
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21396  | https://doi.org/10.1038/s41598-022-26026-z

www.nature.com/scientificreports

Developing an integrated approach 
based on geographic object‑based 
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Rapid detection and mapping of landforms are crucially important to improve our understanding of 
past and presently active processes across the earth, especially, in complex and dynamic volcanoes. 
Traditional landform modeling approaches are labor‑intensive and time‑consuming. In recent years, 
landform mapping has increasingly been digitized. This study conducted an in‑depth analysis of 
convolutional neural networks (CNN) in combination with geographic object‑based image analysis 
(GEOBIA), for mapping volcanic and glacial landforms. Sentinel‑2 image, as well as predisposing 
variables (DEM and its derivatives, e.g., slope, aspect, curvature and flow accumulation), were 
segmented using a multi‑resolution segmentation algorithm, and relevant features were selected 
to define segmentation scales for each landform category. A set of object‑based features was 
developed based on spectral (e.g., brightness), geometrical (e.g., shape index), and textural (grey 
level co‑occurrence matrix) information. The landform modelling networks were then trained and 
tested based on labelled objects generated using GEOBIA and ground control points. Our results show 
that an integrated approach of GEOBIA and CNN achieved an ACC of 0.9685, 0.9780, 0.9614, 0.9767, 
0.9675, 0.9718, 0.9600, and 0.9778 for dacite lava, caldera, andesite lava, volcanic cone, volcanic tuff, 
glacial circus, glacial valley, and suspended valley, respectively. The quantitative evaluation shows the 
highest performance (Accuracy > 0.9600 and cross‑validation accuracy > 0.9400) for volcanic and glacial 
landforms and; therefore, is recommended for regional and large‑scale landform mapping. Our results 
and the provided automatic workflow emphasize the potential of integrated GEOBIA and CNN for fast 
and efficient landform mapping as a first step in the earth’s surface management.

Landforms are the result of interior and exterior forces of ecological, hydrological, geomorphological, and geo-
logical processes that shape the Earth’s  surface1. The shapes and sizes of volcanic landforms range from small 
scoria cones to large flood  basalt2, which are classified into polygenetic and monogenetic  volcanoes3. The first type 
includes a shield, composite, and caldera volcanoes. The second category includes tuff rings and cones, mafic tiny 
centres (e.g., scoria and spatter cones), and maars and  kimberlites4. Volcanoes are among the most complicated 
and dynamic landforms. Tectonic setting, eruption way, lava composition and volume, surface environment, 
and age contribute to the significant morphological diversity of volcanic  landforms5. Volcanoes affect the terrain 
in the surrounding areas. Volcanism influences the landscape of a region in many ways, including the patterns 
and types of fissures and vents, the duration of its activity, the relative age of the volcanism, the composition 
and physical characteristics of the extruded material, and the amount and extent of  erosion6. Therefore, their 
locations and features must be detected and mapped.
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Glacial landforms in mountains are a critical water source for the future, particularly in semi-arid and arid 
 regions7. Studies have revealed that approximately 2.15% of the world’s drinkable water is stored as ice in polar 
and mountainous glaciers, with their residence times ranging from 20 to 100  years8,9. Typically, glacial landforms 
can be determined using a combination of the visible and shortwave infrared band ratios and Synthetic Aperture 
Radar (SAR) and topographic  datasets10. These techniques, on the other hand, are insufficient to detect and map 
glacial landforms, which are spectrally indistinguishable from the surrounding paraglacial  terrain11. In addi-
tion, atmospheric and earth factors may affect the spectral reflectance of glacial  landforms12. Therefore, accurate 
information and inventories of glacial landforms are essential to their management.

Advances in satellite remote sensing methods have provided accurate information from vast and inaccessible 
volcanic areas. Satellite remote sensing overcomes the limitations of field-based methods such as global position-
ing system (GPS), which can only be applied locally and during specific seasons and months. Using this method, 
volcanoes can also be monitored and mapped despite their remoteness and harsh  nature13,14. In previous studies, 
machine learning  methods15–19 and object-based image analysis (OBIA)6,13,14,20,21 were used to detect and map the 
Earth’s landforms. Image classification techniques based on machine learning have provided accurate information 
about the Earth’s  features22. As a strong alternative to traditional statistical methods, machine learning techniques 
that combine computational power with big data, are able to capture non-linear behaviors and learn as new data 
 arrive23. These techniques like Support Vector Machine (SVM) and logistic regression, on the other hand, need 
to pre-process the datasets using Histogram of Oriented Gradients methods or smoothing filters to overcome 
a specific classification problem. Additionally, the detection of the Earth’s features is largely carried out at the 
pixel level in machine learning-based  approaches24. Since landforms are representative of complicated features, 
expert knowledge plays a key role in the accuracy of their detection with conventional rule-based methods in 
geographic object-based image analysis (GEOBIA)25. Nonetheless, determining the appropriate thresholds for 
grouping objects into landforms based on each geomorphological diagnostic factor is a challenging  task26. Clas-
sification methods using only spectral information, such as the parallelepiped, the maximum likelihood, and 
the minimum distance from the mean are not sufficient for analyzing multispectral images at high resolutions. 
An object with a given earth’s feature tends to be represented by pixels with heterogeneous spectral reflectance 
characteristics in high spatial resolution  images27.

Recently, various machine learning-driven methods such as deep learning have been integrated with GEO-
BIA for the detection and mapping of land use/cover28–31, gully  erosion32,33, and  landslide34–36. According to the 
literature review, there is a limited number of research explored the efficiencies of an integrated GEOBIA and 
convolutional neural network (CNN) to delineate volcanic and glacial landforms.

Aim
In this study, we investigate the performance of an integrated GEOBIA and CNN approach for volcanic and 
glacial landforms mapping in Sahand Volcano, Iran by using Sentinel-2 imagery as the foundational dataset and 
secondary data, such as the Digital Elevation Model (DEM), slope, aspect, flow accumulation, and curvature. 
We also intend to compare the effectiveness of Ground Control Points (GCPs) gathered from the study area and 
objects that were generated by GEOBIA for training and validating the landform’s CNN model.

Datasets and methodology
Datasets. For volcanic and glacial landforms mapping, we acquired freely available Sentinel-2 imagery (with 
bands 2 (Blue), 3 (Green), 4 (Red), and 8 (NIR)). Although a high-resolution, freely available DEM for the study 
area exists (with spatial resolution of 12.5 m), it was necessary to have consistent and comparable datasets that 
would be applicable to other locations. Due to this, a national topographic map at a scale of 1:25,000 was used to 
drive DEM. With the spatial analysis carried out in the ArcGIS environment, secondary datasets were generated, 
including aspect, slope, curvature, and flow accumulation with a spatial resolution of 12.5 m (Fig. 1). In Table 1, 
we list the characteristics of predisposing variables for volcanic and glacial landforms.

To train the CNN models, we used an inventory map of volcanic and glacial landforms, delineated outlines 
generated from semi-automated GEOBIA, and ground control points (GCPs). All 935 GCPs (Fig. 7) were col-
lected from the study area with GPS, geomorphological maps, and Google Earth to validate the accuracy of 
GEOBIA-generated objects and CNN. 70% of these datasets were used to train models, while the remainder 
(30%) were employed to verify classification accuracy.

Methodology. An overview of the methodology for detecting and mapping volcanic and glacial landforms 
is shown in Fig. 2. In the first step, we segmented our datasets using the Multi-Resolution Segmentation (MRS) 
algorithm in the eCognition software (www. geospatial.trimble.com). Our next step was to generate landform 
image objects based on geometrical, textural, spectral and contextual features in GEOBIA. To train the land-
form CNN models, not only generated objects from GEOBIA but also an inventory map of volcanic and glacial 
landforms as well as GCPs were used. Finally, seven evaluation indexes, including intersection over union (IOU) 
values, recall (RC), precision (PC), specificity (SP), F-measure (FM), accuracy (ACC), kappa (KP), Fivefold cross 
validation as well as fuzzy synthetic evaluation (FSE) were employed to validate the accuracy of the classification 
results.

Geographic object‑based image analysis. GEOBIA is an image analysis paradigm, which relies on 
groups of homogeneous pixels to classify images’  features37. These image objects reveal real-world entities that 
are tested based on their textural, spectral, contextual, and geometrical features. Image objects are then classified 
on the basis of their features using a cohesive methodological platform, integrating multi-scale regionalization 
methods augmented with nested representations and rule-based  classifiers38. Such an integrated framework is 
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linking digital-based remote sensing and vector-based GIS  domain39. GEOBIA includes two main steps in this 
study, image segmentation and feature extraction.

Image segmentation. It has been argued that determining an optimal segmentation parameter value is a 
heuristic, subjective, challenging, and time-consuming process in the GEOBIA  literature40–42. As a result, sev-
eral GEOBIA software options have been developed to increase objectivity and automate the process of deter-
mining the optimal value, which are categorized into two groups namely free and open-source (GRASS GIS, 
Orfeo Toolbox, InterIMAGE, and RSGISLib) and commercial software (Trimble eCognition, L3Harris Geospa-
tial ENVI Features Extraction, Esri ArcGIS Pro, and PCI Geomatica)  options43. Based on an overview of over 
200 GEOBIA-based researches for earth’s features  classification40, found Trimble eCognition software the most 
popular (81%) image-segmentation method for satellite-based classification, while 4% employed L3Harris Geo-
spatial ENVI Features Extraction. Therefore, this study used eCognition software to extract landform-derived 
objects for CNN training. Table 2 represents a brief description of all available software/tools for object-based 
segmentation. Figure 3 also portrays segmentation results for eCognition ESP2, ENVI Feature Extraction, and 
GRASS GIS SPUS PO.

Following the preparation of the image dataset and the configuration of the legend, selected bands of the 
image dataset and predisposing variables are used for segmentation and merging in order to split the scene into 

Figure 1.  Various predisposing variables for volcanic and glacial landforms mapping, including (a) DEM, (b) 
aspect, (c) curvature, (d) slope, (e) flow accumulation, and (f) Sentinel-2 image.

Table 1.  Characteristics of predisposing variables for volcanic and glacial landforms mapping.

Characteristics Properties Source

Sentinel 2 Bands 2, 3, 4 and 8 (10 m) www. glovis. com

DEM 12.5 m Topographic map

Aspect 12.5 m DEM

Curvature 12.5 m DEM

Slope 12.5 m DEM

Flow accumulation 12.5 m DEM

http://www.glovis.com
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multiple components. As a result of this combined step, GEOBIA is able to produce real-world images represent-
ing real geographic  objects44. Multi-resolution segmentation (MRS) algorithm was used in this study to generate 
a segmentation image using the software package eCognition Developer (Trimble Geospatial, Munich). The 
MRS method is a nearly complicated image and user-based algorithm, which generates a polygonal object based 
on the bottom-up strategy. The highly correlated adjacent pixels are initially segmented into objects. Through 
this process, random seed pixels are chosen that are suited appropriately for merging, and then homogeneity 
within the same object and heterogeneity between objects are maximized. This procedure is repeated until all 

Figure 2.  An overview of the methodology used for detecting and mapping volcanic and glacial landforms.
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the object conditions, which are controlled by color, compactness, and scale are  met45. Of these parameters, 
scale is the most important  factor46. In image segmentation, the scale parameter determines the size of the 
objects that appear in the image. As this parameter increases, the image becomes roughly divided. The shape 
parameter weights the object’s shape based on its spectral color. In this regard, spectral characteristics are more 
influential in segmenting images when the value is small. Compactness is the ratio between the boundary and 
the entire  object47. We tested several scale parameters based on previous knowledge and used an interactive 
“trial-and-error” approach to segment images into homogeneous objects. We investigated different scale, shape 
and compactness parameters, which are presented in Table 3. Figure 4 shows the applied scale parameter to 
select the most appropriate scale value.

Table 2.  All available software/tools, their algorithms, and source for object-based segmentation.

Software/tool Algorithm Availability Developer/Reference

InterSeg Region-based Available upon request Happ et al. (2016)

SEGEN Region-based Commercial Gofman (2006)

BerkeleyImgSeg Region-based Commercial Clinton et al. (2010)

Orfeo Toolbox Region-based Freeware Grizonnet et al. (2017)

RHSeg Region-based Evaluation copy Tilton et al. (2012)

IMAGINE Spatial Modeller Edge-based Commercial Hexagon geospatial

ENVI Feature Extraction Edge-based Commercial Harris Geospatial Solutions

IDRISI GIS Tool Edge-based Commercial Clark Labs

GRASS GIS Region and edge-based Freeware Neteler et al. (2008)

Object Analyst Region-based Commercial PCI Geomatics

eCognition Developer Region and edge-based Commercial Baatz and Shape (2000)

SPRING Region and edge-based Freeware Camara et al. (1996)

EDISON Region-based Freeware Comaniciu and Meer (2000)

SCRM Region and edge-based Freeware Castilla et al. (2008)

RSGISLib Region-based Freeware Buntin et al. (2014)

SAGA Region and Edge-based Freeware Bohner et al. (2006)

Feature Analyst Semantic Commercial Opitz and Blundell (2008)

ArcGIS Spatial Analyst Region-based Commercial ESRI

GeoSegment Region-based Online tool, available upon registration Chen (2018)

Figure 3.  Segmentation results for, (a) ENVI feature extraction, (b) eCognition ESP2, (c) GRASS GIS SPUS 
PO, and (d) original Sentinel-2 image.
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Object‑based features extraction. As shown in Table 4, the segments were selected for volcanic and 
glacial landforms mapping based on their spectral, textural, and geometrical characteristics. 19 variables were 
derived from eCognition in order to get as many variables as possible (Table 5). AND fuzzy-based operator then 
employed in eCognition to classify volcanic and glacial landforms based on fuzzy membership values. Not only 
GCPs collected by GPS, but also the existing geomorphological map, as well as aerial images, were employed 
to acquire training data. In sum, 935 sample points were used to identify the most appropriate threshold values 
for object features and to train CNN models. A rule-based approach is necessary to identify and apply object 
features to landform classes in GEOBIA. As a result, we incorporated training data along with the efficiency 

Table 3.  Variations of segmentation parameters using the MRS method to detect and map volcanic and glacial 
landforms.

Landform Scale factor Shape factor Compactness factor

Volcanic landforms

Dacite lava 550 0.6 0.4

Caldera 150 0.8 0.2

Andesite lava 550 0.6 0.4

Volcanic cone 370 0.8 0.2

Volcanic tuff 600 0.6 0.4

Glacial landforms

Glacial circus 200 0.6 0.4

Glacial valley 150 0.6 0.4

Suspended valley 290 0.8 0.2

Figure 4.  Various image segmentation scale used in MRS method: (a) with the scale factor of 200, (b) with the 
scale factor of 400, (c) with the scale factor of 600, and (d) original Sentinel-2 image.

Table 4.  Various spectral, geometrical and textural features relevant to delineating volcanic and glacial 
landforms and their variables.

Object-based features Variables extracted Properties

Spectral attributes
Brightness Sentinel-2

Mean Mean Dem, Band 2, Slope, flow-accumulation, and curvature

Geometrical attributes
Standard deviation STD curvature, and flow accumulation

Length/width, Asymmetry, Shape index, Compactness, Elliptic fit, Density, Main direc-
tion, and Rectangular fit

Textural attributes GLCM entropy, GLCM contrast and GLCM STD
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of related spatial and spectral object features for each landform class, obtained through fuzzy threshold values 
(Table 5). Figure 5 illustrates the performance of some of the training data over selected object-based features.

Convolutional neural network. A convolutional neural network (CNN) is a type of machine learning 
technique that works with arrays of data, such as one-dimensional signals or sequences as well as two-dimen-
sional visible-light images or audio  spectrograms48. Images are consisted of two-dimensional arrays of data, 
which makes CNN an appropriate tool for image analysis. The CNN is the most common type of deep neural 
network applied to remote sensing images due to its high generalization capabilities, derived from the features 
it extracts and its ability to train on extremely large  datasets49,50. Neurons are the building blocks of all layers in 
a neural network. Each neuron represents a convolutional layer aimed at automatic feature extraction from the 
input  image51,52. Figure 6 illustrates the CNN modelling structure for volcanic and glacial landforms.

Hardware and software. This study used the Keras Python Package based on the TensorFlow backend 
to construct and train the GEOBIA-CNN model for volcanic and glacial landforms. The specifications of the 
computer system employed were Intel Core i7-6700 K, VGA (GTX 1080), HDD (256 GB SSD + 1 TB SATA) 
and 32 GB memory. Python programming language based on Spyder software was utilized to implement all the 
prediction models. In addition to user-friendliness, modularity, and extensibility, Keras provides users with easy 
and fast prototyping capabilities.

Table 5.  Volcanic and glacial landforms classes and their corresponding thresholds values for object-based 
features.

Landform Class Object-based feature Thresholds values Fuzzy membership value

Volcanic landforms

Dacite lava

Elliptic fit 0.0.13 0.921

Density 1.9–2.40 0.945

GLCM contrast 9.1–9.7 0.931

Caldera

Mean DEM 1800–3000 0.928

Length/width 1/75–2 0.917

Shape index 1–1/3 0.947

Andesite lava

Main direction 130–180 0.983

Compactness 4–25 0.919

GLCM contrast 8.2–9 0.931

GLCM entropy 6.7–9.2 0.899

Volcanic cone

Mean DEM 2110–2900 0.913

Mean band 2 400–800 0.981

Brightness 1110–1710 0.989

Length/width 1–1/6 0.884

Shape index 1/6–1/9 0.963

Volcanic tuff

Asymmetry 0.82–0.99 0.956

Brightness 999–1060 0.982

GLCM Mean 7.2–7.9 0.990

Length/width 2.8–8.63 0.891

GLCM STD 4.2–4.7 0.921

Glacial landforms

Glacial circus

Mean DEM 2500–3600 0.953

Mean band 2 790–1030 0.918

Mean flow-accumulation 30–450 0.956

Mean slope 17–23 0.963

STD curvature 5–10 0.965

Density 2–2/5 0.908

Shape index 1–1/5 0.914

Length/width 1–2/5 0.987

Glacial valley Flow-accumulation 6000 > 1

Suspended valley

Mean DEM 1800–2800 0.947

Mean curvature 850–1030 0.995

Mean slope 10°–25° 0.993

Shape index 1–1/6 0.979

STD Flow-accumulation 50–2000 0.947
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Figure 5.  Some samples from object-based features and targeted landforms, including: (a) GLCM Mean 
(volcanic tuff), (b) GLCM SD (glacial cirque), (c) length/width (glacial valley), (d) shape index (caldera), (e) 
density (suspended valley), and (f) shape index (volcanic cone).

Figure 6.  CNN structure for volcanic and glacial landforms.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21396  | https://doi.org/10.1038/s41598-022-26026-z

www.nature.com/scientificreports/

Training step. We used 16 and 9 (Table 5) convolutional layers to train our CNN models for volcanic and 
glacial landforms, respectively (Table 6). There are several factors involved in each convolutional layer, including 
a pooling operation, multiple weights, and an activation function. Max-pooling was used with 2× 2 filters and 
a two-pixel stride to down-sample the feature maps in the encoder based on a maximum operator by taking the 
maximum of each 4× 4 matrix and putting it in the output. Landform detection in this study was done using a 
128× 128 pixel input window. Totally, we applied a twenty-four-layer CNN model for landform detection sepa-
rately. We fed the twenty-four -layer depth CNN separately with all input window sizes of the training sample 
patches using nineteen variables (Table 5). In this regard, the input sample patch had a× a× 19 units, where 
a× a denotes the size of one layer of sample patches ( 128× 128 ), and 19 is all number of the layers required 
for the analysis. Several convolutions were performed on input using different filters (2× 2) resulting in distinct 
feature maps. All these feature maps are stacked together to form the convolution layer. By stacking all features 
along the depth dimension, we generated the final landform outputs volume of 128× 128× 19 by the network 
by using 24 different filters (one filter per convolutional layer).

Layers of convolution are applied to the valid portions of the image (without any kind of padding) and they 
are associated with a convolution combined with an activation function to introduce  nonlinearity53. There are 
different activation functions (e.g., sigmoid, softmax, tanh, hyperbolic tangent, ReLU and Leaky ReLU), which 
are required for the forward propagation and its derivative for  backpropagation54. Sigmoid, tanh, hyperbolic 
tangent and Softmax are typically used in normal neural networks. Rectified Linear Unit (ReLu), on the other 
hand, is commonly used in CNN algorithms due to their superior  performance55. Thus, ReLu function was 
employed in this study to train landform models. In Eq. (1), the Rectified Linear Unit (ReLU) parameters are 
defined as follows:

Loss/cost function. Since training is an iterative process, the loss/cost function is necessary to quantify 
how good the current state of the network (with specific sets of weights) is. This function is based on the prin-
ciple of increasing forecast accuracy and reducing errors in the network in order to optimize output at the low-
est cost  possible56. There are several loss/cost functions for problem-solving in classification, including Mean 
Squared Error (MSE), Cross-Entropy, and Mean Absolute Error (MAE), and subsequently used Cross-Entropy 
loss (log loss)57.

Since landform classification is a binary classification (0 = No Landform and 1 = Landform), Cross-Entropy 
is employed in this study to measure the performance of a classification  model58–60. It is given by the following 
equation:

where N represents the number of sample datasets, yi denotes the actual output of ample i , which is equals to 
0 or 1, ŷi presents the forecasted possibility sample i having output 1, and yi , ŷi are the vectors of actual outputs 
and forecasted possibilities.

Optimization. This study used ADAM to optimize the results of landform-based models. This function can 
replace the SGD algorithm and take advantage of AdaGrad and RMSprop, which have better performance in 
sparse gradients and unstable conditions,  respectively61,62. Equations (3) and (4) are defined the ADAM opti-
mizer:

(1)f (x) =

{

x if x > 0
0 if x ≤ 0

= max(x, 0)

(2)L
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y, ŷ
)

= −
1
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ŷi
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log
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(3)m
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(j)
t

Table 6.  Characteristics of employed GEOBIA-CNN models for volcanic and glacial landforms.

Landform Class Activation function Loss function Number of convolutional layer Optimizer

Volcanic

Dacite lava ReLu Cross-entropy 3 ADAM

Caldera ReLu Cross-entropy 3 ADAM

Andesite lava ReLu Cross-entropy 4 ADAM

Volcanic cone ReLu Cross-entropy 5 ADAM

Volcanic tuff ReLu Cross-entropy 5 ADAM

Glacial

Glacial circus ReLu Cross-entropy 8 ADAM

Glacial valley ReLu Cross-entropy 4 ADAM

Suspended valley ReLu Cross-entropy 5 ADAM
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where β1 and β2 are commonly chosen to be 0.9 and 0.999, respectively. The first and second moments are then 
bias-corrected:

And used to weight the update:

where α is the initial learning rate, which the default value for it is 0.001.

Accuracy assessment
Fuzzy synthetic evaluation. GEOBIA uses fuzzy decision rules and membership values as the basis of 
object-based classification, which makes it a "soft classifier" approach. Due to the segmentation process, scale 
regulation, and fuzzy decision rules, it is difficult to assign true or false labels to objects in a binary  mode63. As 
a consequence, we applied Fuzzy Synthetic Evaluation (FSE) for the accuracy assessment of the classification 
results. Two groups of data, including control point data and the respective rate obtained for each point are 
used in the FSE to calibrate the overall and per-class accuracy of classified maps using GOBIA according to two 
 steps64. The first step is to compute the classification confidence or magnitude of error for each class using the 
Difference fuzzy function. To obtain the single accuracy value, the second step weights the Difference function 
categories. Following these two steps, the degree of confidence in the classification can be calculated based on the 
ratio of matches between sample and reference data, based on their respective interpretation confidence ratings 
(ICR), for which default values have been  suggested65. A combination of GPS data, control points from Google 
Earth, high-resolution aerial photographs, and geomorphology maps (scale of 1/25,000) was incorporated in our 
research as reference datasets.

The FSE operates by assuming that N is the landform classes in the classified map, labeled C1 to CN , organized 
as a set of � = {C1 to CN } , and that each piece sample observation is associated with one class and only one Dif-
ference category D = {VHCC, ..,VHE} . For the FSE appliance, let PN ,d to be equal the proportion of observations 
from the map class CN  in the Difference category d , and Wd equal the assigned weight. Equation (7) can be used 
to calculate the estimated accuracy Pm for map class Cm:

Table 7 displays Different categories of confidence in classification and magnitude of errors. The results of 
validation analysis using the FSE approach for volcanic and glacial landform classification are shown in Table 8. 
As shown in Table 8, GEOBIA demonstrates satisfactory performance for landform-based object extraction, with 
FSEs of 0.9204, 0.917, 0.934, 0.933, 0.921, 0.904, 0.918, and 0.909 estimated for dacite lava, caldera, andesite lava, 
volcanic cone, volcanic tuff, glacial circus, glacial valley, and suspended valley, respectively.

Quantitative methods. To evaluate our CNN segmentation models for volcanic and glacial landforms, 
we used seven evaluation indexes, including intersection over union (IOU) values, recall (RC), precision (PC), 
specificity (SP), F-measure (FM), accuracy (ACC), and kappa (KP), which are defined as:
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=
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TP + FP + FN

Table 7.  The Difference function and its respective default values.

Accuracy Level of confidence

Class map

ICR %Demand class Alternative class

Confidence in classification

Very high confidence in classification (VHCC) * ≥ 90

High confidence in classification (HCC) * ≥ 85

Acceptable confidence in classification (ACC) * ≥ 80

Reduced confidence in classification (RCC) * 80 ≤ 

Very reduced confidence in classification (VRCC) * 50

Magnitude of errors

Acceptable error (AE) 50 ≤ 

High error (HE) ≥ 85

Very high error (VHE) ≥ 90
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where AO is actual output; EO is on behalf of expected result; TP , FP , FN , and TN are true positive, false positive, 
false negative, and true negative, respectively.

Table 9 illustrates the results of CNN segmentation models for volcanic and glacial landforms. As we see in 
Table 9, CNN segmentation models performed well with ACC of > 0.9600 for volcanic and glacial landforms. 
Based on Table 9, CNN segmentation models demonstrate the highest performance of these approaches for 

(9)Recall =
TP

TP + FN

(10)Specificity =
TN

TN + FP

(11)Precision =
TP

TP + FP

(12)F-measure = 2×
Precision× Recall

Precision+ Recall

(13)Accuracy =
TP + TN

TP + TN + FN + FP

(14)Kappa =
TP + TN − TPexpected − TNexpected

TP + TN + FN + FP − TPexpected − TNexpected

(15)TPexpected =
(TP + FP)× (TP + FN)

TP + TN + FN + FP

TNexpected =
(TN + FN)× (TN + FP)

TP + TN + FN + FP

Table 8.  Sample observation proportions for Difference categories and validation of object-based features for 
volcanic and glacial landforms.

Landform 
class

Level of 
confidence Dacite lava Caldera

Andesite 
lava

Volcanic 
cone

Volcanic 
tuff

Glacial 
circus

Glacial 
valley

Suspended 
valley

Difference 
categories

VHCC 0.75 0.82 0.78 0.72 0.69 0.64 0.74 0.68

HCC 0.27 0.23 0.28 0.23 0.24 0.26 0.28 0.24

ACC 0.3 0.03 0.04 0.03 0.07 0.11 0.02 0.08

RCC 0.05 0.05 0.04 0.05 0.06 0.04 0.03 0.04

VRCC 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03

AE 0.04 0.02 0.03 0.02 0.04 0.03 0.01 0.03

HE 0 0 0 0 0.01 0.01 0 0.01

CHE 0 0 0 0 0 0 0 0.00

Accuracy 
assessment FSE % 0.9204 0.917 0.934 0.933 0.921 0.904 0.918 0.909

Table 9.  Results of evaluation indexes for volcanic and glacial landforms.

Landform Network IOU RC PC SP FM KP ACC 

Volcanic landforms

Dacite lava 0.8699 0.8845 0.9641 0.9885 0.9385 0.9154 0.9685

Caldera 0.8700 0.8701 0.9581 0.9925 0.9312 0.9014 0.9780

Andesite lava 0.8612 0.8835 0.9600 0.9847 0.9412 0.9123 0.9614

Volcanic cone 0.8725 0.8945 0.9784 0.9899 0.9408 0.9199 0.9767

Volcanic tuff 0.8532 0.8785 0.9671 0.9756 0.9390 0.9037 0.9675

Glacial landforms

Glacial circus 0.8513 0.8825 0.9706 0.9821 0.9249 0.9109 0.9718

Glacial valley 0.8690 0.8758 0.9510 0.9715 0.9285 0.9149 0.9600

Suspended valley 0.8525 0.8699 0.9607 0.9812 0.9394 0.9235 0.9778
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volcanic and glacial landforms mapping, so that the ACC 0.9685, 0.9780, 0.9614, 0.9767, 0.9675, 0.9718, 0.9600, 
and 0.9778 were estimated for dacite lava, caldera, andesite lava, volcanic cone, volcanic tuff, glacial circus, glacial 
valley, and suspended valley, respectively. In addition, CNN segmentation models were performed well with KP 
of > 0.9000, FM of > 0.9200, SP of > 0.9700, PC of > 0.9500, RC of > 0.8600, and IOU of > 0.8500 for volcanic and 
glacial landforms mapping (Table 9). We also used loss and accuracy operations in Python based Spyder software 
to evaluate the accuracy of the integrated GEOBIA-CNN classification results for volcanic and glacial landforms 
mapping (Table 10). According to Table 10, CNN segmentation models achieved an accuracy of > 0.9600.

K‑fold cross validation. K-fold cross validation is one of the validation methods for learning-based clas-
sification approaches. The results of classification can be validated by randomly assigning the initial dataset 
to different groups. Here, one set is used for validation and the other K-1 set is used for  training65. This study 
employed fivefold cross validation to validate the results of the landform classification. The data is divided into 
five sets, and one set is used for validation and the other four for training. All five sets should be processed in the 
same way. The results of the fivefold cross validation are given in Table 11. As we see from Table 11, the integrated 
GEOBIA-CNN performed well (Cross validation accuracy > 0.9400) for volcanic and glacial landforms mapping.

Location and geomorphological features of the study area
Sahand volcano is located in the north-west of Iran (Fig. 7). Geologically, Sahand volcano is very complex. 
The Paleocene and Miocene geologic deposits make up the majority of Sahand volcano. The Quaternary vol-
canic structures of Sahand volcano are aligned roughly parallel to the northwest-southeast trend of the Tabriz 
fault. There are 17 peaks higher than 3000 m in this volcanic complex, including Sahand’s highest peak at 
3707 m. Sahand’s volcanic deposits cover an area of approximately 3000  km2, making it one of the most extensive 
post-collisional volcanic systems spanning eastern Anatolia, Armenia, and northwestern  Iran66.

Researchers have discovered that during the Miocene period, lava masses were deposited on sediments 
through various chimneys during the Sahand eruption. As a result of the severe eruptions during this time, a 
large quantity of volcanic ash was dispersed over wide distances. A general study of the Sahand mass reveals three 
volcanic stages: a) the first occurred during the middle Miocene era and produced andesitic lavas, b) the second 
occurred during the late Miocene era and created the Ignimbrite that dominates all the Sahand valleys, and c) 
the last stage occurred during the Pliocene era and developed new volcanic  cones67. Following the formation of 
Sahand, hydrological conditions and climatic conditions, as well as tectonic activity, caused a series of valleys to 
form and change frequently. In the Quaternary, major climatic changes played a major role in the transformation 
of the valleys. There is evidence of climate change in the presence of suspension valleys at the end of main val-
leys (the Azarshahr valley), the existence of U-shaped valleys (the Lighvan valley), the scattering of stony rocks 
(in the Saidabad valley), and the existence of glacial cirques (in the majority of the Sahand valleys) at the valley 
 end68. Figure 8 shows the structure of Sahand volcano from a geomorphological perspective.

Results
Figures 9 and 10 show various volcanic and glacial landforms derived from the integrated GEOBIA and CNN 
approach. Our first step was to segment images into meaningful objects using the MRS algorithm in eCognition 
software. Then, we employed geometrical, spectral, and textural features to classify volcanic and glacial land-
forms based on their threshold and fuzzy membership values. To construct and train CNN models, a number 
of 935, an inventory map as well as objects obtained from GEOBIA methods were used. 70% of the data were 
randomly selected as training datasets, and 30% were randomly selected as testing datasets. Our models were 
trained using the ReLu, Cross-Entropy and ADAM as activation, loss and optimization functions, respectively 
(Table 6). Integrated GEOBIA and CNN result in high performance for volcanic and glacial landforms. We see 
in Tables 9, 10 and 11, that GEOBIA and CNN achieved an ACC of > 0.9600 and cross validation of > 0.9400 for 
volcanic and glacial landforms mapping.

Table 10.  Results of loss and accuracy operations estimated using the Python based Spyder software for 
volcanic and glacial landforms.

Operations Dacite lava Caldera Andesite lava Volcanic cone Volcanic tuff Glacial circus Glacial valley
Suspended 
valley

Loss 0.0045 0.0074 0.0098 0.0047 0.0124 0.0057 0.0142 0.0174

Accuracy 0.9789 0.9614 0.9689 0.9745 0.9602 0.9801 0.9678 0.9609

Table 11.  Fivefold cross validation accuracy for volcanic and glacial landforms.

K-fold cross 
validation Dacite lava Caldera Andesite lava Volcanic cone Volcanic tuff Glacial circus Glacial valley

Suspended 
valley

Fivefold 0.9632 0.9412 0.9514 0.9675 0.9499 0.9774 0.9565 0.9478
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Figure 7.  Location of study area (a, b) in the world and in Iran, and (b) in the north-west of Iran.

Figure 8.  Geomorphological features of Sahand Volcano.
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Discussion
The aim of this study is to develop a method for detecting and delineating volcanic and glacial landforms auto-
matically using GEOBIA and CNN, which allows us to develop an automatic-based methodology for detecting 
and mapping the Earth’s landforms. Results yielded an ACC of > 0.9600 and cross validation of > 0.9400 for 
volcanic and glacial landforms (Tables 9, 10 and 11). Since no study has integrated GEOBIA with CNN frame-
work for volcanic and glacial landform detection, we cannot compare our results with the literature. Our study 
encourages us to utilize the spectral and spatial characteristics of satellite images by integrating data from remote 
sensing (e.g., satellite images) with geospatial datasets (e.g., DEM, slope, aspect, and curvature). This study 
represents a significant step toward the development and implementation of a flexible, low-cost and automated 
approach for volcanic and glacial landforms detection and delineation. We introduced a unique approach for 
identifying and mapping a complicated and dynamic volcanic zone. We outline here a promising approach for 

Figure 9.  Volcanic landforms detected using the integrated approach of GEOBIA and CNN; (a, b) detected 
dacite lava on Sentinel-2 and curvature, respectively, (c, d) detected caldera on Sentinel-2 and geomorphological 
map, respectively, (e, f) detected andesite lava on Sentinel-2 and curvature, respectively, (g, h) detected volcanic 
cone on Sentinel-2 and geomorphological map, respectively, and (i, j) detected volcanic tuff on Sentinel-2 and 
curvature, respectively.
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the detection and delineation of landforms in other parts of the world. Scientists and geomorphologists can use 
this method to detect and delineate the earth’s landforms quickly and cost-effectively.

Pixel-based DL models are limited to pixel values, whereas in this study we took advantage of several object-
based advantages, including spectral, geometrical, and textural characteristics (e.g., shape index, standard devia-
tion, GLCM, etc.). The GEOBIA approach produced satisfactory landform-based objects for training CNN 
models. Table 8 shows that the FSE were estimated to be 0.9204, 0.917, 0.934, 0.933, 0.921, 0.904, 0.918, and 0.909 
for dacite lava, caldera, andesite lava, volcanic cone, volcanic tuff, glacial circus, glacial valley, and suspended 
valley, respectively. The pixel-based context ignored spatial properties, so each pixel of surrounding objects had 
the same spectral behavior as a landform. Nevertheless, GEOBIA uses geometrical properties such as length 
and width to filter glacial landforms such as glacial valleys quickly, improving precision values. In the complex 
mapping of objects such as landforms, even complex algorithms, such as DL models applied to pixels, are limited. 
The use of GEOBIA allows to mitigate some of the limitations of DL in detecting landforms by taking advantage 
of knowledge-based rule-sets.

Our study indicates that the GEOBIA approach is effective at extracting features, which allows us to obtain 
an accurate classification result during model training. As part of an object-based landform detection process, 
GEOBIA allows us to make use of objects’ features, spatial relationships, and expert knowledge during the 

Figure 10.  Glacial landforms detected using the integrated approach of GEOBIA and CNN; (a, b) detected 
glacial circus on Sentinel-2 and curvature, respectively, (c, d) detected glacial valley on Sentinel-2 and curvature, 
respectively, and (e, f) suspended valley on Sentinel-2 and curvature, respectively.
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segmentation, classification, and validation processes. We found that integrating spatial features (e.g., shape 
index, width/length) with spectral information (e.g., brightness) enabled us to efficiently detect landform-derived 
objects. Satellite imagery generally shows high brightness values for tuff formations and zones as well as dacite 
lava due to the exposure of fresh rock outcrops (Table 5). Therefore, we can outline these geological formations 
efficiently by applying spectral features (e.g., brightness). Additionally, results indicated that desiccated riverbeds 
and sandy roads might also exhibit higher brightness values due to similar spectral reflectance characteristics. 
Through the incorporation of geometric parameters (other than spectral values), GEOBIA allows for the discrimi-
nation and delineation of tuff formations. Based on the shapes of landforms, such as a circle (Volcanic Cone and 
Caldera) or linear shape (Glacial Valley), geometric features such as shape index, density and compactness are 
useful for identifying and detecting them. As far as textural features are concerned, the grey level co-occurrence 
matrix (GLCM) based on contrast and standard deviation was identified as being the most efficient for volcanic 
and glacial landform-based objects. Thus, we evaluated the feasibility of a landform class based on the GLCM 
analysis of sub-objects which helps to evaluate highly textured data. Using spectral features of object images 
together with information derived from GIS spatial analysis, such as DEM and its derivatives, such as flow 
accumulation, slope, curvature, and aspect, can be efficiently applied to detect volcanic and glacial landforms. A 
high level of confidence was also gained for volcanic and glacial landform outlining using spatial and geometric 
features, including length/width, shape index, and roughness (Table 5).

Comparing CNN with traditional machine learning algorithms (e.g., SVMs, decision trees), we find that it 
produces better results in identifying  landforms17–19. However, SVMs had higher specificity in most cases, up 
to 10% in comparison with CNNs. SVMs with higher specificities are more effective at detecting negative cases; 
that is, landforms that don’t exist. It is, however, not as accurate as CNN when it comes to detecting landforms. 
As a result of this higher specificity, for most examples, SVM missed volcanic cones in the image. Additionally, 
the SVM approach is only capable of detecting radially symmetric landforms, since the model feature extractor 
that we chose is optimized for rotationally invariant landforms rather than linear ones. CNN, on the other hand, 
calculates its own input features based on the training datasets, so they can be readily adapted to a wide range 
of classification tasks. Finally, the computation complexity for traditional machine learning algorithms, such 
as SVMs, increases with the number of samples. Therefore, they have a worse generalization ability than deep 
neural networks, which can fit large amounts of data and perform well on unseen data.

On average, our GEOBIA-CNN approach managed to map volcanic and glacial landforms with an ACC 
of > 0.9600 and cross validation of > 0.9400. The IOU ranges from 0.8500 to 0.8700, RC from 0.8600 to 0.8900, 
PC from 0.9500 to 0.9700, SP from 0.9700 to 0.9900, FM from 0.9200 to 0.9400, KP from 0.9000 to 0.9200, and 
ACC from 0.9600 to 0.9700 indicating the highest performance of the integrated approach. Maps derived from 
GEOBIA could be used as auxiliary data for volcanic and glacial inventories. With our GEOBIA-CNN method, 
manual inventories could be reduced in uncertainty due to individual inconsistencies and subjectivity. Using 
our method, we could provide a landform outline base product that could be manually refined to create a final-
ized volcanic and glacial inventory map, thereby reducing the amount of manual digitization required. Using 
GEOBIA and CNN in combination has several key advantages over traditional approaches. The first aspect is 
that inactive glacial valleys can be identified, which would not be possible using conventional techniques alone 
since they are essentially non-existent. In spite of this, these features remain important for water resources and 
hydrology in the region. Furthermore, we employ Sentinel-2 imagery with 10 m resolution instead of very high 
resolution and expensive satellite imagery. The integrated approach of GEOBIA and CNN can also be applied 
in volcanically active regions, providing a solution to the geomorphologists’ problem in regions like volcanoes.

There are, however, some limitations to our method. It is critical to have sufficient and reliable inventory data 
for a given region in order to train the CNN model. While it is not necessary to have spatially complete training 
data, it can still be challenging for completely unstudied volcanic regions. Second, due to the CNN’s reliance 
on identifying recurring spectral patterns and textures, it can misclassify volcanic tuff as a glacial circus, which 
shares the same spectral and textural characteristics. By using GEOBIA reshaping, however, false positives are 
mitigated to an extent that cannot be achieved with CNN alone. Objects with irregular shapes, spectral properties, 
or morphological properties can be excluded using GEOBIA. In this way, GCPs can assist analysts in identifying 
landforms manually; however, by running the entire process through GEOBIA, individual landform polygons 
can be obtained automatically. Based on the results of this research, our future research will focus on applying 
different DL algorithms such as deep multilayer perceptron and AlexNet and comparing their efficiency when 
integrating them with GEOBIA-CNN.

One of the major advantages of the proposed method is that it provides a reproducible, directly transferrable 
method to map volcanic and glacial landforms in the dynamic and difficult conditions of volcanoes based on 
several predisposing variables (e.g., DEM, slope, aspect, curvature, flow accumulation, and satellite imagery). 
The results are easily implemented in a GIS mapping environment, and can therefore be easily edited and incor-
porated into a general mapping procedure along with other landforms. The proposed approach outlined here is 
also of interest to the wider scientific community, for both planetary and submarine volcano research. Digital 
elevation models are a primary data source for mapping and investigating submarine volcanoes, for determining 
both their distribution, landforms and erupted volumes.

Conclusion
Based on the results of this study, an integrated approach of GEOBIA and CNN provides a new method for under-
standing geomorphological units, especially volcanic and glacial landforms, which have been largely overlooked. 
Due to the limited prior research exploring the efficiency of the integrated approach of GEOBIA and CNN, 
identifying and developing the most robust landform modeling technique is still a serious challenge. The level 
of classification accuracy (> 0.96.00) estimated using integrated GEOBIA and CNN suggests that this technique 
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can be satisfactorily applied for volcanic and glacial landform detection and delineation. A landform model 
based on GEOBIA and CNN becomes more efficient when combined with GIS-based data and remote sensing 
datasets. Our results indicate that the proposed technique can achieve the satisfying accuracy of a classification 
and can increase the accuracy of existing geomorphological maps.

It is increasingly critical to develop new methods and algorithms for data-driven approaches as quickly and 
efficiently as possible, as remote sensing and a range of earth observation products (e.g., high-resolution satel-
lite imagery) continue to advance. Our proposed method can be widely employed to increase the accuracy of 
existing geomorphological as well as geological maps. The results of this study would help relevant researchers in 
geomorphology, geography as well as geology to understand the mechanism of landform evolution. The model 
introduced here can be used in similar areas with volcanic and glacial landforms. The results of the present study 
demonstrate that the combined model outperforms the other models in terms of considering various predispos-
ing factors for landform mapping. The ease of use and high level of accuracy of the introduced model make it a 
valuable tool for future landform mapping.

Data availability
The datasets that support the findings of this study are available from the corresponding author on reasonable 
request.
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