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Developing an in silico minimum 
inhibitory concentration panel test 
for Klebsiella pneumoniae
Marcus Nguyen1,2,3, Thomas Brettin2,3, S. Wesley Long  4,5, James M. Musser4,5, Randall J. 
Olsen4,5, Robert Olson2,3, Maulik Shukla2,3, Rick L. Stevens2,3,6, Fangfang Xia2,3, Hyunseung 
Yoo2,3 & James J. Davis2,3

Antimicrobial resistant infections are a serious public health threat worldwide. Whole genome 
sequencing approaches to rapidly identify pathogens and predict antibiotic resistance phenotypes 
are becoming more feasible and may offer a way to reduce clinical test turnaround times compared 
to conventional culture-based methods, and in turn, improve patient outcomes. In this study, we use 
whole genome sequence data from 1668 clinical isolates of Klebsiella pneumoniae to develop a XGBoost-
based machine learning model that accurately predicts minimum inhibitory concentrations (MICs) for 
20 antibiotics. The overall accuracy of the model, within ±1 two-fold dilution factor, is 92%. Individual 
accuracies are ≥90% for 15/20 antibiotics. We show that the MICs predicted by the model correlate 
with known antimicrobial resistance genes. Importantly, the genome-wide approach described in this 
study offers a way to predict MICs for isolates without knowledge of the underlying gene content. 
This study shows that machine learning can be used to build a complete in silico MIC prediction panel 
for K. pneumoniae and provides a framework for building MIC prediction models for other pathogenic 
bacteria.

Klebsiella pneumoniae infections are a major cause of morbidity and mortality worldwide. Over the past several 
years, the emergence of antimicrobial resistant (AMR) K. pneumoniae strains has been increasing at an alarming 
rate, with reports of pan-resistant strains appearing in the literature and lay press1–3. Reports of hospital-based 
outbreaks are particularly concerning, and recent evidence suggests that AMR K. pneumoniae clones are cir-
culating in the community3–5. As antimicrobial resistance increases, fewer effective antibiotics are available for 
physicians to treat these life-threatening infections. In response, the World Health Organization recently listed 
carbapenem and third generation cephalosporin resistant Enterobacteriaceae (including K. pneumoniae) among 
the most critical organisms for antimicrobial drug development6.

When a patient is diagnosed with an infection, it is critically important to prescribe appropriate antimicrobial 
therapy as quickly as possible. Rapid pathogen identification and appropriate antimicrobial therapy adminis-
tration significantly decreases mortality, improves patient outcomes, reduces health care costs, and decreases 
the use of ineffective or inappropriate antibiotics7–9. For bloodstream infections, mortality increases every hour 
that appropriate therapy is delayed9. The conventional clinical microbiology laboratory evaluation of a suspected 
infection requires inoculation of the specimen on primary culture media and incubation until there is suffi-
cient growth to perform taxonomic identification and minimal inhibitory concentration (MIC) determination. 
In many cases, subcultures are needed to purify mixed cultures containing more than one organism or generate 
sufficient colonial material for testing. Depending on the growth rate of the organism and the MIC testing proce-
dures used, the multiple culture steps can add one or more days to the laboratory workup10,11.

Compared to conventional culture-based methods, rapid molecular assays may significantly reduce turn-
around times by eliminating one or more subculture steps. The most common sequence-based methods for 
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predicting the AMR phenotypes of an organism identify the presence of genes implicated in resistance using 
PCR, microarrays or whole genome sequencing12–14. Well-designed gene-based detection methods are capable 
of providing an accurate prediction of susceptibility or resistance for the genes tested, but and there are several 
limitations to this approach. First, it relies on well-curated databases of AMR genes, which can be difficult to 
maintain15–18. For example, the commonly used databases of AMR genes are currently excellent at cataloging 
well-studied AMR genes like β-lactamases19, but often lack data for diverse efflux mechanisms18. Second, 
similarity-based matching strategies to determine AMR gene content may incorrectly assign AMR functions 
to paralogous non-AMR genes. Gene based approaches may also fail to identify critical mutations in intergenic 
regions, including regulatory and promoter sequences, leading to a false-negative susceptibility prediction. Also, 
PCR based methods use primers for amplification, which may not anneal if mutations are present in the comple-
mentary region, again rendering an incorrect result. Finally, since these methods are based on preexisting knowl-
edge of AMR conferring genomic regions, they are not able to predict resistance if the molecular mechanism is 
unknown or multifactorial.

The public sharing of whole genome sequence data with clinical AMR metadata has enabled the use of 
machine learning (ML) methods that predict AMR phenotypes without relying on a database of preexisting AMR 
genes or mutations. Two recent studies have used this approach to obtain accurate predictions of susceptibility 
or resistance in organisms with no a priori information about the gene content of the organisms20,21. To do this, 
they used short nucleotide k-mers as features and the laboratory derived AMR phenotypes as labels. Other studies 
have successfully used AMR genes, SNPs, and whole genome sequence data (or a combination thereof) to build 
ML classifiers with good accuracies22–27. Recent examples of gene-based and whole genome-based classification 
approaches for Klebsiella were reported by Stoesser et al.27, Long et al.3, and Pesesky et al.24.

To date, most AMR prediction methods have focused on classifying “susceptible” and “resistant” phenotypes. 
While simple and oftentimes sufficient, this approach can be error prone because it relies on the clinical interpre-
tations of break point values. Also, intermediate phenotypes do not fit within this classification scheme. A small 
number of studies have attempted to predict MICs based on gene content28–30. One notable recent publication 
used an ML algorithm trained on the SNPs from several key AMR genes to successfully predict MICs for Neisseria 
gonorrhoeae29.

In this study, we present an ML approach for predicting MICs for K. pneumoniae. Our strategy requires no a 
priori knowledge of the underlying gene content. The current model offers MIC prediction for 20 antibiotics. To 
our knowledge, this is the largest MIC prediction study for a human pathogen to date. We discuss the strengths 
and limitations of our approach and the necessary steps required to implement in silico MIC prediction using 
whole genome sequence data for K. pneumoniae in the clinical laboratory.

Results
Approach. For several years, the microbiology laboratory at Houston Methodist Hospital System has been 
banking clinical isolates of K. pneumoniae. We recently sequenced the genome of AMR K. pneumoniae strains 
recovered from patients between 2011 and 20153. Our goal is to use whole genome sequencing to detect the emer-
gence of highly virulent clones, monitor the spread of AMR, and guide patient care decisions31,32. We routinely 
perform whole genome sequencing in our clinical laboratory. Importantly, as the cost and speed of whole genome 
sequencing continues to decrease, it increasingly becomes a viable option for routine microbial diagnostics.

Using the whole genome sequence data for our K. pneumoniae clinical isolates, we sought to build an ML 
model that accurately predicts the MIC for 20 antibiotics. We chose a strategy that uses the entire genome as 
input, rather than individual genes, since this approach requires no a priori knowledge of the underlying gene 
content, and could potentially use data from uncharacterized AMR genes, intergenic or polymorphic coding 
regions, or non-AMR genes that may indirectly effect the MIC. To accomplish this, we computed the counts of all 
overlapping 10-mer oligonucleotide k-mers and combined them with the clinical laboratory generated MIC data 
for each antibiotic to form one large matrix containing both the k-mers and antibiotics as features. After exploring 
the problem as both a multiclass classification problem and a regression problem and evaluating common ML 
algorithms, we chose an extreme gradient boosting regression model through the XGBoost library33 (Fig. 1). 
We then iteratively evaluated the available parameters of the algorithm to maximize the accuracy of the model 
(Figure S1, Materials and Methods).

Model Accuracy. A 10-fold cross validation was used to access the overall stability and accuracy of the 
model. The raw accuracy of the model, defined as the ability to predict the exact laboratory derived MIC for a 
given genome and antibiotic (Supplemental Table S1), and accuracy within ±1 two-fold dilution factor (or 1-tier) 
of the actual MIC was measured (Table 1). Bounding the accuracy to within one two-fold dilution factor of the 
laboratory determined MIC is consistent with current FDA standards for diagnostic tools and conventional clin-
ical microbiology practices34,35. We also evaluated the model based on the very major error (VME) rate, defined 
as a resistant isolate having a MIC that is predicted to be susceptible, and the major error rate (ME), defined as a 
susceptible isolate having a MIC that is predicted to be resistant. MIC thresholds for susceptibility and resistance 
for clinical data and model predictions are based on current CLSI breakpoints36.

The average raw accuracy of the entire model, testing on all available MICs for 20 antibiotics was 69% with 
a 95% confidence interval of [68%; 69%]. The within 1-tier accuracy was much higher, at 92% with a 95% con-
fidence interval of [92%; 92%] (Table 1, Supplemental Table S1). The large difference between the raw accuracy 
and the within 1-tier accuracy is probably the result of a variety of factors including the inherent error in the lab-
oratory MIC testing procedure37, variations in growth and testing conditions, MICs with > and < values (which 
may actually represent a range of values), and a possible lack of discriminating genetic features between adja-
cent MIC dilutions. The raw accuracies and within 1-tier accuracies for the individual antibiotics track similarly, 
with the raw accuracies being lower and the within 1-tier accuracies being markedly higher. Overall, 15 of the 
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20 antibiotics have within 1-tier accuracies ≥90%. Three antibiotics have within 1-tier accuracies = 89%, while 
piperacillin/tazobactam and cefepime had lower within 1-tier accuracies of 78% and 61%, respectively (Table 1).

The accuracy of the model varies across the MICs for each antibiotic, in part, due to nonuniform representa-
tion of genomes for every possible value; however, the included genomes are representative of K. pneumoniae 
strains causing human infections. Figure 2 depicts the number of genomes and the within 1-tier accuracy for 
each MIC and antibiotic. Overall, MICs represented by many genomes tend to have high accuracies and MICs 
represented by fewer genomes tend to have lower accuracies. For example, the model has higher accuracies for 
β-lactam resistant MICs than susceptible MICs because there are fewer genomes for susceptible strains in our 

Figure 1. The pipeline used to optimize and train the XGBoost model using known data (blue), and to predict 
the MIC values for a new genome (yellow).
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data set. In some cases, the model appears to be able to successfully interpolate over bins with a small number of 
samples. For example tobramycin MIC = 4 µg/ml, which is in between bins with deep sampling and high accu-
racy had 23 samples and an accuracy equal to 90%. Accuracies and confidence intervals for all bins are shown in 
Supplemental Table S2. The actual and predicted MICs for each genome are displayed in Supplemental Table S3.

The average VME rate for the entire model was 3.1% with a 95% confidence interval of [2.8%;3.4%](Table 2). 
The average ME rate was 3.7% with a confidence interval of [3.3%;4.1%] (Table 2). The VME ranged from 0 for 
ampicillin and ceftriaxone to 30% for amikacin. Poorer prediction of amikacin MICs is likely due to the lower 
representation of amikacin resistant genomes in the dataset. Eleven of the antibiotics have VME rates with confi-
dence intervals between 1.5 and 7.5% for the lower and upper bounds respectively. Likewise, 12 of the antibiotics 
have ME rates ≤3%. These results align with FDA diagnostic device standards34, suggesting that our model may 
be suitable for clinical use. However, it must be noted that susceptible and resistant MICs are not balanced in the 
data set, so the lowest VME rates tend to track with antibiotics that have the largest number of resistant genomes. 
We plan to test additional K. pneumoniae strains with these AMR phenotypes to fill this gap.

Antibiotic Samples Accuracya 95% C.I.b

All 32705 0.92 0.92, 0.92

Amikacin 1667 0.97 0.96, 0.98

Ampicillin 1666 1.00 0.99, 1.00

Ampicillin/Sulbactam 1664 0.99 0.99, 1.00

Aztreonam 1644 0.89 0.89, 0.90

Cefazolin 1667 0.96 0.95, 0.96

Cefepime 1571 0.61 0.58, 0.64

Cefoxitin 1645 0.90 0.89, 0.91

Ceftazidime 1667 0.92 0.91, 0.93

Ceftriaxone 1667 0.89 0.87, 0.90

Cefuroxime sodium 1575 0.99 0.99, 1.00

Ciprofloxacin 1664 0.98 0.97, 0.98

Gentamicin 1667 0.95 0.93, 0.96

Imipenem 1666 0.94 0.93, 0.95

Levofloxacin 1666 0.97 0.96, 0.97

Meropenem 1660 0.93 0.91, 0.95

Nitrofurantoin 895 0.96 0.95, 0.97

Piperacillin/Tazobactam 1662 0.78 0.77, 0.79

Tetracycline 1667 0.89 0.87, 0.90

Tobramycin 1666 0.95 0.94, 0.96

Trimethoprim/Sulfamethoxazole 1667 0.95 0.94, 0.96

Table 1. Accuracies for the entire XGBoost model and for the individual antibiotics. aAverage accuracy within 
±1 two-fold dilution factor, based on a 10-fold cross validation. b95% confidence interval.

Figure 2. The accuracy of the XGBoost model for individual MICs. The X-axis of the heatmap shows the actual 
MIC (µ g/ml) for a bin and the Y-axis lists the antibiotics. The within ±1-tier accuracy of a particular antibiotic-
MIC bin is denoted by color, with red and orange being least accurate and bright yellow and green being most 
accurate. The number within each cell represents the number of samples (genomes with the MIC) within the bin.
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Correlation with AMR Genes. The XGBoost algorithm generates a regression model that is based on an 
ensemble of decision trees. In our model, these decision trees split the data based on k-mers that distinguish the 
different antibiotics and MICs. Interpreting the features that are being selected by the model and subsequently 
understanding their relationship to a given antibiotic and resistance mechanism can be challenging for several 
reasons. Primarily, understanding the feature importance is an open graph theory problem. Furthermore, if an 
important k-mer maps to an uncharacterized gene or genomic region, it becomes difficult to determine if it is 
a hallmark of resistance or susceptibility. Finally, unambiguously associating a k-mer to a given antibiotic may 
inappropriately confer resistance to several related antibiotics, and we know that this dataset contains multiple 
resistance gene types such as the Bla-KPC and TEM β-lactamases3.

In general, the AMR that is detected in K. pneumoniae strains isolated from patients is usually conferred by 
the acquisition of antibiotic resistance genes rather than an accumulation of SNPs3,38. We reasoned that in many 
cases, the MICs for an antibiotic should correlate with the occurrence of genes known to confer resistance to that 
antibiotic. By comparing the correlation of MICs and functions with the correlation that is based on the predicted 
MICs from the model, we gain an understanding of the relationship between MICs and AMR genes. We can also 
observe how closely the model is replicating these relationships. To do this, we computed the Pearson correlation 
coefficient (PCC) between the MICs for each genome and the presence or absence of each unique function in 
each genome (Table 3, Supplemental Table S4).

In the case of 12 antibiotics, we observe high PCCs between the MICs and the functions for well-known AMR 
genes. For example, the β-lactam antibiotics correlate with the CTX, KPC and TEM type β-lactamase genes and 
the aminoglycoside antibiotics correlate with aminoglycoside acetyltransferase genes. For 8 of the 20 antibiotics, 
the association between the functions and AMR is not obvious. In some of these cases, the functions appear to be 
related to horizontal gene transfer, and this may have resulted in their high PCCs. In other cases, the genes may 
not be sufficiently characterized by the raw 10-mer counts. When the analysis is repeated using MICs that are 
predicted by the model, the PCCs track very closely with those generated from the actual MICs, indicating that 
the model is not only learning that these genes exist (the model is only fed 10-mer counts, not whole genes), but it 
is also placing importance on these genes. Similarly, there is considerable overlap between the top ten most highly 
correlated functions based on the actual and predicted MICs (Table 3, last column).

In previous work, we built 16 AdaBoost-based classifiers for predicting susceptibility and resistance and 
installed them in the RAST annotation system3. Thirteen of the antibiotics that were used to build these classifiers 
are represented in our MIC prediction model. The top genomic regions predicted by the K. pneumoniae AdaBoost 
classifiers correspond to the most most highly correlated functions from the MIC prediction model in for four of 
the thirteen antibiotics. These include gentamicin, imipenem, meropenem and tetracycline. The top AdaBoost 
feature can be found found among the top five most highly correlated functions in three more cases including 
aztreonam, cefoxitin, and trimethoprim/sulfamethoxazole. Since the AdaBoost classifiers match SNPs in gyrase 
and topoisomerase genes conferring resistance to ciprofloxacin and levofloxacin, assessing the correlation to the 

Antibiotic Resistant Susceptible VMEa VME 95% C. I.b MEc ME 95% C. I.b

All 21404 9410 0.031 0:028, 0:034 0.037 0:033, 0:041

Amikacin 103 1320 0.298 0:239, 0:358 0.000 0:000, 0:000

Ampicillin 1635 4 0.000 0:000, 0:000 0.000 0:000, 0:000

Ampicillin/Sulbactam 1455 90 0.003 0:000, 0:007 0.032 −0:021, 0:085

Aztreonam 1407 216 0.001 −0:001, 0:002 0.398 0:333, 0:462

Cefazolin 1570 97 0.060 0:047; 0:072 0.018 −0:009, 0:046

Cefepime 963 418 0.007 0:002, 0:012 0.137 0:077, 0:197

Cefoxitin 828 667 0.077 0:060, 0:095 0.009 −0:001, 0:019

Ceftazidime 1488 136 0.005 0:001, 0:008 0.123 0:069, 0:177

Ceftriaxone 1528 80 0.000 0:000, 0:000 0.188 0:101, 0:274

Cefuroxime sodium 1469 91 0.002 0:000, 0:004 0.010 −0:013, 0:033

Ciprofloxacin 1424 201 0.005 0:000, 0:010 0.025 0:000, 0:050

Gentamicin 683 926 0.072 0:061, 0:082 0.009 0:001, 0:017

Imipenem 478 1160 0.040 0:012, 0:067 0.032 0:021, 0:043

Levofloxacin 1287 349 0.016 0:006, 0:025 0.020 0:006, 0:034

Meropenem 481 1134 0.048 0:034, 0:062 0.027 0:017, 0:038

Nitrofurantoin 719 55 0.018 0:009, 0:027 0.227 0:098, 0:356

Piperacillin/Tazobactam 1048 432 0.025 0:011, 0:038 0.012 0:000, 0:023

Tetracycline 778 739 0.114 0:095, 0:134 0.008 0:001, 0:015

Tobramycin 723 589 0.040 0:023, 0:057 0.012 0:002, 0:022

Trimethoprim/Sulfamethoxazole 1251 416 0.119 0:098, 0:140 0.108 0:082, 0:134

Table 2. Error rates for the entire XGBoost model for the individual antibiotics. aVME, Average very major 
error rate, which is defined as the percentage of resistant samples that are incorrectly predicted to be susceptible 
by the model. b95% confidence interval for the average VME and ME rates, respectively. cME, Average major 
error rate, which is defined as the percentage of susceptible samples that are incorrectly predicted to be resistant 
by the model.
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presence of functions will not work for these two antibiotics. It is not immediately clear why the top features for 
the other four antibiotics (amikacin, cefepime, piperacillin/tazobactam and tobramicin) are not highly correlated, 
but no characterized AMR functions appear in the top 10 most highly correlated features.

Building a Model Based on AMR Genes. Although we chose to build a model that was based on data 
from the entire genome, previous studies have built MIC prediction models using the known AMR genes28–30. 
We wanted to know whether a model based on whole genome data, or a model based on only AMR genes would 
be more accurate. On one hand, the extra k-mers used by the whole genome model could be a source of noise, 
but on the other hand, they may represent useful data that could making the model more accurate. To make this 
comparison, we built a model that used only the AMR genes as the source of k-mers, keeping all other parameters 
identical. Both the PATRIC annotation service18,39 and the CARD database15 were used as sources of potential 
AMR genes. The overall accuracies for the whole genome and AMR gene-based models are both 92%. Likewise, 
the individual accuracies for each antibiotic are also nearly identical, differing by no more than 2% for any anti-
biotic (Supplemental Table S5, Supplemental Figure S2). This indicates that the extra k-mers used by the whole 
genome are not a source of noise for the XGBoost model. Since the AMR genes model is much smaller than the 
whole-genome model (20GB vs. 148GB), it is more efficient to compute, and it is therefore tempting to conclude 
that a model built from AMR genes is sufficient for performing MIC prediction for K. pneumoniae. However, due 
to the smaller number of susceptible and intermediate samples in this data set, more genome sequencing is neces-
sary to determine if a model built from AMR genes is sufficient for accurately predicting these lower MIC values.

When we repeat this analysis building an identical model for the leftover non-AMR genes, we also observe 
an overall accuracy of 92%, and accuracies for individual antibiotics that track closely with the models built from 
full contigs and AMR genes (Supplemental Table S5, Supplemental Figure S2). This indicates that there is enough 
residual data in the non-AMR genes to accurately predict MIC values as well. This could be due to the presence 
of uncharacterized AMR genes in the data set, the existence of relevant information such as non-AMR genes 
co-occurring with AMR genes, or variants in non-AMR genes that have an impact on MICs. In the case of all three 
models, it is unlikely that the accuracy is due to the model mapping to a phylogenetic pattern between strains, since 
nearly clonal strains of the same MLST type can have a variety of different MIC values per antibiotic, and closely 
related strains can be quite diverse in their AMR gene content (Supplemental Table S6, Supplemental Figure S3).

Antibiotic PATRIC Function PCC Actual MICa PCC Predicted MICb Top 10 Coveragec

Meropenem
Class A beta-lactamase (EC 3.5.2.6) => KPC 
family, carbapenem-hydrolyzing

0.923 0.814 0.7

Trimethoprim Sulfamethoxazole
Dihydropteroate synthase type-2 (EC 2.5.1.15) @ 
Sulfonamide resistance protein

0.919 0.758 0.9

Imipenem
Class A beta-lactamase (EC 3.5.2.6) => KPC 
family, carbapenem-hydrolyzing

0.891 0.905 0.8

Cefepime
Class A beta-lactamase (EC 3.5.2.6) => CTX-M 
family, extended-spectrum

0.848 0.648 0.9

Tobramycin
Aminoglycoside N(6′)-acetyltransferase (EC 
2.3.1.82) => AAC(6′)-Ib/AAC(6′)-II

0.837 0.853 0.8

Tetracycline Tetracycline resistance regulatory protein TetR 0.829 0.717 0.8

Ceftriaxone
Class A beta-lactamase (EC 3.5.2.6) => CTX-M 
family, extended-spectrum

0.823 0.700 0.7

Gentamicin
Aminoglycoside N(3)-acetyltransferase (EC 
2.3.1.81) => AAC(3)-II,III,IV,VI,VIII,IX,X

0.818 0.862 0.6

Ampicillin Sulbactam
Class A beta-lactamase (EC 3.5.2.6) => TEM 
family

0.780 0.787 0.8

Ciprofloxacin Integron integrase IntI1 0.715 0.713 0.8

Aztreonam Integron integrase IntI1 0.678 0.614 0.7

Cefazolin
Class A beta-lactamase (EC 3.5.2.6) => CTX-M 
family, extended-spectrum

0.676 0.667 0.9

Cefuroxime sodium
Aminoglycoside N(3)-acetyltransferase (EC 
2.3.1.81) => AAC(3)-II,III,IV,VI,VIII,IX,X

0.668 0.616 0.3

Ceftazidime Integron integrase IntI1 0.657 0.623 0.6

Levofloxacin probable bacteriophage protein STY1063 0.588 0.584 0.7

Piperacillin Tazobactam plasmid stabilization system 0.583 0.501 0.1

Amikacin IncI1 plasmid conjugative transfer prepilin PilS 0.577 0.478 0.2

Cefoxitin
Class A beta-lactamase (EC 3.5.2.6) => KPC 
family, carbapenem-hydrolyzing

0.550 0.571 0.6

Nitrofurantoin Integron integrase IntI1 0.433 0.507 0.6

Ampicillin
Class A beta-lactamase (EC 3.5.2.6) => TEM 
family

0.357 0.327 0.0

Table 3. The function that is most highly correlated with the MICs for each antibiotic. aPearson correlation 
coefficient between the occurrences of the given function and the actual MICs. bPearson correlation coefficient 
between the occurrences of the given function and the predicted MICs. cThe fraction of the top 10 functions (by 
PCC) for the predicted MICs that occur in the top 10 for the actual MICs.
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Discussion
Using the clinical laboratory determined MICs and whole genome sequence data for 1668 K. pneumoniae strain 
recovered from infected patients, we built an XGBoost regression model that can predict the MICs for 20 antibiot-
ics with an average within ±1-two fold dilution factor accuracy of 92%. Individually, 15 of the 20 antibiotics have 
within 1-tier accuracies >90%. These results demonstrate that accurate genome-based MIC prediction is possible 
for K. pneumoniae isolates. Herein, we provide the necessary groundwork for building a complete in silico panel.

To date, our whole genome sequencing efforts have focused on the most highly antibiotic resistant pathogens, 
including extended spectrum β-lactamase-(ESBL) producing K. pneumoniae3, so the model currently lacks suffi-
cient inclusion of organisms with MICs in the lower range. We also currently lack sufficient data to predict MICs 
for some less-commonly tested antibiotics, including amoxicillin/clavulanate, ertapenem, fosfomycin, moxiflox-
acin ticarcillin/clavulanate and tigecycline. Ideally, selecting a balanced number of organisms at each possible 
MIC could improve the overall accuracy of the model. Our future efforts will seek to close these gaps. Inclusion 
of additional strains will also improve the ME and VME rates. The K. pneumoniae strains used in our model were 
collected as part of a large, comprehensive, population-based study in Houston. Although our sampling capacity 
is extensive and we treat a diverse population of patients from Houston and around the world, the model may be 
further improved by including samples from other geographic locations.

In previous work, we built binary classifiers that can predict susceptibility or resistance for a given species and 
antibiotic18,20. Although somewhat simplistic in approach, the method provides a straightforward way to extract 
the genomic features relating to resistance. In this study, in order to achieve high accuracies for predicting each 
MIC, we combined the antibiotics and k-mers into a large matrix and used XGBoost as the ML method. While 
the approach is clearly advantageous because it provides a more refined phenotype prediction, feature extraction 
from this kind of model remains quite challenging. Although we have shown strong correlations between the 
actual MICs and predicted MICs with known AMR genes, we will continue to explore ways to extract the key 
gene data that contributes to each MIC. Importantly, these studies may provide new insight to the molecular 
mechanisms conferring intermediate phenotypes.

We chose to present a model that was built using k-mers from the entire genome because it requires no under-
lying information about the gene content of the organisms. Furthermore, since it is likely that genomic features 
that are not annotated as being directly involved in conferring AMR may be causing the distinction between 
lower MICs, a whole-genome approach may eventually lead to higher accuracies as we acquire more data. Using a 
whole-genome-based approach may also lead to an improved understanding the genomic features that are causing 
the various MIC phenotypes. However at present, the current data set and MIC data for K. pneumoniae published by 
other groups40–43 lacks sufficient sampling of genomes with susceptible and intermediate phenotypes to determine 
if either approach will ultimately differ in accuracy. If the XGBoost model remains robust on the smaller datasets 
like the AMR and non-AMR gene sets, this implies that it may be possible to build models that can predict AMR 
phenotypes from incomplete genomic data, which may help to enable the characterization of metagenomic samples.

In this study, we found that deeper trees, with a depths of 3–4, were optimal for the XGBoost model. A logical 
next step will be to train a deeper model, like a neural network, on this data set to determine if the accuracy can 
be further improved. A deep learning approach may also provide more efficient memory usage and reduced 
computational times. However, this strategy would not improve the extraction and interpretation of AMR-related 
genomic features, since feature extraction from deep learning methods is more challenging compared to ensem-
ble methods such as XGBoost.

The genomes used in this study were sequenced using Illumina sequencing technology. In order to generate 
genome sequence data cost effectively, we collected samples and performed highly multiplexed runs in batches. 
However, this is not a clinically time efficient strategy. Newer devices such as the PacBio Sequel and Oxford 
MinION could potentially be used for point of care sequencing, and thus, may become a model for whole genome 
sequence-based diagnostic strategies44. However, at present, the cost of sequencing individual pathogens using 
these technologies is higher, and their error rates may be too high for effective MIC prediction with our ML 
method45. In order to couple the MIC prediction model outlined in this study with these sequencing platforms, 
we may need to either incorporate an error correction model for processing MinION or PacBio reads, or regener-
ate the model using genomes sequenced with these technologies. Further analyses to sequence based off of blood 
enrichment cultures, or from the actual wound source, rather than the pure culture, would also provide more 
rapid results, but require algorithms for identifying pathogens and eliminating host DNA and other contami-
nants. Regardless, sequence-based MIC prediction appears to be feasible as a diagnostic strategy.

Methods
Strain collection. Klebsiella pneumoniae isolates were cultured from patient specimens in the Houston Methodist 
Hospital System between September of 2011 and March of 2017. Strains were tested for minimum inhibitory concen-
trations to 20 antibiotics using the BD-Phoenix system (BD Diagnostics, Sparks, MD, USA). All of the strains collected 
before 2015 were originally part of two studies by Long and colleagues designed to track extended spectrum β-lacta-
mase- (ESBL) producing strains3,46. A total of 1497 strains from the Long et al. study with BD-Phoenix MIC data were 
used in this analysis (Supplemental Table S3). An additional 171 isolates, 93 ESBL-producing and 78 non-ESBL-pro-
ducing (Phoenix ESBL test; BD), were also panel tested, whole genome sequenced, and used in this study. In total, we 
analyzed 1668 Klebsiella pneumoniae genomes. Strains were collected with informed consent under human subjects 
protocol IRB1010-0199 as approved by the Institutional Review Board, Houston Methodist Research Institute.

DNA extraction and whole-genome sequencing. Genomic DNA was extracted using the manu-
facturer’s Gram-negative protocol for the DNeasy Blood and Tissue kit (Qiagen) and quantified using a Qubit 
3.0 instrument (Invitrogen). Whole-genome sequencing libraries were prepared using NexteraXT reagents 
(Illumina) and sequenced on a MiSeq or NextSeq. 500 instrument (Illumina).
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Data preparation. When the MICs produced from the BD-Phoenix tests exceeded the testing thresholds, 
they were cleaned to remove the >, <, ≥, and ≤ symbols. If the MIC was >x, the MIC label was changed to 2x, if 
it was <x, the MIC was changed to x

2
, and if the MIC was ≥x or ≤x, the symbol was removed and the MIC 

remained unchanged. The Log2 value of these cleaned MICs were used for all ML tasks. For dual antibiotics with 
two MICs, such as trimethoprim/sulfamethoxazole, the first value was used in all cases, since the second value is 
either constant or dependent on the first.

Experimental design. Genomes were assembled with SPAdes47 using the PATRIC assembly service39. 
Contigs with ≤500 bp and ≤5-fold coverage were removed. The contigs were divided into overlapping 10-mer 
oligonucleotide k-mers, sorted in lexicographical order and counted using the software package KMC248. K-mer 
counts and antibiotic names were used as input features into the model. Antibiotic names were one-hot encoded. 
In this study, we chose to use 10-mers as features, rather than a longer k-mer length, in order to reduce the size 
of the matrix. This enabled us to load the matrix into memory and perform cross validation on a machine with 
1.5TB RAM. Shorter k-mers of size 4 and 8 were also evaluated, but were not chosen because they are more likely 
to be redundant within a genome and because they had lower initial accuracies. The dataset was then split into 
equal training, validation and testing sets. Each subset was created so that it contained the same number of MICs 
for a given antibiotic. The final distribution antibiotics used in the model is uniform, but the number of samples 
for a given MIC per antibiotic was not uniformly distributed.

The prediction of MICs can be cast as a regression problem or a multi-class classification problem with each 
MIC representing an individual class. We explored several popular ML algorithms including AdaBoost (Adaptive 
Boosting)49, bagging50, random forest51, extremely randomized trees52, and support vector machines53 from 
the scikit-learn python package54, as well as XGBoost (Extreme Gradient Boosting)33. Using default parameter 
choices, we attempted to cast the problem as both a classification and regression problem depending on the capa-
bilities of the algorithm. Algorithms were compared based on accuracy and computational resources required. An 
XGBoost regression model was ultimately chosen for this study because it produced the highest default accuracies 
and had reasonable computation costs for the current data set.

To assess the sensitivity of the model with regard to the training data, we performed a ten-fold cross validation 
by taking all samples and randomly splitting them into 10 mutually exclusive sets. Each set was split such that 
all sets had an equal (or nearly equal) number of antibiotic-MIC combinations. Ten models were then generated 
using 8 of the sets for training, one for validation, and one for testing. In total, 10 models were created. The accu-
racy within ±1 two-fold dilution factor was computed along with the 95% confidence intervals for each model. 
This aligns with clinical practice and FDA device guidelines34.

Hyperparameter tuning. Important hyperparameters from XGBoost were then selected and tuned using a 
2k factorial design55 and a grid search, respectively. The model was tested for stability using a 10-fold cross valida-
tion. The 2k factorial design was used to tune 3 XGBoost parameters: maximum tree depth, column subsampling 
and row subsampling. The maximum tree depth parameter limits the maximum height of a decision tree while 
creating the ensemble. A value that is too high tends to overfit data whereas a value that is too low tends to under-
fit data33. A low value of 1 and a high value of 6 (6 is the default) were used to evaluate the impact of tree depth on 
the accuracy of the model. The column subsampling parameter limits the number of features that are chosen for 
training each tree in the ensemble. For example, if 0.5 is chosen, 50% of the features (k-mers) will be randomly 
chosen to train the first tree, then a different 50% for the second, and so on. A low value of 0.25 and a high value of 
1 (1 is the default and maximum value allowed for XGBoost) were chosen. The row subsampling parameter limits 
the number of samples that are chosen for training for each tree in the ensemble. For example, if 0.5 is chosen, 
50% of the samples (MIC tests) will be randomly chosen to train the first tree, then a different 50% for the second, 
etc. A low value of 0.25 and a high value of 1 (1 is the default and maximum value allowed for XGBoost) were 
chosen for evaluation.

The accuracy of the XGBoost model was evaluated in two ways. First, the accuracy of each individual MIC 
prediction over the test set was assessed within ±1 two-fold dilution factor. Secondly the coefficient of determi-
nation, or R2, was also used as a metric during the hyperparameter tuning.

A 2k factorial design assumes that as a parameter is increased or decreased, the metric that is being tested will 
either increase or decrease. Additionally, it only gives an idea of the parameters that are important and not the 
optimal value for a given parameter. Since the accuracy is not known to always increase or decrease as the maxi-
mum tree depth value goes up33, this parameter needed to be tested systematically. A grid search56 was designed 
based on the results of the 2k factorial design to deal with both issues. Since learning rate is known to have a rela-
tionship with maximum tree depth, we systematically varied the maximum tree depth and the learning rate, in 
tandem, in a grid search experiment with respect to accuracy33.

The results of the 2k factorial design showed that when tuning the model, a higher maximum tree depth was 
preferable. Different values of row and column subsampling did not cause variance in the accuracy of the model, 
though a larger value was deemed to produce a more accurate model. Both factors had already been maximized 
at 1 during the 2k factorial. Supplemental Figure S1a shows this in better detail.

The applied grid search showed that a lower value for the learning rate always returned a better solution. 
However, as the learning rate decreased, the training time increased. The gain in accuracy was deemed too small 
for the price (time) with a learning rate of 2−4. During testing we also found that a maximum depth between 3 
and 4 was optimal for the Klebsiella data used to train the algorithm. Supplemental Figure S1b shows this in better 
detail.
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Genome Annotation and AMR gene analyses. All genomes were annotated using the PATRIC annota-
tion service in August of 201739. MLST (Multi Locus Sequencing Typing) was performed by the PATRIC annota-
tion service and was based on Diancourt et al.57. AMR genes are defined as those having AMR-related functions 
(annotations) defined by PATRIC18 as well as all genes encoding proteins matching the CARD database15 with 
BLASTP identity scores >= 80%58. Non-AMR genes are defined as those that do not match the AMR set. A MIC 
prediction model built only from AMR genes was computed the same as the final whole genome-based model 
described above.

Correlation analyses were performed by first gathering the set of uniquely occurring functions from every 
K. pneumoniae genome. For each genome, the presence (+1) or absence (−1) of a function was compared to 
the MIC for an antibiotic. The Pearson correlation coefficient was computed for every function and antibiotic 
combination.

The phylogenetic tree in Supplemental Figure S3 was built by generating alignments for the seven MLST 
housekeeping genes, rpoB, gapA, mdh, pgi, phoE, infB, and tonB57 using MAFFT59, and then concatenating the 
them. The tree was generated using FastTree60. Genomes with identical sets of AMR genes are depicted by a single 
genome. The tree was rendered using iTOL61.

Data Availability. The model and software for predicting MICs in for K. pneumoniae genomes can be found 
at the PATRIC github page: https://github.com/PATRIC3/mic_prediction. All genomes were submitted to the 
SRA under bioprojects (PRJNA376414, PRJNA386693 and PRJNA396774). SRA run accession numbers for indi-
vidual genomes can be found in Supplemental Table S3.

Accession codes. All genomes were submitted to the SRA under bioprojects (PRJNA376414, PRJNA386693 
and PRJNA396774).
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