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ABSTRACT 

 

Gardner, Brandon Blaine M.S.E.C.E., Purdue University, May 2014. Developing an 
Embedded System Solution for High-Speed, High-Capacity Data Logging for a Size-
Constrained, Low-Power, Biomechanical Telemetry System and Investigating 
Components for Optimal Performance. Major Professor: Thomas M. Talavage. 
 
 
The Purdue Neurotrauma Group (PNG) seeks to develop a biomechanical telemetry system 

capable of monitoring and storing athletes’ head motions with the intention of identifying 

when a player may be at risk of neurophysiological damage, especially brain damage. A 

number of commercially-available systems exist with a similar goal; however, each of 

these systems discards information below an acceleration threshold. Research by PNG 

indicates that any acceleration may contribute to brain damage and that, because of this, an 

event-based model is insufficient for a proper understanding of an athlete’s 

neurophysiological health. Continuous-time monitoring of head accelerations is therefore 

necessary. To facilitate the collection and storage of continuous telemetry data, a high-

speed sensor system with a sufficiently large amount of memory storage is required. 

Additional requirements include low power consumption, low cost, and a small form factor. 

It has been concluded that a microSD card is the memory technology most capable of 

meeting these requirements, despite a number of drawbacks, most notably a relatively slow 

data write speed. An embedded solution requiring the use of large data buffers was 

developed to combat this drawback. Various microSD cards were tested to determine base 

read and write speeds and whether differences exist between card manufacturers, card sizes, 

or card speed ratings. It was found that the base performance was nearly identical in each 

test. Recommendations are made based upon the testing results, enabling production of 

operational prototypes for field evaluation.  
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1. INTRODUCTION 

1.1 Background 

The long-term effects of traumatic brain injuries (TBIs) are not well understood. The New 

York Times reports that retired professional football players are nineteen times more likely 

to develop dementia than the general population [1]. In a communication with Thomas M. 

Talavage, he notes that “this dementia has often been found to be associated with chronic 

traumatic encephalopathy, an Alzheimer’s-like neurodegenerative disease.” Additionally, 

evidence suggests that the level of neural tissue damage exhibited is not commensurate 

with the known history of diagnosed concussions. Recent research suggests that the 

increased level of damage is likely due to repetitive exposure to sub-concussive impacts 

[2]. 

Critically, the degenerative effects of these sub-concussive impacts are likely to go 

unnoticed [3], and thus represent a silent danger to the athlete. It is therefore no longer 

appropriate to evaluate and treat TBI only when a concussion is suspected. To effectively 

combat permanent brain damage, early detection methods must be developed. This also 

means that athletes not only of high-impact sports such as football, hockey, and boxing 

must be considered at-risk but also those of traditionally low-impact sports such as soccer, 

volleyball, and baseball. 

The Purdue Neurotrauma Group (PNG) has been collecting data using the Head Impact 

Telemetry System (HITS or HIT System) [4] for many years with the eventual goal of 

developing predictive models to detect the likelihood of irreparable brain damage based 

upon a player’s recorded impact history before the damage can occur [5]. There are a 

number of problems with the HIT System [6], however, and the accuracy of any models 

developed using HITS data is questionable. Recently, a number of similar yet still 
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fundamentally flawed products have become available. The crux of each of these devices 

is that impacts are treated as discrete event windows outside of which no data is considered 

[7]. An event is marked by some time window in which head acceleration exceeds some 

arbitrary threshold. The inherent, unproven assumption underlying this approach is that no 

brain injury can occur below the threshold.  

Thomas M. Talavage of the PNG cautioned in a personal communication that “past failure 

to accurately quantify and record all [accelerations] leading to an observed injury has likely 

led to improper attribution of [singular large accelerations]” – rather than the cumulative 

effect of all events leading up to and including the event in question – to the cause of TBI. 

He also offered the following illustration: 

Consider the “random incidence paradox” [8] which informs us that sub-concussive 

hits are not likely to be observed as the proximal cause of observable head injuries. 

Assuming that each individual possesses a fixed (but unknown) threshold of 

accumulated damage, beyond which clinically-observable symptoms will be 

present, this threshold is most likely to be exceeded by a larger, more damaging 

blow than by a smaller one. For example, if a player has an unknown symptom-

producing threshold between 1 and 100 units, and experiences (in a random order) 

50 blows producing 1 unit of damage, 3 blows producing 10 units of damage, and 

1 blow producing 20 units of damage, the threshold is 50% likely to be crossed by 

one of the 4 blows producing 10 or more units of damage, even though these blows 

represent a mere 7.4% (4 out of 54) of the collision event history. Given the actual 

exponential-like distribution of the magnitude of blows observed in athletes (see 

[2]), the tendency for larger blows to occur at the time of crossing of the 

“concussion” threshold would be even greater than in this example. This is 

consistent with the concussion literature noted above, in which large blows are 

typically observed at the time of concussion, but with no clear relationship between 

magnitude and subsequent symptom severity. 

It is clear that an event-based model of head trauma is not sufficient for a proper 

understanding of TBI. A continuous-time telemetry system must be developed to allow for 

proper formulation of predictive models. 



3 

1.2 Scope 

The purpose of the Purdue Neurotrauma Group is to develop this continuous-time 

telemetry system in both hardware and software. This system must be simultaneously (1) 

small, so as to be worn in any sport with or without a helmet; (2) power efficient, so as to 

provide a device charge life of at least the length of an entire game of any commonly-

played sport; (3) fast, so as to collect meaningful telemetry readings of impact events less 

than ten milliseconds in length; and (4) low-cost, so as to be affordable for the research 

group.  

The earliest concepts of the device included wireless transmission of telemetry data to a 

nearby ground unit; however, the design challenges that would need to be overcome were 

notably steep, especially considering that two teams of athletes could be reasonably 

expected to be using the devices simultaneously. In the interest of producing a prototype 

device more quickly, PNG opted to settle for continuous data logging to an on-board 

memory device. 

In addition to the design challenges mentioned earlier, the device now requires (1) a large 

memory capacity, so as to be able to log telemetry for at least the length of a battery charge, 

and (2) a computationally-light interface, so as to minimize the percentage of system 

processing resources required for data storage. From a device software standpoint, the 

challenges associated with the memory device have arguably been the most difficult to 

overcome.  

The purpose of this thesis is to identify the design challenges encountered during the 

implementation of continuous-time data logging, focusing particularly on the software 

challenges, methods used, solution implemented, optimizations attempted, and results 

obtained. 

1.3 Outline 

Section two of this thesis describes the process used for selecting the memory device, a 

microSD card. It includes quantified project requirements and a comparison with NAND 
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Flash, the closest available candidate. This section also details the earliest failures to 

prototype the data logging functionality which led to the use of a microSD card in via serial 

peripheral interface (SPI).  

Section three comprises the bulk of the document and introduces three alternative 

implementations are briefly examined, followed by a more detailed description of the 

implementation selected. Particular problem points encountered and the solutions required 

to address those problems are noted as well as attempts to optimize the solution for an 

embedded system. The final section describes a method of implementing basic file system 

capabilities to make use of one of SD’s additional benefits. 

Section four describes initial performance testing on a variety of microSD cards to cursorily 

determine if a particular card or subset of cards might have superior performance 

characteristics. 

The members of the Purdue Neurotrauma Group immediately involved in the development 

of the biomechanical telemetry system include (1) Paul Rosenberger, primary developer of 

the earliest prototype device; (2) Jeffery R. King III, developer of wireless functionality; 

(3) Aditya Balasubramanian, primary hardware designer; (4) Brandon Blaine Gardner, 

primary software designer; (5) Thomas M. Talavage, primary advisor and neuroimaging 

expert; and (6) Eric A. Nauman, advisor and biomechanics expert. 
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2. SELECTION OF A MEMORY TECHNOLOGY 

2.1 Memory Technology Requirements 

2.1.1 Small Form Factor 

To keep the device as transparent as possible to the user, space was one of the primary 

concerns for the memory technology. The ideal memory technology would take up zero 

extra space on the device. Realistically speaking, a device smaller than 0.75 inches by 1.5 

inches and less than 0.25 inches thick was targeted [7]. The physical limitations guiding 

this requirement are entirely hardware related and thus out of the context of this document. 

2.1.2 Low-Power 

For a prototype version of the device, members of the Purdue Neurotrauma group (Tom 

Talavage, Eric Nauman) targeted four hours as the minimum battery life, as it would be 

suitable for most but not all sports. The ideal memory technology would consume zero 

extra power; however, this is clearly impossible. If a 1000 milliamp-hour battery was used, 

the memory device should consume no more than 200 milliamps to meet this requirement. 

2.1.3 High-Speed 

Early estimates required the memory technology to be able to store at minimum 52,000 

bytes per second. The memory would need to be transferred either during device operation 

or during periods when the device was not performing any data collection. The following 

equation was used consistently throughout the development process to calculate the 

memory bandwidth required. 
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2.1.4 Low-Cost 

As the PNG is university affiliated and relies on grants for funding, a cost effective device 

was also important. A total device price of less than $100USD was desired. PNG also 

hoped to be able to commercialize the device, and this price point was determined to be 

competitive. 

2.1.5 Large Capacity 

To store a minimum of four hours of data at an estimated 52,000 bytes per second, the 

memory device was required to have a capacity of at least 714.2 megabytes1 (748.8 million 

bits). Because PNG members (Tom Talavage, Eric Nauman) intend to use the devices to 

track the telemetry of many local sports teams, a much higher memory capacity was desired 

if possible. Doubling the memory would allow members to visit teams only every other 

game or practice session. Five times more memory would further reduce the visits to every 

week, which would require less PNG staffing; therefore, 3.5 gigabytes2 (3.744 billion bits) 

was a more attractive capacity. 

2.1.6 Computationally Light 

The primary software requirement for the memory technology was that the interface should 

require little computation. This requirement was difficult to quantify and was mostly used 

to compare different memory technologies. A simple interface means that (1) the system 

spends less time managing memory and more time collecting data or conserving battery by 

entering a sleep state and (2) the development time spent implementing the interface would 

be minimal, allowing for rapid prototyping. 

2.2 Selection of microSD via Serial Peripheral Interface 

Based upon the above criteria, a microSD card operating in SPI mode was selected for the 

primary memory technology. Members of the PNG team (Aditya Balasubramanian, Jeff 

King, Brandon Gardner) compared all available non-volatile memory technologies, finding 

                                                 

1 1 megabyte equals 1048576 bytes  
2 1 gigabyte equals 1073741824 bytes 
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that NAND flash and microSD were the only suitable candidates meeting the capacity 

requirements alone. A microcontroller with a sufficient amount of on-board Flash was the 

most desirable option; however, no microcontrollers found provided the available space. 

Although there were only two available memory technologies, there were four options to 

consider. External control chips exist for both SD and NAND technologies that simplify 

the device interfacing. Table 2.1 summarizes the comparison between the four options. 

Table 2.1. Comparison of Memory Technology Candidates 

Device 

 

Parameter 

NAND Flash NAND Flash 

with external 

controller chip 

MicroSD in 

SPI mode 

MicroSD with 

external 

controller chip 

Size (LxW) 0.87” x 0.47” 0.87” x 0.8” 0.7” x 0.7” 1” x 0.7” 

Max Current 

Consumption 

50 mA 83 mA 200 mA (max) 

80 mA tested 

207 mA (max) 

87 mA tested 

Max (ideal) 

Bandwidth 

6.25 MBps 50 kBps 

(insufficient) 

3.125 MBps 3.125 MBps 

Cost 2GB: $5-$30 

(~$15) 

2GB: $21-$47 

(~$31) 

2GB: $9-$10 2GB: $11-$12 

Capacity 2 GB – 8 GB 2 GB – 8 GB 2 GB – 64 GB 2 GB – 64 GB 

Computational 

Complexity 

Dead sector 

maintenance 

required. 

Highest 

complexity. 

Complexity 

estimated to be 

similar to 

microSD in 

SPI mode. 

FatFs library 

available* (low 

development 

effort, but lots 

of code) 

Is essentially 

NAND with 

external 

control chip.** 

* Discussed in a later chapter 

** High hardware complexity 
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At the expense of complexity, the first iteration of the prototype utilized NAND Flash 

without an external control chip. During the three month design cycle of this device, it was 

discovered that the complexity was much greater than anticipated. Dead sector 

maintenance was a huge software burden and was infeasible for rapid prototyping. 

The next iteration opted to use microSD in SPI mode using the FatFs library [9]. FatFs was 

utilized in an example project from Code Composer Studio [10], allowing quick 

prototyping of the microSD interface, and although it was able to interface easily to the 

card, the library utilized too much processing overhead. In this iteration, the practical 

current consumption of two test cards was found to be a maximum of about 80 mA rather 

than the 200 mA maximum given by the SD card specification document [11]. 

For the third iteration, PNG members (Aditya Balasubramanian, Jeff King, Brandon 

Gardner) revisited the memory technology selection process from the beginning, arriving 

at the same results. The best option was to use a microSD card with an external interfacing 

chip; however, these chips were either too large or required too much hardware fabrication 

complexity for the team. Therefore, the third iteration also utilized the microSD card in 

SPI mode. The approach taken in this iteration was to implement code for the raw interfaces 

rather than use the FatFs library. This implementation constituted the primary difficulty of 

the project software and is covered in detail in section 3 below. 
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3. DESIGN OF A HIGH-SPEED DATA LOGGING INTERFACE TO 

AN SD CARD VIA A SERIAL PERIPHERAL INTERFACE 

3.1 Interfacing Techniques 

In a simple embedded system, there are generally three techniques available for 

implementing a serial peripheral interface (SPI) to a device like an SD card. The three 

techniques and the method used are discussed in the sections below. The analysis of these 

interfacing techniques was only valid for a loop-based program flow and not for a real-

time operating system (RTOS). There are a number of advantages a RTOS holds versus a 

traditional loop-based program [12]; however, PNG team members (Brandon Gardner, Jeff 

King, Aditya Balasubramanian) were not aware of these benefits until late into the design 

phase. 

3.1.1 Reentrant Loop-Based Technique 

This technique relies on the main system to allocate a small amount of processing power 

periodically to operation of the SPI bus. Each time the system calls the SPI subsystem 

process a byte will be transmitted and received. For example, to send and/or receive eight 

bytes of data, the SPI process must be called eight times, one for each data byte. It is worth 

noting that this technique requires some method of counting the number of bytes to be 

transacted. 

The primary benefit of this technique is that the main system is able to allocate processing 

time to the microSD card as it is available, meaning the system will always be able to 

collect data. The drawback to this method, however, is that if the main system uses too 

much processing time on other tasks and does not allocate enough to SPI transactions, the 

data logging bandwidth will fall below data collection bandwidth causing a buffer overflow 
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condition. Additionally, detecting when a buffer overflow condition is likely to occur in 

the system is also very difficult using this method. 

3.1.2 Interrupt-Based Technique 

This technique utilizes system interrupts to transmit and receive bytes via SPI. The main 

system is able to instigate a multi-byte transaction with a single function call rather than 

multiple. The system interrupt is responsible for transmitting and receiving the proper data 

bytes. When an interrupt is triggered, the system collects the received byte and transfers a 

new byte to the bus. This method must also keep count of the number of bytes to be 

transacted, stopping when there are no more bytes to be transmitted. 

Compared to the loop-based technique, performance of the SPI subsystem will not degrade 

as the main system’s processing increases. The amount of processing used by each interrupt 

is comparable to the processing used by each call of the loop-based technique. The main 

system is not easily able to control when the SPI subsystem is able to perform processing, 

however. Additionally, although a good optimizing compiler might be able to reduce the 

function call overhead from the first technique, the interrupt execution latency and time 

required to execute a return from interrupt instruction cannot be optimized. 

3.1.3 Direct Memory Access-Based Technique 

This technique takes advantage of the system’s direct memory access controller to control 

the transaction and reception of SPI data. Similarly to the interrupt-based technique, the 

main system is able to initiate a multi-byte transaction with a single function call. Instead 

of an interrupt routine, the DMA controller is able to transfer a byte with a single main 

system clock cycle; two cycles would be needed for each SPI transaction byte, one for 

transmitting and one for receiving. This technique relies on the availability of DMA 

channels in the system, an often limited resource. 

Although the initialization required for this method is more complex than that of the 

interrupt-based routine, its operation uses fewer system resources, using only two clock 

cycles per byte transacted versus tens to hundreds for interrupt-based operation. This 
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method is further improved by the lack of a need to keep count of the number of bytes to 

be transacted. 

3.1.4 Selection of a Technique 

The benefits of the loop-based technique are desirable; however, the primary drawback 

suggested the other techniques. It is clear that the DMA-based technique is superior, but 

the ease of set-up led to use the interrupt-based technique initially. This led to an 

unanticipated problem during development. At times, the main system was unable to 

process more than a few instructions, preventing the system from collecting new data. The 

interrupt routine was using a large percentage of the available instruction cycles, leaving 

the main system without adequate processing capabilities. 

Consider the simplified example in Figure 3.1. From the figure, it is easy to see that the 

primary system processing is left less with than 50 percent of the available instruction 

cycles. Figure 3.2 uses the same scenario to illustrate the instruction cycle usage of the 

DMA-based approach, finding that only two cycles out of every 16 are used for SPI 

transactions. This leaves 87.5 percent of the available instruction cycles are available to the 

main system. In testing, this has been an acceptable efficiency. 
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Figure 3.1. Example scenario demonstrating CPU clock cycle usage during 
an interrupt-based SPI transfer of one full and one partial byte. SPI clock 
frequency is half that of the CPU clock frequency. Comments indicate 
which system process utilizes the indicated CPU clock cycles. 

 

Figure 3.2. Example scenario demonstrating CPU clock cycle usage during 
a DMA-based SPI transfer of two bytes. SPI clock frequency is half that of 
the CPU clock frequency. A blue or red marker indicates that a particular 
clock cycle is used for a DMA transfer. 
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3.2 Development of an SD Control Process 

3.2.1 Communication Scheme 

The FatFs library [9] was used as a guide for designing the microSD card control software, 

and the SD specification [11] was constantly referenced to ensure accuracy. When 

information from the SD specification was vague or non-existent, a SanDisk SD card 

product manual [13] was used to supplement the information. Communication to the card 

includes both commands and data transfers and follows a command and response format, 

shown in simplified form in Figure 3.3. The “Clock Control” section of the SD 

specification document describes the requirement of eight extra clock cycles in a number 

of circumstances during SD card communication; these eight clock cycles are implemented 

as a “processing byte” during which data must be 0xFF hexadecimal. 

 

Figure 3.3. SD card simplified command and response format. 

Before implementing communication with the card, the commands that would be necessary 

for a data logging application were identified, ignoring any command that was unnecessary 

or extraneous. This first began with identifying the commands required for device 

initialization. For data logging, writing to a card was the most important feature. Reading 

from a card was also necessary in order to facilitate the ability to determine where in a 

microSD card’s memory data should be placed so that data from previous device sessions 

was not overwritten. The ability to read and write multiple blocks was deemed more useful 

than the ability to read and write only a single block. The SD commands required are 

summarized in Table 3.1. With these commands, it was possible to read from or write to 
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any 512-byte block of a microSD card. Reading from or writing to any specific subset of 

the block was impossible, instead requiring the entire block to be accessed. 

Table 3.1. Minimal commands required for data logging. 

Command Response Usage 

CMD0 R1 Card reset (Initialization) 

CMD8 R7 Voltage check (Initialization) 

CMD58 R3 Read operation condition register (Initialization) 

CMD55 R1 Application command (Used before ACMD commands) 

ACMD41 R1 Activate card initialization 

CMD18 R1 Read multiple blocks 

CMD12 R1b Stop transmission of data blocks (following CMD18) 

CMD25 R1 Write multiple blocks 

 

In addition to the device command format, an SD card follows a format for data 

transmission shown in Figure 3.4. For high-capacity SD cards, the data block length is 

fixed to 512 bytes, but for standard-capacity SD cards, the block length can be specified. 

The design used the fixed default block length of 512 bytes for maximum compatibility 

and ease of implementation. 
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Figure 3.4. SD card simplified data transaction format. 

After the necessary communication formats to an SD card were enumerated, the command 

and data communication methods and formats were designed. Although the most direct 

method would be to send a command and then query a response from the card following 

transmission of the command (see Figure 3.5), this would use valuable system processing 

to request and re-request a card response. Instead, the design utilized a method that would 

transmit the command and read the response with a single large SPI transaction at the 

expense of up to eight extra byte transmissions following the card’s response (See Figure 

3.6). On average, this approach wastes time in the extra transmissions; however, the control 

scheme is simplified by eliminating the need to request and re-request responses from a 

card. Although this method was not certain to improve performance, it was likely that 
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response logic would use more system processing cycles overall than would be saved by 

eliminating extra transmissions. 

 

Figure 3.5. SD command transaction using response test and retest method. 
System processing overhead makes this method slower than ideal. 

 

Figure 3.6. SD command transaction using a single large transaction. Up to 
eight extra bytes are used for each transaction, but system processing 
overhead is eliminated compared to response test and retest method. 

To maximize performance, a hybrid scheme (See Figure 3.7) employing the benefits of 

both methods was considered, but extensive testing would have been required, and it was 

uncertain whether the method would be applicable to all microSD cards or even the same 

card for all operating conditions. This method was therefore abandoned. 
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Figure 3.7. SD command transaction using a hybrid method enjoying the 
benefits of both the response test and retest and the single large transaction 
methods. Abandoned due to extensive testing required to determine optimal 
test duration and uncertainty of the testing’s universal applicability. 

This control method posed a specific challenge for reading data blocks. Consider the 

scenario posed by Figure 3.8. Also consider the scenario posed by Figure 3.9 which was 

found to occur much more often (almost exclusively) in testing. The first scenario dictates 

that data may exist within the command and response transaction. The second scenario 

dictates that data may not yet be ready in the transaction. Although it would be possible to 

wait 100 milliseconds before reading data following the second scenario, this would waste 

precious time waiting when data may be available. Instead a method of requesting and 

detecting the data token was devised. For unknown reasons, testing showed that a microSD 

did not respond with a data token until two busy tokens were sent by the card, even when 

waiting longer than 100 milliseconds to request the data token (See Figure 3.10). This 

oddity led to the development of a three-byte data token request. Appendix A shows the 

multi-block read process in its entirety. 
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Figure 3.8. Example scenario demonstrating the presence of a data read 
token and read data in the response following a multi-block read command. 

 

Figure 3.9. Example scenario demonstrating the absence of a data read 
token in the response following a multi-block read command. This scenario 
was more prevalent in testing. 

 

Figure 3.10. Oddity detected during testing of multi-block read process. 
Even after waiting much longer than the maximum wait time (100 ms), two 
busy (0xFF) bytes were always sent by the microSD card before the read 
data token. The cause was unknown. 
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In development, the command used to halt a multi-block read process demonstrated 

unexpected behavior. The byte prior to the response byte often appeared corrupted. FatFs’s 

documentation reported that the byte immediately following the command was a “stuff 

byte” [14]. This information was not corroborated by the SD specification document. The 

SanDisk product manual offered the critical insight: the busy time after the command was 

reported to be two to 64 clock cycles [13]. Since all communications were required to be 

byte aligned, this implied that the first byte would be invalid because the first two bits were 

invalid. This translates to a busy time of one to eight bytes for this command rather than 

zero to eight bytes for other commands. 

Writing data blocks to the card was a much simpler, following the process shown in Figure 

3.12. Although the specification document specifies that the busy time between blocks may 

be as much as 250 milliseconds, this time was determined to be less than 200 microseconds 

in preliminary testing. The busy time following a stop transmission token was found to 

often last several milliseconds.  

 

Figure 3.12. Multi-block write timeline. 

Detecting the busy state of an SD card is as simple as reading a byte from the card with no 

data transmitted. If the returned byte is not equal to 0xFF (hexadecimal), the card is non-

busy. The “Clock Control” section of the SD specification document states that “the host 

shall provide a clock edge for the card to turn off its busy signal” [11]. With this statement 

as inspiration, PNG team members (Brandon Gardner) tried to optimize detection of the 

busy state by simply toggling the microSD card’s clock signal from high to low and then 

back to high, effectively providing one clock to allow the card to turn off its busy signal. 
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Although this optimization was sufficient for the card to turn off its busy signal, this caused 

card errors. These errors were assumed to be due to the violation of the requirement that 

“every command or data block is built of 8-bit bytes and is byte aligned to the CS signal” 

[11]. A similar optimization technique was investigated which directly toggled the card’s 

clock signal, providing the eight required clocks without initiating a byte transaction via 

SPI. The number of system processing cycles used for this method was compared to the 

number of system processing cycles used for sending a byte via SPI. The former method 

required approximately 220 cycles, whereas the latter method required approximately 350 

cycles. This optimization therefore reduced the number of cycles required by 

approximately 37 percent. 

To successfully log telemetry data during periods where a microSD card was in a busy 

state, logged data was buffered. The busy state could last up to 250 milliseconds, meaning 

a buffer size of at least 250 milliseconds was necessary. For a system generating 52,000 

bytes of data per second, this equated to a minimum of 13,000 bytes for data buffers. This 

does not include any overhead needed for transmitting data to a card or for the buffer 

control logic. This buffer size proved effective in testing, but a larger buffer size of 500 

milliseconds or more was preferable to maintain data integrity in the eventuality of extreme 

corner cases that might not have manifested in testing. 

3.2.2 Control State Machines 

To properly interface with an SD card, it is necessary to know what commands were sent 

to the card previously. Certain commands are only valid after certain other commands, and 

the response given by the card must be put into context given the command history. Based 

upon this knowledge, it was determined that a state machine control scheme was 

appropriate. Before any data could be read from or written to the card, it first needed to be 

initialized based upon the flowchart given in the SD specification document (See Figure 

3.13). Version 1.x SD memory cards and non-SD memory cards (left side of chart) support 

only up to 2 gigabytes of capacity. Because microSD easily supported the ideal 3.5 

gigabyte capacity and much greater capacities, the PNG team decided to report 

initialization failure for these low-capacity cards. Once an SD card is initialized, the 
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initialization procedure is not needed again; therefore, designing the initialization 

procedure to be reentrant was unnecessary. For initialization, the flowchart neglects to 

specify that once an SD card receives power, the host is required to send at least 74 clocks 

to the card with the chip select line held high to enter SPI mode. The flowchart also neglects 

to mention setting a timeout of “more than [one] second to abort repeat of issuing ACMD41 

when the card does not indicate ready” [11]. 

 

Figure 3.13. SD card initialization flow chart [11]. 

Once an SD card has been initialized, the clock speed may be raised to a maximum of 25 

megahertz. This can result in outstanding read and write speeds; however, the clock 

frequency may be limited by the hold time of the card (14 nanoseconds max) and the setup 
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time of the device controlling the card [13], [14]. The maximum clock frequency follows 

the following equation. 

 

State machines for reading and writing multiple blocks were not provided in documentation 

and had to be designed. The commands used to initiate a read or write process, the data 

transmission and reception methods, and the method used to finish read and write processes 

are each entirely distinct. This led to the creation of two distinct state machines, one for 

reading multiple data blocks and one for writing multiple data blocks.  

The multi-block write process was designed first and was reduced iteratively to only three 

states. The multi-block read process was designed second and was also reduced to three 

states. The external-facing interface to the state machines were designed for flexibility 

rather than ease of use, allowing an external program to have explicit control of when the 

SD card should be prepared for reading or writing, when the card should transmit or receive 

data blocks, and when the card should finish reading or writing. The state machines are 

shown in overview in Figure 3.14 and Figure 3.15. The state machines are shown in full 

detail in appendix A. 

  



24 

 

Figure 3.14. Overview of multi-block read state machine. Each arrow color 
represents a state change as a result of a corresponding function call. 
Function calls are listed in the top-left. 
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Figure 3.15. Overview of multi-block write state machine. Each arrow color 
represents a state change as a result of a corresponding function call. 
Function calls are listed in the top-left. 
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3.3 Taking Advantage of the Prevalence of microSD 

One of the additional benefits microSD has is the fact that it can be accessed easily via a 

computer. In testing, this meant that it was possible to easily verify the data read from or 

written to the card. For real world data logging, this meant that it was possible to retrieve 

telemetry data without the need to implement an interface to a computer. To easily access 

the data from a computer, a file system was needed on the card. Access without a file 

system, although possible, was limited to standalone applications. With a file system, any 

application with basic file capabilities could access the files.  

Although there are many methods of implementing a file system on the card in such a way 

that both the data logging device and computer could access the data, the method 

implemented was designed in such a manner that the telemetry device could be unaware of 

the existence of a file system save for the requirement that it avoid writing to microSD card 

blocks belonging to the master boot record and file system structures. These structures 

would ideally be located at the beginning of the disk so that all blocks after them would be 

available. 

First, a card was formatted using the SD Association’s SDFormatter utility. Next, the card 

was filled up by copying (one file at a time) as many text files to the card as would fit. 

These files were given a file name on the card indicative of the order in which they were 

copied, e.g., from 1 to N. A large file size allows the volume to have a smaller file directory, 

found in testing to be initially 1023 entries. To prevent the directory from growing beyond 

its initial size, a good rule of thumb was found to be: use a file size at least as many 

megabytes as the listed card capacity in gigabytes (e.g., a 16 megabyte or greater files were 

used with a 16 gigabyte card). It was also necessary for the file to be a multiple of 32 

kilobytes1, as this is the maximum allocation unit size for FAT32. 

Following these guidelines, each of the files were consecutive on disk for a number of 

microSD cards tested. This means that file K was preceded by file K-1 and was followed 

                                                 

1 One kilobyte equals 1024 bytes 
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by file K+1 for all files. More importantly, the files were contiguous, with no unused space 

between them. For cards between 4 gigabytes and 16 gigabytes, the first file’s data began 

at block number 16448; this number was different for 2 gigabyte and 32 gigabyte cards. 

Telemetry data written to the card began at block 16448 and continued incrementally as 

logging progressed. After data collection, the telemetry data was able to be accessed by 

simply reading the files on the card. Data from the first file was retrieved first, followed by 

data from the second file, followed by the third, etc. Because the files were consecutive on 

disk, they were ordered chronologically, and because the files were contiguous, no data 

was lost. 

This method allowed for easy retrieval of the logged data without losses and with a minimal 

set up effort. The microSD card setup process was easily automated using standard 

scripting tools. This method also provided the added benefit of being able to simply swap 

used cards with fresh cards in telemetry units when PNG members (Tom Talavage, Eric 

Nauman) were ready to collect the telemetry data rather than needing to connect each 

device to a computer for downloading. 
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4. PERFORMANCE ANALYSIS 

Purdue Neurotrauma Group members (Brandon Gardner) tested the base performance of 

the implementation by measuring the time taken to read or write 32 megabytes from/to a 

small assortment of microSD cards of different brands, capacities, and speed class ratings. 

This measurement was taken while the system was idle, performing only the logic 

necessary to control the microSD cards. The timing was measured using an oscilloscope 

and was determined to be accurate to within 0.2 seconds.  

Four variables could influence the read/write speed of the system: (1) manufacturer, (2) 

capacity, (3) speed class, and (4) silicon variance1. Cursorily measuring the first three 

variables was trivial. Determining the effects of silicon variance was much more difficult 

and required testing a large, statistically valid collection of cards. PNG did not have the 

resources to undertake this testing. This also means that the results found are not 

statistically valid; this testing was intended only to suggest trends that might be found.  

Three common, name-brand manufacturers were chosen for testing: SanDisk, Kingston, 

and Transcend. Class four microSD cards were used to test for capacity variance, as it was 

easier to find cards in a wider variety of capacities than other classes. Exceptions to this 

include the two gigabyte card, which had no class rating and the 32 gigabyte card which 

had a class ten rating. The effects of speed class were tested using 16 gigabyte class four 

and class ten cards from both SanDisk and Transcend, as a 16 gigabyte class 4 Kingston 

card could not be found.  

The system used for testing was an MSP430F5659 microcontroller with a main clock 

frequency of 20 megahertz and an SPI bus clock frequency of 12 megahertz. The cards 

                                                 

1 Silicon variance refers to the variance between microSD cards due to silicon manufacturing tolerances. 
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were prepared with random data to be read, and blocks of 0xFF were written to the card to 

prevent the write operations from being a simple erase of each block. Table 4.1 summarizes 

the results. 

Table 4.1. Experimental time taken to read or write 32 megabytes of data 
from/to the described microSD card. Speed was calculated as the number of 
bytes read/written divided by the time elapsed. Time accuracy was 0.2 
seconds. 

Card Description Read Time Write Time Read Speed Write Speed 

Transcend 16 GB class 4 29 sec 26.8 sec 1.1 MBps 1.19 MBps 

Transcend 16 GB class 10 29 sec 27 sec 1.1 MBps 1.18 MBps 

Kingston 16 GB class 10 29 sec 27 sec 1.1 MBps 1.18 MBps 

SanDisk 16 GB class 10 29 sec 28.4 sec 1.1 MBps 1.12 MBps 

SanDisk 8 GB class 4 29 sec 26.6 sec 1.1 MBps 1.20 MBps 

SanDisk 4 GB class 4 29 sec 27 sec 1.1 MBps 1.18 MBps 

SanDisk 32 GB class 10 29 sec 28 sec 1.1 MBps 1.14 MBps 

SanDisk 2 GB no class 29 sec 26.6 sec 1.1 MBps 1.20 MBps 

SanDisk 16 GB class 4 29 sec 26.8 sec 1.1 MBps 1.19 MBps 

 

The results obtained were unexpected. There was not a significant difference between any 

of the microSD cards tested. Additionally, it was expected that write times would be slower 

than read times, which was not the case in these tests. The theoretical max read/write speed 
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for the test system was 1.43 megabytes per second (MBps1); the efficiency achieved was 

therefore approximately 77 percent. From these results, it is likely that the primary factor 

determining the read/write speed was the software implementation rather than limitations 

of the individual cards. If the system used for testing were able to use a 25 megahertz clock 

speed, it is likely that the performance differences between the cards would be more 

apparent. No conclusions can be drawn from these results. 

Figure 4.1 shows the read/write speed of two SD cards and one multimedia card (MMC) 

tested by the developer of FatFs. These results are useful at a glance, but the test methods 

are largely unknown except for the system used, an LPC2368 microcontroller running at 

72 megahertz with an SPI bus speed of 18 megahertz. The results shown reflect the 

expectation that read speed is faster than write speed. The efficiencies compared to the bus 

speed for the eight gigabyte Kingston card tested are 62 percent for writing and 84 percent 

for reading. A bus speed of 9000 kilobytes per second, however, implies one of two 

possibilities: (1) the bus speed was closer to 72 megahertz or (2) the bus provided four bits 

of data rather than a single bit at each clock edge. The latter possibility is more likely since 

the maximum clock speed for SD is 25 megahertz or 50 megahertz for some cards [11]. It 

is therefore inappropriate to compare these results to PNG results, but they are included 

due to the fact that no other SD performance tests were found elsewhere. 

                                                 

1 MBps = megabytes per second = 1048576 bytes per second 
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Figure 4.1. Experimental results obtained by the developer of FatFs [15]. A 
9000 kB/sec bus speed is impossible unless four bits are written on each 
clock edge versus one; therefore, these results cannot be directly compared 
to Purdue Neurotrauma Group results. 
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5. CONCLUSION 

This thesis has presented a simple software design for an embedded data logging system 

using a microSD card as the memory technology. This design’s primary benefit is a large 

memory capacity that continues to grow as larger and larger capacity microSD cards enter 

the market [16]. MicroSD’s wide acceptance also means a low cost per byte ratio, and for 

its capacity, it is remarkably small and power efficient. 

This has allowed Purdue Neurotrauma Group members(Aditya Balasubramanian, Jeff 

King, Brandon Gardner) to develop prototype continuous-time, biomechanical telemetry 

sensors for their study of the effects of head impacts—especially sub-concussive impacts—

on neurophysiology. The results of this effort have given the PNG (Tom Talavage, Eric 

Nauman) access to a quality of data that will allow them to develop predictive models of 

brain damage, a key component for enabling early detection of permanent threats to brain 

health. 

5.1 Future Work 

The design presented by this thesis was considered successful in meeting the Purdue 

Neurotrauma Group’s needs; however, room for further optimization exists. As mentioned 

in 3.1, real-time operating system (RTOS) functionality was not considered for this design. 

A RTOS could enable the system to be more extensible for future needs both anticipated 

and unanticipated. With RTOS support, the reentrant loop-based technique might be a more 

appropriate communication method. The hybrid command scheme could also be tested to 

determine if a shorter, optimal response time exists. Additionally, a number of minor 

optimizations within the SD control code have been identified but not yet implemented or 

tested; implementing these optimizations could save tens of instruction cycles, releasing 

more cycles to the main system. 
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A. SD CONTROL STATE MACHINES 

Notes:  
1) The IDLE state is shared between each state machine 
2) If a state transition is not shown, it can be assumed to be an invalid command 

 

MULTI-BLOCK READ STATE TRANSITIONS 

1. startMultiBlockRead(): IDLE  IDLE 
a. Send CMD18 failure  Return: SPI error 

2. startMultiBlockRead(): IDLE  CMD18 
a. Send CMD18 success  Return: OK 

3. readBlock(): CMD18  CMD18 
a. SPI busy  Return: Busy 
b. SPI not busy 

i. R1 response = 0 
1. Data token = 0xFE 

a. Read block failure  Return: SPI error 
2. Data token not present 

a. Request data token failure  Return: SPI error 
4. stopMultiBlockRead(): CMD18  CMD18 

a. SPI busy  Return: Busy 
b. SPI not busy 

i. R1 response = 0 
1. Send CMD12 failure  Return: SPI error 

5. stopMultiBlockRead(): CMD18  IDLE 
a. SPI not busy 

i. R1 response ≠ 0  Return: Restart multi-block read 
ii. R1 response = 0 

1. Data token = error  Return: Restart multi-block read 
6. readBlock(): CMD18  IDLE 

a. SPI not busy 
i. R1 response ≠ 0  Return: Restart multi-block read 

ii. R1 response = 0 
1. Data token = error  Return: Restart multi-block read 

7. readBlock(): CMD18  READ_BLOCK 
a. SPI not busy 

i. R1 response = 0 
1. Data token = 0xFE 
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a. Read block success  Return: OK 
2. Data token not present 

a. Request data token success  Return: Busy 
8. stopMultiBlockRead(): CMD18  CMD12 

a. SPI not busy 
i. R1 response = 0 

1. Send CMD12 success  Return: OK 
9. readBlock(): READ_BLOCK  READ_BLOCK 

a. SPI busy  Return: Busy 
b. SPI not busy 

i. Data token = 0xFE 
1. Read block success  Return: OK 
2. Read block failure  Return: SPI error 

ii. Data token not present 
1. Request data token success  Return: Busy 
2. Request data token failure  Return: SPI error 

10. stopMultiBlockRead(): READ_BLOCK  READ_BLOCK 
a. SPI busy  Return: Busy 
b. SPI not busy 

i. Data token = 0xFE OR not present 
1. Send CMD12 failure  Return: SPI error 

11. stopMultiBlockRead(): READ_BLOCK  CMD12 
a. SPI not busy 

i. Data token = 0xFE 
1. Send CMD12 success  Return: OK 

ii. Data token = error 
1. Send CMD12 success  Return: Continue with error 

12. startMultiBlockRead() OR startMultiBlockWrite(): CMD12  CMD12 
a. SPI busy  Return: Busy 
b. SPI not busy 

i. SD card busy  Return: Busy 
ii. SD card not busy 

1. R1 response = 0 
a. Send CMD18/CMD25 failure  Return: SPI error 

2. R1 response ≠ 0  Return: Send stop multi-block read 
13. startMultiBlockRead() OR startMultiBlockWrite(): CMD12  CMD18/CMD24 

a. SPI not busy 
i. SD card not busy 

1. R1 response = 0 
a. Send CMD18/CMD25 success  Return: OK 
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MULTI-BLOCK WRITE STATE TRANSITIONS 
 
14. startMultiBlockWrite(): IDLE  IDLE 

a. Send CMD25 failure  Return: SPI error 
15. startMultiBlockWrite(): IDLE  CMD25 

a. Send CMD25 success  Return: OK 
16. sendBlock(): CMD25  CMD25 

a. SPI busy  Return: Busy 
b. SPI not busy 

i. R1 response = 0 
1. Write block failure  Return: SPI error 

17. stopMultiBlockWrite(): CMD25  CMD25 
a. SPI busy  Return: Busy 
b. SPI not busy 

i. R1 response = 0 
1. Send stop transmission token failure  Return: SPI error 

18. stopMultiBlockWrite(): CMD25  IDLE 
a. SPI not busy 

i. R1 response ≠ 0  Return: Restart multi-block write 
19. sendBlock(): CMD25  IDLE 

a. SPI not busy 
i. R1 response ≠ 0  Return: Restart multi-block write 

20. sendBlock(): CMD25  WRITE_BLOCK 
a. SPI not busy 

i. R1 response = 0 
1. Write block success  Return: OK 

21. stopMultiBlockWrite(): CMD25  STOP_TRAN 
a. SPI not busy 

i. R1 response = 0 
1. Send stop transmission token success  Return: OK 

22. sendBlock(): WRITE_BLOCK  WRITE_BLOCK 
a. SPI busy  Return: Busy 
b. SPI not busy 

i. SD card busy  Return: Busy 
ii. SD card not busy 

1. Data response = 0x05 
a. Write block failure  Return: SPI error 
b. Write block success  Return: OK 

2. Data response ≠ 0x05  Return: Send stop multi-block write 
23. stopMultiBlockWrite(): WRITE_BLOCK  WRITE_BLOCK 

a. SPI busy  Return: Busy 
b. SPI not busy 

i. SD card busy  Return: Busy 
ii. SD card not busy  

1. Data response = 0x05 OR ≠ 0x05 
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a. Send stop transmission token failure  Return: SPI error 
24. stopMultiBlockWrite(): WRITE_BLOCK  STOP_TRAN 

a. SPI not busy 
i. SD card not busy 

1. Data response = 0x05 
a. Send stop transmission token success  Return: OK 

2. Data response ≠ 0x05 
25. startMultiBlockRead() OR startMultiBlockWrite(): STOP_TRAN  STOP_TRAN 

a. SPI busy  Return: Busy 
b. SPI not busy 

i. SD card busy  Return: Busy 
ii. SD card not busy 

a. Send CMD18/CMD25 failure  Return: SPI error 
26. startMultiBlockRead() OR startMultiBlockWrite(): STOP_TRAN  CMD18/CMD25 

a. SPI not busy 
i. SD card not busy 

a. Send CMD18/CMD25 success  Return: OK 
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Figure A.1. Multi-block read state machine annotated with numbered 
sections. 
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Figure A.2. Multi-block write state machine annotated with numbered 
sections. 
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B. CODE 

// note(s): 
// 1. Page and block are used interchangeably to refer to a 512-byte SD 
data block 
// 2. Some structures exist for single block reads/writes but are 
unfinished 
 
//||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
// HELPER FUNCTION AND MACRO DEFINITIONS 
//||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
 
typedef enum { 
    SD_CONTINUE = 0,                ///< Continue to next operation 
    SD_CONTINUE_WITH_ERR,           ///< Continue to next operation w/ 
error from previous state 
    SD_BUSY_RETRY,                  ///< Card or process is busy, retry 
(long timeout) 
    SD_ERR_RETRY,                   ///< Error, retry (with timeout) 
    SD_ERR_RESTART,                 ///< Error, restart from command 
beginning (i.e. - CMD17/18/24/25) 
    SD_ERR_SEND_STOP,               ///< Error, send stop (suggested to 
restart from cmd beginning) 
    SD_INVALID_CMD,                 ///< Invalid command 
    SD_ERR                          ///< Error, unknown 
} SD_TYPE; 
 
/* 
 * @brief Initialize SPI for SD operation at a given speed. 
 * @param c [in]    Desired SPI clock speed. 
 * 
 * @note \see dma_spi_usci_initialize() for more info. 
 */ 
#define spi_initialize( c )  
 
/* 
 * @brief Perform SPI transaction for SD operation. 
 * @param t [in]        TX buffer. 
 * @param r [out]       RX buffer. 
 * @param b [in]        Byte count. 
 * @param d [in/out]    Transaction complete flag pointer. 
 *                      Is incremented upon completion of SPI 
transaction. 
 */ 
#define spi_transaction(t,r,b,d) 
 
/* 
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 * @brief Initialize pins for SPI communication to SD card. 
 * 
 * @note CLK is pulled low with internal resistor. 
 * @note SIMO is pulled high with internal resistor. 
 * @note SOMI is pulled high with internal resistor. 
 */ 
inline void init_pins() { 
    // CLK 
    SEL_FXN( SD_CLK_SEL, SD_CLK_BIT ); 
    DIR_OUT( SD_CLK_DIR, SD_CLK_BIT ); 
    OUT_LOW( SD_CLK_OUT, SD_CLK_BIT ); 
    REN_ENABLE( SD_CLK_REN, SD_CLK_BIT ); 
    // SIMO 
    SEL_FXN( SD_SIMO_SEL, SD_SIMO_BIT ); 
    DIR_OUT( SD_SIMO_DIR, SD_SIMO_BIT ); 
    OUT_HIGH( SD_SIMO_OUT, SD_SIMO_BIT ); 
    REN_ENABLE( SD_SIMO_REN, SD_SIMO_BIT ); 
    // SOMI 
    SEL_FXN( SD_SOMI_SEL, SD_SOMI_BIT ); 
    DIR_IN( SD_SOMI_DIR, SD_SOMI_BIT ); 
    OUT_HIGH( SD_SOMI_DIR, SD_SOMI_BIT ); 
    REN_ENABLE( SD_SOMI_REN, SD_SOMI_BIT ); 
} 
 
// chip select controls 
#define CS_SELECT           OUT_LOW( SD_CS_OUT, SD_CS_BIT ) 
#define CS_DESELECT         OUT_HIGH( SD_CS_OUT, SD_CS_BIT ) 
#define CS_INIT()                           \ 
    SEL_GPIO( SD_CS_SEL, SD_CS_BIT );       \ 
    DIR_OUT( SD_CS_DIR, SD_CS_BIT );        \ 
    REN_DISABLE( SD_CS_REN, SD_CS_BIT ) 
 
// card on/off controls 
#if defined( SD_ONOFF_ACTIVE_HIGH ) 
#  define SD_ON             OUT_HIGH( SD_ONOFF_OUT, SD_ONOFF_BIT ); 
#  define SD_OFF            OUT_LOW( SD_ONOFF_OUT, SD_ONOFF_BIT ); 
#elif defined( SD_ONOFF_ACTIVE_LOW ) 
#  define SD_ON             OUT_LOW( SD_ONOFF_OUT, SD_ONOFF_BIT ); 
#  define SD_OFF            OUT_HIGH( SD_ONOFF_OUT, SD_ONOFF_BIT ); 
#else 
#  error "SD card on/off control is defined neither as active high nor 
active low." 
#endif 
// initialize to OFF 
#define SD_ONOFF_INIT()                         \ 
    SEL_GPIO( SD_ONOFF_SEL, SD_ONOFF_BIT );     \ 
    DIR_OUT( SD_ONOFF_DIR, SD_ONOFF_BIT );      \ 
    REN_DISABLE( SD_ONOFF_REN, SD_ONOFF_BIT);   \ 
    SD_OFF 
 
// use in if/while stmt. to test whether SD card is busy 
#define SD_NOT_BUSY                 sd_isReady() 
 
// Returns 0 if card not detected, 1 if card is detected 
/// @todo replace with read of Chip Detect 



43 

#define CARD_DETECT                 (1) 
 
// card response processing can be 0-8 bytes, 
// R1 resp is 1 byte, 
// plus one extra byte for processing 
// total :  10 bytes 
#define R1_TEST_LENGTH              10 
 
// R3 = R1 + 4 byte OCR 
#define R3_TEST_LENGTH              R1_TEST_LENGTH+4 
 
// number of bytes to receive to test for data token presence 
#define DATA_TOKEN_TEST_LENGTH      3 
 
// Definitions for MMC/SDC command 
#define CMD0   (0)          // GO_IDLE_STATE 
#define ACMD41 (0x80|41)    // SEND_OP_COND (SDC) (precede w/ CMD55) 
#define CMD8   (8)          // SEND_IF_COND 
#define CMD12  (12)         // STOP_TRANSMISSION 
#define CMD17  (17)         // READ_SINGLE_BLOCK 
#define CMD18  (18)         // READ_MULTIPLE_BLOCK 
#define CMD24  (24)         // WRITE_BLOCK 
#define CMD25  (25)         // WRITE_MULTIPLE_BLOCK 
#define CMD55  (55)         // APP_CMD 
#define CMD58  (58)         // READ_OCR 
 
// All states for single-/multi-block read/write 
/// @todo Add READ_SINGLE_BLOCK_DONE state and logic 
typedef enum { 
    IDLE = 0,           //< IDLE 
    SEND_CMD25,         //< Start multi-block write 
    WRITE_MULTI_BLOCK,  //< Write block for multi-block write 
    STOP_TRAN,          //< Stop multi-block write 
    SEND_CMD24,         //< Start single-block write 
    WRITE_SINGLE_BLOCK, //< Write block for single-block write 
    SEND_CMD18,         //< Start multi-block read 
    READ_MULTI_BLOCK,   //< Read block for multi-block read 
    SEND_CMD12,         //< Stop multi-block read 
    SEND_CMD17,         //< Start single-block read 
    READ_SINGLE_BLOCK   //< Read block for single-block read 
} sd_state; 
 
// current state 
static sd_state process_state = IDLE; 
 
// spi transaction flag      
static volatile unsigned char cmd_flag = 0;  
 
// used to determine state of a command (i.e. - sendCommand()) 
static unsigned char command_state = 0x00; 
// 0: free 
// 1: sent/sending command 
// 2: requested/ing response 
 
// SD card response is placed into this buffer 
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static volatile unsigned char response[R3_TEST_LENGTH+6] = 
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 
         
// this buffer holds an SD card command 
static unsigned char command_buffer[R3_TEST_LENGTH+6] = 
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 
 
// this buffer holds the stop tran token and processing byte 
static const unsigned char stop_tran_buffer[2] = { 0xfd, 0xff }; 
 
// this buffer is used for receiving the data token (potentially w/ 
data) 
// when testing for data token presence 
static volatile unsigned char data_token_buffer[DATA_TOKEN_TEST_LENGTH] 
= { 0xff, 0xff, 0xff }; 
 
// this buffer is sent to the SD card during a page/block read 
static const unsigned char page_request_buffer[515] = 
    { 
        //0xff,                                                                     
// data token 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 0-15 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 16-31 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 32-47 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 48-63 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 64-79 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 80-95 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 96-111 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 112-127 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 128-143 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 144-159 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 160-175 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 176-191 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 192-207 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 208-223 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 224-239 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 240-255 
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        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 256-271 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 272-287 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 288-303 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 304-319 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 320-335 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 336-351 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 352-367 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 368-383 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 384-399 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 400-415 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 416-431 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 432-447 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 448-463 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 464-479 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 480-495 
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, // data 496-511 
        0xff, 0xff,                                                                 
// crc 
        0xff                                                                        
// processing byte 
    }; 
 
// buffer into which received data from SD card is placed for write 
block 
static volatile unsigned char page_response_buffer[517]; 
 
// number of bytes read and transferred to the read buffer 
static signed char bytes_read = 0; 
 
// is the card addressed by byte or block? 
bool sd_block_addressing = false; 
 
// The code to send a single byte via DMA-SPI uses about 300-350 cycles 
just 
//   to set up the transfer. 
// The below code uses about 220 cycles. 
inline char sd_isReady( void ) { 
    SEL_GPIO( SD_CLK_SEL, SD_CLK_BIT ); 
    OUT_HIGH( SD_CLK_OUT, SD_CLK_BIT ); 
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    _nop(); 
    OUT_LOW( SD_CLK_OUT, SD_CLK_BIT ); 
    _nop(); 
    OUT_HIGH( SD_CLK_OUT, SD_CLK_BIT ); 
    _nop(); 
    OUT_LOW( SD_CLK_OUT, SD_CLK_BIT ); 
    _nop(); 
    OUT_HIGH( SD_CLK_OUT, SD_CLK_BIT ); 
    _nop(); 
    OUT_LOW( SD_CLK_OUT, SD_CLK_BIT ); 
    _nop(); 
    OUT_HIGH( SD_CLK_OUT, SD_CLK_BIT ); 
    _nop(); 
    OUT_LOW( SD_CLK_OUT, SD_CLK_BIT ); 
    _nop(); 
    OUT_HIGH( SD_CLK_OUT, SD_CLK_BIT ); 
    _nop(); 
    OUT_LOW( SD_CLK_OUT, SD_CLK_BIT ); 
    _nop(); 
    OUT_HIGH( SD_CLK_OUT, SD_CLK_BIT ); 
    _nop(); 
    OUT_LOW( SD_CLK_OUT, SD_CLK_BIT ); 
    _nop(); 
    OUT_HIGH( SD_CLK_OUT, SD_CLK_BIT ); 
    _nop(); 
    OUT_LOW( SD_CLK_OUT, SD_CLK_BIT ); 
    _nop(); 
    OUT_HIGH( SD_CLK_OUT, SD_CLK_BIT ); 
    _nop(); 
    OUT_LOW( SD_CLK_OUT, SD_CLK_BIT ); 
    SEL_FXN( SD_CLK_SEL, SD_CLK_BIT ); 
    return IN_READ( SD_SOMI_IN, SD_SOMI_BIT ); 
} 
 
inline RETURN_TYPE sendEmptyByte( volatile unsigned char * 
command_done_flag ) { 
    return spi_transaction( (unsigned char *)( &command_buffer[6]), 
page_response_buffer, 1, command_done_flag ); 
} 
 
inline RETURN_TYPE requestDataToken( volatile unsigned char * 
command_done_flag ) { 
    return spi_transaction( (unsigned char *)( &command_buffer[6]), 
            data_token_buffer, 
            DATA_TOKEN_TEST_LENGTH, command_done_flag ); 
} 
 
inline RETURN_TYPE sendPageBufferMulti( volatile unsigned char * 
page_buffer, volatile unsigned char * command_done_flag ) { 
    page_buffer[0] = 0xfc; // data token 
    page_buffer[513] = 0xff; // crc dummy 1 
    page_buffer[514] = 0xff; // crc dummy 2 
    page_buffer[515] = 0xff; // place for response 
    page_buffer[516] = 0xff; // extra processing byte 
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    return spi_transaction( page_buffer, page_response_buffer, 517, 
command_done_flag ); 
} 
 
inline RETURN_TYPE sendPageBufferSingle( volatile unsigned char * 
page_buffer, volatile unsigned char * command_done_flag ) { 
    page_buffer[0] = 0xfe; // data token 
    page_buffer[513] = 0xff; // crc dummy 1 
    page_buffer[514] = 0xff; // crc dummy 2 
    page_buffer[515] = 0xff; // place for response 
    page_buffer[516] = 0xff; // extra processing byte 
    return spi_transaction( page_buffer, page_response_buffer, 517, 
command_done_flag ); 
} 
 
inline RETURN_TYPE sendStopTran( volatile unsigned char * 
command_done_flag ) { 
    return spi_transaction( (volatile unsigned char *) 
stop_tran_buffer, page_response_buffer, 2, command_done_flag ); 
} 
 
inline unsigned char readDataResponse() { 
    return page_response_buffer[515]; 
} 
 
inline RETURN_TYPE receivePage( volatile unsigned char * page_buffer, 
        volatile unsigned char * command_done_flag, unsigned short 
chars_to_read ) { 
    return spi_transaction( (volatile unsigned char *) 
page_request_buffer, page_buffer, chars_to_read, command_done_flag ); 
} 
 
 
// send command (do not read response) 
// Possible ways to improve performance: 
// 1) Develop special sendCommand routines for CMD0, CMD8, CMD58 
// 2) Remove support for non-SDHC cards (init routine changes required) 
// 3) Develop special sendCommand routine for commands w/ zero arg 
value 
RETURN_TYPE sendCommand( unsigned char cmd, unsigned long arg, volatile 
unsigned char * command_done_flag ) { 
    unsigned char crc; 
    if( command_state != 0 ) { 
        return RETURN_BUSY; 
    } else { 
        command_state = 0x02; 
    } 
    /// @warning If you add more commands to this code, the following 
test may break! 
    /// You must lsh 9 if command takes a data address as an argument. 
    /// e.g. - CMD17, 18, 24, 25 
    if( sd_block_addressing == false && ( ( cmd & 0xf0 ) == 0x10 ) ) { 
        arg = arg << 9; // arg *= 512; 
    } 
    CS_SELECT; 
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    command_buffer[0] = (unsigned char) (0x40 | cmd);   // Start + 
Command index 
    command_buffer[1] = (unsigned char) (arg >> 24);    // 
Argument[31..24] 
    command_buffer[2] = (unsigned char) (arg >> 16);    // 
Argument[23..16] 
    command_buffer[3] = (unsigned char) (arg >> 8);     // 
Argument[15..8] 
    command_buffer[4] = (unsigned char) arg;            // 
Argument[7..0] 
    crc = 0x01;                                         // Empty CRC + 
Stop 
    if (cmd == CMD0) crc = 0x95;                        // (valid CRC 
for CMD0(0)) 
    if (cmd == CMD8) crc = 0x87;                        // (valid CRC 
for CMD8(0x1AA)) 
    command_buffer[5] = crc; 
    if( cmd==CMD8 || cmd==CMD58 ) { 
        return spi_transaction( command_buffer, response, 
R3_TEST_LENGTH+6, command_done_flag ); 
    } else { 
        return spi_transaction( command_buffer, response, 
R1_TEST_LENGTH+6, command_done_flag ); 
    } 
} 
 
// read R1 card response 
// returns R1 card response 
unsigned char readR1() { 
    if( command_state != 0x02 && command_state != 0x00 ) { 
        return 0xff; // return fail 
    } 
    unsigned char i=6; 
    for( i=6 ; i<R1_TEST_LENGTH+6 ; i++ ) { 
        if( ! (response[i] & 0x80) ) { 
            command_state = 0x00; 
            return response[i]; 
        } 
    } 
    command_state = 0x00; 
    return response[R1_TEST_LENGTH+6-1]; 
} 
 
// read R1 response after a CMD12 
// returns R1 card response 
unsigned char readR1_CMD12() { 
    if( command_state != 0x02 && command_state != 0x00 ) { 
        return 0xff; // return fail 
    } 
    unsigned char i=7; 
    // "The received byte immediately following CMD12 is a stuff byte. 
    // It should be discarded before receiving the response." 
    // -- elm-chan.org/docs/mmc/mmc_e.html 
    for( i=7 ; i<R1_TEST_LENGTH+6 ; i++ ) { 
        if( ! (response[i] & 0x80) ) { 
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            command_state = 0x00; 
            return response[i]; 
        } 
    } 
    command_state = 0x00; 
    return response[R1_TEST_LENGTH+6-1]; 
} 
 
 
// read R1 card response and check for data token 
// returns R1 card response and checks for data token 
// return_data_read_count will return 0 if data token is not found 
// 1 if data token only is found 
// 1 + <number of data tokens transferred to the data buffer> 
// -1 if data token is error token 
inline unsigned char readR1andDataToken( volatile unsigned char * 
page_buffer ) { 
    if( command_state != 0x02 && command_state != 0x00 ) { 
        return 0xff; // return fail 
    } 
    unsigned char resp = 0xFF; 
    bytes_read = 0; 
    unsigned char i=6, j=0; 
    // look for response 
    for( i=6 ; i<R1_TEST_LENGTH+6 ; i++ ) { 
        if( ! (response[i] & 0x80) ) { 
            resp = response[i]; 
            break; 
        } 
    } 
    // look for data token 
    for( i++ ; i<R1_TEST_LENGTH+6 ; i++ ) { 
        if( response[i] == 0xfe ) { // data token 
            bytes_read++; 
            break; 
        } else if( (response[i] & 0xe0 ) == 0 ) { // error token 
            bytes_read = -1; 
            command_state = 0x00; 
            return resp; 
        } else { 
            // busy 
        } 
    } 
    // copy data to buffer 
    for( i++ ; i<R1_TEST_LENGTH+6 ; i++ ) { 
        page_buffer[j] = response[i]; 
        j++; 
        bytes_read++; 
    } 
    command_state = 0x00; 
    return resp; 
} 
 
void readDataToken( volatile unsigned char * page_buffer ) { 
    bytes_read = 0; 
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    unsigned char i=0, j=0; 
    // look for data token 
    for( i=0 ; i<DATA_TOKEN_TEST_LENGTH ; i++ ) { 
        if( data_token_buffer[i] == 0xfe ) { // data token 
            bytes_read++; 
            data_token_buffer[i] = 0xff; 
            break; 
        } else if( (data_token_buffer[i] & 0xe0 ) == 0 ) { // error 
token 
            bytes_read = -1; 
            return; 
        } else { 
            // busy 
        } 
    } 
    // copy data to buffer 
    for( i++ ; i<DATA_TOKEN_TEST_LENGTH ; i++ ) { 
        page_buffer[j] = data_token_buffer[i]; 
        data_token_buffer[i] = 0xff; 
        j++; 
        bytes_read++; 
    } 
    return; 
} 
 
// returns R1 card response 
// response_flags returns R3/R7 flags 
unsigned char readR3( 
        volatile unsigned char * response_flags // 4 byte character 
array 
        ) { 
    if( command_state != 0x02 ) { 
        return 0xff; // return fail 
    } 
    unsigned char i=6; 
    for( i=6 ; i<R1_TEST_LENGTH+6 ; i++ ) { 
        if( ! (response[i] & 0x80) ) { 
            response_flags[0] = response[i+1u]; 
            response_flags[1] = response[i+2u]; 
            response_flags[2] = response[i+3u]; 
            response_flags[3] = response[i+4u]; 
            command_state = 0x00; 
            return response[i]; 
        } 
    } 
    command_state = 0x00; 
    return response[R1_TEST_LENGTH+6-1]; 
} 
 
// send command and return response (busy waits for response) 
// initialize timeout timer before calling 
// will not modify value of timeout_counter 
unsigned char commandAndResponse( 
        unsigned char cmd, // [in] command index 
        unsigned long arg, // [in] argument 
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        volatile const unsigned long * timeout, // [in/out] timeout 
variable (5 kHz or lower) 
        volatile unsigned char * R3_code // [out] R3 response (4 byte 
char array) 
        ) { 
    unsigned char trans_done = 0; 
    unsigned long timeout_copy = 0; 
    unsigned char tresponse = 0xff; 
    RETURN_TYPE spi_stat = RETURN_ERR; 
 
    if( cmd & 0x80 ) {  // ACMD 
        cmd &= 0x7F;    // bit 7 should not be set 
        tresponse = commandAndResponse( CMD55, 0, timeout, R3_code ); 
// ACMDn is CMD55-CMDn 
        if ( tresponse > 1 ) return tresponse; 
    } 
 
    if( cmd==CMD8 || cmd==CMD58 ) { 
        // send command 
        trans_done = 0; 
        timeout_copy = (*timeout); 
        spi_stat = sendCommand( cmd, arg, &trans_done ); 
        if( spi_stat != RETURN_OK ) { 
            return 0xff; 
        } 
        // 1/10 interrupts per byte * 20 bytes * 3 for overhead = 6 
        while( (trans_done==0) && (((*timeout)-timeout_copy)<=6) ); 
        if( ( (*timeout) - timeout_copy ) > 6 ) { 
            timeout_copy = (*timeout); 
            return 0xff; 
        } 
        // read response 
        return readR3( R3_code ); 
    } else { 
        // send command 
        trans_done = 0; 
        timeout_copy = (*timeout); 
        spi_stat = sendCommand( cmd, arg, &trans_done ); 
        if( spi_stat != RETURN_OK ) { 
            return 0xff; 
        } 
        // 1/10 interrupts per byte * 16 bytes * 3 for overhead = 5 
        while( (trans_done==0) && (((*timeout)-timeout_copy)<=5) ); 
        if( ( (*timeout) - timeout_copy ) > 5 ) { 
            timeout_copy = (*timeout); 
            return 0xff; 
        } 
        // read response 
        return readR1(); 
    } 
} 
 
inline SD_TYPE process_STOP_TRAN() { 
    if( cmd_flag ) { 
        if( SD_NOT_BUSY ) { 
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            return SD_CONTINUE; 
        } else { 
            return SD_BUSY_RETRY; 
        } 
    } else { 
        return SD_BUSY_RETRY; 
    } 
} 
 
inline SD_TYPE process_WRITE_SINGLE_BLOCK() { 
    if( cmd_flag ) { 
        if( SD_NOT_BUSY ) { 
            if( ( readDataResponse() & 0x1F ) == 0x05 ) { 
                return SD_CONTINUE; 
            } else { 
                process_state = IDLE; 
                return SD_ERR_RESTART; 
            } 
        } else { 
            return SD_BUSY_RETRY; 
        } 
    } else { 
        return SD_BUSY_RETRY; 
    } 
} 
 
inline SD_TYPE process_SEND_CMD12() { 
    if( cmd_flag ) { 
        if( SD_NOT_BUSY ) { 
            if( readR1_CMD12() == 0 ) { 
                return SD_CONTINUE; 
            } else { 
                return SD_ERR_SEND_STOP; 
            } 
        } else { 
            return SD_BUSY_RETRY; 
        } 
    } else { 
        return SD_BUSY_RETRY; 
    } 
} 
 
inline SD_TYPE process_READ_SINGLE_BLOCK( volatile unsigned char * 
page_buffer ) { 
    if( cmd_flag ) { 
        readDataToken( page_buffer ); 
        if( bytes_read < 0 ) { 
            process_state = IDLE; 
            return SD_ERR_RESTART; 
        } 
        if( bytes_read == 0 ) { 
            cmd_flag = 0; 
            if( ! requestDataToken( & cmd_flag ) ) { 
                return SD_BUSY_RETRY; 
            } else { 
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                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } 
        return SD_CONTINUE; 
    } else { 
        return SD_BUSY_RETRY; 
    } 
} 
 
inline SD_TYPE process_READ_MULTI_BLOCK( volatile unsigned char * 
page_buffer ) { 
    if( cmd_flag ) { 
        readDataToken( page_buffer ); 
        if( bytes_read < 0 ) { 
            process_state = IDLE; 
            return SD_ERR_RESTART; 
        } 
        if( bytes_read == 0 ) { 
            cmd_flag = 0; 
            if( ! requestDataToken( & cmd_flag ) ) { 
                return SD_BUSY_RETRY; 
            } else { 
                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } 
        return SD_CONTINUE; 
    } else { 
        return SD_BUSY_RETRY; 
    } 
} 
 
inline SD_TYPE process_READ_BLOCK_dumb() { 
    if( cmd_flag ) { 
        return SD_CONTINUE; 
    } else { 
        return SD_BUSY_RETRY; 
    } 
} 
 
inline SD_TYPE process_SEND_CMD25() { 
    if( cmd_flag ) { 
        if( readR1() == 0 ) { 
            return SD_CONTINUE; 
        } else { 
            process_state = IDLE; 
            return SD_ERR_RESTART; 
        } 
    } else { 
        return SD_BUSY_RETRY; 
    } 
} 
 
inline SD_TYPE process_WRITE_MULTI_BLOCK() { 
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    if( cmd_flag ) { 
        if( SD_NOT_BUSY ) { 
            if( ( readDataResponse() & 0x1F ) == 0x05 ) { 
                return SD_CONTINUE; 
            } else { 
                return SD_ERR_SEND_STOP; 
            } 
        } else { 
            return SD_BUSY_RETRY; 
        } 
    } else { 
        return SD_BUSY_RETRY; 
    } 
} 
 
inline SD_TYPE process_SEND_CMD24() { 
    if( cmd_flag ) { 
        if( readR1() == 0 ) { 
            return SD_CONTINUE; 
        } else { 
            process_state = IDLE; 
            return SD_ERR_RESTART; 
        } 
    } else { 
        return SD_BUSY_RETRY; 
    } 
} 
 
inline SD_TYPE process_SEND_CMD18_dumb() { 
    if( cmd_flag ) { 
        if( readR1() == 0 ) { 
            return SD_CONTINUE; 
        } else { 
            process_state = IDLE; 
            return SD_ERR_RESTART; 
        } 
    } else { 
        return SD_BUSY_RETRY; 
    } 
} 
 
inline SD_TYPE process_SEND_CMD18( volatile unsigned char * page_buffer 
) { 
    if( cmd_flag ) { 
        if( readR1andDataToken( page_buffer ) == 0 ) { 
            if( bytes_read < 0 ) { 
                process_state = IDLE; 
                return SD_ERR_RESTART; 
            } 
            if( bytes_read == 0 ) { 
                cmd_flag = 0; 
                if( ! requestDataToken( & cmd_flag ) ) { 
                    process_state = READ_MULTI_BLOCK; 
                    return SD_BUSY_RETRY; // even though the state 
transitions, return busy b/c the read is not started yet 
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                } else { 
                    cmd_flag = 1; 
                    return SD_ERR_RETRY; 
                } 
            } 
            return SD_CONTINUE; 
        } else { 
            process_state = IDLE; 
            return SD_ERR_RESTART; 
        } 
    } else { 
        return SD_BUSY_RETRY; 
    } 
} 
 
inline SD_TYPE process_SEND_CMD17( volatile unsigned char * page_buffer 
) { 
    if( cmd_flag ) { 
        if( readR1andDataToken( page_buffer ) == 0 ) { 
            if( bytes_read < 0 ) { 
                process_state = IDLE; 
                return SD_ERR_RESTART; 
            } 
            if( bytes_read == 0 ) { 
                cmd_flag = 0; 
                if( ! requestDataToken( & cmd_flag ) ) { 
                    process_state = READ_SINGLE_BLOCK; 
                    return SD_BUSY_RETRY; // even though the state 
transitions, return busy b/c the read is not started yet 
                } else { 
                    cmd_flag = 1; 
                    return SD_ERR_RETRY; 
                } 
            } 
            return SD_CONTINUE; 
        } else { 
            process_state = IDLE; 
            return SD_ERR_RESTART; 
        } 
    } else { 
        return SD_BUSY_RETRY; 
    } 
} 
 
inline SD_TYPE process_SEND_CMD17_dumb() { 
    if( cmd_flag ) { 
        if( readR1() == 0 ) { 
            return SD_CONTINUE; 
        } else { 
            process_state = IDLE; 
            return SD_ERR_RESTART; 
        } 
    } else { 
        return SD_BUSY_RETRY; 
    } 
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} 
 
//||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
// EXTERNAL FUNCTION DEFINITIONS 
//||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
 
/*! 
 * @brief Initializes SD card. 
 * 
 * @note completely resets SD card by power cycling before 
initializing. 
 * 
 * Commands valid after this command:   \n 
 * \b sd_startMultiBlockWrite()         \n 
 * \b sd_startSingleBlockWrite()        \n 
 * \b sd_startMultiBlockRead()          \n 
 * \b sd_startSingleBlockRead()         \n 
 * 
 * Commands valid before this command:  \n 
 * \b Any/None                              \n 
 * 
 * @return \ref RETURN_TYPE 
 * @retval RETURN_NEEDINTERRUPT General interrupts must be enabled. 
 * @retval RETURN_NOTFOUND  SD card not present. 
 * @retval RETURN_PERIPHERR SPI interface error. 
 * @retval RETURN_TIMEOUT   Device timed out. 
 * @retval RETURN_NOINIT    Device could not be initialized. 
 * @retval RETURN_OK        Device initialized successfully. 
 */ 
RETURN_TYPE sd_initialize( void ) { 
    unsigned char dummy[10] = // used for dummy clocks 
            { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 
0xff }; 
    RETURN_TYPE spi_stat = RETURN_ERR; 
    unsigned long calculated_timeout_freq = 0; 
    volatile unsigned long timeout_counter = 0; // timeout 
    unsigned char trans_done = 0; 
    //unsigned char r1_resp = 0xff; 
    volatile unsigned char r3_flags[4] = { 0xff, 0xff, 0xff, 0xff }; 
 
    // require interrupt 
    assert( (__get_SR_register() & GIE) ); 
 
    /// __Configuration details:__ 
 
    ///-# Initialize SPI pins to SD card. 
    init_pins(); 
 
    ///-# Configure chip select to SD card. 
    CS_INIT(); 
    CS_DESELECT; 
 
    ///-# Detect card. 
    if( ! CARD_DETECT ) { 
        return RETURN_NOTFOUND; 
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    } 
 
    ///-# Initialize SPI to 400 kHz for SD initialization. 
    spi_initialize( SD_INIT_FREQ ); 
 
    ///-# Initialize timeout clock for 5 kHz (200 us) 
    calculated_timeout_freq = timeout_initialize( CLK_SRC_SMCLK, 5000 
); 
    if( calculated_timeout_freq != 5000 ) { 
        return RETURN_PERIPHERR; 
    } 
    ///-# Start timeout clock 
    timeout_counter = 0; 
    if( timeout_start( (unsigned long *) &timeout_counter ) ) { 
        return RETURN_PERIPHERR; 
    } 
 
    ///-# Power cycle SD to achieve known reset state. @note This is 
important. 
    /// @todo This goes in memory.c later??? 
    timeout_counter = 0; 
    SD_ONOFF_INIT(); 
    while( timeout_counter < 1250 ); // 1250 = wait 250 ms for SD to 
fully power off 
    timeout_counter = 0; 
    SD_ON; 
    while( timeout_counter < 1250 ); // 1250 = wait 250 ms for SD to 
reach stable voltage 
 
    ///-# Send 74 or more dummy clocks (send 80) with CS high 
(deselected) 
    CS_DESELECT; 
    trans_done = 0; 
    timeout_counter = 0; 
    spi_stat = spi_transaction( (volatile unsigned char *) 
page_request_buffer, dummy, 10, &trans_done ); 
    if( spi_stat != RETURN_OK ) { 
        timeout_stop(); 
        return RETURN_PERIPHERR; 
    } 
    // 1/10 interrupts per byte * 10 bytes * 3 for overhead = 3 
    while( (trans_done==0) && (timeout_counter<=4) ); 
    if( timeout_counter > 4 ) { 
        timeout_stop(); 
        return RETURN_TIMEOUT; 
    } 
 
    ///-# Issue CMD0 with CS low (selected) 
    CS_SELECT; 
    if( commandAndResponse( CMD0, 0, (unsigned long *) 
&timeout_counter, r3_flags ) == 1 ) { 
        timeout_counter = 0; // reset timeout to 0 (12500 is 1 sec) 
        ///-# Issue CMD8 to check voltage range 
        if( commandAndResponse( CMD8, 0x000001AA, 
                (unsigned long *) &timeout_counter, 
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                r3_flags ) == 1 ) { // SDv2? 
            if( (r3_flags[2] == 0x01) && (r3_flags[3] == 0xaa) ) { // 
SDv2 & card works at Vdd 2.7-3.6V 
                ///-# Issue ACMD41 waiting for idle 
                while( (timeout_counter<15000) && 
                        commandAndResponse( ACMD41, 1UL << 30, 
                                (unsigned long *) &timeout_counter, 
                                r3_flags ) ); // wait for idle w/ 
ACMD41 
                ///-# Read OCR, check CCS bit (indicates SDHC/SDXC 
card) 
                if( (timeout_counter<15000) && 
                        (commandAndResponse( CMD58, 0, 
                                (unsigned long *) &timeout_counter, 
                                r3_flags )==0) ) { // Req card OCR 
register 
                    sd_block_addressing = (r3_flags[0] & 0x40) ? (true) 
: (false); // CCS bit in OCR -> SDHC 
                    ///-# Re-init SPI at max SD frequency 
                    spi_initialize( SD_MAX_FREQ ); 
                    if( spi_stat ) { 
                        timeout_stop(); 
                        CS_DESELECT; 
                        return RETURN_PERIPHERR; 
                    } else { 
                        ///-# Stop timeout timer 
                        timeout_stop(); 
                        CS_DESELECT; 
                        process_state = IDLE; 
                        return RETURN_OK; 
                    } 
                } 
            } 
        } 
    } 
    // if it's not version 2+, we can give up, version 1 doesn't have 
enough storage space 
    timeout_stop(); 
    CS_DESELECT; 
    return RETURN_NOINIT; 
} 
 
/*! 
 * @brief Start a multi-block write process. 
 * 
 * Commands valid after this command:   \n 
 * \b sd_writeBlockBuffer(...)          \n 
 * \b sd_stopMultiBlockWrite()          \n 
 * 
 * Commands valid before this command:  \n 
 * \b sd_initialize()                   \n 
 * \b sd_stopMultiBlockWrite()          \n 
 * \b sd_writeBlockBuffer() when preceded by sd_startSingleBlockWrite() 
\n 
 * \b sd_stopMultiBlockRead()           \n 
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 * \b sd_readBlock() when preceded by sd_startSingleBlockRead() \n 
 * 
 * If the next command responds with SD_ERR_RESTART, 
sd_startMultiBlockWrite(...) should 
 * be re-issued. 
 * 
 * @param [in]  block_start Block number defining start location in 
memory. 
 * Writes to contiguous blocks. 
 * 
 * @return \ref SD_TYPE 
 * @retval SD_CONTINUE          Command was issued successfully. System 
is ready for 
 *                              blocks to be sent or for a stop multi-
block write command. 
 * @retval SD_ERR_RETRY         There was an error issuing the command. 
Retry. If error 
 *                              persists, there may be a critical 
error. 
 * @retval SD_INVALID_CMD       The command is not valid at this time. 
 * @retval SD_BUSY_RETRY        The card is busy. Please retry the 
command. If card continues 
 *                              to be busy for a very long period of 
time (>1s), a greater 
 *                              problem may exist. 
 * @retval SD_CONTINUE_WITH_ERR The command was issued successfully; 
however, there was a 
 *                              problem with the previous process or 
command. 
 *                              Specifically, if a single block was 
written or read most 
 *                              recently, this indicates that the block 
was not read or 
 *                              written successfully. 
 * @retval SD_ERR_SEND_STOP     There was an error with stopping the 
multi-block read process. 
 *                              Re-issue the sd_stopMultiBlockRead() 
command. 
 * @retval SD_ERR               Unknown error. Indicates a critical 
error. 
 */ 
SD_TYPE sd_startMultiBlockWrite( unsigned long block_start ) { 
    SD_TYPE ret = SD_ERR; 
    switch( process_state ) { 
    case IDLE: 
        cmd_flag = 0; 
        if( ! sendCommand( CMD25, block_start, &cmd_flag ) ) { 
            process_state = SEND_CMD25; 
            return SD_CONTINUE; 
        } else { 
            cmd_flag = 1; 
            return SD_ERR_RETRY; 
        } 
    case SEND_CMD25: 
        return SD_INVALID_CMD; 
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    case WRITE_MULTI_BLOCK: 
        return SD_INVALID_CMD; 
    case STOP_TRAN: 
        ret = process_STOP_TRAN(); 
        if( ret == SD_BUSY_RETRY ) { 
            return SD_BUSY_RETRY; 
        } else if( ret == SD_CONTINUE ) { 
            cmd_flag = 0; 
            if( ! sendCommand( CMD25, block_start, &cmd_flag ) ) { 
                process_state = SEND_CMD25; 
                return SD_CONTINUE; 
            } else { 
                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } 
        return SD_ERR; 
    case SEND_CMD24: 
        return SD_INVALID_CMD; 
    case WRITE_SINGLE_BLOCK: 
        ret = process_WRITE_SINGLE_BLOCK(); 
        if( ret == SD_BUSY_RETRY ) { 
            return SD_BUSY_RETRY; 
        } else if( ret == SD_CONTINUE ) { 
            cmd_flag = 0; 
            if( ! sendCommand( CMD25, block_start, &cmd_flag ) ) { 
                process_state = SEND_CMD25; 
                return SD_CONTINUE; 
            } else { 
                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } else if( ret == SD_ERR_RESTART ) { 
            cmd_flag = 0; 
            if( ! sendCommand( CMD25, block_start, &cmd_flag ) ) { 
                process_state = SEND_CMD25; 
                return SD_CONTINUE_WITH_ERR; 
            } else { 
                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } 
        return SD_ERR; 
    case SEND_CMD18: 
        return SD_INVALID_CMD; 
    case READ_MULTI_BLOCK: 
        return SD_INVALID_CMD; 
    case SEND_CMD12: 
        ret = process_SEND_CMD12(); 
        if( ret == SD_BUSY_RETRY ) { 
            return SD_BUSY_RETRY; 
        } else if( ret == SD_CONTINUE ) { 
            cmd_flag = 0; 
            if( ! sendCommand( CMD25, block_start, &cmd_flag ) ) { 
                process_state = SEND_CMD25; 
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                return SD_CONTINUE; 
            } else { 
                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } else if( ret == SD_ERR_SEND_STOP ) { 
            return SD_ERR_SEND_STOP; 
        } 
        return SD_ERR; 
    case SEND_CMD17: 
        return SD_INVALID_CMD; 
    case READ_SINGLE_BLOCK: 
        return SD_INVALID_CMD; 
//      ret = process_READ_SINGLE_BLOCK(); 
//      if( ret == SD_BUSY_RETRY ) { 
//          return SD_BUSY_RETRY; 
//      } else if( ret == SD_CONTINUE ) { 
//          cmd_flag = 0; 
//          if( ! sendCommand( CMD25, block_start, &cmd_flag ) ) { 
//              process_state = SEND_CMD25; 
//              return SD_CONTINUE; 
//          } else { 
//              cmd_flag = 1; 
//              return SD_ERR_RETRY; 
//          } 
//      } else if( ret == SD_ERR_RESTART ) { 
//          cmd_flag = 0; 
//          if( ! sendCommand( CMD25, block_start, &cmd_flag ) ) { 
//              process_state = SEND_CMD25; 
//              return SD_CONTINUE_WITH_ERR; 
//          } else { 
//              cmd_flag = 1; 
//              return SD_ERR_RETRY; 
//          } 
//      } 
//      return SD_ERR; 
    default: 
        _never_executed(); 
    } 
    return SD_ERR; 
} 
 
/*! 
 * @brief Send a block to the SD card from the buffer during a multi-
block or single-block write process. 
 * 
 * Commands valid after this command:   \n 
 * \b sd_writeBlockBuffer() when preceded by sd_startMultiBlockWrite() 
and any number of sd_writeBlockBuffer() commands \n 
 * \b sd_stopMultiBlockWrite() when preceded by 
sd_startMultiBlockWrite() and any number of sd_writeBlockBuffer() 
commands  \n 
 * \b sd_startMultiBlockWrite() when preceded by 
sd_startSingleBlockWrite() \n 
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 * \b sd_startSingleBlockWrite() when preceded by 
sd_startSingleBlockWrite()    \n 
 * \b sd_startMultiBlockRead() when preceded by 
sd_startSingleBlockWrite()  \n 
 * \b sd_startSingleBLockRead() when preceded by 
sd_startSingleBlockWrite() \n 
 * 
 * Commands valid before this command:  \n 
 * \b sd_writeBlockBuffer() when preceded by sd_startMultiBlockWrite() 
and any number of sd_writeBlockBuffer() commands \n 
 * \b sd_startMultiBlockWrite()         \n 
 * \b sd_startSingleBlockWrite()        \n 
 * 
 * @param [in] block_buffer Buffer containing data to be sent. 
 * @note Should be 517 bytes in length. \n 
 * Byte  0 is reserved.                 \n 
 * Bytes 1-512 are data.                \n 
 * Bytes 513-516 are reserved.          \n 
 * 
 * @return \ref SD_TYPE 
 * @retval SD_CONTINUE          Command was issued successfully. System 
is ready for more 
 *                              blocks to be sent or for a stop multi-
block write command. 
 * @retval SD_ERR_RETRY         There was an error issuing the command. 
Retry. If error 
 *                              persists, there may be a critical 
error. 
 * @retval SD_INVALID_CMD       The command is not valid at this time. 
 * @retval SD_BUSY_RETRY        The card is busy. Please retry the 
command. If card continues 
 *                              to be busy for a very long period of 
time (>1s), a greater 
 *                              problem may exist. 
 * @retval SD_ERR_RESTART       There was an error with the previous 
command. Re-send 
 *                              sd_startMultiBlockWrite() or 
sd_startSingleBlockWrite(). 
 * @retval SD_ERR_SEND_STOP     There was an error with the previous 
sd_writeBlockBuffer() 
 *                              command. The last data block was not 
written successfully. 
 *                              Send sd_stopMultiBlockWrite() before 
any other actions. 
 * @retval SD_ERR               Unknown error. Indicates a critical 
error. 
 */ 
SD_TYPE sd_writeBlockBuffer( volatile unsigned char * block_buffer ) { 
    SD_TYPE ret = SD_ERR; 
    switch( process_state ) { 
    case IDLE: 
        return SD_INVALID_CMD; 
    case SEND_CMD25: 
        ret = process_SEND_CMD25(); 
        if( ret == SD_BUSY_RETRY ) { 
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            return SD_BUSY_RETRY; 
        } else if( ret == SD_CONTINUE ) { 
            cmd_flag = 0; 
            if( ! sendPageBufferMulti( block_buffer, &cmd_flag ) ) { 
                process_state = WRITE_MULTI_BLOCK; 
                _nop(); 
                return SD_CONTINUE; 
            } 
            else { 
                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } else if( ret == SD_ERR_RESTART ) { 
            //process_state = IDLE; 
            return SD_ERR_RESTART; 
        } 
        return SD_ERR; 
    case WRITE_MULTI_BLOCK: 
        ret = process_WRITE_MULTI_BLOCK(); 
        if( ret == SD_BUSY_RETRY ) { 
            return SD_BUSY_RETRY; 
        } else if( ret == SD_CONTINUE ) { 
            cmd_flag = 0; 
            if( ! sendPageBufferMulti( block_buffer, &cmd_flag ) ) { 
                //process_state = WRITE_MULTI_BLOCK; 
                return SD_CONTINUE; 
            } 
            else { 
                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } else if( ret == SD_ERR_SEND_STOP ) { 
            return SD_ERR_SEND_STOP; 
        } 
        return SD_ERR; 
    case STOP_TRAN: 
        return SD_INVALID_CMD; 
    case SEND_CMD24: 
        ret = process_SEND_CMD24(); 
        if( ret == SD_BUSY_RETRY ) { 
            return SD_BUSY_RETRY; 
        } else if( ret == SD_CONTINUE ) { 
            cmd_flag = 0; 
            if( ! sendPageBufferMulti( block_buffer, &cmd_flag ) ) { 
                process_state = WRITE_SINGLE_BLOCK; 
                return SD_CONTINUE; 
            } 
            else { 
                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } else if( ret == SD_ERR_RESTART ) { 
            //process_state = IDLE; 
            return SD_ERR_RESTART; 
        } 
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        return SD_ERR; 
    case WRITE_SINGLE_BLOCK: 
        return SD_INVALID_CMD; 
    case SEND_CMD18: 
        return SD_INVALID_CMD; 
    case READ_MULTI_BLOCK: 
        return SD_INVALID_CMD; 
    case SEND_CMD12: 
        return SD_INVALID_CMD; 
    case SEND_CMD17: 
        return SD_INVALID_CMD; 
    case READ_SINGLE_BLOCK: 
        return SD_INVALID_CMD; 
    default: 
        _never_executed(); 
    } 
    return SD_ERR; 
} 
 
/*! 
 * @brief Stop multi-block write process. 
 * 
 * Commands valid after this command:   \n 
 * \b sd_startMultiBlockWrite()         \n 
 * \b sd_startSingleBlockWrite()        \n 
 * \b sd_startMultiBlockRead()          \n 
 * \b sd_startSingleBlockRead()         \n 
 * 
 * Commands valid before this command:  \n 
 * \b sd_startMultiBlockWrite()         \n 
 * \b sd_writeBlockBuffer() when preceded by sd_startMultiBlockWrite() 
and any number of sd_writeBlockBuffer() commands \n 
 * 
 * @return \ref SD_TYPE 
 * @retval SD_CONTINUE          Command was issued successfully. System 
is ready for a 
 *                              new process. 
 * @retval SD_ERR_RETRY         There was an error issuing the command. 
Retry. If error 
 *                              persists, there may be a critical 
error. 
 * @retval SD_INVALID_CMD       The command is not valid at this time. 
 * @retval SD_BUSY_RETRY        The card is busy. Please retry the 
command. If card continues 
 *                              to be busy for a very long period of 
time (>1s), a greater 
 *                              problem may exist. 
 * @retval SD_CONTINUE_WITH_ERR The command was issued successfully; 
however, there was a 
 *                              problem with the previous command. The 
last data block was 
 *                              not written successfully. 
 * @retval SD_ERR               Unknown error. Indicates a critical 
error. 
 */ 
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SD_TYPE sd_stopMultiBlockWrite( void ) { 
    SD_TYPE ret = SD_ERR; 
    switch( process_state ) { 
    case IDLE: 
        return SD_INVALID_CMD; 
    case SEND_CMD25: 
        ret = process_SEND_CMD25(); 
        if( ret == SD_BUSY_RETRY ) { 
            return SD_BUSY_RETRY; 
        } else if( ret == SD_CONTINUE ) { 
            cmd_flag = 0; 
            if( ! sendStopTran( &cmd_flag ) ) { 
                process_state = STOP_TRAN; 
                return SD_CONTINUE; 
            } else { 
                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } else if( ret == SD_ERR_RESTART ) { 
            //process_state = IDLE; 
            return SD_ERR_RESTART; 
        } 
    case WRITE_MULTI_BLOCK: 
        ret = process_WRITE_MULTI_BLOCK(); 
        if( ret == SD_BUSY_RETRY ) { 
            return SD_BUSY_RETRY; 
        } else if( ret == SD_CONTINUE ) { 
            cmd_flag = 0; 
            if( ! sendStopTran( &cmd_flag ) ) { 
                process_state = STOP_TRAN; 
                return SD_CONTINUE; 
            } else { 
                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } else if( ret == SD_ERR_SEND_STOP ) { 
            cmd_flag = 0; 
            if( ! sendStopTran( &cmd_flag ) ) { 
                process_state = STOP_TRAN; 
                return SD_CONTINUE_WITH_ERR; 
            } else { 
                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } 
        return SD_ERR; 
    case STOP_TRAN: 
        return SD_INVALID_CMD; 
    case SEND_CMD24: 
        return SD_INVALID_CMD; 
    case WRITE_SINGLE_BLOCK: 
        return SD_INVALID_CMD; 
    case SEND_CMD18: 
        return SD_INVALID_CMD; 
    case READ_MULTI_BLOCK: 
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        return SD_INVALID_CMD; 
    case SEND_CMD12: 
        return SD_INVALID_CMD; 
    case SEND_CMD17: 
        return SD_INVALID_CMD; 
    case READ_SINGLE_BLOCK: 
        return SD_INVALID_CMD; 
    default: 
        _never_executed(); 
    } 
    return SD_ERR; 
} 
 
/*! 
 * @brief Checks for SD process errors. 
 * @return \ref SD_TYPE 
 * @retval SD_CONINTUE      No errors. 
 * @retval SD_BUSY_RETRY    Card is busy. 
 * @retval SD_ERR_RESTART   There was an error with the previous 
command. 
 *                          Re-start the read/write process. 
 * @retval SD_ERR_SEND_STOP There was an error with the previous 
command. 
 *                          Send the appropriate stop process command, 
then retry. 
 * @retval SD_ERR           Unknown error. Indicates a critical error. 
 */ 
SD_TYPE sd_checkErrors( void ) { 
        switch( process_state ) { 
        case IDLE: 
            return SD_CONTINUE; 
        case SEND_CMD25: 
            return process_SEND_CMD25(); 
        case WRITE_MULTI_BLOCK: 
            return process_WRITE_MULTI_BLOCK(); 
        case STOP_TRAN: 
            return process_STOP_TRAN(); 
        case SEND_CMD24: 
            return process_SEND_CMD24(); 
        case WRITE_SINGLE_BLOCK: 
            return process_WRITE_SINGLE_BLOCK(); 
        case SEND_CMD18: 
            return process_SEND_CMD18_dumb(); 
        case READ_MULTI_BLOCK: 
            return process_READ_BLOCK_dumb(); 
        case SEND_CMD12: 
            return process_SEND_CMD12(); 
        case SEND_CMD17: 
            return process_SEND_CMD17_dumb(); 
        case READ_SINGLE_BLOCK: 
            return process_READ_BLOCK_dumb(); 
        default: 
            _never_executed(); 
        } 
        return SD_ERR; 
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} 
 
/*! 
 * @brief Starts a multi-block read process. 
 * 
 * Commands valid after this command:   \n 
 * \b sd_readBlock()                    \n 
 * \b sd_stopMultiBlockRead()           \n 
 * 
 * Commands valid before this command:  \n 
 * \b sd_initialize()                   \n 
 * \b sd_stopMultiBlockWrite()          \n 
 * \b sd_stopMultiBlockRead()           \n 
 * \b sd_writeBlockBuffer() when preceded by sd_startSingleBlockWrite() 
\n 
 * \b sd_readBlockBuffer() when preceded by sd_startSingleBlockRead()   
\n 
 * 
 * @param [in] block_start  The first block to read. Reads contiguous 
blocks. 
 * 
 * @return \ref SD_TYPE 
 * @retval SD_CONTINUE              Command was issued successfully. 
System is ready for 
 *                                  blocks to be read or for a stop 
multi-block write command. 
 * @retval SD_BUSY_RETRY            The card is busy. Please retry the 
command. If the card 
 *                                  continues to be busy for a very 
long time (>1s), a greater 
 *                                  problem may exist. 
 * @retval SD_ERR_RETRY             There was an error issuing the 
command. Retry. If error 
 *                                  persists, there may be a critical 
error. 
 * @retval SD_INVALID_CMD           The command is not valid at this 
time. 
 * @retval SD_CONTINUE_WITH_ERR     The command was issued 
successfully; however, there was a 
 *                                  problem with the previous process 
or command. Specifically, 
 *                                  if a single block was written or 
read most recently, this 
 *                                  indicates that the block was not 
read or written successfully. 
 * @retval SD_ERR_SEND_STOP         There was a problem stopping the 
multi-block read process. 
 *                                  Re-issue the 
sd_stopMultiBlockRead() command. 
 * @retval SD_ERR                   Unknown error. Indicates a critical 
error. 
 */ 
SD_TYPE sd_startMultiBlockRead( unsigned long block_start ) { 
    SD_TYPE ret = SD_ERR; 
    switch( process_state ) { 
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    case IDLE: 
        cmd_flag = 0; 
        if( ! sendCommand( CMD18, block_start, &cmd_flag ) ) { 
            process_state = SEND_CMD18; 
            return SD_CONTINUE; 
        } else { 
            cmd_flag = 1; 
            return SD_ERR_RETRY; 
        } 
        // return SD_ERR; 
    case SEND_CMD25: 
        return SD_INVALID_CMD; 
    case WRITE_MULTI_BLOCK: 
        return SD_INVALID_CMD; 
    case STOP_TRAN: 
        ret = process_STOP_TRAN(); 
        if( ret == SD_BUSY_RETRY ) { 
            return SD_BUSY_RETRY; 
        } else if( ret == SD_CONTINUE ) { 
            cmd_flag = 0; 
            if( ! sendCommand( CMD18, block_start, &cmd_flag ) ) { 
                process_state = SEND_CMD18; 
                return SD_CONTINUE; 
            } else { 
                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } 
        return SD_ERR; 
    case SEND_CMD24: 
        return SD_INVALID_CMD; 
    case WRITE_SINGLE_BLOCK: 
        ret = process_WRITE_SINGLE_BLOCK(); 
        if( ret == SD_BUSY_RETRY ) { 
            return SD_BUSY_RETRY; 
        } else if( ret == SD_CONTINUE ) { 
            cmd_flag = 0; 
            if( ! sendCommand( CMD18, block_start, &cmd_flag ) ) { 
                process_state = SEND_CMD18; 
                return SD_CONTINUE; 
            } else { 
                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } else if( ret == SD_ERR_RESTART ) { 
            cmd_flag = 0; 
            if( ! sendCommand( CMD18, block_start, &cmd_flag ) ) { 
                process_state = SEND_CMD18; 
                return SD_CONTINUE_WITH_ERR; 
            } else { 
                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } 
        return SD_ERR; 
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    case SEND_CMD18: 
        return SD_INVALID_CMD; 
    case READ_MULTI_BLOCK: 
        return SD_INVALID_CMD; 
    case SEND_CMD12: 
        ret = process_SEND_CMD12(); 
        if( ret == SD_BUSY_RETRY ){ 
            return SD_BUSY_RETRY; 
        } else if( ret == SD_CONTINUE ) { 
            cmd_flag = 0; 
            if( ! sendCommand( CMD18, block_start, &cmd_flag ) ) { 
                process_state = SEND_CMD18; 
                return SD_CONTINUE; 
            } else { 
                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } else if( ret == SD_ERR_SEND_STOP ) { 
            return SD_ERR_SEND_STOP; 
        } 
        return SD_ERR; 
    case SEND_CMD17: 
        return SD_INVALID_CMD; 
    case READ_SINGLE_BLOCK: 
        return SD_INVALID_CMD; 
//      ret = process_READ_SINGLE_BLOCK(); 
//      if( ret == SD_BUSY_RETRY ) { 
//          return SD_BUSY_RETRY; 
//      } else if( ret == SD_CONTINUE ) { 
//          cmd_flag = 0; 
//          if( ! sendCommand( CMD18, block_start, &cmd_flag ) ) { 
//              process_state = SEND_CMD18; 
//              return SD_CONTINUE; 
//          } else { 
//              cmd_flag = 1; 
//              return SD_ERR_RETRY; 
//          } 
//      } else if( ret == SD_ERR_RESTART ) { 
//          cmd_flag = 0; 
//          if( ! sendCommand( CMD18, block_start, &cmd_flag ) ) { 
//              process_state = SEND_CMD18; 
//              return SD_CONTINUE_WITH_ERR; 
//          } else { 
//              cmd_flag = 1; 
//              return SD_ERR_RETRY; 
//          } 
//      } 
//      return SD_ERR; 
    default: 
        _never_executed(); 
    } 
    return SD_ERR; 
} 
 
/*! 
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 * @brief Read a block from the SD card to the buffer during a multi-
block or single-block read process. 
 * 
 * Commands valid after this command:   \n 
 * \b sd_readBlock() when preceded by sd_startMultiBlockRead() and any 
number of sd_readBlock() commands    \n 
 * \b sd_stopMultiBlockRead() when preceded by sd_startMultiBlockRead() 
and any number of sd_readBlock() commands   \n 
 * \b sd_startMultiBlockRead() when preceded by 
sd_startSingleBlockRead()   \n 
 * \b sd_startSingleBLockRead() when preceded by 
sd_startSingleBlockRead()  \n 
 * \b sd_startMultiBlockWrite() when preceded by 
sd_startSingleBlockRead()  \n 
 * \b sd_startSingleBlockWrite() when preceded by 
sd_startSingleBlockRead() \n 
 * 
 * Commands valid before this command:  \n 
 * \b sd_readBlock() 
 * @note ONLY when preceded by sd_startMultiBlockRead() and any number 
of sd_readBlock() commands   \n 
 * \b sd_startMultiBlockRead()          \n 
 * \b sd_startSingleBlockRead()         \n 
 * 
 * @param [in] block_buffer Buffer into which SD read data will be 
deposited. 
 * @note Should be 515 bytes in length. \n 
 * Bytes 0-511 are data.                \n 
 * Bytes 512-514 are reserved.          \n 
 * 
 * @return \ref SD_TYPE 
 * @retval SD_CONTINUE          Command was issued successfully. System 
is ready for more 
 *                              blocks to be sent or for a stop multi-
block write command. 
 * @retval SD_BUSY_RETRY        The card is busy. Please retry the 
command. If card continues 
 *                              to be busy for a very long period of 
time (>1s), a greater 
 *                              problem may exist. 
 * @retval SD_ERR_RETRY         There was an error issuing the command. 
Retry. If error 
 *                              persists, there may be a critical 
error. 
 * @retval SD_INVALID_CMD       The command is not valid at this time. 
 * @retval SD_ERR_RESTART       There was an error with the previous 
command. Re-issue 
 *                              sd_startMultiBlockRead() or 
sd_startSingleBlockRead(). 
 * @retval SD_ERR_SEND_STOP     There was an error with the previous 
sd_readBlock() 
 *                              command. The last data block was not 
read successfully. 
 *                              Send sd_stopMultiBlockRead() before any 
other actions. 
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 * @retval SD_ERR               Unknown error. Indicates a critical 
error. 
 */ 
SD_TYPE sd_readBlock( volatile unsigned char * block_buffer ) { 
    SD_TYPE ret = SD_ERR; 
    switch( process_state ) { 
    case IDLE: 
        return SD_INVALID_CMD; 
    case SEND_CMD25: 
        return SD_INVALID_CMD; 
    case WRITE_MULTI_BLOCK: 
        return SD_INVALID_CMD; 
    case STOP_TRAN: 
        return SD_INVALID_CMD; 
    case SEND_CMD24: 
        return SD_INVALID_CMD; 
    case WRITE_SINGLE_BLOCK: 
        return SD_INVALID_CMD; 
    case SEND_CMD18: 
        ret = process_SEND_CMD18( block_buffer ); 
        if( ret == SD_BUSY_RETRY ) { 
            return SD_BUSY_RETRY; 
        } else if( ret == SD_CONTINUE ) { 
            cmd_flag = 0; 
            if( ! receivePage( & block_buffer[bytes_read-1], 
                    &cmd_flag, 515-bytes_read+1 ) ) { 
                process_state = READ_MULTI_BLOCK; 
                return SD_CONTINUE; 
            } 
            else { 
                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } else if( ret == SD_ERR_RESTART ) { 
            //process_state = IDLE; 
            return SD_ERR_RESTART; 
        } 
        return SD_ERR; 
    case READ_MULTI_BLOCK: 
        ret = process_READ_MULTI_BLOCK( block_buffer ); 
        if( ret == SD_BUSY_RETRY ) { 
            return SD_BUSY_RETRY; 
        } else if( ret == SD_CONTINUE ) { 
            cmd_flag = 0; 
            if( ! receivePage( & block_buffer[bytes_read-1], 
                    &cmd_flag, 515-bytes_read+1 ) ) { 
                // process_state = READ_MULTI_BLOCK; 
                return SD_CONTINUE; 
            } 
            else { 
                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } else if( ret == SD_ERR_RESTART ) { 
            //process_state = IDLE; 
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            return SD_ERR_RESTART; 
        } 
        return SD_ERR; 
    case SEND_CMD12: 
        return SD_INVALID_CMD; 
    case SEND_CMD17: 
        ret = process_SEND_CMD17( block_buffer ); 
        if( ret == SD_BUSY_RETRY ) { 
            return SD_BUSY_RETRY; 
        } else if( ret == SD_CONTINUE ) { 
            cmd_flag = 0; 
            if( ! receivePage( & block_buffer[bytes_read-1], 
                    &cmd_flag, 515-bytes_read+1 ) ) { 
                process_state = READ_SINGLE_BLOCK; 
                return SD_CONTINUE; 
            } else { 
                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } else if( ret == SD_ERR_RESTART ) { 
            //process_state = IDLE; 
            return SD_ERR_RESTART; 
        } 
        return SD_ERR; 
    case READ_SINGLE_BLOCK: 
        return SD_INVALID_CMD; 
    default: 
        _never_executed(); 
    } 
    return SD_ERR; 
} 
 
/*! 
 * @brief Stops a multi-block read process. 
 * 
 * Commands valid after this command:   \n 
 * \b sd_startMultiBlockRead()          \n 
 * \b sd_startSingleBLockRead()         \n 
 * \b sd_startMultiBlockWrite()         \n 
 * \b sd_startSingleBlockWrite()        \n 
 * 
 * Commands valid before this command:  \n 
 * \b sd_readBlock() 
 * @note ONLY when preceded by sd_startMultiBlockRead() and any number 
of sd_readBlock() commands   \n 
 * \b sd_startMultiBlockRead()          \n 
 * 
 * @return \ref SD_TYPE 
 * @retval SD_CONTINUE          Command was issued successfully. System 
is ready for more 
 *                              blocks to be sent or for a stop multi-
block write command. 
 * @retval SD_BUSY_RETRY        The card is busy. Please retry the 
command. If card continues 
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 *                              to be busy for a very long period of 
time (>1s), a greater 
 *                              problem may exist. 
 * @retval SD_ERR_RETRY         There was an error issuing the command. 
Retry. If error 
 *                              persists, there may be a critical 
error. 
 * @retval SD_INVALID_CMD       The command is not valid at this time. 
 * @retval SD_CONTINUE_WITH_ERR The command was issued successfully; 
however, there was a 
 *                              problem with the previous process or 
command. The last data 
 *                              block was not read successfully. 
 * @retval SD_ERR_RESTART       There was an error with the previous 
command. Re-issue 
 *                              sd_startMultiBlockRead(). 
 * @retval SD_ERR               Unknown error. Indicates a critical 
error. 
 */ 
SD_TYPE sd_stopMultiBlockRead() { 
    SD_TYPE ret = SD_ERR; 
    switch( process_state ) { 
    case IDLE: 
        return SD_INVALID_CMD; 
    case SEND_CMD25: 
        return SD_INVALID_CMD; 
    case WRITE_MULTI_BLOCK: 
        return SD_INVALID_CMD; 
    case STOP_TRAN: 
        return SD_INVALID_CMD; 
    case SEND_CMD24: 
        return SD_INVALID_CMD; 
    case WRITE_SINGLE_BLOCK: 
        return SD_INVALID_CMD; 
    case SEND_CMD18: 
        ret = process_SEND_CMD18_dumb(); 
        if( ret == SD_BUSY_RETRY ) { 
            return SD_BUSY_RETRY; 
        } else if( ret == SD_CONTINUE ) { 
            cmd_flag = 0; 
            if( ! sendCommand( CMD12, 0, &cmd_flag ) ) { 
                process_state = SEND_CMD12; 
                return SD_CONTINUE; 
            } else { 
                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } else if( ret == SD_ERR_RESTART ) { 
            //process_state = IDLE; 
            return SD_ERR_RESTART; 
        } 
        return SD_ERR; 
    case READ_MULTI_BLOCK: 
        ret = process_READ_BLOCK_dumb(); 
        if( ret == SD_BUSY_RETRY ) { 



74 

            return SD_BUSY_RETRY; 
        } else if( ret == SD_CONTINUE ) { 
            cmd_flag = 0; 
            if( ! sendCommand( CMD12, 0, &cmd_flag ) ) { 
                process_state = SEND_CMD12; 
                return SD_CONTINUE; 
            } else { 
                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } else if( ret == SD_ERR_SEND_STOP ) { 
            cmd_flag = 0; 
            if( ! sendCommand( CMD12, 0, &cmd_flag ) ) { 
                process_state = SEND_CMD12; 
                return SD_CONTINUE_WITH_ERR; 
            } else { 
                cmd_flag = 1; 
                return SD_ERR_RETRY; 
            } 
        } 
        return SD_ERR; 
    case SEND_CMD12: 
        return SD_INVALID_CMD; 
    case SEND_CMD17: 
        return SD_INVALID_CMD; 
    case READ_SINGLE_BLOCK: 
        return SD_INVALID_CMD; 
    default: 
        _never_executed(); 
    } 
    return SD_ERR; 
} 
 
//||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
// MEMORY READ/WRITE SPEED TEST FUNCTIONS 
//||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
 
/*! 
 * @brief Perform a sustained read test on the memory. 
 * 
 * Use after SD initialization function. 
 * 
 * @warning This is to be used for testing only and should not be used 
in release code. 
 * 
 * @warning This test may overwrite any data on the memory device. 
 * 
 * @return \ref RETURN_TYPE 
 */ 
RETURN_TYPE memory_sustainedReadTest( unsigned char file16_offset ) { 
    unsigned long block = 
            MEMORY_STARTING_PAGE + file16_offset * ( (unsigned long) 
32768 ); 
    unsigned long block_end = block + 65536; // <- 32 MB 
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    //unsigned long block_end = block + 5; unsigned char i = 0; // <-- 
DEBUG 
    SD_TYPE sd_stat = SD_ERR; 
    // LED1 goes on during reading 
    led_debug_1_on(); 
    do { 
        sd_stat = sd_startMultiBlockRead( block ); 
        if( sd_stat == SD_ERR_RETRY || sd_stat == SD_CONTINUE_WITH_ERR 
|| 
                sd_stat == SD_INVALID_CMD || sd_stat == 
SD_ERR_SEND_STOP ) { 
            error_report( ERROR_CODE_MEMORY_START_MULTI_READ ); 
            return RETURN_DEVICEERR; 
        } 
    } while( sd_stat != SD_CONTINUE ); 
    for( ; block < block_end ; block++ ) { 
        do { 
            sd_stat = sd_readBlock( (unsigned char *) & 
page_buffer_buffer[0][SD_PAGE_BUFFER_DATA_START_OFFSET] ); 
            //sd_stat = sd_readBlock( (unsigned char *) & 
page_buffer_buffer[i][SD_PAGE_BUFFER_DATA_START_OFFSET] ); // <-- DEBUG 
            if( sd_stat == SD_ERR_RETRY || sd_stat == SD_ERR_RESTART 
                    || sd_stat == SD_ERR_SEND_STOP || sd_stat == 
SD_INVALID_CMD ){ 
                if( sd_stat == SD_ERR_RESTART ) { 
                    error_report( ERROR_CODE_MEMORY_START_MULTI_READ ); 
                } else { 
                    error_report( ERROR_CODE_MEMORY_READ_BLOCK_MULTI ); 
                } 
                return RETURN_DEVICEERR; 
            } 
        } while( sd_stat != SD_CONTINUE ); 
        //i++; // <-- DEBUG 
    } 
    do { 
        sd_stat = sd_stopMultiBlockRead(); 
        if( sd_stat == SD_ERR_RETRY || sd_stat == SD_CONTINUE_WITH_ERR 
|| sd_stat == SD_INVALID_CMD ) { 
            if( sd_stat == SD_CONTINUE_WITH_ERR ) { 
                error_report( ERROR_CODE_MEMORY_READ_BLOCK_MULTI ); 
            } else { 
                error_report( ERROR_CODE_MEMORY_STOP_MULTI_READ ); 
            } 
            return RETURN_DEVICEERR; 
        } 
    } while( sd_stat != SD_CONTINUE ); 
    led_debug_1_off(); 
    return RETURN_OK; 
} 
 
/*! 
 * @brief Perform a sustained write test on the memory. 
 * 
 * Use after SD initialization function. 
 * 
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 * @warning This is to be used for testing only and should not be used 
in release code. 
 * 
 * @warning This test may overwrite any data on the memory device. 
 * 
 * @return \ref RETURN_TYPE 
 */ 
RETURN_TYPE memory_sustainedWriteTest( unsigned char file16_offset ) { 
    unsigned long block = 
                MEMORY_STARTING_PAGE + file16_offset * ( (unsigned 
long) 32768 ); 
    unsigned long block_end = block + 65536; // <- 32 MB 
    SD_TYPE sd_stat = SD_ERR; 
    unsigned short i = 1; 
    // fill buffer with 0xff so that a non-trivial value is written. 
    for( i=1 ; i<513 ; i++ ) { 
        page_buffer_buffer[0][i] = 0xff; 
    } 
    // LED1 goes on during writing 
    led_debug_1_on(); 
    do { 
        sd_stat = sd_startMultiBlockWrite( block ); 
        if( sd_stat == SD_ERR_RETRY || sd_stat == SD_CONTINUE_WITH_ERR 
|| 
                sd_stat == SD_INVALID_CMD || sd_stat == 
SD_ERR_SEND_STOP ) { 
            error_report( ERROR_CODE_MEMORY_START_MULTI_WRITE ); 
            return RETURN_DEVICEERR; 
        } 
    } while( sd_stat != SD_CONTINUE ); 
    for( ; block < block_end ; block++ ) { 
        do { 
            sd_stat = sd_writeBlockBuffer( (unsigned char *) & 
page_buffer_buffer[0][0] ); 
            if( sd_stat == SD_ERR_RETRY || sd_stat == SD_ERR_RESTART 
                    || sd_stat == SD_ERR_SEND_STOP || sd_stat == 
SD_INVALID_CMD ){ 
                error_report( ERROR_CODE_MEMORY_WRITE_BLOCK_MULTI ); 
                return RETURN_DEVICEERR; 
            } 
        } while( sd_stat != SD_CONTINUE ); 
    } 
    do { 
        sd_stat = sd_stopMultiBlockWrite(); 
        if( sd_stat == SD_ERR_RETRY || sd_stat == SD_CONTINUE_WITH_ERR 
|| sd_stat == SD_INVALID_CMD ) { 
            error_report( ERROR_CODE_MEMORY_STOP_MULTI_WRITE ); 
            return RETURN_DEVICEERR; 
        } 
    } while( sd_stat != SD_CONTINUE ); 
    led_debug_1_off(); 
    return RETURN_OK; 
} 
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