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In this study we investigated eighth grade students’ informal justification for the circle area formula 

to expand accounts of the measurement knowledge for middle-school age students. Data were 

collected during three paired interviews of a three-year teaching experiment. Here we describe 

schemes students exhibited as they operated on measurement tasks at a level we have described as 

“conceptual area measurer”; the tasks prompted the use of square units to quantify a figure that is 

not rectilinear. We found students could follow and rehearse a rationale for the validity of the circle 

area formula with substantive opportunities for movement and figural operations with units, or with 

decompositions from unit images that coordinated circle and rectangle images.  

Keywords: Measurement, Learning Trajectories (or Progressions), Geometry and Geometrical and 

Spatial Thinking 

Area measurement is an important part of elementary and middle school mathematics; 

unfortunately, many students do not have an adequate understanding of area measurement concepts 

(Outhred & Mitchelemore, 2000). Many elementary students can remember standard formulas for 

shapes such as rectangles; however, area measurement is still problematic (Lehrer, 2003). This could 

be because students are taught the area formula through rote memorization (Simon & Blume, 1994). 

“Rather than memorize particular formulas for certain shapes, they need to understand why the 

formulas work” (Strutchens, Martin, & Kenny, 2003). The Common Core State Standards for 7th 

grade recommends students be able to give an informal justification for the circle area formula 

(National Governors Association Center for Best Practices, & Council of Chief State School 

Officers, 2010). In this paper we set out to explore 8th grade students’ understanding of the area 

formula for a circle, including their ability to apply and reason about area formulas for circles.  

We expect that asking students to justify the use of the area formula for circles provides an 

effective context for assessing advances in students’ area measurement knowledge. The purpose of 

this study is to describe and analyze students’ thinking as they found the area of circles and 

developed an informal justification for the circle area formula by coordinating with the area of a 

triangle, and by tiling with squares. We also hoped to extend a hypothetical learning trajectory (HTL) 

on area measurement by addressing measures of non-rectilinear shapes.  

Research Question 

How do eighth grade students develop an informal justification for the circle area formula? 
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Theoretical Framework 

To investigate students’ development of understanding for area measurement, we needed a tool 

to identify varying levels of understanding of area. Thus, we used a hypothetical learning trajectory 

(HLT) for area measurement developed by Barrett et al. (in press) that describes levels of 

sophistication. An HLT has three parts: an instructional goal, developmental progressions to 

characterize mental schemes and actions pertaining to the knowledge goal, and instructional activities 

to help students progress along the progression (Clements & Sarama, 2014). The instructional goals 

and activities follow from particular schemes and certain mental actions on objects characteristic of 

successive levels in the trajectory. An HLT on area measurement has guided the development of our 

tasks.  

The following area HLT levels (Barrett et al., in press) are relevant for the present study because 

the tasks were designed to scaffold the students to a more sophisticated level. These three levels of 

thinking address the degree to which children may integrate and coordinate figural images and 

internal, conceptual images by analyzing parts of figures. By re-organizing a figure into essentially 

the same collection of components, yet within a different overall shape, children may accomplish the 

first, least sophisticated of these levels (ARCS). The more sophisticated levels are achieved as 

children abstract the measures of regions to define area measures as constructions that are products of 

other linear measures, measures which refer to highly indexed, linear collections of units arranged 

along a second, orthogonal dimension in arrays. The highest level indicates the most flexible, 

algebraic grasp of products from linear quantities, taken as inputs to a functional account of the area 

measurement. 

• Area row and Column Structurer (ARCS): children at this level can decompose and 

recompose partial units to create whole units 

• Array Structurer (AS): children at this level have an abstract understanding of the area 

formula for rectangles 

• Conceptual Area Measurer (CAM): children at this level have an abstract and 

generalizable understanding of the rectangle area formula, they are able to restructure 

regions to find area, and can provide a justification for the restructuring of the shape. 

In the interview sequence reported on here, we prompted students to connect the measure of 

circles to that of rectangles as a consequence of our reading of the mental actions on objects most 

likely to be enacted at the Conceptual Area Measurer level of the HLT and because we had found the 

students expressing related schemes of decomposition and recomposition of area measures.  

Methodology  

As part of a three-year longitudinal teaching experiment (Steffe & Thompson, 2000) on 

children’s thinking and learning about length, area, and volume, we investigated four children’s 

thinking on area of circles. The students were in eighth grade at a public school in the Midwest. For 

this report, we used data from three 25- to 30-minute semi-structured interviews with four students 

(Kari, Lindsey, Joey, and Tanner). We interviewed students in pairs, with Kari and Lindsey as 

partners and Joey and Tanner as partners. The interviews were videotaped and transcribed and the 

researchers then analyzed the data. The interviews took place during November and December of 

2015.  

For the first task, we asked students to find the area of a circle and tell us if they could explain 

why the circle area formula worked. We used this as an opportunity to see the prior knowledge the 

students had about area of circles. In the second task, we asked students to compare the area of a 

square radius to the area of a circle. We created a display with two orthogonal radii serving as 

adjacent sides of a square, having an area of one radius squared. In this approach, the interviewers 
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encouraged the students to tile over the circle with cutout squares radii. We saw this activity as an 

opportunity for students to make a connection to the circle area formula (i.e.,	D = EF
G). We hoped 

students would either: (a) estimate that it would take between three and four square radii to match the 

area of the circle, or (b) use the formula to assert that approximately 3.14 square radii will always 

cover the circular region.  

Next, students watched a video of a circle and its interior being transformed into a triangle (see 

Figure 1). We designed this video to help students relate the area of the circle to the area of the 

triangle. We expected to activate their scheme for decomposing and recomposing space.  

 

 

 
Figure 1. Circle Transformed to a Triangle. 

For the third task, the students were asked to reflect on the transformation in the video and to find 

the area of a circle through relating the area of the circle to the area of a triangle. When they 

expressed the area of the triangle with an invented expression, we asked them to apply their invented 

expression to state the area of the circle without relying directly on the standard formula. In the 

fourth task, we asked students to provide an informal justification of the circle area formula, both by 

reviewing their prior work and by synthesizing what they had observed in the prior tasks. 

Results and Discussion 

Next we present descriptions of the students’ work and responses for each of the four tasks. 

Following that, we sketch a generalized account of the reasoning we observed and the knowledge 

that was within their grasp given this set of tasks, and we comment on the relation of such knowledge 

to an existing framework characterizing relevant levels of sophistication for students’ knowledge 

about area measurement. 

Task 1: Find the area of this circle. If you use a formula, explain how you know that it will give 

you the correct area or where it comes from. 

All four students correctly calculated the area of the circle using the standard area formula D =

EF
G
	during the first interview on this topic. Despite knowing the formula and how to compute the 

area, none of the four students gave an explanation about why the formula makes sense or its relation 

to that of a rectangle. One student, Lindsey, attempted to develop an explanation of the formula. She 

split the shape using a diameter and said the formula may have something to do with the height and 

the base.  

Although all of the students successfully found the area of the circle using the standard formula, 

they did not explain any part of the formula besides telling us the formula and that E was 3.14. This 
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could be an indication that students were taught the formula through memorization alone. Students’ 

responses to this task lead us to claim they were not yet operating at a Conceptual Area Measurer 

(CAM) level of the HLT for area measurement. We make this claim because they used the standard 

formula for area of a circle but did not demonstrate an abstract understanding of that formula, which 

is characteristic of the CAM level.  

Task 2: Compare the area of the square radius to the area of the circle. 

Kari and Lindsey made a guess that it would take four square radii to fill the circle. When they 

compared the area of the square radii with the area of the circle algebraically, they found the 

difference, not the ratio, which did not help them interpret how many square radii it takes to fill the 

circle. Later, using cut out square radii, they determined that it would take about two or three squares. 

When they were prompted to reflect back on the formula, Lindsey said, “oh E is 3.14 and so it would 

be 3 or a little bit more that would fit in the circle.” Although this may have helped Kari and Lindsey 

interpret the formula, they still reported that they could not justify why the formula worked. 

In the third interview, Kari and Lindsey were asked this question again. They were able to say it 

takes 3.14 square radii to fill the circle but they may not have taken the square as an object that 

occupied “radius square units” of the circle area. Instead, Lindsey dragged her finger along two sides 

of the square and said each showed a length of a radius. Students operating conceptually with area 

often use a sweeping motion within or across the area being discussed, (Dougherty, 2008). In 

contrast, Lindsey’s gestures may indicate she was treating the sides operationally, as factors that 

would be used to feed into a calculation for a product of “radius squared”. Later, Lindsey labeled 

another square shape with edge length of “radius” by writing “radius squared” on the interior, 

indicating an advance beyond the operational approach. 

In the first interview Joey and Tanner concluded it would take three square radii to fill the circle. 

They did not relate the square radii to the standard formula. At the beginning of the third interview 

they went back to this task. The interviewer asked how many squares it would take to fill the circle? 

Joey said, “3 point something.” The interviewer then asked them if the formula helps them answer 

that question? Tanner said, “3.14 because the radius square times E is the area of the circle.” The 

interviewer explained to the students this was the beginning to understanding the standard formula 

for area of a circle but was not yet a justification for the formula. 

Based on this interview, we claim Kari and Lindsey were able to interpret the formula as a 

statement of the number of square radii it would take to fill a circle but struggled to justify why. Joey 

and Tanner did not articulate a connection between the square radii and E at the end of the first 

interview, but at the end of the third interview they described the relationship clearly. Apparently this 

task allowed these students to develop an understanding of the circle area formula as an approximate 

value, in relation to the number of square radii units needed to cover the circle. Still, it did not help 

them justify why the formula specifies π square radius units.  

Task 3: Finding the area of a circle by transforming it into a triangle 

After watching the video of a circle being transformed into a triangle, Kari and Lindsey were 

given a page that had the circle and triangle shown in the video. They told the interviewer the triangle 

had the same area as the circle. They labeled the height of the triangle r because they could see the 

height of the triangle was concurrent with the segment showing a radius of the circle. However, they 

would not label the base of the triangle circumference, but the were willing to label it C. Lindsey 

said, “[we can] label it circumference of a circle, but not really because it is not circular.” Kari agreed 

and said, “but if we rolled the circle out it would go to here” as she pointed to the end of the triangle. 

They agreed they could label it C. We think Lindsey and Kari did not view circumference as a 

measure but only as a name of part of a circle. They found the area of the triangle by first measuring 

the length of the base and height of the triangle and then multiplying the base (circumference), height 
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(radius), and 
<

G
. They checked to see if the triangle had the same area as the circle by using the 

standard area formula for a circle and found their calculation was about one square centimeter 

different. With the help of the interviewers they concluded the circle had the same area as the 

triangle; they found a difference between area measures of 18.75 and 19.63 but they needed to 

account for measurement error. They concluded they could find the area of the circle using the 

formula	D = HF
<

G
 (see Figure 2). 

 

 
 

Figure 2. Kari and Lindsey’s work for Task 3 on the picture of the circle to triangle transformation 

page given to them. 

In the second interview, Kari and Lindsey, were given another circle and asked to calculate the 

area without using the standard formula. They drew a triangle that had an altitude the same as the 

radius of the circle and a base the same as the circumference. They used their invented formula I =

HF
<

G
 to find the area of the circle. After they found the area using their invented formula, they 

checked their answer with the standard formula (i.e., I = EF
G) and found the answer to be the same. 

This suggests a conceptual advance in that they expressed the area of a circle in terms of a related 

expression involving a triangle that was a reconstituted collection of parts of that circle. 

Similarly, after Joey and Tanner watched the video of the circle being transformed into a triangle 

they found the area of the circle from the video (same page was given as Figure 2), by working with 

the triangle and using	I = ;ℎ
<

G
.  Joey and Tanner were then given a different circle and asked to find 

the area without using the standard formula. As we had hoped, their strategy was to try to create a 

triangle that would have the same area as the given circle. They knew the height of the triangle would 

be the radius, which they measured correctly. They were not sure how to calculate or measure the 

circumference of the circle, which they recognized would be the other side length needed for the 

triangle. With some prompting from the interviewer, they used a wikki-stix to find the distance 

around the circle. Once they found the measure of the circumference they found the area of the circle 

by find the area of their created triangle using the triangle area formula. Next, with guidance from the 

interviewer, Joey and Tanner wrote 
KL

G
=

MN

G
= F

G
E on their paper. They then checked their answer by 

finding the area of the circle using the standard circle area formula. They had a difference in their 

answers by one square centimeter but concluded the difference was due to a measurement mistake.  

We found evidence that students could follow our guidance and logic to interpret a more tangible 

formula for the area of a circle. Kari and Lindsey seemed to be able to complete the transformation of 

the circle into a triangle without guidance from the interviewer because they knew how to find the 

circumference of the circle. Joey and Tanner were able to complete this task with the help of the 

interviewer giving them a wikki-stix and later the interviewer told them the formula for finding the 

circumference of a circle.  



Geometry and Measurement 240 

 

Wood, M. B., Turner, E. E., Civil, M., & Eli, J. A. (Eds.). (2016). Proceedings of the 38th annual meeting of the 

North American Chapter of the International Group for the Psychology of Mathematics Education. Tucson, AZ: 

The University of Arizona. 

Task 4: Justifying the circle area formula 

 Kari and Lindsey began their informal justification for the circle area formula by drawing a 

circle and a radius. Lindsey said, "So the circumference is the circle and if you lay that out it would 

be this, which is the base of the triangle, which we are calling C, cause it is like the circumference of 

the circle. Then the height is like the radius. And to get the area of the triangle you do base times 

height which is like C times r … times a half.” Kari said that the triangle had same area as the circle. 

They then set EFG equal to HF
<

G
. They substituted OE in for H, followed by 2F for O and simplified 

(see Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Kari and Lindsey’s work on Task 4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Tanner and Joey’s work on Task 4. 

In the third interview with Joey and Tanner, they were asked to justify the circle area formula. To 

reply, they revisited previous work and recalled this equation: 
KL

G
 = 

MN

G
. They substituted 2EF for the 

circumference leaving them with D =
KGQK

G
. They simplified this equation and were left with the 

standard circle area formula. This algebra was not easy for them and it took them some time to 

decide if F×F was 2F or FG (see Figure 4).  

All four students took for granted the equivalence of the circle and the triangle and used it in their 

defense for the informal justification of the formula for area of a circle. At first they all wanted to use 

the standard formula they knew for area of a circle to justify their invented formula. The students 

were able to restructure the circle into a triangle and relate the shape to the area of a triangle and 

provide justification for the transformation and the circle area formula. We note here that the 

operation used in the video display of representing the circle and the triangle with an identical set of 

strips, and reorganizing to show the transition between the two figures involves an over-

simplification, but we believe it was productive. This scenario disregards the contortion of the inner 
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and outer edges of these unitary strips. However, as we approach the limiting case for the width of 

the strips this distortion becomes negligible. Thus, our imagined conservation of a collection of strips 

serves as a thought experiment more than a comprehensive argument. Nonetheless, it is conceptually 

sound, as the knowledge can be expected to mature when a student gains a sophistication level suited 

to learning the principles of the calculus, later in their academic career. We note too, that others have 

experimented with similar spatial morphing, which children may see as space conserving (e.g., 

Lehrer, Jenkins, & Osana, 1998; Kara, 2013). 

Conclusion and Implications  

Prior to the interviews, the students were not able to explain the standard circle area formula and 

at the end of the interview they were able to produce an informal justification for the circle area 

formula. We claim, these tasks supported students’ development of a more meaningful understanding 

of finding the area of a circle. With scaffolding, the four students were preforming at the CAM level 

because they were able to restructure a circle into a triangle to find an area measure using algebraic 

expressions and operations. As well, they were able to provide an informal justification of this 

transformation and defend the circle area formula.  

After the first task we found the students were able to compute the area, but they were not able to 

explain or interpret the formula. Our findings from this task support those of Outhred and 

Mitchelemore (2000) that elementary and middle school students do not have a sufficient 

understanding of measurement and those of Lehrer (2003) that students can remember standard 

formulas but not have a understanding of the formula or area measurement.  

To our surprise, these students used the standard formula to justify their invented formula instead 

of using their invented formula to justify the standard formula. This could be because they had been 

taught the standard formula and did not learn about the formula as measurement from units and unit 

iteration for covering such an object. We conjecture that if they were to invent their own formula 

first, they could use their formula to develop the standard formula, which would drastically alter their 

conception of the standard formula. They may have conceived of the standard formula as an arbitrary 

construction that the teacher was merely relaying to them, and moreover, assumed it did not have a 

practical basis in physical measures with units of area. Students often accept statements like this as 

valid statements (theorems in action) for practical use without testing or challenging them. Setting 

measurement activities as empirical tasks is unusual, especially the measure of the circle, given that a 

formulaic computation is available, requiring only the measure of a radius. By problematizing the 

formula for measuring area, we found that students in 8th grade were capable of taking a novel unit 

square, the unit with a side length of one circle radius, and using it to measure both the circle and the 

triangle for area. By relating a circle to a triangle through a physical transformation we were able to 

relate the area formula for a circle to the area formula for a triangle. By working with the imagistic 

and the symbolic representations at the same time we claim students were able to recognize an 

informal argument to justify the formula for measuring the area of a circle.  

Thus, we found that students in Grade 8 are able to recognize the validity and figural veracity of 

the standard formula for computing the measurement of the area of a circle in terms of its radius. 

This finding informs and allows us to adapt the row of the area HLT for Conceptual Area Measurer, 

indicating that students at a conceptual understanding of area measuring in terms of arbitrary square 

units should also be expected to recognize extensive algebraic manipulation of the area formula to 

relate it to the formula for finding the area of a triangle and add the four tasks to the HLT. Future 

research will be completed with these students to see they are able to describe and complete an 

informal justification for the circle area formula on their own.  
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