

The most effective approach to combat infectious disease is through prevention using
vaccines. Vaccines have led to the eradication of smallpox, the near-elimination of poliomyelitis,
and the prevention of hepatitis B (HBV) and human papillomavirus (HPV) [15–19]. There
are four general vaccine types for preventing viral infections: (I) “classic” vaccines that utilize
inactivated or attenuated whole virus [20,21], (II) nucleic acid vaccines (DNA and RNA) that
elicit the host to produce antigenic fragments of the virus [22], (III) subunit vaccines that use
recombinant proteins or synthetic peptides representing antigenic fragments of the virus [22],
and (IV) viral vector-based vaccines that utilize viral vectors to deliver genetic material to host
cells [20,23]. COVID-19 vaccines that have been approved by the U.S. FDA include classic
inactivated viral particle vaccines, RNA-based vaccines, subunit-based (recombinant S protein)
vaccines, and viral vector-delivered vaccines [24–33].

Coronaviruses enter host cells by binding to a cell surface receptor for viral attachment,
then entering endosomes, and eventually fusing viral and lysosomal membranes [34]. This
entry process is mediated by a virus surface-anchored spike (S) protein [35]. For mature
viruses, the S protein is present as a trimer, with three receptor-binding S1 heads sitting
on top of a trimeric membrane fusion S2 stalk [36]. The receptor-binding domain (RBD)
on S1 specifically recognizes angiotensin-converting enzyme 2 (ACE2) as its receptor [37].
The SARS-CoV-2 spike protein needs to be proteolytically activated at the S1/S2 bound-
ary to fuse membranes, such that S1 dissociates and S2 undergoes a dramatic structural
change [38]. These SARS-CoV-2 entry-activating proteases include cell surface protease
TMPRSS2 and lysosomal proteases cathepsins [39]. In general, the RBD domain on the S
protein of SARS-CoV-2 serves as a ligand for ACE2, and ACE2 is broadly found through-
out the human body [40]. Consequently, SARS-CoV-2 can quickly spread throughout the
human body through binding to the ACE2 receptor [41].

COVID-19 continues to have devastating effects on public health, particularly through
the occurrence of viral variants [42–45]. Some individuals who have completed the vaccine
series (i.e., two doses and a booster) are still at risk of contracting COVID-19 through break-
through infections, and those who have caught COVID-19 can also become re-infected by
SARS-CoV-2 [46,47]. These infections are caused, in part, by the lack of herd immunity, but
primarily because of viral mutations. Significantly decreased neutralizing potency has also
been observed from the vaccines against B.1.1.7 isolate (2-fold), E484K/N501Y/D614G re-
combinant variant (four-fold), and two chimeric SARS-CoV-2 strains encoding B.1.351 spike
(10-fold) and P.1 spike (2.2-fold) compared to the D614G variant in Vero-hACE2-TMPRSS2
cells [48]. With breakthrough infections and re-infections becoming more common, current
vaccines are facing a considerable challenge in preventing the spread of COVID-19.

Understanding the advantages and disadvantages of each vaccine strategy is impera-
tive in developing a safe and effective COVID-19 vaccine. Effective vaccines for infectious
diseases ultimately require both T and B cell responses; an adjuvant is also required to
prime the nonspecific immune system and ensure the robustness and duration of an im-
mune response [49,50]. However, a vaccine with an adjuvant often might not be suitable
for those with impaired immune systems (e.g., the elderly), since adjuvants can over prime
the immune system [51,52]. Furthermore, age can impair immunity, so older individuals
may exhibit anergy in the immune response. COVID-19 has also caused higher death rates
among older populations, so a vaccine that can protect this population is crucial. Thus, each
vaccine should be designed and tailored for its intended population (i.e., “personalized
medicine”). As such, aged mice were utilized to provide a more thorough understanding
of how the vaccine adjuvants may impact impaired immune systems.
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While DNA vaccines can elicit a good T cell response, the B cell response is relatively
low compared to protein-based vaccines [53–56]. Alternatively, mRNA-based vaccines are a
novel approach for infectious diseases and are currently the dominant approach in fighting
COVID-19 [57]. However, it remains unclear as to how effective they are in stimulating T
cell and B cell responses in comparison to a more traditional protein-based vaccine or to
natural infection.

Here, we developed a peptide-based vaccine for COVID-19 prevention. There are
four primary advantages of peptide-based vaccines: (1) large-scale peptide synthesis is
relatively inexpensive and the technology is well-established, (2) peptides can fold into
three-dimensional epitopes capable of inducing antibody responses to linear and confor-
mational structures, (3) unique epitopes can be selected to avoid autoimmune responses
that could be generated by the whole protein, and (4) new epitopes can be easily added to
the peptide mixture as new viral mutations are identified [58–60].

2. Materials and Methods
2.1. Antigen and Cell Selection

The SARS-CoV-2 spike (S) protein of the wild-type “Wuhan” strain (Accession:
YP_009724390.1) was submitted to DNAStar (Madison, WI, USA) for in silico antigen
(peptide) identification. Nine epitopes were selected from the S protein’s subunit 1 (S1)
domain, and six sequences were selected from the subunit 2 (S2) domain. The selected
peptide sequences were submitted to GenBank for homology analysis, which confirmed
that the peptides were unique. Peptide antigenicity was confirmed by DNAStar.

Human Leukocyte Antigen-I (HLA-I), Mouse Major Histocompatibility Complex-I
(MHC-I), and HLA-II affinity analyses were conducted with the T Cell Epitope Prediction
Tools, using the Immune Epitope Database (IEBD) Analysis Resource at http://tools.iedb.
org/main/tcell/, accessed on 21 July 2021. The specificity of the peptides to SARS-CoV-2
were confirmed using the protein BLAST module at https://blast.ncbi.nlm.nih.gov/Blast.
cgi, accessed on 21 July 2021. All peptides were provided by Biomer Technology Inc.
(Pleasanton, CA, USA).

2.2. SARS-CoV-2 Pseudovirus System Selection

The SARS-CoV-2 pseudovirus system was provided by Dr. Lianchun Wang’s lab
at USF. A SARS-CoV-2 spike open reading frame (ORF) mammalian expression plasmid
was obtained from Addgene (Plasmid #145032; Watertown, MA, USA). NL4-3 mCherry
Luciferase, a replication-defective HIV dual reporter vector expressing mCherry and firefly
luciferase, was obtained from Addgene (Plasmid #44965). Lipofectamine™ 3000 Trans-
fection Reagent was purchased from Invitrogen (Waltham, MA, USA). The human 293T
embryonic kidney cell line was obtained from the American-Type Culture Collection
(ATCC) (Manassas, VA, USA). The 293T-ACE2-GFP cell line was established by transfecting
293T cells with the ACE2-GFP expression vector (OriGene; Rockville, MD, USA). Both
cell lines were maintained in Dulbecco’s modified Eagle’s medium (DMEM) with 2 mM
L-glutamine, 10% FBS, 100 µg/mL streptomycin, and 100 IU/mL penicillin. Lentiviral
vector particles concentration reagent Lenti-X™ Concentrator was purchased from TaKaRa
(Mountain View, CA, USA). The Luciferase Assay System was purchased from Promega
(Madison, WI, USA).

For SARS-CoV-2 pseudovirus production, 4 × 106 293T cells were seeded in a 100 mm
cell culture dish. After 48 h, 10 µg NL4-3 mCherry Luciferase plasmid and 10 µg SARS-
CoV-2 spike plasmid were mixed in 1.5 mL Opti-MEM medium and incubated at RT for
5 min. Then, 65 µL of Lipo3000 was mixed in 1.5 mL Opti-MEM medium at RT for 5 min,
and the plasmid mixture was then mixed with the Lipo3000 mixture and incubated at RT
for 20 min. The mixture was added dropwise into a dish and incubated in the cell culture
incubator. After 48 h, cells were centrifuged at 500× g for 10 min, cell supernatant was
collected, and 9 mL of supernatant was transferred into a separate tube with a 3 mL Lenti-X
concentrator. The supernatant was stored at 4 ◦C for 4 h and centrifuged at 1500× g for
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45 min. The supernatant was aspirated, and the precipitate was resuspended with 90 µL
cold DPBS and then frozen at −80 ◦C.

2.3. Mice

C57BL/6 mice were used for this study. The mice were 6 months old, gender balanced
in each group, and housed at the animal facility at the University of South Florida (USF)
Health Center. All animal experiments were approved (IS00008370) by the Institutional
Animal Care and Use Committee (IACUC) at USF and performed according to the National
Institute of Health (NIH) guidelines.

2.4. Vaccine Preparation

The peptides were split into two groups by S protein subdomain; each group contained
peptides with high affinity to MHC (HLA) class I and class II to ensure that the peptide
mixture would cover most MHC typing. HLA-I was predicted against all available allele
types, and the top 1% was considered high affinity. HLA-II was also tested against all allele
types in the database, and the selected standard was set at 10% rank as recommended.

A total of 15 peptides were identified against the S protein. Each peptide was dissolved
with DMSO at 50 mg/mL, grouped into two groups, and mixed at 50 µg each. The two
most commonly utilized adjuvants—QS21 and Al(OH)3 (0.4% Alhydrogel from InvivoGen
(Cat no# vac-alu-50, San Diego, CA, USA)—were selected for the vaccine formula. QS21
was purchased from Desert King International (San Diego, CA, USA), and Al(OH)3 was
purchased from Invitrogen (Waltham, MA, USA). Common adjuvants include Al(OH)3,
which can promote earlier antibody production, and QS21, which promotes the release
of Th1 cytokines participating in the elimination of intracellular pathogens [61–63]. The
concentration of adjuvant is 25 µg per dose.

2.5. Vaccination and Sample Collection

Two total studies were conducted in this report, with peptide mixture groups 1 and 2
using different groups of mice. Group 1 mice (C57BL/6) were 6 months old and injected
with A1-G1 (8 peptides); group 2 mice were 8 months old and received H1-E2 (7 peptides)
at equal mixture amounts (50 µg/peptide) with either QS21 or Al(OH)3 as the adjuvant via
bi-weekly subcutaneous injections for 6 injections.

Blood samples were obtained with EDTA vacutainer tubes 7 days after each injection,
starting from the 2nd injection. Additionally, 50 µL of whole blood was taken for flow
cytometry analysis and the rest of the blood was centrifuged at 300× g for 5 min. Plasma
was then transferred into a new tube and stored at −80 ◦C for future application. The
immunization and blood drawing schedule was conducted as shown in Scheme 1.

Scheme 1. Time schedule of vaccination and blood collection for the C57BL6 mice.

2.6. Indirect ELISA

The SARS-CoV-2 S protein’s full length S1 (Cat#230-30161) and receptor binding
domain (RBD) (Cat#230-30162) recombinant proteins expressed in human HEK293 cells
were purchased from RayBiotech Life, Inc. (Peachtree Corners, GA, USA). The SARS-CoV-
2 S protein’s S1 (Cat#230-01101) and S2 (Cat#230-01103) subunit recombinant proteins
expressed in E. coli were also purchased from RayBiotech Life, Inc.

Immulon 4 HBX 96-well plates (Cat# 3855) were purchased from Thermo Fisher
Scientific (Waltham, MA, USA). HRP conjugated anti-Mouse IgG antibodies were ordered
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from SouthernBiotech (Birmingham, AL, USA; cat no. 1030-05), and HRP-conjugated
anti-Human IgG antibodies were ordered from SouthernBiotech (Cat: 2015-05). Human
plasma was purchased from RayBiotech Life, Inc.

An indirect ELISA was conducted to measure antibody response. First, 96-well plates
were coated with 50 µL of peptides from 10 µg/mL S1 and S2 and 1 µg/mL recombinant
protein. The plates were washed 4 times with PBST, 180 µL/well of 0.05% BSA buffer was
added, and the plates were incubated at 37 ◦C for 1 h. The plates were then washed with
1× wash buffer, and diluted plasma was added to each well at 1:200, 1:800, and 1:3200-fold
dilutions and incubated for 1 h at room temperature (RT). Anti-human or anti-mouse
HRP-conjugated antibodies were then added at 1:10,000 dilutions, incubated for 1 h at RT,
and washed with 1× wash buffer. Then, 100 µL of TMB substrate was added, followed
by 0.4 M sulfuric acid to stop the reaction. Plates were read at OD450, with OD650 as
the reference.

For epitope mapping of mouse and human plasma, plasma was added to the antigen-
coated 96-well ELISA plate for indirect ELISA as described above at 1:200, 1:800, and
1:3200-fold dilutions and incubated for 1 h at RT.

2.7. T Cell Detection

T cell population detection post vaccination was assessed using flow cytometry assay
and 50 µL whole EDTA blood. Red blood cells were lysed with ACK buffer and washed
twice with 1% (v/v) FBS in 1× PBS. The fluorophore-conjugated antibody mixture was
added to the sample and incubated on ice for 20 min. FITC anti-mouse CD3ε Antibody
(Cat#10036), APC/Cyanine7 anti-mouse CD8a Antibody (Cat#100714), APC anti-mouse
CD4 Antibody (Cat#100412), and PE anti-mouse CD19 Antibody (Cat#115508) were bought
from Biolegend (San Diego, CA, USA). Cells were then resuspended with 1% FBS in 1×
PBS after washing 3 times. All samples were run on the flow cytometer.

2.8. Neutralization Assay

ACE2-293T-GFP cells were seeded into a poly-lysine-coated 96-well plate at a density
of 1.2 × 104 cells/well. After 24 h, 6 µL of SARS-CoV-2 pseudovirus and diluted human
plasma or mouse samples were added at the designated dilutions, and the medium was
changed after 6 h of incubation. The plates were incubated in a CO2 incubator for 48 h,
the medium was removed, and the cells were washed with Hank’s balanced salt solution
(HBSS). HBSS was aspirated and 20 µL of Promega lysis buffer was added at RT for 5 min.
Luminescence was measured after adding 50 µL of Luciferase substrate into 20 µL of
lysis buffer.

2.9. Immunoglobulin Isotyping

The mouse immunoglobulin isotyping (Cat#MGAMMAG-300K) and cytokine mag-
netic bead panel assay (Cat#MCYTOMAG-70K) were purchased from MilliporeSigma
(Burlington, MA, USA).

First, 100 µL of assay buffer was added to each well of the assay plate and mixed on
a plate shaker for 10 min at RT. The assay buffer was then discarded, and the remaining
residue was removed from the wells by inverting the plate and tapping it numerous times
on an absorbent towel. Then, 50 µL of the assay buffer was added to the background wells,
and 50 µL of the standard, control, and diluted samples were added to the appropriate
wells. Afterwards, the MILLIPLEX MAP Anti-Mouse Multi-Immunoglobulin beads were
vortexed at medium speed for 15 s and sonicated for 15 s using a sonication bath. Then,
25 µL of the bead solution was added into each well, and the plate was covered and
incubated on a plate shaker for 15 min at RT. The plate was then washed twice with
200 µL/well of washing buffer. After washing, 25 µL/well of prepared Anti-Mouse κ Light
Chain PE was added, covered, and incubated on a plate shaker at RT for 15 min. Finally,
the fluid was aspirated, and beads were resuspended in 150 µL/well of sheath fluid. The
plate was then read on the Bio-Rad Bio-Plex MAGPIX Multiplex Reader.
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2.10. Cytokine Detection with Multiplex Assay

First, 200 µL of washing buffer was added to each well, and the plate was sealed and
incubated on the plate shaker for 10 min at RT. The wash buffer was then aspirated, and
25 µL of each standard or control was introduced into the appropriate wells, with the assay
buffer utilized for the 0 pg/mL standard (background). Then, 25 µL of the assay buffer
was added to the sample wells, and 25 µL of the serum matrix solution was added to the
background, standard, and control wells. Afterwards, 25 µL of the diluted samples were
introduced into the appropriate wells. Then, the mixing bottle was vortexed, and 25 µL of
the mixed or premixed beads were added to each well and shaken for 10 min at RT. The
plate was then sealed with a plate sealer, wrapped with aluminum foil, and incubated on a
plate shaker overnight at 2–8 ◦C. The following day, well contents were gently removed,
and the plate was washed twice. Then, 25 µL of the detection antibodies were added into
each well and incubated on a plate shaker for 1 h at RT. The well contents were removed,
the plates were washed twice, and 150 µL of sheath fluid was added to all wells. The beads
were then resuspended on a plate shaker for 5 min, and the plate was read on the Bio-Rad
Bio-Plex MAGPIX Multiplex Reader.

3. Results
3.1. Selection of SARS-CoV-2 Peptides

Sixteen peptides were predicted to have high antigenicity with 100% homology to the
SARS-CoV-2 virus were split across two peptide mixtures (Group 1, Group 2) that covered
all Class I and II allele types of C57B/6 mice. The peptide sequences and T cell epitope
results are listed in Table 1 and Supplementary Table S1, respectively.

Table 1. Peptide sequence and their usage in the vaccination. A1-F2 are the peptide sequence names
of each selected peptide. A cystine is added to the N-terminal of each peptide; AA position is the
amino acid position in the whole S protein; vaccine group indicates the peptide mixture used for
the vaccine.

Sequence Name Peptide Sequence AA Position in S Protein Vaccine Group

A1 CLPFQQFGRDIADTTDAVRDPQTLEIL 560–585 Group1 (S1)
B1 CYFKIYSKHTPINLVRDLPQ 200–218 Group1 (S1)
C1 CGVYYHKNNKSWMESEFRVY 142–160 Group1 (S1)
D1 CFHAIHVSGTNGTKRFDNPVLPF 65–86 Group1 (S1)
E1 CTRGVYYPDKVFRSSVLHS 33–50 Group1 (S1)
F1 CYQTQTNSPRRARSVAS 674–689 Group1 (S1)
G1 CVIAWNSNNLDSKVGGNY 443–449 Group1 (S1)
H1 CALDPLSETKCTLKSFTVEKGIYQTSNFRV 291–320 Group2 (S1)
I1 CATVCGPKKSTNLVKNKCVNFNFNG 522–545 Group2 (S1)
J1 CYNYLYRLFRKSNLKPFERDISTEIYQA 452–476 Group2 (S1)
A2 CIAVEQDKNTQEVFAQV 770–783 Group2 (S2)
B2 CKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLL 786–822 Group2 (S2)
C2 CNSAIGKIQDSLSSTASAL 927–945 Group2 (S2)
D2 CPLQPELDSFKEELDKYFKNHTSPDVDLGDIS 1141–1171 Group2 (S2)
E2 CVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWF 1068–1103 Group2 (S2)
F2 CMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGV 1236–1267 Group2 (S2)

3.2. Antibody Response Post Vaccination Using Group 1 Peptides with Different Adjuvants

First, 50 ug/peptide of peptides A–G of the S1 protein were mixed with either the QS21
or Al(OH)3 adjuvant and injected into mice subcutaneously at two-week intervals. Blood
was collected 10 days after each injection and used for antibody detection. It is evident that,
after two injections, both groups could detect an antibody response, but the Al(OH)3 group
exhibited a higher antibody response than the QS21 group. With continuous boosting,
antibody response to each peptide differed between the two adjuvants (Figure 1).
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Figure 1. Antibody response post-vaccination tested by ELISA. Test subjects (mice) were divided into 2
groups (n = 3 per group): one group received the peptide mixture 1 (mainly S1) with QS21 as the adjuvant,
and the other group received the peptide mixture 1 with Al(OH)3 as the adjuvant. There were a total of
6 inoculations at 2-week intervals and 5 time points where blood samples were collected. Plasma was
analyzed by ELISA with peptide A1-G1-coated plates. In total, 3 time points were selected for comparison.
(A) shows the results of the 3 mice that received the Al(OH)3 adjuvant, (B) the results of the three mice
with QS21 as adjuvant, and (C) is the comparison of blood post 2nd vaccination. There are significant
antibodies in both adjuvant groups against peptides B (p = 0.0058 < 0.01) and F (p = 0.0009 < 0.01) (C). No
antibodies were induced against peptides A, D, E, or G after 2 vaccinations.

3.3. Antibody Response to Group 2 Peptides with Different Adjuvants

After the Group 1 peptide test, another group of peptides were injected into mice, with
either QS21 or Al(OH)3 adjuvants. There were a total seven peptides in this group—two
in the S1 domain and five in the S2 domain. The ELISA results showed that antibodies
were produced against five peptides in both QS21 and Al(OH)3 groups but were relatively
lower in the QS21 group than the Al(OH)3 adjuvant group; Al(OH)3-2D produce higher
antibodies than the QS21 adjuvant group (p < 0.001). No antibodies were induced against
peptide 2A and 1J after two injections (Figure 2).

Figure 2. Antibody response to peptide mixture after 2 vaccines. In total, 7 peptides were used in
this injection, with either QS21 or Al(OH)3 as adjuvants. Peptides S1I and S1J are selected from S1
domain. Peptide S2A, S2B, S2D, S2E and S2F are selected from S2 domain. (N = 3, p < 0.001).

3.4. The Similarity of Epitope Mapping between Recovered Human Sera and Vaccinated
Mouse Sera

Four mice plasma (two from each peptide mixture group) and four human plasma
samples (two recovered patient blood and two from our tissue bank collected in 2008
as negative controls) were selected for epitope mapping. A total of 16 peptides and
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recombinant S1 and S2 proteins were predicted in this assay. JK2 and JK3 (recovered
patients) display a pattern similar to our peptide vaccine, indicating that the vaccine has
included all major epitopes (binding to C, D, H1, I1) (Figure 3).

Figure 3. Epitope mapping results of vaccinated mouse plasma (A) versus human recovered plasma
(B). Coating peptides A–J are peptides from the S1 protein, A2–F2 are peptides from the S2 protein.
S1 is the recombinant S1 of the S protein and S2 is the recombinant S2 of the S protein. Ctr is a control
peptide of human alpha-synuclein protein, which served as a negative control. Plasma was diluted at
a 1:800 dilution with the sample, and ELISA results were shown in the graphs.

3.5. The Duration of Antibody Response Post-Vaccination

When examining the duration of the antibody response post-vaccination, Al(OH)3
appears to generate a longer antibody response than the QS21 adjuvant. Nonetheless, QS21
induced a higher antibody response to some antigens, such as the ones seen in peptide S1-B
(Figure 4).

Figure 4. Antibody duration between two adjuvants. The graphs above are the results of antibody
testing via ELISA on blood from two time points (1 and 2): 1 is 10 days after the 6th vaccination and 2
is three months after 1. Al(OH)3 can generate a longer antibody response than QS21 (B,C). However,
QS21 can induce a higher antibody response to some antigens, such as that seen in S1-B (A).

3.6. Cell Population Analysis to Different Adjuvant Vaccines

Mice blood samples were collected after the third vaccination of peptide mixture
group 1 with different adjuvants to compare the B and T cell population difference. Flow
cytometry assay was used to analyze the T and B cell population for each vaccine adjuvant.
CD3+ and CD8+ T cells (Figure 5A,C) were significantly higher in Al(OH)3 groups than
QS21 groups (p < 0.05; N = 3 per group). CD4+ T cells (Figure 5B) were also significantly
higher in the Al(OH)3 adjuvant groups compared to both the QS21 and control groups
(p < 0.05; n = 3 per group). Interestingly, the B cell population in the Al(OH)3 adjuvant
group was significantly decreased when compared to the QS21 adjuvant group (N = 3 per
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group, α = 0.05). These results imply that the Al(OH)3 adjuvant is ideal for obtaining the
desired cellular response (Figure 5).

Figure 5. B and T cell population detection post vaccination. (A) CD3+ cell population; (B) CD4+
cell population; (C) CD8+ cell population; (D) CD19+ cell population. (* p < 0.05, ** p < 0.01, N = 3
per group).

3.7. Neutralizing Activity to Pseudovirus System

The pseudovirus system in vitro was compared with recovered patient plasma to
determine the neutralization potential of post-vaccinated mice plasma. The results showed
that mice plasma had better neutralization function than human plasma in this system
(Figure 6).

3.8. The Immunoglobulin Isotyping of Plasma from Vaccinated Mice

There are no differences in IgG levels among all three groups. IgM levels are higher in
the vaccine group than control mice, indicating that the adjuvant-based peptide vaccine
could not change the immunotype of the mice (Figure 7).
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Figure 6. Results of neutralization assay of mouse and human plasma. Mouse1 was selected from the
peptide mixture 1 group with the QS21 adjuvant; Mouse2 was from the peptide mixture 1 group with
the Al(OH)3 adjuvant; Patient is human plasma from a recovered COVID-19 infected patient; Normal
is human negative plasma; Viral Only consists of the viral infected cells without adding plasma; Neg
Ctr is cell only (N = 4 per group).

Figure 7. Ig Isotyping results of plasma from mice vaccinated with peptide mixture group 1. (A) IgG1
level; (B) IgG2a level; (C) IgG2b Level; (D) IgG3 Level; (E) IgM Level; (F) IgA Level; (the final dilution
of mice plasma was at 1:10,000) (* p < 0.05, ** p < 0.01, N = 3 per group).

4. Discussion

Vaccines are undeniably the most effective solution to stopping the spread of COVID-
19, and several vaccines have already been distributed to contribute to this effort. Pfizer
and Moderna have developed nanolipid-based mRNA particle vaccines, while Astrazeneca
and Johnson & Johnson have produced adenoviral vector-based DNA vaccines [26,64].
While these have become the most widely used vaccines to prevent COVID-19, other types
of vaccines have also been developed, such as an inactivated whole viral particle vaccine
(Kexing) and recombinant subunit vaccine (Novavax) [65–67]. Although the formulation
of each vaccines varies, they all aim to block the binding of the S protein to ACE2 and
inhibit viral entry into the host cell [1]. Virologists have proved that the COVID-19 virus
surface has spike (S) proteins that can specifically bind to ACE2 through a receptor binding
domain (RBD) [39]. The RBD on the S protein of COVID-19 serves as the ligand for ACE2
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on the cell surface. It is important to note that most human organs produce the ACE2
protein [40], which may have contributed to the many deaths caused by COVID-19 that
were also attributed to multiple organ failure [68].

The COVID-19 vaccines that are currently approved have been reported to have high
rates of effectiveness, ranging from 66.3% to 95%, and both B and T cell responses have been
observed [69–78]. Moreover, no large-scale and severe adverse effects have been reported.
However, long term monitoring is still necessary before an affirmative assessment can be
made regarding vaccine safety.

The human immune system works diligently to protect the body from viruses [79].
During viral infection, immune cells produce large amounts of cytokines, which can result
in cytokine storm syndrome [80]. Normally, a virus has a specific tissue receptor, meaning
the virus can only infect certain tissues, while causing no harm to other tissues [81]. For
instance, HIV targets the CD4 receptor, only infecting and killing CD4 T cells [82,83].
However, SARS-CoV-2 is markedly different from other viruses because it utilizes ACE2
receptors, and ACE2 is widely expressed by many types of cells across different organs [40].
ACE2 bound by the SARS-CoV-2 S protein can be considered a viral particle and will trigger
an immune response [84]. This scenario complicates vaccine development because the
abundance of ACE2 increases the likelihood of potential adverse responses caused by the
vaccine and must therefore be carefully considered.

Most of the current vaccines use the S protein as the antigen, and target for blocking
viral entry by sealing RBD on S1 of COVID-19, which induces our immune system to attack
cells that bind to the S protein [21]. To induce an immune response, antigen-presenting cells
(APCs) must uptake the S protein, process it, and then present it to CD4 or CD8 T cells [85].
Although this process is highly effective with other vaccines, it can be problematic for S
gene- or S protein-based vaccines, since the S protein will bind to the ACE2 of the host cell.

To combat the potential issues of current COVID-19 vaccines, our study uses pep-
tides as opposed to whole S protein to develop a vaccine for COVID-19. We selected
15 peptides for the whole S protein utilizing B and T cell epitope prediction methods. We
have also used two of the most common adjuvants in our vaccine formula—QS21 and
Al(OH)3—to enhance the immune response and tested this vaccine on a mouse model. The
immunization results indicate that antibody production against each peptide varies with
time and adjuvant used. In the QS21 adjuvant group, peptide B was the first antibody
produced, followed by antibodies against peptides C, F, and D. In the Al(OH)3 adjuvant
group, antibodies against B, C, and F were detected at the same time after the second
immunization, which was quicker than in the QS21 adjuvant group (Figure 1). Another
major difference between the two adjuvants is that the Al(OH)3 group produced antibodies
against peptide A much earlier than the QS21 group. Since it is imperative for the body
to generate a sufficient T cell response to combat infectious diseases [86], the T and B cell
population of each adjuvant was further analyzed. The results indicate that Al(OH)3 is the
ideal adjuvant because it can induce a more robust T cell response than QS21 (Figure 5),
although both adjuvants were able to induce an antibody response when tested using the
ELISA assay. Since a high antibody titer does not always signify satisfactory protection,
we also tested the protection of plasma with the pseudoviral system [87]. This showed
that the plasma from the vaccinated mice can effectively neutralize viral entry (Figure 6).
Another issue related to the anti-viral activity of plasma is determining how many epitopes
are adequate to completely neutralize the viral entry that can be used as target sites for
vaccine development [88]. To collect this information, epitope mapping with plasma from
vaccinated mice and from infected patients was conducted. Epitope mapping revealed a
similar antibody pattern from vaccinated mice to human samples, which confirmed that
our epitope covered most B cell epitopes of the S protein (Figure 2). Thus, our results
demonstrated that development of a S protein peptide-based vaccine is likely feasible to
prevent COVID-19.
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5. Conclusions

The authors show that a peptide-based COVID-19 vaccine using S protein peptides
with the Al(OH)3 adjuvant generates a high antibody and T cell response. We also demon-
strate that this peptide-based vaccine includes most major B cell epitopes of the S protein
by comparing the serological antibody profiles of mice injected with our peptide-based
vaccine with humans who were previously infected with COVID-19. Further investigation
into peptide-based COVID-19 vaccines is warranted to evaluate important factors such as
long-term efficacy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14030449/s1, Table S1: Selection of SARS-CoV-2 peptides.
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