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Abstract 
 
Map-matching (MM) algorithms integrate positioning data from a Global Positioning System 

(or a number of other positioning sensors) with a spatial road map with the aim of identifying 

the road segment on which a user (or a vehicle) is travelling and location on that segment. 

Amongst the family of MM algorithms consisting of geometric, topological, probabilistic and 

advanced, topological MM (tMM) algorithms are relatively simple, easy and quick, enabling 

them to be implemented in real-time. Therefore, a tMM algorithm is used in many navigation 

devices manufactured by industry. However, existing tMM algorithms have a number of 

limitations which affect their performance relative to advanced MM algorithms. This paper 

demonstrates that it is possible by addressing these issues to significantly improve the 

performance of a tMM algorithm. This paper describes the development of an enhanced 

weight-based tMM algorithm in which the weights are determined from real-world field data 

using an optimisation technique. Two new weights for turn-restriction at junctions and link 

connectivity are introduced to improve the performance of matching, especially at junctions. 

A new procedure is developed for the initial map-matching process. Two consistency checks 

are introduced to minimise mismatches. The enhanced map-matching module was tested 

using field data from dense urban areas and suburban areas. The algorithm identified 96.8% 

of the links correctly in an urban area and 97.01% correct links with a horizontal accuracy of 

8.9m (95%) in a suburban area. This is superior to most existing topological MM algorithms 

and has the potential to support the navigation modules of many Intelligent Transportation 

System (ITS) services.  

 
 
Keywords: Intelligent Transportation Systems (ITS); GPS, Spatial road network; 
Optimisation; Topological Map-Matching  
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1. Introduction 
 
Map-matching (MM) techniques which integrate positioning data with spatial road network 

data have been developed in order to provide the real-time, accurate and reliable positioning 

information required by many ITS services such as route guidance, fleet management and 

accident and emergency response (Chen et al., 2003; Kim et al., 1996; Li and Fu 2003; Li and 

Chen, 2005; Ochieng et al., 2004; White et al., 2000; Yin and Wolfson 2004; Zhao et al., 

2003). A range of MM techniques have emerged over the last decade categorised as 

geometric, topological, probabilistic and advanced. The earliest geometric MM (gMM) 

algorithms, developed in the 1990s, used geometric information, on the shape of the curve of 

the road segment (Kim et al., 1996; Quddus et al., 2007; White et al., 2000). These gMM 

algorithms are the simplest and fastest to implement as they require very little information, 

but they perform poorly especially when matching at junctions, complex roundabouts and 

parallel roads. gMM algorithms may be improved by including historical data (such as the 

previously matched road segment), vehicle speed and topological information on the spatial 

road network (such as link connectivity). A MM algorithm that uses such additional 

information is called a topological MM (tMM) algorithm (Greenfeld, 2002; Li  et al., 2005; 

Quddus et al., 2003; Quddus et al., 2007). Probabilistic MM (pMM) algorithms use 

probability theory to identify the set of candidate segments by taking into account the error 

sources associated with both navigation sensors and spatial road data. The MM algorithms 

classed as advanced MM (aMM) algorithms include applications of extended Kalman filter 

(EKF), belief theory, fuzzy logic (FL) and artificial neural network (ANN) techniques (Pyo et 

al., 2001; Quddus et al., 2006; Syed and Cannon, 2004; Yang et al., 2003). An aMM 

algorithm that uses these more refined approaches, outperforms other MM algorithms but 

require more input data and are relatively slow and difficult to implement. Whereas a tMM 

algorithm is very fast, simple and easy to implement. For this reason, a tMM algorithm has 
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more potential to be implemented in real-time applications by industry as its processor 

requires less memory. Once the limitations of existing tMM algorithms are addressed, the 

performance of a tMM algorithm is expected to be comparable to that of pMM or aMM 

algorithms.  

 
Therefore, the main aim of this paper is to develop an enhanced tMM algorithm and to 

validate it using real-world field data and to assess its performance. This process includes: 

(1) the derivation of four weights (including two new weights) through an   

     optimisation process 

(2) the introduction of two consistency checks to minimise mismatches at ambiguous  

      situations 

(3) the development of a new procedure for the initial map-matching process to   

      improve the overall performance of the algorithm 

 

The paper is organised as follows. The next section provides a discussion on the performance 

of existing tMM algorithms and identifies their limitations. This is followed by a description 

of an enhanced tMM algorithm: including the initial map-matching process, the optimisation 

technique and the consistency checks. The data collection process is then presented, followed 

by the results. The paper ends with conclusions and future research directions.  

 

2. Performance of Topological map-matching algorithms  

 

In this paper, only the performance of topological map-matching (tMM) algorithms is 

considered. Readers are referred to Quddus et al. (2007) for a detailed review of MM 

algorithms. A tMM algorithm makes use of historical information, which might include the 

previously identified road segment and topological information such as link connectivity, road 
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classification, turn restriction information, in addition to the basic geometric information. 

Different studies have used topological information at different levels. For example, using 

topological information to identify a set of candidate links or to check the map-matched 

positioning after geometric MM or in the process of correct link identification from a set of 

candidate links (Li and Fu 2003; White et al., 2000). It has been established that the use of 

topological information in correct link identification can improve map-matching performance. 

Moreover, a weighting approach in selecting the correct road segment from the candidate 

segments improves the accuracy of correct road segment identification (Greenfeld, 2002; 

Quddus et al., 2003). An algorithm that assigns weights for all candidate links - using 

similarity in network geometry and topology information and positioning information from a 

GPS/DR integrated system - and selects highest weight score link as correct road segment is 

called a weight based tMM algorithm.  

 

Few studies report on the performance of tMM algorithms. Those that have done so are 

shown in Table 1. Most did not assess algorithm performance with respect to 2-D horizontal 

accuracy due to a lack of higher accuracy reference (true) positioning trajectory. Quddus et al. 

(2006) tested four of these algorithms (including their own) using suburban data (7200 

positioning fixes) obtained from GPS/DR and a digital map of scale 1:2500. Carrier-phase 

GPS observations were used to obtain the reference (true) trajectory.  Their results are shown 

in the last column of Table 1. 
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Table 1 Performance of Existing Topological MM Algorithms 

Author and 
Date 

Navigation 
Sensors 

Test 
Environ-

ment 
Map Scale Sample 

size 
Topological 

information used 

% Correct link 
Identification and 

Horizontal 
accuracy (m) by 

authors 

% Correct link 
Identification 

and Horizontal 
accuracy (m) by 
Quddus et al., 

(2006)* 
Non-weight based algorithms 

White et al. 
(2000)  GPS Suburban -- 1.2 Km 

Heading, 
proximity and 

link connectivity 
85.80% 

76.8%  

32 m (95%) 

Srinivasan 
et al. (2003)  GPS 

University 
road 

network 
-- 

242 
GPS 

points 

Heading and turn 
restriction 98.5% 

80.2%  

21.2 m (95%) 
Blazquez 

and 
Vonderohe 

(2005)  

DGPS Urban and 
Suburban 1:2400 

600 
DGPS 
points 

Link 
Connectivity and 
turn restrictions 

94.8% -- 

Weight-based approaches 

Greenfled 
(2002)  GPS Urban and 

Suburban -- -- 

Heading, 
proximity and 
intersection 
weights -- 

 
85.6%  

18.3 m (95%) 

Quddus et 
al. (2003)  

GPS and 
DR Urban 1:1250 -- 

Heading, 
proximity and 

position of point 
relative to link 

88.6% 88.6%  

18.1 m (95%) 18.1 m (95%) 

* The same positioning data is used to check the developed algorithm performance (See data set 6 in table 2)  
 
Table 1 suggests that the performance of tMM algorithms with respect to the correct link 

identification ranges from 85% to 98.5%; and the horizontal accuracy ranges 32m (95%) to 

18.1m (95%). Although, the MM algorithm developed by Srinivasan et al. (2003) identified 

98.5% of the segments correctly, this was based on a small sample in a simple network. When 

tested on a larger, more representative, road network, the accuracy falls to 80.2%. The 

algorithm developed by Blazquez and Vonderohe (2005) is capable of identifying the correct 

road segment 94.8% of times while employing a sample size of 600 position fixes obtained 

from a dGPS. Their algorithm performance is reasonably good and this may be due to their 

use of a high accuracy dGPS (relative to a stand-alone GPS) to obtain position fixes and they 

also consider link connectivity and turn restriction information to verify map-matched 

positions after a point-to-curve map-matching approach.  

 



       6 

Table 1 suggests that when tested on the same dataset, weight-based algorithms perform 

better than non-weight based algorithms. However, their performance is not sufficient to 

support many ITS services. Ways in which existing tMM algorithms may be improved 

include:  

 

(1) The subsequent MM process of a weight-based tMM algorithm is heavily dependent 

on the performance of the initial MM process. Therefore, a more robust and reliable 

procedure for the initial MM process, should reduce mismatches. 

 

(2) Weight-based algorithms primarily consider heading and proximity weights. These 

may be enhanced by including the performance of weights for turn restriction at 

junctions, link connectively, roadway classification (e.g., one-way or two-way roads) 

and road infrastructure information (e.g. fly-overs and underpasses). The relatively 

good performance of the tMM algorithm developed by Blazquez and Vonderohe 

(2005) that used turn restriction and link connectivity would seem to support this.  

 

(3) The relative importance of different weights may be derived using a robust method 

rather than assuming equal weights such as Greenfeld (2002) or deriving empirically 

such as Quddus et al. (2003). This can be done for different combinations of 

navigation sensors (such as GPS or GPS/DR or dGPS) by collecting data from 

different operational environments (such as dense urban, urban, suburban, rural and 

hilly areas). This will improve the transferability of the developed weighting scheme. 

Another approach would be to determine different weighting schemes for different 

operational environments. For instance, the weight for heading may be more important 

in a dense urban environment than in a rural context.  
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3. Description of the enhanced Topological map-matching algorithm 

 

The method by which the enhanced tMM algorithm was developed is outlined here, including 

the map-matching process, the optimisation of weights and consistency checks. 

 

3.1 Input Data 

The data required for the improved tMM algorithm are: link data including a unique link ID, 

start node and end node; node data including unique node ID, easting and northing 

coordinates of the node; positioning and navigation data from a navigation sensor (either GPS 

or GPS/DR) including easting and northing coordinates of position fixes, vehicle heading, 

vehicle speed in m/sec; and turn restriction data for junctions. The turn restriction information 

is stored in the form of a turn restriction matrix to consider all the possible turns at a junction 

point.  

 

3.2 Map-Matching Process 

A simple flowchart of the proposed tMM algorithm is shown in Fig. 1. The map-matching 

(MM) process is divided into three key stages: (a) initial MM, (b) matching on a link and (c) 

MM at a junction. The aim of the initial MM process is to identify the first correct link for the 

first positioning point. A robust and reliable method (discussed below) is introduced for the 

initial MM process. After assigning the first positioning fix to the correct link, the algorithm 

checks three criteria for matching the subsequent position fix:  

 

(1) whether a vehicle is in a stationary condition (matching on a link) 

(2) whether a vehicle is travelling on the previously matched link (matching on a link) 

(3) whether a vehicle is near to a junction (matching to a junction).  
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If the speed of the vehicle for a positioning fix is zero then the vehicle is stationary; in this 

case the vehicles position is assigned to the previously map-matched link. If the vehicle is not 

stationary, then the algorithm examines whether the positioning fix is near to the downstream 

junction or not. If the vehicle is some distance from the junction then this positioning fix is 

also assigned to the previously map-matched road segment. On the other hand, if the vehicle 

is near to a junction, the algorithm re-identifies the correct road segment from a set of 

candidate segments which is known as matching at a junction. The above three criteria are 

further described in the following sections. 

 

In all cases, once the correct link is identified for a positioning fix, a perpendicular projection 

from the positioning fix to the link gives the location of the vehicle on that link.  

 

3.2.1 Initial map-matching 

The purpose of the initial MM process is to identify the first correct road segment for the first 

positioning point. After the initial MM process, the subsequent matching (either on a link or 

at a junction) may commence. Since any error in the initial matching process will lead to a 

mismatching of the subsequent positioning points, a robust and reliable approach is 

introduced which has three major stages:  

 

 (1) the identification of a set of candidate links,  

 (2) the identification of the correct link among the candidate links using a weight  

                  scheme    

 (3) the estimation of vehicle position on the correct link. 
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Firstly, the algorithm creates an error bubble around the first positioning fix. The radius of the 

error bubble is primarily based on quality of positioning data (i.e. variance and covariance of 

easting and northing) at that instant (for that positioning point). Initially, the error ellipse 

concept was derived  by Zhao (1997). The same concept, was used by Ochieng et al. (2004) 

and Quddus (2006a), is considered in this research. All the links that are either inside the error 

ellipse or crossing the error ellipse or tangent to the error ellipse are considered as the 

candidate links for the first positioning fix. In previous studies of MM algorithms only the 

links that had a node (either its starting node or its end node) within the error ellipse were 

considered, and this could lead to a potential mismatch (Quddus et al., 2007). The approach 

introduced here should eliminate the possibility of such a mismatch. Then the task is to select 

the correct link among these candidate links. For the first positioning fix, topological 

information (link connectivity and turn restrictions) is not available. Therefore, only heading 

and proximity weights are considered. A GPS receiver provides heading data for the first 

positioning fix based on the last stored position fix. 
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Fig. 1. A flow-chart representing the enhanced tMM algorithm. 

 
Among the candidate links, clearly higher weight should be given to a link that is in-line with 

the vehicle’s direction of movement. Therefore, the heading weight is considered as a cosine 

function of angle between the vehicle movement direction and link direction (as suggested by 

Greenfeld, 2002) and shown in equation 1.  

 

Input 

 (a) Initial MM  

(b) MM on a link 

(c) MM at a junction 

Identify a set of the 
candidate links 

Positioning data Node data Link data 

Check whether 
the next 

positioning fix 
is near to a 

junction 

Yes 

No 

Identify the correct link from the 
set of the candidate links 

Determine vehicle position  
on the identified link 

Identify a set of the 
candidate links 

Identify the correct link from the 
set of the candidate links 

 

Determine vehicle position  
on identified link 

The correct link is the 
previously selected link 

Check whether 
vehicle speed 

=0 

Yes 

No 

Determine vehicle 
position  

on the identified link 

Turn restriction data 
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The weight for proximity is based on the perpendicular distance (D) from the positioning 

point to the link. If a link is nearer to the positioning point, then this link should be given 

more weight than a link which is further away. If the perpendicular line from the positioning 

fix to the link does not physically intersect then D is increased by ΔD which represents the 

distance between the intersection point and the closest node of the link. The weight for 

proximity (Wp) varies linearly with distance. If the positioning fix falls on the link (i.e. D=0) 

the proximity weight parameter, )(Df , is 1; and if the distance between the positioning point 

and the link is more than 160m (i.e. mD 160> ), the proximity weight parameter, )(Df , is -

1. This is because an empirical investigation suggests that if D is higher than 160m then the 

algorithm wrongly identified the link.  

 

ph WWTWS +=  
  )()( DfDfHTWS ww += θ      (1) 

 
where 

)cos()( θθ =f  





 −

=
80

)80()( DDf  

     
  TWS is the total weight score 

  hW denotes  the weight for heading 

  pW  represents the weight for proximity 

  wH is the heading weight coefficient 

  wD is the proximity weight coefficient  

   θ  denotes the angle difference between the vehicle heading and link  

direction with respect to the north. 
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TWS is calculated for each candidate link and identifies the link with the highest TWS as the 

correct link. The vehicles location on that selected link is then estimated. This is achieved by 

a perpendicular projection of the positioning point onto the link.  

 

3.2.2 Map-matching on a link 

After successful completion of the initial MM process, the second stage of the tMM algorithm 

starts which is the MM on a link. The algorithm checks the speed of the vehicle. If the vehicle 

speed is zero, the algorithm assigns the vehicle to the previously map-matched road segment. 

If the vehicle is moving (i.e. speed is greater than zero), the algorithm checks whether the 

vehicle is near a junction using two criteria:  

 

(1) distance from the previously map-matched vehicle position to the downstream  

      junction.  

(2) the vehicle heading with respect to the previously matched link direction.  

 

For the first check, to examine whether the vehicle is near to a junction or not, the algorithm 

compares the remaining distance on the previously map-matched road segment with the 

distance travelled by the vehicle within the last time interval. For the second check, if the 

vehicle direction changes significantly with respect to the previously selected road link, it is 

considered to have turned. The mathematical representation of these two checks is shown in 

equation 2. 

( ) ( )
     Checktwo

thresholdiRMS

checkone

threshold hhandddd +≥+≥ δ21     (2) 

Where d1 is the distance between the previously map-matched positioning point to the 

downstream junction, and d2 is the distance travelled by the vehicle during last time interval. 

If d1≅ d2, it is considered that, for the current positioning fix, the vehicle is at a junction. 
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However, due to errors associated with the previous map-matched positioning, errors with 

digital map, and ignorance of road width parameter, a distance threshold (dthreshold) as shown 

in equation (2) needs to be considered. Here, the dthreshold is considered as a positive value. 

GPS position fixes are less reliable when speed of the vehicle is less than 3 m/sec (Quddus et 

al., 2007; Taylor et al., 2001). To overcome this, a bearing threshold (hthreshold) is added to iδ . 

This is to ensure that the map-matching process does not miss vehicles that may be at a 

junction. 

 

       

RMSh  denotes the Root Mean Square (RMS) error value of all headings related to the 

positioning fixes mapped on the previously identified link. iδ is the absolute value of angle 

difference between the vehicle heading at the current position fix and the previously identified 

link direction. The distance threshold (dthreshold) and the bearing threshold (hthreshold) values 

were derived empirically from field data of 1800 GPS/DR fixes, and identified as 20m and 5o 

respectively. However, these threshold values depend on quality and scale of digital map, 

time interval of each positioning information, and quality of navigation data output from 

GPS/DR sensor.  

 

If equations (2) is satisfied then the algorithm assumes that the vehicle is moving on the 

previously matched link, and the algorithm snaps the current positioning fix to the previously 

selected road segment.  
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3.2.3 Map-matching at a junction 

When the vehicle is at a junction, a road segment is identified among the set of candidate 

segments. The procedure for the identification of the set of candidate segments for a 

positioning point at a junction is the same as that of  the initial MM process. The correct link 

is selected based on the total weight score (TWS). At this stage, two additional weights are 

introduced on turn restrictions at junctions and link connectivity. If a vehicle approaches a 

junction and is not legally permitted to turn (either a left-turn, a right-turn or a U-turn) on to a 

link connected to the junction, then the link is given less weight relative to the other links on 

to which the vehicle can turn. With respect to link connectivity, a link is given more weight if 

it is directly connected to the previously identified link for the previous epoch. The TWS at 

junction is given below:   

 

)()())(())cos(( twcwww CTCCDfDHTWS +++= θ                    (3) 

 

where 





 −

=
80

)80()( DDf  

}1,1{ −=cC  

}1,1{ −=tC  

 

Cc equals 1 if a candidate link (within the set of the candidate links) is directly connected to 

the previously identified link and -1 otherwise. Ct equals 1 if a vehicle can legally make a turn 

to a link and -1 otherwise.  
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Hw Dw Cw and Tw are the weight coefficients for heading, proximity, link connectivity and 

turn restriction respectively. These coefficients represent the relative importance of different 

factors in calculating the TWS.   

 

The functions representing heading, Cos(θ), proximity, f(D), connectivity, Cc and turn 

restrictions (Ct)  are specified such that their values lie between  +1 to -1 for any possible 

values of the factors. This constraint allows to control the relative importance of weight 

coefficients. Although values of θ, D, Cc and Ct in equation (3) are available for a positioning 

fix, the values of the coefficients Hw Dw Cw and Tw are unknown. In previous research, these 

values were assumed to be equal (Greenfeld, 2002) or determined empirically (Quddus et al., 

2003). This raises the issue of transferability to different operational environments.    

 

Here an optimisation technique is developed to determine the values of Hw Dw Cw and Tw. The 

aim is to identify the values of these coefficients that minimise the total map-matching error 

in terms of identification of the correct links.  

 

3.3 Optimisation of the weights 

The process starts with the map-matching of a positioning fix near to a junction and generates 

random values for the coefficients between 1 and 100 in such a way that the sum of all four 

coefficients equals 100. Using these selected values, the process then a map-matches at that 

junction and identifies the link on which the MM algorithm locates the vehicle. Since the 

actual link is known, it is possible to see whether the MM algorithm has identified the link 

correctly. If the algorithm fails to identify the true link among candidate links then the 

algorithm regenerates the random values and repeats the map-matching at that junction. This 

process continues until the algorithm selects the true link. This produces a set of weight 
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coefficients (Hw Dw Cw and Tw) that identify the link correctly at that junction. These weights 

are then applied, for all positioning fixes. The percentage of wrong link identification is then 

calculated for these specific values of the coefficients. The same procedure is repeated for all 

positioning fixes near to junctions. This process generates a set of values for the weight 

coefficients and the corresponding percentage of error associated with wrong link 

identification for each set.  As the other variables, θ, D, Cc and Ct, in equation (3) vary from 1 

to -1 for any possible values, it is assumed that the map matching error with respect to correct 

link identification  (
errorMM ) is a function of the weights Hw Dw Cw and Tw only. 

 

),,,( wwwwerror TCDHfMM =     (4) 

 

This simulated data is then used to develop a relationship between percentage of wrong link 

identification and the weight coefficients (Hw Dw Cw and Tw) using a regression analysis. 

Since the error associated with wrong link identification is always a positive value, a log-

linear model is used. The functional relationship between the weights and the MM error is 

unknown and therefore, various specifications are considered. Assuming that the map-

matching error (MMerror) depends on the individual weights (Hw Dw Cw and Tw), their square 

terms (Hw
2 Dw

2 Cw
2 and Tw

2), inverse terms (1/Hw, 1/Dw, 1/Cw and 1/Tw) and interaction terms 

(HwDw, HwCw, HwTw, DwCw, DwTw and CwTw), a functional relationship can be written as: 

 

[ ] [ ] iwwctwwhd
w

t

w

h
thwtwherror TCDH

THwwTHMM TH εββββββββα ++++







+++



 ++++++= )(...)(.......)ln( 332

2

2

211
      (5) 

where 

α is an intercept term. 
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32121 ,,,.....,, ttthh βββββ  are the regression coefficients for heading, proximity, 

connectivity and turn restriction weights.  

iε is the error term. 

 

Initially, all 18 variables are considered in the regression analysis. The regression analysis is 

carried using a step-by-step backward elimination process, at each step one statistically 

insignificant parameter, based on t-stat (which is a measure of the relative influence of the 

independent variable on the dependent variable), is removed.  The final regression model, 

with all statistically significant variables, is the optimisation function. 

 

The objective is to minimise the error. In order to perform this minimisation, some restrictions 

have to be imposed. As discussed, the sum of all weight coefficients is set to be 100 and the 

minimum and maximum values of each weight coefficient set at 1 and 100 respectively. The 

optimisation function, obtained from above regression analysis, and the associated constraints 

is given below.  

Minimization: 

[ ] [ ]












++++







+++



 ++++++= iwwctwwhd

w

t

w

h
thwtwherror TCDH

THwwTHMM TH εββββββββα )(...)(.......exp 332

2

2

211
   (6) 

subject to: 

100),,,(1

100

≤≤

=+++

wwww

wwww

TCDH

TCDH  

 

Optimisation of equation (6) was carried out in MATLAB using the constrained nonlinear 

minimization method (Michael et al., 2007). The values of four weight coefficients (Hw Dw Cw 

and Tw) were calculated by identifying the global minimisation of map-matching error 

(MMerror); here it is a convex optimisation problem. The process was applied to real-world 
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positioning data obtained from different operational environments including: dense urban, 

suburban and rural areas.  

 

3.4. Consistency checks to minimise mismatches 

Two consistency checks are carried out before finalising the selection of the correct link 

among the candidate links. These are:  

 

(a) whether the TWS for two or more links are close to each other and  

(b) whether the distance between the raw position fix and the map-matched position on the 

link is large. 

 

For the first check, if the TWS for two (or more) links are found to be within 1% then the 

algorithm identifies this as an ambiguous situation. This is because an investigation of our 

data suggests that 1% difference in the TWS values correctly picks all ambiguous situations. 

The algorithm then uses some external information such as the distance from the last map-

matched position to the current map-matched position and compares this with the distance 

(speed×time) travelled by the vehicle within the last time interval. If these two distances agree 

for a particular link then it is assumed that this is the current link.  

 

After matching a positioning fix to the identified link, the second consistency check estimates 

the distance from the positioning fix to the map-matched location on the link. If the distance 

exceeds the pre-defined threshold, then it is assumed that the identified link is not the correct 

link. In such a case, the algorithm carries out the first check (i.e. comparing distance between 

previously matched point to current map-matched position with distance travelled by vehicle 

with in the last time interval, which is one second in our case), and identifies the road segment 
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on which vehicle is travelling. The pre-defined threshold is based on the error ellipse, the 

quality of spatial road data and sampling frequency of positioning data. From an empirical 

analysis, this threshold fixed at 40m in this case. However, a variable threshold may be 

defined based on the road width (if the data are available) and quality of navigation sensors.  

 
4. Data collection 

 
Five data sets, with different GPS/DR equipment in different time periods, and in various 

operational environments - dense urban, suburban and rural areas - were used in this research, 

see Table 2. All these GPS/DR datasets provided positioning data every second. A 1:2500 

scale digital map was used in the map-matching process. Data set 1, 2 and 5 were obtained 

from Quddus et al. (2006) and Quddus (2006a), whilst data sets 3 and 4 were generated as 

part of this study. The actual links on which the vehicle was driven were known for all 

datasets.  

 
Table 2 Positioning Datasets 

Data set Operational 
environment 

Data 
collection date 

(month and 
year) 

Equipment used Sample size: 
data points  Location characteristics 

1 Urban: 
(Central London) Jun-02 GPS/DR  1280 

Urban characteristics 
such as tall buildings, 
bridges, flyovers, and 
dense road network  

2 Suburban: 
(South  London) Nov-05  GPS/DR 1812 Suburban area  

3 
Rural: 

(Loughborough, East 
Midlands, UK) 

Mar-08 GPS/DR 1200 University roads, and 
other rural roads 

4 Urban: 
(Central London) May-08 GPS/DR 2814 

Dense urban road 
network, tall buildings, 

bridges, flyovers, 
tunnels.  

5 
Urban: 

(Washington, DC, 
USA) 

Jan-09 GPS 3600  Urban characteristics 
such as bridges, flyovers, 

6* 

Suburban: 
(West of London -

near Reading) 
 

Aug-05  GPS/DR and 
Carrier-phase GPS 1228 Suburban area   

* The dataset six was also used to examine the existing tMM algorithms performance by Quddus et al. (2006) 
(for details see column 8 in table 1) 
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4.1 Data for Optimisation 

Datasets 1, 2 and 3 collected in urban, suburban and rural areas respectively, were used for the 

optimisation process.   

 

4.2 Data for algorithm performance checking 

In order to evaluate the performance of the enhanced tMM algorithm, datasets 4, 5 and 6 were 

used. For the collection of the fourth dataset, a test vehicle equipped with a single frequency 

high sensitivity GPS receiver and a low-cost gyroscope were used. The test vehicle travelled 

on a pre-defined route in central London on the 26th May 2008. The data set five was 

collected on a pre-planned route in urban areas of Washington, DC, USA, using a 16-channel 

single frequency high sensitivity GPS receiver, on 13th Jan 2009. For both the data sets (4 and 

5) the test route was selected carefully to ensure that the vehicle travelled through a good mix 

of urban characteristics. The total trip length of data set 4 and 5 was about 18 km and 17 Km 

respectively. The test trajectory for dataset 4 (in central London) and data set 5 (in 

Washington, DC) are shown in Fig. 2 and Fig. 3 respectively. But, no reference (actual) 

trajectory in terms of true vehicle positions was available for the both forth and fifth datasets 

and therefore, the algorithm’s performance can be tested only with respect to correct link 

identification. However, the reference trajectory of the vehicle was available for dataset 6 

obtained from Quddus et al. (2006) and Quddus (2006a). This allows the performance to be 

assessed in terms of both link identification and horizontal accuracy. It should be noted that 

the dataset 6 was also used to examine the existing tMM algorithms performance by Quddus 

et al. (2006) (for details see column 8 in table 1).  
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Fig. 2. Test route in central London. 

 
 

 
Fig. 3. Test route in Washington, DC, USA. 

 

 

 

1 Km 

 White house 
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5. Optimisation results 

Table 3 shows the best fitting regression models. Corresponding adjusted R2 for each model is 

also illustrated in the table. The adjusted R2 provides what percentage of behaviour of 

dependant variable (i.e. percentage of wrong link identification) is explained by the 

independent variables. Because of the regression through the origin, the adjusted R2 for all 

models was found to be high. As mentioned, the sum of the four weight is 100. If an intercept 

(i.e., α) term  is considered in the regression, this term is then directly correlated with weight 

coefficients and subsequently, one of the weight coefficients is automatically dropped from 

the regression model. However, the inclusion of individual weights is important as our 

objective is to find the relative importance of these four weight coefficients (Hw Dw Cw and 

Tw) in reducing the error in map-matching process. This is the reason why the regression line 

is forced through the origin. It can be seen that different specifications are achieved for 

different operational environments suggesting that the use of one specification for all 

environments can be misleading.  

Table 3 Regression Models for Urban, Suburban and Rural Area 

Weights Urban Suburban Rural 
Coefficient T-stat Coefficient T-stat Coefficient T-stat 

Hw 0.0231 8.35 0.0287 16.82 0.0285 6.48 
Dw 0.0266 8.81 0.0233 17.99 0.0235 9.51 
Cw 0.0352 4.78 0.00347 4.97 0.0311 14.83 
Tw 0.0132 4.88 0.00467 6.72 0.0302 19.2 
Hw

2 -- -- -0.000115 -5.34 -- -- 
Dw

2 -- -- -0.0000476 -2.56 -- -- 
1/(Hw) 2.542 9.44 1.266 34.3 -- -- 
1/(Dw) 0.551 2.55 1.137 25.36 -- -- 
1/(Cw) 0.957 4.47 0.197 6.12 -- -- 
1/(Tw) -- -- 0.260 5.94 -- -- 

(Hw*Dw) -- -- -0.000539 -18.16 -0.00056 -3.62 
(Hw*Cw) -0.00064 -4.14 -- -- -- -- 
(Hw*Tw) -- -- -0.000069 -2.97 -- -- 
(Dw*Cw) -0.000552 -2.99 --  -- -- 
(Cw*Tw) -0.000406 -2.29 0.00013 5.91 -- -- 

Adjusted R2 0.984 0.997 0.997 
Observations 175 450 40 

Where, Hw = Heading weight coefficient; Dw = Proximity weight coefficient; Cw = Connectivity 
weight coefficient; and Tw = Turn restriction weight coefficient. 
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The optimal values of weights for the three operational environments are illustrated in Table 

4. In suburban and rural areas the weight for connectivity (Cw) and weight for turn restriction 

(Tw) are not very important; whereas, weights for heading and proximity (Hw, Dw)  are almost 

equally important, probably because in suburban areas and rural areas the quality of GPS/DR 

positioning fixes is good and the road network is less dense. In dense urban areas, heading 

and connectivity weights (Hw, Cw) are almost equal and the weight for proximity (Dw) is less 

important, this is because in dense urban areas roads are in close proximity and the quality of 

positioning information is bad compared to open areas.  

 
Table 4 Optimisation Result 

Weights  
Operational areas 

Urban Suburban Rural 
Hw 39.99 46.24 44.48 
Dw 8.13 44.99 53.52 
Cw 36.40 4.46 1 
Tw 15.48 4.31 1 

 
 

6. Algorithm performance  

 

The developed algorithm identifies the operational environment on which vehicle is 

travelling, and selects the corresponding weight score, suitable for that environment, from the 

weight matrix (table 4). The identification of operational environment (whether the vehicle is 

in an urban area or a suburban area or a rural area) could be determined based on the 

complexity of road network, landuse data, building height data etc. In urban areas, roads are 

proximity to each other compared to suburban or rural areas. The total length of the road 

network (i.e. sum length of individual road links) per a given area in an urban area will be 

greater than a suburban area; and similarly, in a suburban area it will be greater than a rural 

area. The proposed algorithm identifies the operational environment based on complexity of 
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road network (i.e. total length of roads per a given area). However, one can further improve 

the identification of operation environment using building height data and landuse data; if 

such  data is available.  

 

The values of the weights from Table 4 are applied for algorithm testing. For dataset 4 (urban 

area in central London) the enhanced tMM algorithm identified 96.8% of the road segments 

correctly. In case of dataset 5 (urban areas in Washington, DC) the success rate is 95.93%. 

From the above two data sets,  the percentage of correct link identification in urban areas is 

considered as 96.36 (average value of 96.8% and 95.93%). In terms of computational speed, 

the algorithm carried out the map-matching of 180 positioning fixes per sec (with a laptop of 

1GB RAM and 1.46 processor speed). This suggests that the algorithm is suitable for real-

time implementation.  Fig. 4 shows a part of the test trajectory along with raw positioning 

fixes (with star symbol) and map-matched fixes (with round symbols).  

 

 
Fig. 4. A part of test road with map-matched positions. 

 
The enhanced tMM algorithm was then applied to the sixth dataset (suburban area). The 

performance of the algorithm was evaluated in terms of both correct link identification and 

position determination. The algorithm identified 97.01% of the segments correctly with a 

GPS/DR fix before map matching 
GPS/DR fix after  map matching 

Scale 
 

0m           100m 
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horizontal (2D) accuracy of 8.9m (95%). The along-track and cross-track errors were found to 

be 8.6m (95%) and 2.4m (95%) respectively.  

 

A fuzzy logic-based MM algorithm developed by Quddus et al. (2006) is capable of 

identifying 99.2% of the links correctly with the horizontal positioning accuracy of 5.5 m 

(95%) for suburban road network; and in case of urban road network, the algorithm can 

identify 98.5% of the links correctly . According to the results summarised by Quddus et al. 

(2006), the enhanced tMM algorithm developed in this study outperforms most existing tMM 

algorithms and its performance approaches to that of a pMM or an aMM algorithm. This 

enhanced tMM algorithm has the potential to support a range of ITS services.  

 

7. Conclusions and future research 

 

In this paper, a real-time, weight-based topological MM algorithm has been developed by 

considering some limitations of existing topological MM algorithms. The algorithm has been 

tested using real-world field data collected in different operational environments. The key 

features of the enhanced topological MM algorithm are:  

 

(a) the selection of candidate links in the initial map-matching process and the map-matching 

at junctions,  

(b) the introduction of two additional weight parameters, connectivity and turn restriction,  

(c) use of an optimisation process to derive the relative importance of weights using data 

collected in different operational environments and  

(d) the implementation of two consistency checks to reduce mismatches.  
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These new features have all contributed to the improved performance of the algorithm. The 

enhanced topological MM algorithm identified 96.36% of the road segments correctly in an 

urban area; and 97.01% of the road segments with a horizontal accuracy of 8.9m (95%) in a 

suburban area. The optimal weights for different factors such as heading, proximity, 

connectivity and turn-restriction may be transferable as these values were estimated from a 

range of datasets collected from various road environments. This requires further testing. 

 

This topological MM algorithm is fast, simple and very efficient and therefore, has a good 

potential to be implemented by industry. This algorithm is capable of supporting navigation 

modules of many location-based ITS services operating in urban areas. This algorithm 

performs better than most existing topological MM algorithms reported in the literature and 

its performance is comparable with that of advanced MM algorithms.  

 

Further research will investigate the optimisation of weights using more positioning data from 

each operational environment to ensure that these optimal values are transferable. The 

performance of a tMM algorithm can further be improved by investigating the causes that are 

responsible for the mismatches and modifying the algorithm accordingly.  
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