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Abstract
Construction material delivery to post-disaster reconstruction projects is challenging because of the resource and time
limitations that follow a large-scale disaster. There is compelling evidence that inadequate planning jeopardises the
success of a large number of post-disaster reconstruction projects. Thus, the current study proposes an integrated approach
to facilitate the procurement planning of construction materials following a large-scale disaster. The proposed approach
clustered the location of construction projects using a differential evolution (DE)-K-prototypes, a new partitional clustering
algorithm based on DE and K-prototypes, method. Then, using a permanent matrix prioritises cluster points based on route
reliability-affecting factors. The model’s objectives are to minimise the total travel time, maximise the reliability of the
route, and minimise the total weighted undelivered materials to projects. In the case of distribution of material through
land vehicles, the possibility of breakdowns in the vehicle is considered, allowing for the determination of vehicle
breakdown under various scenarios and the minimisation of undelivered materials to projects. As a result of the uncertain
character of the disaster, the demands of construction projects are fuzzy, and Jimenez’s method is used to handle it. Due to
the complexity of the problem, two algorithms are proposed, a multi-objective evolutionary algorithm based on
decomposition (MOEA/D) and a non-dominated sorting genetic algorithm-II (NSGA-II). The results confirm that the
proposed MOEA/D has a higher accuracy while NSGA-II has a shorter computational time. By providing new theoretical
perspectives on disaster recovery strategies in the construction sector, this study contributes to the growing body of
knowledge about disaster recovery strategies in the sector. The findings of this study can be employed to develop an
integrated planning system for the delivery of construction materials to post-disaster reconstruction projects in
disaster-prone countries.
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1. Introduction

Almost four-fifths of the world’s cities are located in disaster-
prone areas (Celentano et al., 2019). Climate change is expected
to exacerbate many types of natural disasters, particularly ex-
treme weather events, with low-income countries bearing the
brunt of the impact (Yazdani et al., 2022). Disaster-related losses
are more tangible in less developed regions (Dulebenets et al.,
2019). Disasters have a 20-fold greater impact on the built en-
vironment in developing countries than in developed countries
(Barakat, 2003), owing to widespread substandard construction,
leaving many people in need of housing in countries that are
already struggling with their daily economies and housing chal-
lenges (Uddin & Matin, 2021).

Disaster recovery efforts prioritise the reconstruction of
houses and public infrastructure (Rouhanizadeh & Kerman-
shachi, 2020). Effective delivery has become a significant is-
sue when it comes to large-scale post-disaster reconstruction
projects (Safapour & Kermanshachi, 2021). In the aftermath of a
disaster, reconstruction must deal with the conflicting demands
of the displaced population and the need for agencies to plan
programmes that address both the immediate need for shel-
ter and the long-term need for permanent housing (Bahmani
& Zhang, 2021b). This longer term plan is intended to accom-
modate not only a socioeconomic recovery but possibly an im-
provement over pre-disaster conditions, as recommended by the
Sendai agreement and the globally adopted building back better
reconstruction guidelines (Habibi Rad et al., 2021a). Meanwhile,
the spontaneous tendency of the population is to rush into
restoring livelihood “back to normal,” often ending up replicat-
ing previous vulnerability by building in disaster-prone areas or
using unsafe construction methods (Platt & So, 2017). As a result,
this circumstance puts pressure on authorities and agencies to
deliver a response that may meet the required speed while fail-
ing on socioeconomic aspects (Bahmani & Zhang, 2021a). It is
important to draw the importance of providing a quick recovery
in order to avoid the establishment of unsafe building structures
(Habibi Rad et al., 2021b).

Post-disaster reconstruction projects face challenges that go
beyond standard construction issues and are prone to delivering
inadequate building solutions (Siriwardhana et al., 2021). This is
directly related to the need for quick reaction time in stressful
situations (Mahtab et al., 2021). Although these circumstances
are well known, the strategies required to overcome these diffi-
culties appear to be less clear (Bahmani & Zhang, 2022b). Some
issues have been identified as major bottlenecks in reconstruc-
tion projects, including supply chain planning challenges and
resource shortages (Celentano et al., 2019). Solutions to over-
come these obstacles are still being discussed (Huang et al.,
2021). Bilau et al. (2017) indicate challenges associated with lo-
gistics and supplies as one of the major management issues that
arise in large-scale housing reconstruction programmes.

Construction materials and their supply chain in post-
disaster reconstruction projects can be linked to many bottle-
necks (Chang et al., 2010). After a destructive disaster, the major-
ity of local manufacturing facilities and supply systems in man-
ufacturing industries are likely to be damaged, causing havoc
in the construction market. This also results in price fluctu-
ations (Khodahemmati & Shahandashti, 2020). Numerous in-
ternational organisations, including the IFRC and UN agencies,
have also emphasised the importance of resource availability
as a critical factor in optimising recovery efforts (Celentano et
al., 2019). The majority of research in the field of post-disaster
reconstruction is limited to certain social science perspectives
or examinations of prior experiences. For example, Enshassi et

al. (2017) explored factors influencing post-disaster reconstruc-
tion project management for housing provision in the Gaza
Strip. Bahmani and Zhang (2021b) proposed a success evalua-
tion framework consisting of a definition of the successful re-
covery measurements and how influential factors can be used to
manage socio-natural disaster recovery projects. Mohammad-
nazari et al. (2022) presented an integrated approach based on
four multi-criteria decision-making techniques: TOPSIS, ELEC-
TRE III, VIKOR, and PROMETHEE, to aid decision makers in pri-
oritizing post-disaster projects. Copping et al. (2022) investigated
the supply networks of construction materials for disaster-relief
shelters and reconstruction. A questionnaire was used to collect
the data. The sample consisted of 272 displaced families from
four countries (Nepal, Bangladesh, Afghanistan, and Turkey).
The data were analysed using social network analysis. Charles
et al. (2022) reviewed the literature on resilience factors used in
post-disaster reconstruction projects and formed a framework
to aid in strategic selection and application. Habibi Rad et al.
(2022) proposed a conceptual framework for implementing lean
construction in infrastructure recovery projects. Bahmani and
Zhang (2022a) conducted a study to simplify the disaster recov-
ery project management procedure by identifying common ac-
tivities and assigning them to appropriate places based on the
disaster recovery project’s timeline.

However, few studies in this field have addressed the mod-
elling approach. For example, Xu et al. (2019), Xiong et al. (2020),
and Ghannad et al. (2020) proposed methods such as genetic al-
gorithm and priority indices to determine the reconstruction
order of buildings. Ghannad et al. (2021) developed a prioriti-
sation approach for rapid and optimised post-disaster recov-
ery that evaluates recovery priorities of damaged transportation
infrastructure systems and affected regions through a multi-
agent system using a reinforcement learning technique. Zokaee
et al. (2021) developed a multi-resource, capacitated tour cover-
ing location-routing model to design a post-disaster reconstruc-
tion supply chain considering disruption risk during the recov-
ery phase to minimise total costs by determining optimal loca-
tions of temporary resource distribution warehouses and opti-
mal paths for transferring reconstruction resources to the im-
pacted areas. Gharib et al. (2022) developed an integrated model
for the distribution of post-disaster temporary shelters after a
large-scale disaster. Huang et al. (2022) established a research
framework for efficiently and comprehensively modelling and
assessing post-disaster economic losses that can be used to
analyse the full supply chain losses caused by other disasters
with data availability and reliability or to simulate the full eco-
nomic losses caused by an unexpected event in order to im-
prove decision makers’ disaster management and response ca-
pacity. Diaz et al. (2022) evaluated supply, costs, and recovery
times using a combination of Monte Carlo and beta models. The
proposed models incorporate stochastic components into pro-
jected material, labour, and equipment flows to capture recon-
struction activities’ immediate and long-term costs under highly
uncertain conditions. The model could identify potential road-
blocks in obtaining necessary materials and labour and prospec-
tive thresholds that could impede the housing recovery process.
Alisjahbana et al. (2022) proposed a method for determining re-
construction policies and strategies, particularly for interdepen-
dent building systems like the school system. They discussed
the situation of post-disaster school reconstruction, in which
students are relocated to the nearest functional school if their
original school was damaged. The objective of the problem was
to determine the order in which damaged schools should be re-
constructed by minimising the sum of the distance all students

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/9/3/1135/6618572 by guest on 18 Septem

ber 2023



Journal of Computational Design and Engineering, 2022, 9(3), 1135–1156 1137

in the region have to travel until all schools in the region are re-
constructed.

Despite recent advancements in different phases of disaster
risk management plans and strategies (Dulebenets et al., 2019;
Abioye et al., 2020; Chen et al., 2022), mathematical and optimi-
sations’ approaches have not adequately addressed the issues
of post-disaster reconstructions and the challenges and obsta-
cles faced by recovery projects (Tirkolaee et al., 2020a). As a re-
sult, this research’s primary aim is to develop an integrated op-
timisation model for post-disaster recovery planning to enable
the most efficient use of scarce construction resources caused
by natural disasters. The proposed model clusters the location
of construction projects by using the proposed differential evo-
lution (DE)-K-prototypes method and then prioritises the points
of clusters by affecting factors on the route reliability using a
permanent matrix. The model’s objectives are to minimise the
total travel time, maximise the reliability of the route, and min-
imise the total weighted undelivered materials to projects. Fur-
thermore, the possibility of the breakdown in the vehicle is
considered in the model. Considering the uncertainties associ-
ated with post-disaster reconstruction, the demands for mate-
rials in each project are fuzzy. As the problem is complex, two
multi-objective meta-heuristic algorithms, non-dominated sort-
ing genetic algorithm-II (NSGA-II) and multi-objective evolution-
ary algorithm based on decomposition (MOEA/D), are proposed
to solve the problem.

2. Contributions

The review of the literature reveals that procurement issues in
post-disaster reconstruction projects are still unresolved and
unexplored. Many questions about formulation parameters and
assumptions remain unanswered in existing studies, which can
only be viewed as preliminary steps towards a more comprehen-
sive understanding of post-disaster construction project plan-
ning. The main contributions of this study can be stated as fol-
lows:

(i) Clustering construction sites before designing the math-
ematical model and the formation of the routing net-
work in order to accelerate the distribution of construc-
tion materials: Consideration of the location of construc-
tion projects with geographically common features, spatial
features, and other factors in a cluster (assuming that the
paths leading to those locations are impacted) can have a
significant impact on accelerating and improving material
distribution performance. Furthermore, the safety of ma-
terial delivery operations to a construction site is critical.
This study investigates the identification of common fac-
tors and features for clustering the location of construc-
tion projects in light of route disruption. Clustering is ac-
complished using the proposed DE-K-prototypes method
in this study. In the DE-K-prototypes model, after identi-
fying and collecting data, the factors are entered as model
input, and the model considers important factors for clus-
tering and places the most similar and relevant points in a
cluster based on the type of training it has already seen.

(ii) Prioritisation of construction projects based on effective
factors of road safety in each cluster of construction project
locations: The majority of research in the field of crisis
transportation and routeing focuses on the design of route-
ing networks and direct distribution of materials and goods
with little regard for safety and reliability. Decisions in each
cluster are made using a combination of graph theory and

permanent matrix theory. The priority determined by this
method selects the most reliable routes for delivering ma-
terials to construction projects.

(iii) Multi-mode transportation system: Considering two differ-
ent modes of transportation in this study, both land and
aerial vehicles, provides flexibility for the plan to serve lo-
cations with inaccessible routes. Even in the event of sec-
ondary crises in material delivery operations, such as road
disruption or adverse weather, delivery operations can be
completed quickly and accurately on a scheduled basis.

(iv) Simultaneous consideration of routing factors such as het-
erogeneity of vehicles, multiple warehouses of the rout-
ing network, multi-period distribution of materials, and
multi-type of construction materials: Using the same type
of vehicle (homogeneous vehicle) may impact adversely
the performance of planning to distribute materials and
respond quickly to the construction projects, so consider
vehicles that differ in capacity, speed, fuel consumption,
and so on (heterogeneous vehicles), which may provide
flexibility for providing materials to different construc-
tion projects in different locations with different demands.
This will solve the issue. On the other hand, the distribu-
tion network’s multi-warehouse structure can save time in
serving construction projects.

(v) Consider the disruption in the vehicle operation: Emer-
gency situations can cause a variety of disruptions, such
as traffic, vehicle breakdowns, and other issues given the
scale and duration of the rescue efforts. Undelivered mate-
rials to projects have resulted because some construction
projects cannot receive services.

(vi) Considering the uncertainty in demand for construction
projects: Due to the uncertain nature of the disasters, it
is reasonable to consider some effective parameters of the
uncertain routeing model, such as warehouse capacity and
vehicle costs for on-demand transportation. Due to the fact
that demand in affected areas is high and uncertain dur-
ing a disaster, the uncertainty associated with the demand
parameter is considered fuzzy in this study. We will work
to alleviate the distribution system’s uncertainty.

(vii) Using several multi-objective methods: The epsilon-
constraint method is developed to solve the proposed
mathematical model in a small-size problem. However,
due to the complexity of the problem, two algorithms are
proposed for the large-size problems, including the NSGA-
II and a MOEA/D.

3. Proposed Framework for Planning the
Delivery of Construction Materials

The three steps below outline the procedure for this study. Step
1 involves clustering and prioritising construction projects’ loca-
tions, while Step 2 entails providing all stages of the mathemat-
ical model. Two multi-objective meta-heuristic algorithms, in-
cluding NSGA-II and MOEA/D, are then used to solve the consid-
ered model. The proposed approach for planning the delivery of
construction materials to post-disaster reconstruction projects
is depicted schematically in Fig. 1.

3.1 Clustering the location of construction projects
using DE-K-prototypes

By clustering the location of construction projects, response
strategies for sending construction materials to these areas can
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Figure 1: The proposed approach for planning the delivery of construction ma-
terials to post-disaster reconstruction projects.

be accelerated. To avoid getting stuck in local optima when clus-
tering mixed numeric and categorical data, we propose DE-K-
prototypes, a new partitional clustering algorithm based on DE
and K-prototypes that avoids this problem by solving global opti-
misation problems instead of local ones. In this study, similar to
(Ji et al., 2020), a hybrid method is employed to cluster the data.

3.1.1 The K-prototypes algorithm
To cluster data with both numerical and categorical attributes,
Huang (1997) introduced the k-prototypes algorithm. According
to this algorithm, the dataset X should be partitioned into k dis-
tinct clusters by minimising a below cost function:

E (U ,Z) =
k∑

l=1

n∑
i=1

uild (xi,Zl) , 0 ≤ uil ≤ 1, (1)

where Zl denotes the prototype of the cluster l; uil denotes an
element of the partition matrix Un×k; and d(xi ,Zl) denotes the
dissimilarity measure as follows:

d (xi,Zl) =
m∑
j=1

d (xij, zlj) . (2)

In the above formula, d(xij, zlj) is formulated as:

d (xij, zlj) =
{

(xij − zlj)2
, if the lth attribute is numeric,

μlδ (xij, zlj) , if the lth attribute is categorical,
(3)

where δ(p,q) = 0 if p and q have the same value; δ(p,q) = 1 if p

and q have different values; μl denotes the weight assigned to
categorical attributes within the cluster l. If the jth attribute is
numeric, zlj represents the mean of the jth numeric attribute
in the cluster l; if the jth attribute is categorical, zlj represents

the mode of the jth categorical attribute in the cluster l. The k-
prototypes algorithm is implemented as follows:

(i) Generate prototypes of clusters by selecting k random data
points from the dataset X .

(ii) Each data point in dataset X should be assigned to the clus-
ter with the nearest prototype in accordance with Equation
(2). After each allocation, make an update to the prototype
cluster.

(iii) After allocating all data objects, re-evaluate their similarity
to the current prototypes. If it is discovered that the nearest
prototype of a data object is in a different cluster than the
current one, reallocate the data object to that cluster and
update the prototypes for both clusters.

(iv) If no data objects have changed clusters as a result of a full
circle test of X , the algorithm should be terminated; other-
wise, proceed to Step III.

3.1.2 The clustering algorithm based on DE and K-prototypes
DE begins by generating an initial set of solutions (N) within the
search space. Each individual in generation G is represented by a
D-dimensional real-valued vector XG

i = (xG
i,1, xG

i,2, xG
i,3, . . . , xG

i, D ) ,
where i = 1, 2, 3, . . . , N. Following the initialisation phase, so-
lutions are evolved and trial vectors are generated using mu-
tation and crossover operators. Then, parents are compared to
their corresponding trial vector, and the next generation’s solu-
tions are chosen at this stage (Yazdani et al., 2021). Performing
DE involves the following steps.

DE’s population is made up of N individuals. DE typically be-
gins with a randomly generated population, with the parame-
ters of the i-th member of that population being generated as
follows:

x0
i, j = xlow

j + rand ×
(

xup
j − xlow

j

)
, j = 1, 2, 3, . . . , D (4)

where D denotes the number of decision variables, and rand re-
turns a uniformly distributed random number within the range
[0,1]. Additionally, xlow

j and xup
j denote the lower and upper

bounds of solutions in the jth-dimensional search space, re-
spectively. DE then uses the mutation procedure to generate mu-
tant vectors after initialisation has taken place. In this section,
“current-to-best/1:” VG

i = XG
i + F .(XG

best − XG
r1) + F .(XG

r2 − XG
r3) is

used as one of the most frequently used mutation operators.
XG

best is the best solution for the current generation. The differ-
ence vector’s scaling is managed using the F control parameter.
The crossover operator is then used to combine the target vector
with its corresponding mutant vector, resulting in a trial vector
(U G

i ).

uG
i, j =

{
vG

i, j , i f (rand < Cr or j = jrand)

xG
i, j , otherwise

. (5)

Cr is the crossover rate and is between 0 and 1. Additionally,
jrand is a random integer in the range [1, D]. Selecting between
the target vector (XG

i ) and its corresponding trial vector (U G
i ) de-

termines whether the vector will be retained for the next gener-
ation. The selection procedure is as follows for minimising prob-
lems:

XG+1
i =

{
U G

i , f
(
U G

i

) ≤ f
(
XG

i

)
XG

i , otherwise
, (6)

where f (XG
i ) and f (U G

i ) denote the objective functions of the
target vector and the corresponding trial vector, respectively.

Table 1 contains data on the clustering of construction
projects. The locations of construction projects are categorised
in Table 1 into two clusters. Cluster 1 projects can be served by
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1140 Delivering construction materials to post-disaster reconstruction projects

Figure 2: The steps of selecting the reliable routes.

both land vehicles and aerial vehicles. While cluster 2 projects
include locations that are inaccessible via land and should be
served by air vehicles.

3.2 Reliable route selection

In this section, the obtained clusters are prioritised according to
factors affecting route reliability in order to determine the most
reliable route for distributing construction materials. The type
of road (autobahn or highway), the degree of mountainous ar-
eas, and geographical characteristics all affect the reliability of
cluster 1, which are accessible through the ground and aerial ve-
hicles. Cluster 2’s reliability is affected by the magnitude of the
disaster, the regional context (urban or rural), the weather con-
ditions, the region’s demand, and the distance between the air
vehicle depot and the location of construction projects. The ap-
proach is presented in Fig. 2.

The graph and its dependencies are used to represent the
identification of the influencing factor on the process by con-
ducting an expert survey or using data from the literature
(Geetha & Sekar, 2016). There are nodes and directed edges that
make up the graph, as depicted in Fig. 3. Each node ni repre-
sents the i-th criterion for alternative selection, while the edges
represent the relative importance of the criteria, with the same
number of nodes and alternatives. A directed edge is drawn from

Figure 3: Criteria and subcriteria framework adopted from Baykasoglu (2014).

Table 2: The scores of alternatives.

Qualitative measure Crisp score

Exceptionally low 0
Extremely low 1
Very low 2
Low 3
Below average 4
Average 5
Above average 6
High 7
Very high 8
Extremely high 9
Exceptionally high 10

i to j (eij) and vice versa, if node i is more important than node
j in alternative selection (Rao & Padmanabhan, 2007).

The relative importance of criteria and alternative scores are
defined following the first step. If the criterion is qualitative, the
values of the alternatives score can be derived using a zero-to-
one rating scale (Nasiri & ShisheGar, 2014), as seen in Table 2.

Normalization is necessary when employing quantitative cri-
teria. Thus, if vi and vj are criteria values of alternative i and
j, respectively, vi

vj
should be normalised (Mohaghar et al., 2013).

Following the calculation of all the criteria values (i = 1, . . . , N)
for an alternative, we create a criteria rating matrix for that al-
ternative.

[ψ] =

⎡
⎢⎢⎢⎣
C11 0 . . . 0
0 C22 . . . 0
. . . . . . . . . . . .

0 0 . . . Cnn

⎤
⎥⎥⎥⎦ . (7)
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Figure 4. An illustration of the problem in schematic form.

However, the relative importance of criteria (rij) can range
between zero and one. The relationship between rij and rji does
not have to be compensatory. As shown in Table 3, it can be rji =

1
rij

.
After this step, the relative importance matrix is defined as

follows:

[β] =

⎡
⎢⎢⎢⎣

0 r12 . . . rin

r21 0 . . . r2n

. . . . . . . . . . . .

rn1 . . . . . . 0

⎤
⎥⎥⎥⎦ . (8)

Following the identification of β and ψ , the alternative eval-
uation matrix ξ is obtained as follows:

ξ = ψ + β =

⎡
⎢⎢⎢⎢⎢⎣

C1 r12 r13 . . . r1n

r21 C2 r23 . . . r2n

r31 r32 C3 . . . r3n

. . . . . . . . . . . . . . .

rn1 rn2 rn3 . . . Cin

⎤
⎥⎥⎥⎥⎥⎦ . (9)

The permanent of matrix ξ , per(ξ ) provides the rating for the
alternative. For every alternative per(ξ ) should be calculated and
arranged in a descending order (Nasiri & ShisheGar, 2014). The
alternative with the highest per(ξ ) value is more preferable. Be-
low is the equation that represents the permanent value calcu-

lation function (Nasiri & ShisheGar, 2014).

Per(ξ ) =
N∏
i=1

Ci +
∑

i,j,..,N
(rij.rji).Ck.Cl . . . CN

+
∑

i,j,..,N
(rij.rjk.rki + rik.rkj.rji).Cl.Cn . . . CN

+
⎧⎨
⎩

∑
i,j,..,N

(rij.rji)(rkl.rlk).Cn.Cm . . . .CN

+
∑

i,j,..,N
(rij.rkj.rk�.r�i + ri�.r�k.rkj.rji).Cn.Cm . . . CN

⎫⎬
⎭ (10)

+
⎧⎨
⎩

∑
i,j,..,N

(rij.rji) (rk�.k�n.rnk) .Cm.Co . . . CN

+
∑

i,j,..,N
(rij.rjk.rk�.r�n.rni

+rin.rn�.r�k.rkj.rji).Cm.Co . . . CN

⎫⎬
⎭ + · · ·

3.3 Modelling and the proposed solving method

There is a specific number of post-disaster reconstruction
projects in areas that have been impacted by a destructive dis-
aster. Each project needs Q̃imp construction material type m in
the time period p. Materials should be provided for construction
projects from a number of warehouses. For distributing materi-
als from warehouses to construction sites, two different types
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Table 3: The relative importance of criteria.

Definition of the class rij rij = 1 − rij

Two criteria are equally important 0.5 0.5
One criterion is slightly more important than others 0.6 0.4
One criterion is more important than others 0.7 0.3
One criterion is very important than others 0.8 0.2
One criterion is exceptionally important than others 0.9 0.1
One criterion is the most important, other not important 1.0 0.0

of vehicles, including land and aerial vehicles, are used, and the
number of each type is limited to Nv and Nh vehicles. All vehi-
cles are available from the beginning of the transportation. Each
vehicle can carry a limited amount of materials. The construc-
tion projects are located in two different areas; some of them are
accessible through the roads, while other projects are in areas
that are not accessible using the roads; therefore, aerial vehicles
should be used to provide the required material for them. Vehi-
cles move in a network represented by a graph in which nodes
are locations of construction projects and depots and arcs are
the routes between each pair of nodes. However, due to the im-
pact of the disaster on the road network, travel times on net-
work links vary depending on time, so tvijp denotes the travel
time for vehicle type v from node i to j in the time period p. To
reach a comprehensive plan, we consider three objectives in this
model, minimising the total travel time, maximising the reliabil-
ity of the route, and minimising the total weighted undelivered
materials to projects. See Fig. 4. For the schematic presentation
of the problem.

Real-world decision-making problems can be reduced to
their essential elements by employing mathematical modelling
techniques. If all the details are included in a model, it may
be impossible to model real-world problems. The most useful
models rely on assumptions that preserve the system’s fun-
damental properties while also simplifying it. Keeping mod-
els manageable and accurate in light of this fact necessitates
simplifying assumptions. Mathematical models that incorpo-
rate these assumptions are highly effective, as evidenced by the
following:

(i) The number of vehicles is finite, and different types of ve-
hicles are used to deliver materials to the projects. As a re-
sult, the transport fleet of vehicles is heterogeneous, and
their capacity and speed are different.

(ii) The origin of all vehicles is known in advance.
(iii) The vehicle’s capacity is more than the demand so that

there is no interruption in service.
(iv) The place of distribution of material and warehouses of

vehicles is the same, and the place and number of ware-
houses are predetermined.

(v) Available construction material is sufficient to respond to
the projects.

(vi) Distribution operations are performed for several types of
construction materials.

(vii) The location of each project is known, and their distance
from the warehouse is known.

(viii) Each rescue vehicle returns to the starting point of the
movement (warehouse) after the end of the operation
(closed route).

(ix) The distribution of construction materials is performed
from several warehouses, where the warehouses for ve-
hicles and the warehouses for storing construction mate-
rials are the same.

(x) The construction projects are located in two clusters, and
all those points are prioritized based on the factors affect-
ing reliability.

(xi) A damaged vehicle cannot be repaired at an acceptable
time to be able to continue its work.

(xii) If the product in a particular scenario, before the car
breakdown, has reached the location of construction
projects, the service is complete, and shortage does not
occur.

(xiii) After a vehicle breakdown, other vehicles should not per-
form their service duties and should act according to their
own schedule.

(xiv) The demand for each project might not be fully met and
may be in short supply.

(xv) Construction materials are distributed over different peri-
ods.

3.3.1 The mathematical model
The variables and parameters listed below are used in the devel-
opment of the mathematical model.

Notations, sets, and parameters

v ∈ Nv Set of trucks
h ∈ Nh Set of helicopters
a ∈ Na Set of the location of projects with a

passable access road
a′ ∈ Na′ Set of the location of projects with a

damaged access road
Na ∪ Na′ ⊆ Nâ

i, j ∈ I,J Set of all locations, including depots
m ∈ M Set of construction material types
p ∈ P Set of time periods
s ∈ S Set of time scenarios
Cv The capacity of vehicle v ∈ Nv ∪ Nh

Q̃imp The demand of project i for construction
material type m in time period p

ωimp The value of construction material type
m in time period p for the project i

rij The permanent value of node i to j

based on the reliability index
Tjvp Arrival time of vehicle v to node i in

time period p

δsvp Break down scenario for vehicle v, it
means v in scenario s fails after δ unit
time in time period p

dv The location of depot vehicle
v ∈ (Nv ∪ Nh)

ξp Start time of the period p

tvijp Travel time for vehicle type v from node
i to j in time period p
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Decision variables

xvijp =

⎧⎪⎨
⎪⎩

1 if vehicle v travel from node i to node j in
time period p

0 otherwise

ys
ip

=

⎧⎪⎨
⎪⎩

1 if the material is not delivered to the project i in
time period p under scenario s

0 otherwise

Model formulation
Mathematically, the proposed model can be expressed as fol-

lows:

Min
∑
i∈I

∑
j∈J

∑
v∈V

∑
p∈P

tvijpxvijp,

Max
∑
i∈I

∑
j∈J

∑
v∈V

∑
p∈P

rijxvijp, (11)

Min
∑
s∈S

∑
p∈P

∑
m∈M

∑
i∈Nâ

ys
ipQ̃impωimp,

s.to.∑
i∈Na∪dv

xvijp =
∑

i∈Na∪dv

xvjip ∀j ∈ Na,v ∈ Nv,p ∈ P (12)

∑
i∈Nâ∪dh

xhijp =
∑

i∈Nâ∪dh

xhjip ∀ j ∈ Nâ,h ∈ Nh,p ∈ P (13)

∑
i∈dv

∑
j∈Nâ

xvijp = 1 ∀ v ∈ Nv ∪ Nh,p ∈ P (14)

∑
i∈Nâ

∑
j∈dv

xvijp = 1 ∀ v ∈ Nv ∪ Nh,p ∈ P (15)

∑
i∈dv

∑
j∈Na′

xvijp +
∑
i∈Na′

∑
j∈dv

xvijp = 0 ∀ v ∈ Nv,p ∈ P (16)

∑
i∈dv

∑
j∈Nâ

xvijpQ̃imp ≤ Cv ∀ v ∈ Nv ∪ Nh,p ∈ P (17)

Tjvp =
∑
i∈dv

tvijpxvijp + ξp ∀j ∈ Nâ,v ∈ Nv ∪ Nh,p ∈ P (18)

M
(
1 − ys

ip

) ≥ (
Tivp − δsvp

) ∀i ∈ Nâ, s ∈ S,v ∈ Nv ∪ Nh,p ∈ P (19)

xvijp ∈ {0, 1} ∀v, i, j,p (20)

Tivp ≥ 0 ∀v, i,p (21)

ys
ip ∈ {0, 1} ∀i,p, s. (22)

The first objective function minimises the total travel time,
the second objective function maximises the reliability of routes,
and the third objective function minimises the total weighted
undelivered materials to projects. Constraint (2) ensures that
each truck leaves a project after entering and servicing it. Con-
straint (3) ensures that each helicopter leaves a project after en-
tering and servicing it. Constraints (4) and (5) ensure that after
servicing any nodes, all vehicles (i.e. truck and helicopter) must
return to the start point, successfully closing the route. Con-
straint (6) asserts that trucks cannot serve projects with impass-
able roads. Constraints (7) refer to the vehicle capacity limita-
tions. Constraint (8) calculates the vehicle’s arrival time at con-
struction sites. Constraint (9) indicates whether or not the short-
age exists in the given scenarios. Constraints (10) to (12) define
the type of the variables.

Pareto-optimal or non-dominated solutions are explored in
multi-objective problems rather than single optimal solutions.
If a solution cannot be improved in one objective function with-
out degrading its performance in at least one other objective, it

is Pareto optimal (Mavrotas, 2009). As a result of these Pareto op-
timal solutions, the Pareto front of the problem is constructed,
from which decision makers can choose the final preferred com-
promise solution. Several methods for multi-objective problems
have been proposed in the literature. In this study, the aug-
mented ε-constraint method (AUGMECON), similar to Esmaili et
al. (2011), transforms the multi-objective problem into a single-
objective problem.

Due to the uncertainty in a disaster situation and becoming
closer to reality, the received demand for construction projects
is fuzzy numbers in the proposed model. A symmetrical trian-
gle distribution is considered for indicating the fuzzy parame-
ter due to its applicability and ease of calculation. Because of its
high efficiency, the Jimenez method is used to transform the cur-
rent model into its corresponding deterministic model (Jiménez
et al., 2007). The following equations represent changes in the
objective function and constraints:

Min
∑
i∈I

∑
j∈J

∑
v∈V

∑
p∈P

tvijpxvijp,

Max
∑
i∈I

∑
j∈J

∑
v∈V

∑
p∈P

rijxvijp, (23)

Min
∑
s∈S

∑
p∈P

∑
m∈M

∑
i∈Nâ

ys
ip

(
Q1

imp
+ Q2

imp
+ Q3

imp

4

)
ωimp,

Subject to :

Other constraints in the model. (24)

∑
i∈dv

∑
j∈Nâ

xvijp

[
a.

(
Q1

imp
+ Q2

imp

2

)
(25)

+
(

1 − a)

(
Q2

imp
+ Q3

imp

2

)]
≤ Cv ∀ v ∈ Nv ∪ Nh,p ∈ P .

4. Multi-Objective Meta-heuristics Algorithms

When a problem has multiple objectives, it is difficult to find
the best solution (Tirkolaee et al., 2022; Yuan et al., 2022).
Many real-world optimisation problems are made more diffi-
cult by the presence of multiple objectives (Pasha et al., 2022).
Meta-heuristic algorithms can be used to solve these problems
(Fathollahi-Fard et al., 2021b). Meta-heuristic algorithms have
some advantages (Dulebenets, 2021). Any problem that can be
expressed as a function-optimisation problem can be solved
with these methods (Fathollahi-Fard et al., 2021b); these meth-
ods tend to be more straightforward to understand and imple-
ment (Theophilus et al., 2021), and they can handle more com-
plex problems with ease (Pasha et al., 2020). In this study, two
widely used multi-objective meta-heuristic algorithms, NSGA-
II and MOEA/D, are used to solve the problem. The pseudocode
and algorithm properties are discussed in the following section.

4.1 NSGA-II

NSGA-II, which was introduced for the first time by Deb et
al. (2002), is one of the most widely applicable and well-
proposed genetic algorithm (GA)-based algorithms for solving
multi-objective optimisation problems. NSGA-II begins by ran-
domly generating a population of size Aξ (Babaeinesami et al.,
2022). The objective values of a population are evaluated us-
ing an objective function. The population is then ranked ac-
cording to the non-domination sorting procedure in order to
generate Pareto fronts. Each individual in the population under
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consideration is assigned a rank equal to its non-domination
level, with the first front containing individuals with the lowest
rank, the second front containing individuals with the second
rank, and so on (Tirkolaee et al., 2020b). The following step cal-
culates the crowding distance between members on each front
using a linear distance criterion. Due to the fact that a binary
tournament selection operator based on a crowded-comparison
operator is used, both the rank and crowding distance of each
member of the population must be calculated. Two members of
the population are initially selected using this selection opera-
tor. The member with the greater crowding distance is then cho-
sen if their ranks are equal. Otherwise, the lower ranking mem-
ber is chosen. Following that, a new population of offspring with
a size of n is created using the selection, crossover, and mutation
operators to create a population composed of the current pop-
ulation and the new population of size (Aξ + n). In this study,
one point crossover has been used. Finally, using the sorting pro-
cedure, a population with the exact size of Aξ is obtained. The
solutions are sorted twice in this procedure: first by their crowd-
ing distances in descending order, and then by their ranks in as-
cending order (Tirkolaee et al., 2019). By repeating the preceding
steps in order, the new population is used to generate the next
generation of offspring. This procedure is repeated until the ter-
mination condition is satisfied. After implementing NSGA-II, a
set of non-dominated Pareto-optimal solutions is obtained, as
all solutions are optimal in terms of multi-objective optimisa-
tion. Algorithm 2 presents the pseudocode of NSGA-II.

4.2 MOEA/D

The MOEA/D algorithm for the multi-objective problems is in-
troduced by Zhang and Li (2007). MOEA/D uses a set of uni-
formly distributed weight vectors W = {w1, . . . , wμ} to decom-
pose a multi-objective optimisation problem with M objectives
into single-objective subproblems. At the start of the search,
all members of the population are generated randomly in the
search space S. An index list Bi = {i1, . . . , iT } is initialised for
each subproblem index i ∈ {1, . . . , μ}, which is used for mating
and replacement selections: Bi is composed of the indices of the
T weight vectors that are closest to wi in the weight vector space,
where T denotes the neighbourhood size (Fathollahi-Fard et al.,
2021a). Following initialisation, the following steps are repeated
for each subproblem i ∈ {1, . . . , μ} until the search criteria for
termination are met. The parent indices k and l are randomly
chosen from Bi for each i . Then, by combining xk and xl , a child
ui is generated. If necessary, a mutation opera-tor is applied to
the child ui . After generating ui , a pre-defined scalarising func-
tion g is used to perform the replacement selection. On the basis
of g, the individual xj is compared to the child ui for each j ∈ Bi .
If ui is superior to xj in terms of their weight vector w j scalarising
function values, xj is replaced by ui .

Since the replacement of individuals is based on their scalar-
ising function values, g plays a crucial role in MOEA/D. Al-
though there are a number of scalarising functions as reviewed
in (Pescador-Rojas et al., 2017), in this paper, we follow the ap-
proach of (Wang et al., 2015).

4.3 Solution representation

The solution representation should be simple to decode in order
to minimise the algorithm’s computational cost. As a result, the
solution representation illustrated in Fig. 5 is used in this study.
A cube is considered in this type of answer representation, with
the dimensions of the solution being construction projects (J),

vehicles (V), and time period (t). In the solution depicted in Fig. 5,
five construction projects, three vehicles, and three periods are
assumed. Each cell in this solution representation is filled with
a value between 0 and 1.

To determine how vehicles are used to service construction
projects during each period, the maximum number in each col-
umn and row is determined and marked. The columns’ maxi-
mum values are indicated in blue, while the rows’ maximum val-
ues are indicated in red. According to the priority winch estab-
lished in the previous step, in each period, construction projects
are assigned to a different vehicle, and the sequence of visits to
each project by a particular vehicle is determined by the cell val-
ues. For instance, in the first period, vehicle one goes to project
5, and then goes to project 3.

Figure 6 shows the answer for each of the three periods sep-
arately. During the first period, vehicle 1 is assigned to projects 3
and 5, vehicle 2 is assigned to project 2, and vehicle 3 is assigned
to projects 1 and 4. Then we find that the construction materi-
als are distributed in the following order: Vehicle 1 is routed to
project 5 first, then to project 3. Vehicle 2 only serves project 2,
while vehicle 3 first serves project 4 and then project 1. Vehicle
1 is assigned to projects 3 and 5, vehicle 2 is assigned to project
4, and vehicle 3 is assigned to projects 1 and 2. Then we find
that the construction materials are distributed in the following
order: Vehicle 1 goes to project 5 and then to project 3. Vehicle 2
only serves project 4, whereas vehicle 3 first serves project 2 and
then project 1. During the third period, vehicle 1 is assigned to
projects 2 and 3, vehicle 2 is assigned to project 4, and vehicle 3 is
assigned to projects 1 and 5. Then we see that the construction
materials are distributed in the following order: Vehicle 1 goes
to project 2 and then to project 3. Vehicle 2 only serves project
4, while vehicle 3 first serves project 5 and then project 1.

5. Computational Results

This section discusses the model proposed and the proposed so-
lution approach for improving the distribution of post-disaster
construction supplies after a large-scale disaster. First, in Sec-
tion 5.1, the performance of the model and proposed algorithms
for small-size problems are evaluated. The study’s algorithms
were implemented in MATLAB 2018b, and the mathematical
model was coded in GAMS 25.0.2 and solved using the CPLEX
solver on an Intel Core i7 @ 2.5 GHz PC with 8 GB of RAM running
Microsoft Windows 10. Section 5.2 explains the evaluating met-
rics and the procedure for generating the instances of the prob-
lem. Section 5.3 includes numerical examples and analyses that
illustrate how the proposed algorithms perform under various
large-size real-world conditions. Section 5.4 conducts the statis-
tical test to evaluate the performance of the proposed method
in more detail—finally, section 5.5 details parameter sensitivity
analyses.

5.1 Analysing the performance of the model and
algorithms in small-size problems

There are ten problems of varied dimensions to test the perfor-
mance of the algorithms and the model proposed. The outputs
of meta-heuristics are compared to the GAMS results achieved
using AUGMECON. As presented in Table 4, the proposed meta-
heuristics’ objective function values (OFV) and errors are re-
ported for each problem compared to the AUGMECON. The max-
imum run time for meta-heuristic algorithms has been set to
3600 s. In this paper, the error rate of each algorithm in com-
parison to the AUGMECON is determined using the following
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1146 Delivering construction materials to post-disaster reconstruction projects

Figure 5: A schematic sample of the solution representation.

equations for each objective function of the mathematical
model (Yazdani et al., 2017):

GapO Fi
= O FiMetahurestic − O FiAUGMECON

O Fi AUG MEC O N
× 100, i = 1, 2, 3 (26)

where O FiMetahurestic is the best results obtained by the meta-
heuristic for objective i, while O FiAUGMECON is the obtained result
for objective i using the AUGMECON.

The NSGA-II and AUGMECON values differ by 3.38, 6.88, and
5.14% for the first to the third objective functions, respectively.
The MOEA/D and AUGMECON have average differences of 3.30,
5.68, and 3.76%, respectively, for the first, second, and third ob-
jective functions. The fact that the average gaps of three ob-
jective functions are slight leads us to conclude that the meta-
heuristic approaches proposed are effective. Figure 7 shows the
CPU time needed to solve each meta-heuristic algorithm com-
pared to the AUGMECON. The AUGMECON’s solving time grows
exponentially in proportion to the problem’s size, and for prob-
lems 9 and 10, the method was not able to solve the problem. In
contrast, meta-heuristic algorithms work much faster.

5.2 Metrics used for evaluation

In this work, multiple criteria were utilised to assess the per-
formance of various algorithms in multi-objective optimisa-
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Figure 6: Decoding the solution representation.

Figure 7: CPU time different approaches.

tion problems where problem solutions incorporate the opti-
mal Pareto front. An algorithm’s performance may be evaluated
quantitatively by counting the number of Pareto solutions it gen-
erates. The larger this number, the better the algorithm. The dis-
tance index may also be used to figure out how far apart two so-
lutions are. The better it is if this index has a lower value. The
index of distance is determined as follows (Schott, 1995):

SM =
∑N−1

i=1

∣∣d̄ − di

∣∣
(N − 1)d

, (27)

Figure 8: Comparison between NSGA-II and MOEA/D according to the spacing

metric.

where d is the average of dis, N is the total number of Pareto solu-
tions, and di is the distance between two successive solutions in
the optimum front obtained by each method. The variety index
is another way to measure the diversity of possible solutions,
and its larger values are more suitable. Calculating this index is
as follows (Zitzler & Thiele, 1999):

DM =

√√√√(
max f1i − min f1i

f max
1,total − f min

1,total

)2

+
(

max f2i − min f2i

f max
2,total − f min

2,total

)2

. (28)

In total, 12 problems of varied sizes were created, the per-
formance of two meta-heuristic methods was compared, and
Pareto-optimal solutions were generated for each. Tables 5 and 6
list the created sample problems, failure times, fuzzy demands,
and the values of evaluation metrics for methods.

The number of ground vehicles ranges between three and
ten, while the number of air vehicles ranges between two and
five. There is a single warehouse for air vehicles in all situations.
The capacity and transportation time parameters are produced
using the uniform distributions between 50–60 and 8–20, respec-
tively. The demand is represented by a triangle fuzzy number
with the structureQ = (Q1, Q2, Q3), which generates using uni-
form distributions: Q1 from [20, 45], Q2 from [46, 70], and Q3 from
[71, 140]. Additionally, the travel time of vehicles used to dis-
tribute goods is considered to be generated using a uniform dis-
tribution. We have a scenario matrix for each problem, in which
the rows represent scenarios, the columns represent vehicles,
and the numbers in the table represent the failure time of vehi-
cles. That is highlighted in the table as δ3

24 = 16, indicating that
vehicle 2, in period 4, in scenario three, breaks down after 16 h,
resulting in undelivered materials to projects.

The parameters of the algorithms presented in Table 7 are
given after tuning the parameters in the proposed algorithms
using the response surface methodology (RSM) method.

5.3 Analysing the performance of the model and
algorithms in small-size problems

In Table 8, all the problems generated in Table 5 are solved sep-
arately by the algorithm, and the values of the standard indica-
tors used are reported. To better evaluate the algorithms’ perfor-
mances, each indicator is shown schematically in Figs. 8 to 10.

In order to gain a better understanding of how well the meta-
heuristic algorithms perform, the following computations are
shown to illustrate the results of comparison metrics. With the
spacing metric, we can see that the MOEA/D outperforms the
NSGA-II when compared to the other meta-heuristic algorithms
in Fig. 8.
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Table 5: Values for generating sample problems.

Problem
no.

Projects with
accessible roads

Projects with
damaged roads

Vehicle
depot Truck Helicopter

Types of
materials Periods

1 7 5 6 3 2 2 2
2 10 7 6 3 2 3 2
3 15 9 7 4 2 4 2
4 16 7 7 4 2 3 3
5 18 8 7 5 3 4 3
6 20 8 8 6 3 5 3
7 24 10 8 6 3 4 4
8 25 11 9 5 4 5 4
9 30 15 9 7 4 6 4
10 33 16 9 7 5 4 5
11 35 20 10 9 5 5 5
12 40 25 10 10 5 6 5

Table 6: The failure rates of vehicles and the fuzzy demand in various scenarios.

Q̃ = (Q1,Q2,Q3) Vehicle 5 Vehicle 4 Vehicle 3 Vehicle 2 Vehicle 1 Scenario

(20,46,75) 10 16 13 7 10 1
(25,50,80) 10 9 14 4 20 2
(30,53,95) 16 8 11 16 10 3
(35,60,100) 10 20 7 10 10 4
(45,70,120) 8 10 9 10 15 5

Table 7: Tunned parameters.

Algorithms Parameters Small-size problems Large-size problems

NSGA-II Maximum number of iterations 73 205
Population size 51 192
Crossover rate 0/39 0/34
Mutation rate 0/16 0/19
Mu 0/07 0/8

MOEA/D Maximum number of iterations 97 186
Population size 38 149
nArchive 29 101
Size of neighbourhood 13 20
Lambda 0/21 0/18

Table 8: Obtained values for different instances by NSGA-II and MOEA/D.

Problem no. MOEA/D NSGA-II

SM DM NOPS CPU time SM DM NOPS CPU time

1 7.939933 7.939933 6 615 0.4396193 7.479914 7 652
2 3.18014 3.18014 5 763 0.7331419 7.15122 5 782
3 5.655873 5.655873 6 1043 0.4650282 7.922465 9 1023
4 4.878148 4.878148 9 1245 0.5922232 6.916572 7 1202
5 3.805205 3.805205 6 1684 0.8037516 7.637064 7 1502
6 7.288054 7.288054 7 1943 1.0505771 4.179673 5 1732
7 7.508725 7.508725 8 2692 0.9946069 5.532396 11 2319
8 3.031869 3.031869 9 3042 0.416409 5.124544 6 2548
9 6.712907 6.712907 6 4174 0.6263944 3.038738 7 3657
10 6.978169 6.978169 8 6031 0.8053852 3.411685 9 5662
11 4.955259 4.955259 8 7453 0.4990383 8.496907 7 6650
12 7.859942 7.859942 5 10554 0.4833295 5.1066 8 8636
Average 5.816185 5.816185 6.916667 3436.583 0.6591254 5.999815 7.333333 3030.4167
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Figure 9: Comparison between NSGA-II and MOEA/D according to the diversity

metric.

Figure 10: Comparison between NSGA-II and MOEA/D according to the number

of Pareto solutions.

Figure 11: Comparison between NSGA-II and MOEA/D according to CPU time.

Comparing solution times shows that the MOEA/D finds
better solutions faster, resulting in better overall performance.
(Fig. 11).

The results of the diversity metric shown in Fig. 9 demon-
strate that there is no particular trend for the algorithms.

The number of Pareto solutions determined by the MOEA/D
is depicted in Fig. 10, demonstrating its superior performance.

5.4 Statistical test

For each comparison metric, a number of statistical tests were
conducted to see if there was any statistically significant differ-
ence between the two methods. The results of the independent
t-test to compare the proposed algorithms are provided in Ta-
bles 9 and 10.

According to the results reported in Table 9, it can be seen
that the significant level of Levene’s test for equality of variances

for SM, DM, NOPS, and Run indices are 0.795, 0.770, 0, and 0. The
resulting p-values of Levene’s test for SM and DM are greater
than significance level 0.05, indicating that the null hypothesis
of equal variances is not rejected, and no difference between the
variances is concluded. While the P-values obtained from Lev-
ene’s test for NOPS and Run are less than the significance level
of 0.05. As a result, the null hypothesis of equal variances is re-
jected, and it is concluded that the variances differ.

Based on the significant level of the independent t-test, the
obtained values for DM and SM are 0.623 and 0.286, which are
both greater than 5%. As a result, the mean of the two samples
is not significantly different, and the ability of both algorithms
in the SM, DM criteria is not significantly different. In contrast,
the obtained values for NOPS and Run are 0.002 and 0.003, re-
spectively, which are less than 5%, so the assumption of the
equal mean of the two samples is rejected. In NOPS criteria, the
algorithm with the highest value is preferred. As a result, the
MOEA/D algorithm outperforms the NSGA-II algorithm. In the
Run criteria, however, the algorithm with the shortest run time
is preferred. The NSGA-II method’s average value (3693.0909) is
lower than the MOEA/D method’s (7.3333). As a result, the NSGA-
II algorithm outperforms the MOEA/D algorithm.

5.5 Sensitivity analysis

The sensitivity analysis is taken into account in solving problem
6. Tables 8 and 9 show the results of changing demand and ve-
hicle capacity at the same time, as well as the mean failure time
of the vehicles.

As shown in Table 11, there will be no change in OFV or route
selection if we simultaneously reduce demand and increase ve-
hicle capacity. When we simultaneously increase material de-
mand while decreasing vehicle capacity, we will see that trans-
portation times and undelivered materials to projects (shortage
due to delays and failures) will increase, as will the objective
function, with the exception of one case that will remain con-
stant. Obviously, with increasing demand and decreasing vehi-
cle capacity, more vehicles will be required to service, increasing
transportation time (objective function 1) and the likelihood of
vehicle failure. As a result, the level of shortage (objective func-
tion 3) will rise. On the other hand, the likelihood of taking less
reliable routes will rise. If demand remains constant while re-
ducing vehicle capacity, we effectively reduce overcapacity, and
the routeing will not change again. However, all three objective
functions will be altered if demand remains constant and vehi-
cle capacity is reduced from 0.9 to 0.8. For instance, vehicle one
previously had to serve three projects due to its reduced capac-
ity (0.8), but it will no longer be able to do so due to its reduced
capacity (0.8), so this task will be assigned to vehicle 2. When
machine 2 wishes to travel through the arc, the transport time
(objective function 1) increases and becomes non-optimal. Sec-
ond, in various scenarios, the delays in meeting demand (objec-
tive function 3) increase. Third, the previously chosen arc had
higher reliability, which was reduced from 10.3 to 10.1 by making
this change and by lowering the capacity to 0.7. Now, if we as-
sume the vehicle’s capacity is fixed and reduce the demand, the
route will not change, nor will the objective functions 1 (trans-
port time) and 2 (reliability), but objective function 3 (undeliv-
ered materials to projects) will decrease because we reduced the
demand. As a result, all of the demands will be met. However,
if we increase the demand, the vehicle will be unable to meet
this level of demand due to constant capacity and increasing
demand. As a result, transportation time (objective 1) will in-
crease while reliability (objective 2) will decrease. As a result, the
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Table 10: Statistical characteristics of the three criteria for both algorithms (independent t-test).

Method N Mean Std. deviation Std. error mean

SM NSGA-II 11 0.7617 0.23212 0.06999
MOEA/D 12 0.6591 0.21751 0.06279

DM NSGA-II 11 5.6231 1.77043 0.53381
MOEA/D 12 5.9998 1.84714 0.53322

NOPS NSGA-II 11 7.0000 1.48324 0.44721
MOEA/D 12 3030.4167 2605.72169 752.20706

RUN NSGA-II 11 3693.0909 3115.01225 939.21153
MOEA/D 12 7.3333 1.72328 0.49747

Figure 18. Sensitive analysis when the capacity decreases and demand in-

creases.

Figure 12. Sensitive analysis when the capacity is constant and demand in-

creases.

duration of the delay (undelivered materials to projects) (objec-
tive 3 function) will increase.

Table 12 shows the sensitivity analysis results based on
changes in the average vehicle failure time. Figures 11–19 show
the results of a sensitivity analysis of simultaneous changes in
demand and vehicle capacity. [Note: The amount of change in
demand and capacity is shown as (	Dem, 	Cap).]

According to Table 12, we can expect the parameters related
to vehicle breakdown times to decrease as the average vehi-
cle breakdown time increases. They perform better by increas-
ing the breakdown time from 1 to 1.1 and because the vehicle
has a longer breakdown time. It attempts to select routes that
were previously damaged in those vehicles and had an unmet
demand that it did not select. When we reduce the average ve-
hicle breakdown time, the model tries to increase the vehicle
breakdown time, but the vehicle breakdown rate is very high.
Figures 20 and 21 depict the sensitivity analysis as a result of
changes in average vehicle breakdown time. [Note: The amount
of change in demand and capacity is show as (	Dem, 	Cap).]

Figure 13. Sensitive analysis when the demand is constant and capacity in-

creases.

Figure 14. Sensitive analysis when the capacity is constant and demand de-

creases.

Figure 15. Sensitive analysis when the demand is constant and capacity de-

creases.

6. Conclusions and Future Works

Reconstruction projects following a destructive disaster can be
challenging due to time and resources constraints. A large num-
ber of post-disaster reconstruction efforts are compromised by
inadequate planning. Consequently, this paper proposed an in-
tegrated model for delivering materials to the location of re-
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Table 12: Sensitivity analysis of vehicle failure time variations.

Mean of vehicle’s
failure time −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

OFV1 126.8 126.6 125.1 121.0 120.2 109.5 107.5 107.0 104.3 98.7 96.3 94.2 91.2 91.2 91.2
OFV2 9.4 9.4 9.4 9.8 10.1 10.1 10.3 10.3 10.3 10.5 10.5 10.7 10.7 10.7 10.7
OFV3 103.4 103.4 103.3 101.8 99.1 95.1 91.2 86.0 81.7 78.7 75.1 73.9 73.9 73.8 73.8

Figure 16. Sensitive analysis when the capacity increases and demand increases.

Figure 17. Sensitive analysis when the capacity decreases and demand decrease.

Figure 19. Sensitive analysis when the capacity increase and demand decreases.

Figure 20. Sensitive analysis when the average failure time of vehicle decrease.

Figure 21. Sensitive analysis when the average failure time of vehicle increases.

construction projects following a large-scale disaster. Clustering
the location of construction projects through the use of the pro-
posed DE-K-prototypes method and designing the most reliable
route for trucks through the use of a decision-making approach
and graph theory (Permanent matrix) were two suggested ap-
proaches for designing a reliable system for delivering construc-
tion materials to the reconstruction projects. Consideration of
concurrent disruptions in distribution operations is a necessity
that is frequently overlooked, resulting in deficiency and delay
in the process of distributing construction materials. Thus, in
order to avoid disruptions in the route of trucks, serving and dis-
tribution to the construction projects were prioritised (in terms
of the factors affecting route reliability), and, on the other hand,
a strategy was adopted in which, in order to minimise the total
weighted undelivered materials to projects, trucks were sched-
uled under various scenarios so that, in the event of a disruption,
the distribution system and also the serenity are not damaged.

We attempted to minimise both total travel time and short-
age in this research by proposing a clustered and disrupted vehi-
cle routeing model. As a result, a model was developed in which
disparate vehicles from multiple depots initiated relief opera-
tions on the ground and in the air and delivered construction
material to the projects. The optimal solution was found using
the AUGMECON in a small size. Considering the complexity of
the problem, two algorithms were proposed, including an NSGA-
II and a MOEA/D, to solve the problems in large-size instances.

The mean difference between the objective values of the
NSGA-II and the epsilon-constraint method was 3.38 for the
first objective function (transport time), 6.88 for the second ob-
jective function (reliability), and the same difference for the
third objective function (the total weighted undelivered mate-
rials to projects) is 5.14%. We found that the average gaps of
the three objective functions with meta-heuristic algorithms are
very small. As the size of the problem increases, the time to
solve the epsilon-constraint method increases exponentially to
the extent that it is unable to respond from problem 8 onwards,
while the execution time of meta-heuristic algorithms increases
with a slight incline and is capable even with relatively slight
slopes. NSGA-II and MOEA/D have the same capability in terms
of SM and DM, but MOEA/D has a better performance in terms
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of NOPS than NSGA-II. And NSGA-II has better performance in
terms of CPU time than MOEA/D.

Providing decision makers with a set of reliable solutions to
help them make decisions about the delivery of construction
materials to post-disaster reconstruction projects is one of the
most important management insights that can be considered in
this research. With the help of this study’s advanced approach,
planners will be able to find the best solution to the problem. The
results of the sensitivity analysis of the model show that if the
demand of the projects decreases and at the same time the ca-
pacity of the vehicles increases or remains constant, almost no
change will occur in all three objective functions and the opti-
mal routes will remain unchanged. The capacity of the vehicle
will remain constant (decrease). In most of the time, vehicles
distribute several types of materials in a few periods, in which
the probability of using less reliable routes will increase, and as
a result, due to the slow process and the possibility of equip-
ment failure, the undelivered materials to projects will increase.
If we increase the demand for construction projects and at the
same time reduce the capacity of vehicles, the duration of op-
eration will be longer and vehicles will provide assistance on
less reliable routes, and as a result, the undelivered materials
to projects will increase. Managers and decision makers should
specify potential warehouse locations in more secure areas to
avoid the use of expensive transportation modes or less reliable
access roads, in light of the project’s sensitivity to construction
material. Additionally, managers and decision makers are en-
couraged to outsource certain tasks to reputable contractors.

Many studies in disaster risk management have their own
set of limitations. This study is no exception. Generally, there
is no reliable database to define the values of the model’s pa-
rameters; thus, in this study, some parameters were obtained
after consulting with experts and others were generated ran-
domly. Furthermore, uncertainty was addressed in the problem
only for a subset of parameters, whereas in the real world, other
parameters are associated with uncertainty. Additionally, while
many multi-objective meta-heuristic algorithms exist in the lit-
erature that may perform better, only NSGA-II and MOEA/D were
used.

Finally, some future research directions are possible. To
begin, nondeterministic values can be investigated for other
model parameters. Additionally, employing other multi-
objective metahurestic algorithms or even developing some
exact or semi-exact methods such as benders decomposition
algorithm can be investigated in the future. Developing various
variants of uncertainty approaches such as fuzzy programming
and robust optimisation, grey systems, and stochastic optimal
control to address the problem’s uncertain nature can be an in-
teresting research area. Another suggestion for future research
is to incorporate inventory decisions into the proposed model
in order to optimise the problem more practically.
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