
The Pennsylvania State University 
 

The Graduate School 
 

College of Education 

DEVELOPING AN UNDERSTANDING OF VARIATION: AP STATISTICS  

TEACHERS‘ PERCEPTIONS AND RECOLLECTIONS OF CRITICAL MOMENTS 

A Dissertation in 
 

Curriculum and Instruction 
 

by 
 

Susan A. Peters 

 2009 Susan A. Peters 

Submitted in Partial Fulfillment 
of the Requirements 

for the Degree of 

Doctor of Philosophy 
 
 

August 2009 



 

 

The dissertation of Susan A. Peters was reviewed and approved* by the following: 

 
Rose Mary Zbiek 
Professor of Education 
Dissertation Advisor 
Chair of Committee 

 
Glendon Blume 
Professor of Education 

 
M. Kathleen Heid 
Distinguished Professor of Education 

 
Thomas Hettmansperger 
Professor of Statistics 

 
Laura Simon 
Lecturer in Statistics 

 
Glendon Blume 
Professor of Education 
Coordinator of Graduate Program in Curriculum & Instruction 

 
*Signatures are on file in the Graduate School 
 



iii 

 

ABSTRACT 

This phenomenological study investigates conceptions of statistical variation that 

secondary mathematics teachers who are recognized leaders in AP Statistics exhibit. This study 

also investigates perceptions and recollections of activities and actions that teachers who 

exhibited robust understandings of variation suggest contributed to their current understandings 

of variation. The data include questionnaires, event history calendars, critical incident 

descriptions, resumes, course syllabi, content-focused interviews, and two learning-context 

interviews for each teacher. Constant comparative analysis (Glaser & Strauss, 1967) of content-

interview data and syllabi yielded three distinct types of teachers‘ conceptions of variation: 

Expected but Explainable and Controllable (EEC), Noise in Signal and Noise (NSN), and 

Expectation and Deviation from Expectation (EDE).  

The teachers‘ responses to variation-related tasks were used in conjunction with the 

SOLO Model, research results about students‘ learning related to variation, and expositions on 

what it means to understand statistical variation to develop a framework for robust 

understandings of variation. The framework consists of two cycles of levels of reasoning in the 

formal mode. Robust understanding of variation is indicated from integrated reasoning about 

variation across three perspectives—design, data-centric, and modeling— in the second cycle of 

levels. Teachers‘ understandings of variation were assessed using the framework. Five teachers 

exhibited reasoning about variation that was consistent with robust understandings of variation.  

Analysis of learning experience-related data for these five teachers followed protocol for 

phenomenological studies. Factors that may have contributed to these five teachers‘ 

developments of robust understandings include their interests in the field of statistics, their desires 

to have an overarching content framework for themselves and for their students, their 

foundational knowledge upon which they built deeper understandings, their propensities for 
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critical reflection, and their acting on opportunities to engage in learning activities and rational 

discourse with more knowledgeable others. The extent to which they embrace these opportunities 

may distinguish them from other teachers.  
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Chapter 1 
 

Rationale 

Status of Statistics Education Research 

Statistical content currently occupies a prominent position in content recommendations 

for students in Pre-Kindergarten through grade 12 (e.g., Burrill, Franklin, Godbold, & Young, 

2003; Franklin et al., 2007; National Council of Teachers of Mathematics [NCTM], 1989, 2000), 

and national assessments for elementary and secondary students reflect an increased focus on data 

analysis (National Assessment Governing Board [NAGB], 2004; Tarr & Shaughnessy, 2007). 

Analyses of results from large-scale assessments like the National Assessment of Educational 

Progress (NAEP) point to improved student performance on data analysis items (D'Ambrosio, 

Kastberg, McDermott, & Saada, 2004; Tarr & Shaughnessy, 2007; Zawojewski & Shaughnessy, 

2000), but concerns remain about students‘ performance on complex tasks that require 

sophisticated statistical reasoning (Tarr & Shaughnessy, 2007). 

Student achievement often is considered in tandem with teacher knowledge, and recent 

research results support the widely accepted view that teacher knowledge can positively affect 

student achievement in mathematics (e.g., Hill, Rowan, & Ball, 2005). Some researchers 

(Reading & Shaughnessy, 2004) speculate that students‘ understandings of statistical concepts 

may be connected to their teachers‘ lack of experiences with the content and posit that ―most‖ 

Pre-Kindergarten through grade 12 teachers have few statistical experiences (Shaughnessy, 

2007).  

To develop teachers‘ understandings of statistics concepts, researchers (Heaton & 

Mickelson, 2002; McClain, 2005), leaders from professional organizations (Conference Board of 
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the Mathematical Sciences [CBMS], 2001), and curriculum developers (Chance & Rossman, 

2006) opine that teachers need opportunities to experience the study of statistics in ways similar 

to how they are expected to teach the content. Current results from research suggest that while 

researchers are making progress in uncovering characteristics of experiences that result in 

teachers‘ learning of statistics (e.g., Hammerman & Rubin, 2004; Liu & Thompson, 2005; Makar 

& Confrey, 2002), researchers are just beginning to reveal characteristics that lead to teachers 

constructing robust understandings of formal statistical concepts.  

Examining existing research studies that investigate teachers‘ conceptions or learning in 

statistics reveals conceptions or learning for a limited number of concepts, like hypothesis testing 

(Liu & Thompson, 2005), sampling distribution (Heid, Perkinson, Peters, & Fratto, 2005), or 

arithmetic mean (Callingham, 1997); for a limited number of problem contexts, such as group 

comparisons (Hammerman & Rubin, 2004; Makar & Confrey, 2005); or for a limited number of 

teachers within an exploratory setting, like the setting of a mathematics course for preservice 

elementary teachers (Canada, 2004) or professional development for inservice middle school 

teachers (McClain, 2005) designed specifically to promote particular understandings. When the 

amount of work needed to expand this limited scope of coverage is coupled with the length of 

time that typically exists before results from studies are disseminated publicly, designing 

research-based preservice and professional development programs that facilitate teachers‘ 

constructions for statistics in general seems to be a goal for the distant future. Current efforts can 

take years to begin to effect a change in statistics teacher education and may require more time 

than legislators and the public will tolerate to achieve a statistically literate population of teachers 

that can educate statistically literate students. Needed is a complementary research path that will 

provide more immediate results that eventually can be compiled with the outcomes of long-term 

investigation. 
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This study, a retrospective study with teachers who have robust understandings, offers an 

alternative approach intended to be timely as well as viable for uncovering the characteristics of 

experiences associated with successful learning. Rather than designing and studying a program 

that may be successful in having teachers construct robust statistical understandings, studying 

teachers who already have robust understandings eliminates the time required to design, 

implement, evaluate, redesign, and reevaluate an educational program. Retrospective examination 

of the characteristics of successful learning experiences for individuals who already have robust 

understandings occurs almost immediately. Retrospective study also does not require speculation 

about contexts that may be successful in perturbing individuals towards the construction of robust 

statistical understandings; by studying individuals who already have robust understandings, the 

focus shifts to uncovering the varied contexts that may have facilitated the construction of those 

understandings. Retrospective study, however, does not offer a panacea for all of the limitations 

of conventional study.  

Because of the reliance on individuals‘ memories and the accuracy of those memories, 

the collection and analysis of retrospective data raises issues of reliability and validity (Martyn & 

Belli, 2002). Research results offer strategies that can reduce the impact of recall effects, 

including the use of instruments like event history calendars (Freedman, Thornton, Camburn, 

Alwin, & Young-DeMarco, 1988; Martyn & Belli, 2002)1 and critical incidents descriptions 

(Brookfield, 1990; Butterfield, Borgen, Amundson, & Maglio, 2005; Flanagan, 1954).2 

Additionally, a single retrospective study realistically cannot investigate individuals‘ experiences 

in learning every statistical concept; however, by focusing on a key concept that underlies every 

area of statistics, characteristics of experiences critical for developing robust understandings of 

                                                      
1 The format of the event history calendar is a matrix, with columns containing timing cues for recording 
behaviors and rows containing behaviors—significant activities or events related to the goals of the 
research—that can help individuals to frame the occurrence of important events (Freedman, Thornton, 
Camburn, Alwin, & Young-DeMarco, 1988) 
2 Critical incidents are defined to be unique events that evoke emotion at the time of occurrence or events 
that mark a transition point in life and are significant in the lives of individuals (Brookfield, 1990). 
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that concept arguably parallels the characteristics of experiences critical for developing robust 

understandings of statistics in general. Variation is one such statistical concept. 

Variation and Statistics 

The need to think statistically stems from the presence of variation. Statistical thinking 

encompasses finding ways to deal with variation in order to answer questions probabilistically 

and to determine the adequacy of the answers based upon considering the context from which the 

question originates. Many statisticians view the development of statistical thinking as 

fundamental to statistics education (e.g., Bailar, 1988; Cobb & Moore, 1997; Moore, 1998). In 

general terms, statistical thinking embodies an understanding of the statistical problem-solving 

process—that is, understanding both how to engage in the process and why the process is 

needed—and understanding the fundamental concepts that underlie the process (Ben-Zvi & 

Garfield, 2004). Variation plays a crucial role throughout the process of statistical investigation 

(Franklin et al., 2007).  

Various facets of variation arise throughout the investigative process (Franklin et al., 

2007). Failure to acknowledge variation or to anticipate possible sources of variation can render a 

statistical study meaningless before data collection begins. Identifying potential sources of 

variation allows some of those sources to be controlled through the processes chosen to collect 

data, thereby increasing the likelihood that the effect of or relationship with the factor(s) of 

interest can be determined. Because variation cannot be controlled completely, variation also 

plays a central role in the analysis and interpretation of data. Measuring variation and accounting 

for variability in the selection of a distribution or model to fit data enables determination of 

whether independent factors are related to or associated with dependent factors in ways beyond 

chance expectation. Variation prevents deterministic conclusions about relationships between 
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independent and dependent factors from being made, leaving only probabilistically conditioned 

statements for interpreting results about a population of interest. 

The breadth of individuals‘ reasoning about the facets of variation can be captured by 

considering their reasoning about variation through the lenses of three perspectives: a design 

perspective, a data-centric perspective, and a modeling perspective. Researchers have described 

data-centric and modeling perspectives on distribution (Prodromou & Pratt, 2006) and analyzed 

students‘ reasoning about distribution and variation in the same study using the same data to 

illustrate the connections between variation and distribution (Reading & Reid, 2006; Reid & 

Reading, 2005). Reading and Reid found that students‘ consideration of variation provides some 

indication of their abilities ―to identify, understand, and use the key elements of a distribution‖ (p. 

57), but they also found that students‘ ―strong‖ consideration of variation included a need to 

―recognize the effect of a change of variation in relation to other concepts‖ (Reid & Reading, 

2005, p. 51), including distribution. This seemingly reflexive relationship between variation and 

distribution merits consideration of variation from data-centric and modeling perspectives.  

In this study, Prodromou and Pratt‘s (2006) descriptions of the data-centric and modeling 

perspectives on distribution have been expanded and modified to describe perspectives for 

reasoning about variation. This study adds the design perspective because reasoning about 

variation is warranted by the types of thinking associated with reasoning about variation in 

consideration of study design. General types of thinking associated with design include strategic 

thinking to plan and anticipate problems within practical constraints and thinking related to 

seeking explanations (Wild & Pfannkuch, 1999). Types of statistical thinking associated with 

design include considerations of variation through noticing and acknowledging variation during 

consideration of and selection of investigative strategies (Wild & Pfannkuch, 1999).  

The three perspectives target different ways in which one might view variation. 

Reasoning about variation from the design perspective entails using context to identify the nature 
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of and potential sources of variation and considering design strategies to control variation from 

some of those sources. Reasoning from the data-centric perspective includes measuring, 

describing, and representing variation while exploring characteristics of distributions and using 

those representations to make informal comparisons about the relationships among data and 

variables. Reasoning about variation from the modeling perspective incorporates modeling data 

or modeling characteristics of data to reason about relationships among data and variables for the 

purposes of making predictions or inferences from data.  

Research Questions 

With statistical content occupying a prominent position in the content recommendations 

for students in Pre-Kindergarten through grade 12, teachers‘ lack of experiences with statistics, 

and concerns about students‘ performance on national assessments, research that provides timely 

information for the eventual design of preservice and inservice teacher education in statistics is 

sorely needed. Given the centrality of variation to the study of statistics and the consideration of 

variation needed for statistical thinking, focusing on the characteristics of experiences for which 

teachers were able to construct robust understandings of variation can provide some needed 

information for the eventual design of programs that enhance the development of teachers‘ 

statistical thinking.  

This study investigates some of these issues and in particular answers the following 

questions.  

 What conceptions of statistical variation do secondary mathematics teachers who are 

recognized leaders in AP Statistics exhibit? 
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 For those secondary AP Statistics leaders who exhibit robust understandings of variation, 

what are the activities and actions that contributed to their current understandings of 

variation as reflected in their perceptions and recollections of experiences? 

Answering the first question requires investigation of AP Statistics teacher-leaders‘ conceptions 

of variation. To answer the second question, clear explication of behaviors indicative of robust 

understanding of variation is needed to identify those teachers who provide sufficient evidence of 

robust understandings. Finally, a response to the second question requires examining the 

perceived beneficial learning activities and actions of those with robust understandings to look 

across experiences for common factors related to learning about variation. 

Overview of the Study 

This study is designed as a phenomenology for which the phenomenon under study is 

secondary mathematics teachers‘ development of robust understandings of variation. Primarily 

through the analysis of task-based, content-focused interviews and course syllabi, teachers‘ 

differing conceptions of variation are extracted and described. The Structure of the Observed 

Learning Outcomes (SOLO) Model (Biggs & Collis, 1982, 1991) is used to frame understanding 

and to analyze teachers‘ conceptions of variation. Through the analysis of two interviews focused 

on learning experience and instruments containing teachers‘ accounts of and perceptions of 

learning, factors contributing to the development of robust understandings of variation are 

extracted and compiled using data from those teachers who exhibit robust understandings. 

Analysis is guided by the detailed and systematic recommendations for phenomenological 

studies, as outlined by Moustakas (1994). 

Students‘ developing conceptions of variation have been studied previously (e.g., 

Reading & Shaughnessy, 2004; Watson, Kelly, Callingham, & Shaughnessy, 2003) and reported 
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in synthesized form (Shaughnessy, 2007). This study builds on the results of this prior research to 

provide empirical support from data collected from 16 AP Statistics teacher-leaders for the 

existence of three unique conceptions of variation for advanced knowers of statistics. Analysis of 

the data provided empirical support for a conceptual framework for robust understandings of 

variation. The framework differs from previous expository accounts of understanding in that it 

attempts to illustrate the connections and relationships among elements of the framework rather 

than provide lists of observable outcomes (e.g., Garfield & Ben-Zvi, 2005) and attempts to extend 

descriptions of what it means to reason about variation at advanced levels beyond responses to 

particular tasks (e.g., Watson & Kelly, 2004). Five teachers were found to provide clear evidence 

of robust understandings of variation, and data from these five teachers was used to extract 

learning factors that teachers perceive as contributing to developing their robust understandings. 

The next chapter describes the empirical grounding of the study from studies described in 

statistics education literature and teacher education literature. Chapter 3 contains explication of 

the conceptual and theoretical grounding of the study, and Chapter 4 details the research methods 

used in this study. The conclusions and limitations in Chapter 8 follow three chapters that present 

answers to the research questions and articulate the meaning of robust understandings of 

variation. 



    

 

Chapter 2 
 

Literature Review 

Research About Variation and Related Concepts 

Despite the critical role of variation in statistics and the emphasis on statistics in 

elementary and secondary mathematics education, students‘ and teachers‘ conceptions of 

variation and their developing understandings of variation have not been common topics in 

research literature. In 1997, Shaughnessy outlined what he perceived to be ―missed opportunities 

in research on the teaching and learning of data and chance‖ (p. 6), and, in particular, he 

identified the paucity of reported research on students‘ reasoning about variation as a ―missed 

opportunity.‖ Since that time, researchers have begun to study and publish results focused on 

students‘ and teachers‘ reasoning with variation and their conceptions of this key concept. 

Implicit within this literature are suggestions that preservice teacher preparation in statistics may 

not provide teachers with sufficient opportunities to develop robust understandings of statistical 

concepts. A comparison between research focused on teachers‘ reasoning and conceptions and 

similar work with students leads to the conclusion that, as Shaughnessy (2007) suggests, 

―teachers have the same difficulties with statistical concepts as the students they teach‖ (p. 1000).  

The body of research that examines both students‘ and teachers‘ reasoning about and 

understanding of variation and related concepts suggests elements and connections needed for 

robust understandings of variation without providing a holistic image of robust understanding. 

When considered in conjunction with expository literature that outlines essential aspects and 

views of variation deemed necessary for deep understandings of variation, a clearer but still 

incomplete image of robust understanding comes into view.  
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The totality of research and expository literature about variation suggests that 

individuals‘ reasoning about variation can be captured from three perspectives: a design 

perspective that integrates acknowledgement and anticipation of variability in the design of 

quantitative studies; a data-centric perspective that integrates the processes of representing, 

measuring, and describing variation in exploratory data analysis; and a modeling perspective that 

integrates reasoning for fitting models to patterns of variability in data and statistics, judging the 

fit of models, and performing data transformations to improve the fit of models to make 

inferences from data. In addition to being able to reason competently about variation from these 

three perspectives, individuals should be able to integrate reasoning from the three perspectives 

while engaging in the statistical problem-solving process.  

In this chapter, I consider both studies with teachers and studies with students to 

articulate what research reveals about conceptions of variation and reasoning with variation. I 

first explicate what research reveals about individuals‘ reasoning about variation and related 

concepts from a design perspective, as statistical problem solving begins with anticipating and 

acknowledging variation. Discussion of research on students‘ and teachers‘ reasoning from data-

centric and modeling perspectives follows. Because understanding of variation both is dependent 

upon understandings of related concepts and is central for the development of understandings of 

related concepts, I also consider the results of research that examine concepts related to variation.  

Students‘ and Teachers‘ Reasoning From a Design Perspective 

A major focus of statistics is examining a question about a population through the 

analysis of data collected from a sample of the population. Making valid inferences about a 

population depends upon using appropriate sampling methods and designs—ones that 

appropriately anticipate and acknowledge variability for answering questions of interest. Without 
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properly collected data, conclusions drawn from data are meaningless, which is why statisticians 

consider methods for collecting data that will allow the question of interest to be answered before 

they collect any data for analysis. At the heart of many of these methods and designs is 

randomization, which allows statisticians to determine if observed data characteristics like 

variation are due to chance or are likely to have been caused by some other factor (Franklin et al., 

2007). Two important forms of randomization lie at the heart of observational and experimental 

designs: random sampling and random assignment. As Garfield and Ben-Zvi (2005) indicate, 

randomization produces data with variation in mind and minimizes bias in sample selection by 

introducing planned variation to data. 

Reasoning About Variation and Sampling Methods 

Elementary and middle school students have been observed anticipating variability in 

samples and acknowledging variability by recognizing benefits from sampling methods that align 

with generally accepted methods (e.g., Watson & Kelly, 2002a, 2002b). Of primary importance in 

observational studies is sample selection that typically includes some form of randomization to 

produce samples representative of the larger population from which they are drawn (e.g., Groth, 

2003). Although random and representative samples may alternatively be considered to be fair 

and unbiased, everyday use of terms can interfere with students‘ intuitions about samples and 

fairness, for example. Young students seem to view a sample as a ―bit of something‖ (Watson & 

Kelly, 2002a, p. 5) but do not necessarily intuit the ―bit‖ as representative of a larger whole. The 

fifth graders observed by Jacobs (1999) did not associate fairness with individuals‘ equal 

probability of selection but rather associated fairness with individuals‘ perceptions of the 

selection process as fair. These students had no formal instruction in sampling, and practical 

issues interfered with their abilities to intuit statistically valid methods. In contrast to Jacobs‘ 
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students, Watson and Kelly (2002a) observed third-graders subsequent to instruction suggest that 

samples selected through random methods are ―fair.‖ Some students even described ―fair‖ 

methods as methods that included ideas for producing random and representative samples, 

although students were not able to fully realize the benefits of randomization. Watson and Kelly 

(2002b) observed the same increased sophistication in reasoning about sampling methods from 

fifth graders. Their fifth graders scored significantly higher than and showed significantly greater 

improvement than third graders subsequent to instruction (Watson & Kelly, 2002b). These studies 

suggest that instruction may help students evaluate sampling processes and the products of those 

processes, although students‘ reasoning falls short of describing why the sampling methods work. 

Randomization is an important consideration for producing representative samples when 

designing studies, yet the importance of the topic has been largely overlooked by researchers. To 

date, researchers have paid little explicit attention to students‘ conceptions of randomization or 

students‘ reasoning about connections among randomization, variation, and sampling. Research 

suggests that elementary and middle school students benefit from instruction that examines the 

role of randomization in sampling, but what connections students make to variation are unclear.  

Reasoning About Variation and Samples 

With appropriate instruction, students are able to develop skills for reasoning about 

sample variability by making conjectures about reasonable sample compositions for samples 

selected from populations with known characteristics. Middle and high school students‘ reasoning 

about sample variability has been classified according to three increasingly sophisticated types of 

reasoning: additive, proportional, and distributional (Shaughnessy, Ciancetta, & Canada, 2004). 

Students who reason additively focus on frequency counts, whereas those who reason 

proportionally focus on relative frequencies to make conjectures about samples drawn from a 



13 

 

population of known composition. Supporting students‘ development of proportional reasoning is 

an overarching goal of middle school mathematics, but the complexity of reasoning 

proportionally is well documented (e.g., Behr, Harel, Post, & Lesh, 1992) and suggests one 

reason why individuals might struggle with the notion of a representative sample. Students who 

are able to reason proportionally may eventually be able to reason distributionally. Distributional 

reasoning is a more sophisticated type of reasoning about samples that entails reasoning with 

expected frequencies and reasonable deviation from expectation to consider possible sample 

compositions (Shaughnessy et al., 2004). In contrast with reasoning about samples from a 

population with known characteristics, distributional reasoning may be necessary but not 

sufficient for reasoning about a population from a sample. In their work, Shaughnessy and 

colleagues (2004) did not have students reason about the latter situation, but the work of Saldanha 

and Thompson (2002) suggests that reasoning that is more sophisticated than distributional 

reasoning might be needed to reason from relative frequencies and deviation from expectation for 

a sample in order to make inferences about the population. 

Inferential reasoning seems to require a multiplicative conception of sample and 

sampling (Saldanha & Thompson, 2002). Students who reason multiplicatively communicate a 

view of sample as a ―quasi-proportional‖ subset of a population and communicate a view of 

sample statistics in relation to distributions of sample statistics for samples of the same size. 

Multiplicative conceptions include the notion of comparing a single sample statistic against the 

population of statistics resulting from statistics for all possible samples of a given size from the 

population—that is, comparing a sample statistic to a sampling distribution. Multiplicative 

conceptions seem to be necessary in forming a firm foundation for inferential reasoning. The 

secondary students observed by Saldanha and Thompson infrequently exhibited multiplicative 

conceptions of samples and sampling to reason about variability and patterns of variability in 

sampling distributions. The researchers suggest that students who do display multiplicative 



14 

 

conceptions have the support necessary for ―building a deep understanding of statistical 

inference‖ (p. 268). Multiplicative conceptions seem to provide not only a foundation for 

understanding statistical inference but also seem to be important for considering variability in 

samples and sampling distributions. 

Sample Representativeness and Sample Variability 

Implicit in a multiplicative conception of sample and sampling are the notions of sample 

representativeness—the idea that a sample will have characteristics similar to those of the 

population—and sample variability—the idea that samples are not all identical and thus do not 

match the population exactly. To exhibit multiplicative conceptions, the ideas of sample 

representativeness and sample variability are balanced, meaning that an individual implicitly 

acknowledges that a representative sample should produce statistics similar to population 

parameters and different samples should be composed of values from different observational units 

and (most likely) have different summary statistics. Balancing notions of sample 

representativeness with sample variability has been shown to be a nontrivial endeavor. In their 

work, Rubin, Bruce, and Tenney (1990) noticed that students tend to overly rely on one idea or 

the other depending upon the problem context. An overreliance on sample representativeness 

leads to the deterministic belief that a sample tells everything about the population from which 

the sample is selected, whereas an overreliance on sample variability leads to the deterministic 

belief that a sample tells nothing about the population. The researchers contend that the two ideas 

―are contradictory when seen in a deterministic framework‖ (Rubin, Bruce, & Tenney, 1990, p. 

315), with a sample simultaneously revealing everything and nothing about a population. 

Probabilistic reasoning is needed to balance the two ideas.  
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As individuals who take multiple mathematics courses during their undergraduate 

studies, secondary mathematics teachers may have a propensity for deterministic reasoning 

(Meletiou-Mavrotheris & Stylianou, 2003) and thus may struggle with the notions of sample 

representativeness and sample variation. Inferential reasoning—reasoning from the variation of 

samples toward the variation of sampling distributions to determine the likelihood of drawing 

samples with particular statistics from a population with hypothesized parameters—is dependent 

on being able to reason probabilistically and having multiplicative conceptions of samples and 

sampling. Consideration of variation in samples and sampling distributions seems necessary to 

reason probabilistically.  

Reasoning About Variability in Experimental Design 

Little research exists to inform one about how students or teachers may reason about 

variation from a design perspective when designing experiments, but researchers do provide 

glimpses into how individuals anticipate variability when designing experiments. In a teaching 

experiment designed to have students consider error, or variation, as arising from multiple 

sources like measurements, instruments, and replications in experimental design, fourth graders 

compared rockets with different physical features and explored whether differences in rockets‘ 

achieved heights could be attributed to random error or were indicative of systematic error in 

rocket types (Petrosino, Lehrer, & Schauble, 2003). During their classroom discussions, students 

were able to use their collected data to suggest systematic error and thus displayed sophisticated 

reasoning about variation. Not emphasized in the teaching experiment were ways in which to 

control various sources of error—particularly ways to control random error.  

Few students consider random assignment as a strategy to control variation, even when 

they are enrolled in an introductory course that emphasizes the role of randomization (Derry, 
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Levin, Osana, Jones, & Peterson, 2000). Consideration of methods to control systematic and 

random variability involves sophisticated reasoning—reasoning that was rarely seen in Groth‘s 

(2003) study to investigate secondary students‘ understanding of experimental design. Although 

students may struggle to design experiments that control variation from different sources, even 

students at the elementary level have been observed to recognize sources of error in data 

(Masnick & Klahr, 2003). Necessary for designing experiments are both consideration of sources 

of variation and consideration of ways to control variation from those sources. 

Coordinating between-group (systematic) and within-group (random) variation involves 

what Reid and Reading (2005) label as ―strong consideration of variation.‖ The researchers see 

the coordination between systematic and random variation as a first step toward recognizing the 

link between variation and formal inferential statistics. They suggest that students may need time 

and instruction beyond an introductory statistics course, even a course focused on variation, to 

reason with a strong consideration of variation in a wide variety of contexts. While it appears that 

reasoning about variability from a design perspective is difficult for students and teachers, proper 

study design requires reasoning about sources that may introduce variability to data if left 

uncontrolled.  

Students‘ and Teachers‘ Reasoning From a Data-Centric Perspective 

After a study is designed and data are collected, statisticians typically engage in 

exploratory data analysis to investigate possible patterns of variability in data and relationships 

among variables. For students‘ initial explorations in statistics, however, students typically begin 

with exploratory data analysis rather than design (e.g., Moore, 1999). Much of the research to 

examine students‘ and teachers‘ reasoning about variation falls under the umbrella of reasoning 
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from a data-centric perspective, which includes reasoning about representing, measuring, and 

describing variability. 

Representing Variability 

Widespread availability of technology and easy access to software applications has 

caused a new instructional focus to emerge for creating and interpreting data representations 

(Friel, 2008). Rather than spending hours to create graphical displays, students and teachers are 

able to use technology to create data representations easily and to compare information about 

variation and patterns of variability revealed in or obscured by different representations, among 

other possible comparisons. Garfield and Ben-Zvi (2005) consider creating and examining 

multiple representations of data to reveal different aspects of variability as a necessary 

characteristic for understanding variation, and Wild and Pfannkuch (1999) coined the term 

transnumeration to describe statistical thinking embodied by the ―dynamic [italics in original] 

process of changing representations to engender understanding‖ (p. 227). Research highlights 

particular behaviors characteristic of transnumeration. 

Two broad categories of behavior related to graphical comprehension seem to align with 

reasoning about variation from the data-centric perspective: translation and interpretation (Friel, 

Curcio, & Bright, 2001). Translation involves representing and reading data by changing the form 

of data to extract descriptive information about the data (Curcio, 1987), whereas interpretation 

includes rearranging data and using additional representations to interpret and identify trends in 

data and to reason about variability both within and away from the trend (Friel, Curcio, & Bright, 

2001). Both behaviors incorporate elements of representing and describing variability, with 

interpretive behavior aligned more closely with the behavior of statisticians. Behaviors similar to 

translation and interpretation have been observed in the activity of middle school students (Ben-
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Zvi & Friedlander, 1997). Researchers found that students who translate data from what students 

perceive to be meaningful representations tend not to reorganize data to explore additional 

patterns or use summary measures of data to interpret results and thus may overlook important 

characteristics of data. Students who meaningfully handle multiple representations exhibit 

interpretive behavior and display transnumeration (Wild & Pfannkuch, 1999) in that they use 

multiple data representations to uncover meaningful characteristics of data.  

Computer tools like TinkerPlots™ Dynamic Data Exploration (Konold & Miller, 2004) 

facilitate the mechanics of transnumeration by enabling quick and easy creation of multiple 

conventional and unconventional graphical displays of data. Middle and high school mathematics 

teachers have been observed using TinkerPlots to compare variability in two groups of data by 

graphically dividing data into equally spaced bins (Hammerman & Rubin, 2004). These teachers 

represented and handled ―variability by [arranging data and] finding subsets of the data about 

which they [could] make more deterministic claims‖ (Hammerman & Rubin, 2004, p. 35). 

Binning supported teachers‘ propensity to reason deterministically, which supports the view that 

without proper training, mathematics teachers may not develop the ability to think 

probabilistically and thus may apply their deterministic beliefs about the nature of mathematics to 

statistics (Meletiou-Mavrotheris & Stylianou, 2003).  

Measuring Variability 

Translation and interpretation are behaviors that encompass reasoning about more than 

only graphical displays of data, as another representation of data exists in summary measures, 

such as standard deviation, that describe representative global characteristics of data, such as 

spread. Konold and Pollatsek (2004) note the inseparability of measures of average and 

variability, and reasoning about average and variability merge in reasoning about the spread of 
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data relative to center—distributional reasoning (Shaughnessy, Canada, & Ciancetta, 2003). 

Reasoning about spread relative to a center coupled with thoughtful consideration of formal 

measures of center and spread to reason about data are marks of sophisticated statistical thinking 

(delMas & Liu, 2005; Groth, 2005) and seen as necessary for deep understandings of variation 

(Garfield & Ben-Zvi, 2005). 

Reasoning About Measures of Variation  

Although recent research suggests that school students have intuitive conceptions of 

variability and are able to reason about the range of data and the spread of data relative to a center 

(e.g., Reading & Shaughnessy, 2004; Shaughnessy, Ciancetta, Best, & Canada, 2004), little 

research has been conducted to investigate school students‘ measuring of variation with measures 

different from the range. Research has shown that students exhibit improved reasoning about 

variability as they study ideas related to data and chance throughout their educational years (e.g., 

Kelly & Watson, 2002; Watson, 2002; Watson, Callingham, & Kelly; 2007; Watson & Kelly, 

2002a, 2002b, 2003a, 2003b, 2004a, 2004b, 2005). Despite their improved reasoning, however, 

students appear to struggle to move beyond intuition and, in particular, encounter difficulties with 

reasoning about variation using formal measures of variation. 

Garfield, delMas, and Chance (2007) incorporated activities specifically designed to 

advance students‘ reasoning from informal reasoning about variation to reasoning about variation 

with formal measures of variation in their college-level introductory courses. When the courses 

ended, their students were only beginning to consider variation as a measure of spread from 

center and display advanced understandings of variation. Garfield and colleagues note that their 

students were not adept at applying their knowledge of variation to novel situations and thus fell 

short of exhibiting deep understandings of variation. Other college-level introductory statistics 
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students examined agreement among a number of measures of variation to reason about formal 

measures of variability in group comparison tasks (Lann & Falk, 2003). The students observed by 

Lann and Falk seemed to look for rules to describe and compare data variation in place of 

choosing measures for comparison based upon characteristics of data. A similar search for rules 

was observed as different introductory-level students compared standard deviations for multiple 

pairs of distributions by attempting to create rules to generalize patterns of histogram bars to 

make comparisons (delMas & Liu, 2005). delMas and Liu noted that very few students employed 

a conceptual approach to coordinate the location of the mean, estimated by using characteristics 

of the distribution, with deviations from the mean. The body of this research with introductory-

level statistics students reveals that even though many students are able to reason informally 

about variation, they may not be coordinating their intuitions about variation with their 

knowledge of formal measures of variation to reason about distributions of data and to make 

comparisons between distributions. It seems that even if individuals study statistics formally, they 

exhibit a tendency to employ rule-based approaches to reason about variability. 

Although the tertiary students whose reasoning and understandings were described in this 

section arguably may have less sophisticated mathematical understandings than preservice 

secondary mathematics teachers, there is no reason to believe that teachers do not experience the 

same difficulties. For example, few of the prospective science and mathematics teachers 

participating in Makar and Confrey‘s (2005) study compared data sets by using standard 

deviation. The researchers observe that ―it would appear that the notion of standard deviation as a 

measure of variation did not hold much meaning‖ (p. 38). Studies with preservice teachers 

provide little evidence to suggest that many preservice secondary mathematics teachers 

understand the formal measures of variation as anything more than numerical values or as 

computations (e.g., Makar & Confrey, 2005; Sorto, 2004).  
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Reasoning About Measures of Center 

For many teachers, even if they are able to calculate a value for standard deviation and 

discuss standard deviation as a measure of variation, they may be unable to reason about standard 

deviation in conjunction with the mean (Clark, Kraut, Mathews, & Wimbish, 2007; Silva & 

Coutinho, 2006). Part of this difficulty might stem from an impoverished understanding of mean. 

Research investigating elementary-aged through college-aged students‘ conceptions of average 

and mean reveals some of the same struggles that students exhibit in their conceptions of 

variation—many are able to calculate numerical summary values without understanding the 

meaning of their results (e.g., Clark, Kraut, Mathews, & Wimbish, 2007; Mokros & Russell, 

1995). Research with experts suggests that a deep understanding of the mean includes 

understandings of both the algorithm for the arithmetic mean and the arithmetic mean as a 

mathematical point of balance (MacCullough, 2007). Experts not only use the algorithm to 

calculate a value for the mean but also understand the meaning of the operations within the 

algorithm and the nature of the results. Captured within understandings of the algorithm is the 

notion of the average as a representative value for a set of data.  

Inservice and preservice secondary teachers‘ conceptions of the mean and of average are 

similar to those seen from students. Although preservice and inservice secondary mathematics 

and science teachers may use the computational algorithm to calculate values for means, teachers 

struggle to conceive of the mean in multiple ways (Gfeller, Niess, & Lederman, 1999), to apply 

the mean to higher-level problems (Gfeller, Niess, & Lederman, 1999), and to estimate values for 

the mean from graphical representations of data (Callingham, 1997; Sorto, 2004). In short, 

research suggests that many teachers have little conceptual understanding of the mean, which has 

implications for their understanding of variation. If an understanding of standard deviation 

requires a dynamic conception of distribution that coordinates changes to the relative density of 
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values about the mean with their deviation from the mean (delMas & Liu, 2005), then it would 

appear that an understanding of mean as a mathematical point of balance is needed to reason 

about estimating a value for the mean of a set of data, particularly when displayed graphically by 

dotplots or histograms, and to reason about standard deviation. In particular, reasoning about how 

individual data values affect values for the mean and standard deviation is useful for detecting 

data entry errors that may affect both the mean and standard deviation.  

Reasoning About Distribution 

Students who understand the algorithm for the mean and who are able to view the 

average as a representative value for a set of data seem to have a view of the average as a value 

that represents the data distribution as an entity. Researchers have identified the importance of 

students‘ developing an aggregate view of data—being able to view data in terms of the whole 

distribution—for reasoning about data and variability in data (e.g., Ben-Zvi & Arcavi, 2001; 

Hancock, Kaput, & Goldsmith, 1992; Konold, Harradine, & Kazak, 2007).  

The ability to view data as a single aggregate collection of values rather than as a 

collection of individual values seems to be needed for understanding distribution, and an 

understanding of distribution seems to be needed to reason about variation. Wild (2005) describes 

distribution as the ―pattern of variability in a variable‖ that ―underlies virtually all statistical ways 

of reasoning about variation‖ (p. 4). Viewing data as an aggregate focuses on patterns of 

variability, which includes notions of shape, center, and spread, whereas viewing data pointwise 

allows for calculation of summary values such as the mean, median, range, interquartile range, 

and standard deviation and consideration of individual deviations from the pattern (Bakker & 

Gravemeijer, 2004). Statistical ―experts‖ are capable of moving flexibly between pointwise and 

aggregate views of data, and understanding distribution from this dual perspective seems to lay 
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foundations for reasoning about variation within and between groups to compare data collected 

from two or more groups. A dual perspective of distribution seems to align with views that 

understandings of distribution can be enhanced by viewing data as a ―‗distribution around‘ a 

signal‖ (Konold & Pollatsek, 2004, p. 171), whereby the notion of central tendency embodies the 

idea of signal and variation embodies the idea of noise. Konold and Pollatsek conjecture that 

interpreting average as ―signal in noise‖ (2004, p. 177) is a useful interpretation for making group 

comparisons.  

Describing Variability 

Investigations to explore students‘ reasoning about variation from the data-centric 

perspective largely utilize tasks that focus on group comparisons. Although variation can be 

described by summary measures, many students and teachers do not seem to recognize the utility 

in using summary measures to compare or describe groups. For example, preservice secondary 

mathematics and science teachers appear to struggle in applying their knowledge of the mean to 

make comparisons between two groups of data (Makar & Confrey, 2003)—they struggle with 

viewing the mean as a representative value for a set of data. The preservice secondary 

mathematics and science teachers in Makar‘s (2004) study seem to prefer describing variation 

with non-standard language to make comparisons. Makar claims that these teachers learned 

statistics concepts, including variation, but chose to express their understanding in informal 

terms. Although their nonstandard language at times revealed sophisticated reasoning, Makar 

notes that the informal nature of their conceptions may prove to be insufficient for applying the 

concepts in future statistical study, suggesting that the teachers may face difficulties in applying 

their understandings of the concepts to second-order concepts such as sampling distribution. Even 

if teachers focus on the center and variation within groups—with or without formal measures—
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they may still struggle to use this information to make comparisons between groups. The 

secondary mathematics teachers investigated by Makar and Confrey (2002, 2004) readily 

described center and variation within groups but did not apply their knowledge of variation to 

describe the variation between groups in order to reason about the existence or nonexistence of a 

difference in groups.  

The totality of research that investigates secondary teachers‘ descriptions of variation 

suggests that even after studying formal measures to describe variation and formal inferential 

techniques for comparing distributions, teachers prefer using informal reasoning about variation 

to make comparisons. The teachers who participated in these studies either chose not to reason or 

could not reason about variation using formal measures and techniques, suggesting that 

impoverished understandings of variation may be at the center of their difficulties. Garfield and 

Ben-Zvi (2005) suggest that deep understandings of variation are partially exhibited when 

individuals use global summary measures of variation to compare groups and include 

examinations of and distinctions between within-group and between-group variation in their 

comparisons. In their work to examine tertiary students‘ consideration of variation, Reid and 

Reading (2008) considered linking within-group variation to between-group variation to make 

inferences from data as the difference between students exhibiting strong considerations of 

variation and those exhibiting developing considerations of variation. 

Students‘ and Teachers‘ Reasoning From a Modeling Perspective 

Wild and Pfannkuch (1999) tell us that an important consideration of variation involves 

modeling the variation in data ―for the purposes of prediction, explanation, or control‖ (p. 226)— 

ideas that entail reasoning about variation from the modeling perspective. The modeling 
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perspective forms the basis for inferential statistics in that it involves viewing data in comparison 

with some theoretical model, including binomial, normal, and linear models. 

Variation and Binomial Models 

Although many individuals would think about modeling a sampling distribution with a 

normal distribution for statistical inference, there are other models that seem to be more 

approachable for students. In the context of tossing a die, for example, third grade students were 

able to suggest that results of a specified number of die tosses can vary and are likely to vary 

(Watson, 2005). They were able to informally hypothesize binomial models for toss outcomes by 

exhibiting appropriate deviation from the expected value for outcomes. These third graders 

displayed informal reasoning about data that could be modeled by a binomial distribution. 

Watson and colleagues investigated students‘ reasoning about data and chance as 

students advanced through grade levels in the data and chance curriculum (Kelly & Watson, 

2002; Watson & Kelly, 2002a, 2002b, 2003a, 2003b, 2004a, 2004b, 2005). They observed that 

students are increasingly able to intuit characteristics of binomial distributions to make 

conjectures about die toss results with appropriate deviation from expectation for a specified 

number of tosses. Students at higher grade levels are more likely to respond based on 

probabilistic expectation or with too little variability in tosses, and some students express being 

torn between expected values based on probability and their expectations for varying results 

(Reading & Shaughnessy, 2000; Shaughnessy, Ciancetta, & Canada, 2004). Fischbein and 

Schnarch (1997) also employed the use of a task with a binomial setting to investigate ―the 

evolution of probabilistic misconceptions as an effect of age‖ (p. 101). Their task requires 

students to consider the likelihood of results as opposed to hypothesizing results and thus requires 

greater sophistication in reasoning than the die toss problems. Fischbein and Schnarch‘s problem 
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can be answered by using a binomial model to calculate probabilities or by using a normal model 

to approximate a binomial distribution. What the researchers found is that the misconception that 

sample size is irrelevant occurred more frequently with increased age. The authors posit that 

individuals tend to believe that ratios should be used to solve binomial probability problems and 

thus fail to use the law of large numbers as appropriate for the situation. The preservice 

mathematics teachers who participated in the study apparently had no background in statistics, 

and their mathematical experiences and intuitions did not seem to help them in this setting. At the 

very least, this study highlights the importance of being able to reason about the effects that 

sample size can have on results. 

More recently, a version of the same problem was given to preservice secondary 

mathematics teachers (Watson, 2000). While slightly more than half of the preservice teachers 

responded correctly to the problem, few combined intuition with mathematical justification. 

Teachers who correctly set up a calculation to solve the problem but failed to reach a correct 

solution due to an arithmetic error did not seem to notice any problem with their solutions, 

whereas other teachers entirely relied on intuition rather than calling on their formal background 

in mathematics to reason towards a solution. Many of the teachers did not seem to be aware that, 

in general, as sample size increases, empirical relative frequencies approach theoretical 

probability. It would seem that part of reasoning about variation from a modeling perspective 

entails being able to reason about the effects of sample size on variability in novel problem 

contexts. These studies suggest one reason why students seem to have difficulty in reasoning 

about sampling distribution, in that the reasoning needed for sampling distribution appears to be 

counterintuitive. 
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Variation, Models, and Statistical Inference 

As a concept that underlies most areas of statistics, variation plays a role in developing 

students‘ understandings for informal and formal inference. Formal inferential reasoning requires 

reasoning with the concepts discussed in previous sections, including reasoning with and about 

center and measures of center, variation and measures of variation, distribution, sampling, and 

probability to meaningfully draw conclusions about a population from a sample selected from 

that population (Pfannkuch, 2005). Success in understanding formal statistical inference beyond 

scripted steps for calculating a p-value or finding a confidence interval requires reasoning about 

the concept of sampling distribution—a concept for which understanding seems elusive for many 

students of introductory statistics.  

In studies designed to investigate students‘ ability to interrelate the ideas of variability, 

sampling, and sampling distribution, researchers note students‘ tendency to confuse a distribution 

of a sample with a distribution of sample means (e.g., Saldanha & Thompson, 2002). Students 

struggle to reason about the variation of individual observations in a sample and the variation of 

sample means in a sampling distribution (e.g., Garfield, delMas, & Chance, 2007; Meletiou-

Mavrotheris & Lee, 2003). To understand sampling distribution, individuals need to juxtapose 

―the individual sample result against an aggregate of similar sample results to compare the one 

against the many‖ (Saldanha & Thompson, 2002, p. 267)—the multiplicative conception of 

sample and sampling noted earlier. Students with multiplicative conceptions are able to reason 

proportionally about the likelihood of sample results (Saldanha & Thompson, 2001) by 

examining a distribution of a simulated collection of sample statistics, for example. Modeling-

based activities that include simulation are being investigated to determine their viability in 

aiding students‘ constructions of foundational knowledge from which they can build more formal 

understandings of statistical inference (Konold, Harradine, & Kazak, 2007). Research suggests 
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that a critical juncture for students occurs when they attempt to link a simulated sampling 

distribution to a theoretical sampling distribution (Lipson, 2002). Lipson found that the students 

in her study had difficulty transitioning from a computer simulation to formal inference. Being 

able to complete this link to successfully reason about sampling distribution lays the foundation 

for reasoning formally about inferential methods. 

Research on Variation: Concluding Remarks 

As the body of literature discussed in the preceding sections suggests, research that 

examines students‘ reasoning about the concept of variation and related concepts reveals that 

students have many intuitions about variation and concepts related to variation. As a whole, 

however, these studies reveal that despite students‘ improved reasoning about variation as they 

progress through grade levels with appropriate instruction, most students continue to express only 

intuitive understandings of variation. The limited body of work to investigate teachers‘ reasoning 

and understanding of statistics concepts suggests that teachers have difficulties similar to those 

identified for students and struggle to construct both procedural and conceptual understanding of 

statistical concepts as well as to identify connections between and among concepts. Developing 

understandings of variation and applying knowledge of variation to problem solving is 

problematic for both students and teachers. What is abundantly clear, however, is that variation 

connects to and interrelates with many concepts in statistical study, which suggests that 

understanding variation is critical for understanding statistics and for recognizing the utility of 

statistics.  
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Research About Teacher Development 

One focus of current mathematics education research is knowledge required for teaching. 

Whereas teacher knowledge has been a subject of mathematics education research for a number 

of years, research to investigate the impact of teacher knowledge on student achievement in ways 

that go beyond using proxy measures for teacher knowledge, such as the number of 

undergraduate mathematics courses completed (e.g., Monk, 1994), is a relatively new 

phenomenon. In one of the few studies to examine the connection, Hill, Rowan, and Ball (2005) 

―found that teachers‘ mathematical knowledge for teaching positively predicted student gains in 

mathematics achievement‖ (p. 399) for the first and third graders included in their study, 

providing support for a prevalent belief that teacher knowledge affects student achievement in 

mathematics.  

In addition to content knowledge, teachers should display pedagogical knowledge as well 

as other types of more delineated knowledge to be successful in teaching. Ma (1999) references a 

need for teachers to have ―profound understanding of fundamental mathematics.‖ Shulman 

(1986) makes distinctions among content knowledge, pedagogical knowledge, and pedagogical 

content knowledge, the knowledge of pedagogy unique to a content area, as necessary for 

teachers. There also is work to suggest that teachers‘ pedagogical content knowledge supports 

student learning (e.g., Krauss, Baumert, & Blum, 2008). Somewhat overlapping with other 

knowledge types, Hill and Ball (2004) add mathematical knowledge for teaching, which includes 

―common content knowledge but also [the] specialized knowledge for teaching mathematics‖ (p. 

335). This specialized knowledge includes understanding how and why procedures work in 

addition to being able to apply procedures as well as the deep understanding of mathematics 

needed to understand and react to students‘ sometimes unconventional mathematical 

understandings and processes.  
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Groth (2007) argues that the knowledge needed to teach statistics differs from the 

knowledge needed to teach mathematics based in the differences between mathematics and 

statistics. The differences he hypothesizes stem from differences between deterministic and 

stochastic reasoning, designing studies, considering context, and distinguishing between practical 

significance and statistical significance. These differences seem to align with differences between 

the art and science of statistics (Peters, in press). Although much of the research cited here 

examines the knowledge required to teach mathematics, at a minimum, there is very little reason 

to believe that the types of knowledge required to teach scientific aspects of statistics differ 

significantly from that required to teach mathematics, particularly since a considerable amount of 

research investigates knowledge requirements for teachers in multiple subject areas, including 

pedagogical content knowledge for teaching science (e.g., van Driel, Verloop, & de Vos, 1998), 

practical knowledge for teaching language (e.g., Meijer, Verloop, & Beijaard, 1999), and teacher 

knowledge in action for teaching social sciences (e.g., Department of Education Training and 

Youth Affairs, 2000).  

Professional Development 

Teachers attempting to reform their teaching practices in mathematics express how their 

limitations in knowledge impact their ability to enact national, state, and local educational 

recommendations in the area of mathematics (Peterson, 1990; Spillane, 2000b; Wilson, 1990). 

Researchers also note how science and mathematics teachers‘ knowledge affects their ability to 

align their practices with the practices called for by reform efforts (Borman & Kersaint, 2002; 

Firestone, Mayrowetz, & Fairman, 1998; Spillane, 2000a, 2000b). Given the perception that 

teachers have few experiences with statistics content (e.g., Shaughnessy, 2007) and receive little 

preparation for teaching statistics (e.g., Garfield & Ben-Zvi, 2008), it seems reasonable to believe 
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that teachers‘ knowledge of statistics can impact their abilities to teach the statistics content they 

are being asked to teach.  

In their work to examine Australian teachers‘ knowledge of data and chance, Watson and 

colleagues (Callingham, Watson, Collis, & Moritz, 1995; Watson, 1998) concluded that many 

issues related to teacher training need to be addressed to produce a statistically literate society. 

Even when prospective secondary mathematics teachers participate in training focused on 

integrating statistics with undergraduate methods courses, they ―struggle with the ‗spirit‘ of 

statistics‖ (Burrill, 2008, p. 3). As an example of struggle, consider the results of a study 

conducted by Coutinho (2008). Although the teachers in the study espoused using exploratory 

approaches with data, they enacted what Coutinho termed a ―technicist approach‖ in their 

classrooms—they focused attention on algorithms to calculate summary values from data rather 

than true explorations of data. Given teachers‘ difficulties in teaching mathematics consistent 

with recommendations, this collection of work suggests that teachers may need extensive 

professional development to develop multifaceted understandings of statistical concepts and 

procedures in order to teach statistics in ways consistent with recent recommendations. 

Researchers have conducted studies to examine the characteristics of ―high quality‖ 

professional development, with a number of characteristics identified in this collective body of 

work. Of those who have studied the impact of professional development on mathematics 

teachers‘ practices, there is agreement about the necessity for professional development to be 

content-focused and sustained (e.g., Cohen & Hill, 1998, 2000, 2001; Darling-Hammond & Ball, 

1998; Goos, Dole, & Makar, 2007; Smith, Desimone, & Ueno, 2005). There is also some 

suggestion that professional development should focus on curriculum (Cohen & Hill, 1998), 

students‘ work on tasks from that curriculum (Darling-Hammond & Ball, 1998), and other 

artifacts from practice, including instructional tasks (Ball & Cohen, 1999). Recommendations for 

professional development specific to statistics include providing teachers with opportunities to 
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experience as learners the statistical content they are expected to teach enacted with the 

pedagogical strategies they are expected to use (e.g., Heaton & Mickelson, 2002; Lee & 

Hollebrands, 2008; Peck, Kader, & Franklin, 2008). Mathematics educators make similar 

recommendations for the learning of mathematical content (e.g., Artzt, Curcio, & Sultan, 2004), 

and teachers see opportunities in which they can actively learn in ways similar to their students as 

characteristic of effective professional development (Rogers et al., 2007). Teachers also view 

opportunities to interact with teachers from other schools as beneficial in ways beyond what 

engagement with formal activities can offer (Rogers et al., 2007) 

Although the preceding description largely focuses on qualities of professional 

development that occur in formal educational settings, teachers in all areas experience 

professional development through self-initiated and self-directed efforts, such as initiating the use 

of innovative curriculum materials (e.g., Lohman & Woolf, 2001). Studies that investigate the 

collective impact of teachers‘ learning could benefit by focusing not only on formal learning 

opportunities experienced by teachers but also on types of self-directed learning opportunities. 

Gaining knowledge about the characteristics of both informal and formal activities that promote 

meaningful teacher learning seems important for informing future professional development and 

teacher education initiatives in statistics. 

Teacher Beliefs 

In addition to knowledge, teacher beliefs may affect the pedagogical strategies employed 

in classrooms and affect students‘ subsequent learning. Because research to investigate teacher 

beliefs related to statistics is almost nonexistent (Watson, 2001), particularly for secondary-level 

teachers, research related to teacher beliefs about mathematics is examined and followed by 

speculation for how teacher beliefs about mathematics might compare with teacher beliefs about 
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statistics. Research suggests that teachers‘ beliefs about mathematics and beliefs about 

mathematics teaching and learning may impact their subsequent decisions about what content is 

taught and how that content is taught (Thompson, 1992). Teachers‘ beliefs about statistics and 

about statistics teaching and learning presumably could have a similar effect on their decisions 

regarding statistical content. 

Researchers studying the impact of national and state efforts to reform teaching practices 

note how a teacher‘s beliefs can affect his or her classroom practice. For example, a teacher who 

views mathematics as a collection of fixed procedures used to arrive at a single correct answer 

may feel that his or her practice is consistent with the calls for reform and yet enact classroom 

discourse that ignores mathematical explanation, justification, and argumentation (Cohen, 1990). 

Given speculation that teachers are likely to apply their beliefs about the nature of mathematics to 

statistics, that same teacher may enact classroom discourse that ignores explanation, justification, 

and argumentation situated within the context of data, particularly if that teacher as a learner 

experienced statistics as a mathematical topic that focuses on computations and procedures 

(Cobb, 1999; Gal & Garfield, 1997). That teacher may neglect the issues of uncertainty and 

variability inherent to statistics (Meletiou-Mavrotheris & Stylianou, 2003). Unless teachers make 

distinctions between statistics and mathematics, even if a reformed view of mathematics teaching 

is adopted, the need to reason within a context and in consideration of variation may prevent the 

teacher from viewing statistics as the ―science of uncertainty‖ (e.g., Tabak, 2005). Teachers may 

still teach statistics deterministically.  

Another teacher may exhibit a strong belief system that he or she readily admits may 

affect his or her willingness to make changes in practice. For example, a teacher who believes 

that an understanding of mathematics consists of the mastery of symbols and procedures may use 

reform recommendations to guide the mathematical topics addressed in class, but refuse to 

incorporate new ideas for how mathematics should be taught (Wiemers, 1990). Similarly, a 
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teacher who views statistics in procedural terms might ignore new ideas for the teaching of 

statistics. It is possible for a teacher to profess a desire to teach for understanding, believing that 

students learn through engaging actively using concrete or physical manipulatives, using 

technological applications, and comparing multiple representations for learning mathematics 

concepts and procedures and yet not teach in ways consistent with reform. If the teacher presents 

solutions by using models or representations but makes the connections between the model and 

symbols for students, envisions active engagement in terms of students‘ physical activity rather 

than mental activity, or believes that only one right way exists to arrive at any answer, this 

teacher has not made substantial progress towards enacting a practice consistent with reform 

recommendations (Ball, 1990). Similarly, a teacher could have students collect data in the 

classroom, such as having students time how long they can hold their breaths, follow a step-by-

step procedure to enter data into a calculator or software package, and follow a step-by-step 

procedure to produce summary statistics and various graphical representations. The teacher could 

then describe the connections among the summary measures and the various graphical displays, 

suggesting a parallel possibility for teaching statistics. These examples illustrate that even though 

there are some fundamental differences between mathematics and statistics, the effects of 

teachers‘ beliefs about mathematics and the practice of teaching mathematics may be similar to 

the effects of their beliefs about statistics and the practice of teaching statistics. 

Professional Development, Teacher Beliefs, and Teacher Change 

In general, professional development in education typically is designed to effect change 

in teachers‘ beliefs, practices, or knowledge (Guskey, 2002). Historically, professional 

development efforts in education focused on a transmission model of teaching and learning that 

assumed developers could present knowledge and pedagogical strategies to teachers, who would 
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then replicate the techniques in their classrooms (Richardson, 1998). Activities for this type of 

professional development consisted of conference or workshop attendance that ultimately served 

to pique a majority of teachers‘ curiosities at best (e.g., Cohen & Hill, 2000; Desimone, Porter, 

Garet, Yoon, & Birman, 2002). Research literature for teachers of mathematics, science, and 

English suggests that these approaches are largely ineffective for changing what teachers teach or 

how they teach (Boyle, White, & Boyle, 2004). This traditional view of professional development 

suggests a view that assumes that teachers‘ beliefs and attitudes will change in response to 

professional development and that teachers subsequently will transform their classroom practices 

for the result of improved student learning (Guskey, 2002). Changes in beliefs are a significant 

predictor for changes in practice, and even though teachers readily make superficial changes (e.g., 

changes in classroom organization), research suggests that deeply embedded implicit beliefs are 

much more difficult to change (Richardson & Placier, 2001). 

A related perspective on teacher change posits that changes in classroom practices result 

in increased student learning, which then prompts changes in attitudes and beliefs (Guskey, 2002; 

Nathan & Knuth, 2003). Proponents of this view suggest that beliefs significantly change only 

after evidence of student improvement exists and subsequent to changes in practice. The 

proponents of this view acknowledge, however, that some change in attitude or beliefs 

necessarily precipitates a change in practice (Guskey, 2002), suggesting that the process of 

change may not be linear. 

 Another view of teacher change suggests the process is much more complicated than the 

described views might suggest. For example, researchers from the Cognitively Guided Instruction 

(CGI) teacher development program found little consistency between whether a teacher‘s change 

in practice precipitated a change in beliefs or vice versa (Fennema et al., 1996). In one of the 

studies conducted by this group, they found that 6 of the 21 elementary teachers enrolled in their 

program changed their beliefs before their practices. For five of the teachers, their practices 
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seemed to prompt a change in beliefs, and for six teachers, changes to beliefs and practice 

occurred simultaneously (Fennema et al., 1996). Other studies suggest that teachers may enact 

new practices in their classrooms without a corresponding change in beliefs, particularly when the 

new practices are seen as consistent with already existing beliefs (e.g., Nathan & Knuth, 2003). In 

keeping with Fennema and colleagues‘ (1996) comments from more than a decade ago, the 

current body of work suggests that research has not yet provided the key for ascertaining why 

some teachers change their beliefs or practices whereas others do not and why some teachers are 

able to change their beliefs or practices more than other teachers. 

Research suggests that national, state, and local policies that attempt to effect a change in 

teachers‘ practices require many teachers to alter their beliefs about teaching and learning (e.g., 

Spielman & Lloyd, 2004). Many current teachers experienced teacher-directed instruction as 

students (Stigler & Hiebert, 1999), which created what can be called a ―culture of schooling‖ in 

the United States (Stigler & Hiebert, 1999; Weissglass, 1992). Historically, many policy attempts 

to alter this culture failed to provide teachers with the direction or tools necessary for them to 

make the recommended changes in their practices (Cohen & Ball, 1990; Spillane, 2002). How, 

then, can this culture be changed? One hypothesis is that changing the ―‗culture of schooling‘ will 

occur, if it occurs at all, in the context of identifying and discussing values and beliefs about all 

school practices, listening to and grappling with views that are different from our own, and 

working through feelings and attitudes that inhibit change‖ (Weissglass, 1992, p. 198). It seems 

that changing the predominant ―culture of schooling‖ requires teachers to reflect critically on 

values and beliefs and to engage with others in rational discourse about their beliefs. Such 

reflection and discourse would need to occur over time and may eventually result in classroom 

instruction that is reflective of transformed beliefs and values.  

Weissglass (1994) proposes a model that addresses teachers‘ feelings and beliefs during 

the process of change just described, as shown in Figure 2-1. This model seems to capture some 
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of the complexity and nonlinearity of the teacher change process and suggests that the element of 

emotional support ignored in other models may be important for teachers to accomplish change. 

Four essential components form the model to suggest that teachers continually need to learn about 

content and pedagogy, reflect on their beliefs and practice, and obtain emotional support from 

colleagues in planning for and enacting change. These processes culminate with the teacher 

taking action to make changes in practice, which precipitates the need for further reflection and 

emotional support, and so on. 

Whereas the model posited by Weissglass is important because it captures the nonlinear 

pattern of teacher change and includes important components of change such as reflection, the 

need for emotional support, and action, the model is somewhat limited in that it does not suggest 

how the change process begins. Clarke and Hollingsworth (2002) offer a model of professional 

growth that accounts for both internal and external stimuli that may precipitate the process of 

change, as shown in Figure 2-2. Their empirically derived model consists of four domains of 

change, which when viewed holistically portray a teacher‘s professional world of practice. The 

external domain refers to information or stimuli the teacher encounters from external sources, 

while the remaining domains are part of the teacher‘s individual world. A teacher‘s knowledge, 

 

 

Figure 2-1:  Model for Addressing Teachers‘ Feelings and Beliefs (Weissglass, 1994, p. 70). 
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beliefs, and attitudes form the teacher‘s personal domain, whereas the domain of consequence 

consists of the teacher‘s inferences about the salient outcomes of practice. Professional 

experimentation, which includes but is not limited to classroom experimentation, forms the 

domain of practice. The model also depicts two mechanisms for change: enactment and 

reflection. A teacher‘s changes take place within a school environment, which can help or hinder 

the change process at any point. The change environment contributes to a teacher‘s affective 

disposition. 

Clark and Hollingsworth‘s model of professional growth embodies each of the previously 

discussed views and models. In the traditional view mentioned at the beginning of this section, 

professional development presents an external stimulus that upon reflection brings about new 

knowledge, beliefs, or attitudes (A). The teacher then enacts changes in his or her practice (E) 

that the teacher infers will result in salient outcomes (C). In contrast with Weissglass‘ model, the 

 

 

Figure 2-2:  Adaptation of a Model of Professional Growth (Clarke & Hollingsworth, 2002, p. 
951). 
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external domain aligns with information gathered from others, and the domain of practice aligns 

with the process of taking action. Rather than considering reflection as a separate component of 

change, reflection appears throughout the model of Clark and Hollingsworth, and emotional 

support can be part of the change environment or action on the external domain if the teacher 

deliberately seeks emotional support from others. The professional growth model is also 

consistent with suggestions for change from the professional development and research literature. 

Furthermore, the model is consistent with the adult learning theory known as transformation 

theory (Mezirow, 1991, 2000) that forms the theoretical frame for this study and is discussed in 

detail in Chapter 3. 

Literature in both professional development and research contains various suggestions for 

creating an environment that is conducive to teacher change. These suggestions include providing 

opportunities for teachers to interact during inservice programs and purposefully planning 

teachers‘ schedules to allow time for interaction during the school day (Weissglass, 1994). 

Interaction gives teachers the opportunity to form support networks and provides an opportunity 

for teachers to engage in rational discourse with colleagues (Saavedra, 1996; Weissglass, 1994). 

Opportunity and time for teachers to reflect critically on their practice (Weissglass, 1994) and to 

develop the skills and knowledge needed for change seem crucial for change to occur and 

supports calls for extended professional development opportunities (e.g., Senger, 1998-1999). 

Along with the aforementioned forms of administrative and systemic support, teachers also need 

access to resources for successful change to occur (Lohman & Woolf, 2001).  

In response to a need for change in teacher education related to teaching statistics, 

guidance exists to suggest needed prerequisite knowledge (CBMS, 2001). Additionally, various 

organizations provide suggestions for appropriate pedagogical strategies and techniques for 

teaching statistics, along with a logical progression of topics for curricula (e.g., Franklin et al., 

2007). These recommendations stem largely from their authors‘ beliefs about effective statistics 
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instruction, rather than from the results of research on teaching and learning. Researchers paid 

little attention to teachers‘ understanding of statistical concepts or teachers‘ professional 

development needs for teaching statistics prior to the release of the 1989 NCTM Standards 

(Konold & Higgins, 2003). Since that time, calls for research on teachers‘ conceptions of 

statistical concepts have been made (Shaughnessy, 1992; Shaughnessy, Garfield, & Greer, 1996) 

but such research is not sufficiently reported (Batanero, Garfield, Ottaviani, & Truran, 2000). 

Calls have also been made to ―establish effective ways of training current and future teachers of 

statistics‖ (Batanero, Garfield, Ottaviani, & Truran, 2000, p. 5), yet little research conducted with 

teachers of statistics has been reported (Batanero, Burrill, Reading, & Rossman, 2008). At the 

current time, it makes sense to examine the learning opportunities and support experienced by 

current statistics teachers who exhibit robust understandings of fundamental statistical concepts in 

order to provide timely information for the design of professional development programs to train 

current and future teachers of statistics. It also makes sense to examine these opportunities 

through a theoretical frame that is consistent with teacher learning as described in the professional 

development literature and adult learning theory to allow for differences in how adults learn from 

how children learn. 

Concluding Remarks 

Much research exists to illuminate how students from the elementary grades through the 

undergraduate level learn about statistical concepts, and in particular, recent research has greatly 

expanded what we know about students‘ conceptions of and learning of variation. Most of this 

research, however, investigates students reasoning informally about variation and statistical 

content more generally. Few reports of research describe how experts may think about or learn 

statistical content. When the results of research are combined with statisticians‘ and statistics 
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educators‘ expositions about the multifaceted concept of variation, however, a sense of what it 

means to deeply understand statistical variation emerges. Discussion of the initial framework for 

robust understanding of variation that arose from the synthesis of literature presented here is 

discussed in Chapter 4.  

As the absence of research devoted to how advanced knowers think about or learn 

statistical content might indicate, there is little work that directly informs how advanced knowers 

learn about complicated concepts such as statistical variation. The wealth of literature 

surrounding teacher learning and teacher change, however, provides insights into personal and 

environmental factors that may affect teacher learning in general and thus affect teacher learning 

about statistical variation in particular. The literature on teacher change in particular provides 

insights into important components of change in addition to suggesting events, activities, or 

conditions that may trigger the process of change and the types of nonlinear paths among 

components that teachers may take during their process of change. A learning theory appropriate 

for describing teacher learning should be consistent with these literature-based observations. 

Transformation theory, discussed next in Chapter 3, is consistent with the models presented here 

and provides explanatory power for teachers‘ learning about statistical variation.



    

 

Chapter 3 
 

Conceptual and Theoretical Grounding 

Transformation Theory 

Transformation theory is a theory of adult learning that may have explanatory power for 

learning that results in teacher change. Primarily credited to Jack Mezirow (Merriam & 

Caffarella, 1999), the theory is based on constructivist assumptions, including the assumptions 

that meaning resides within each person through personal constructions and that personal 

meanings are acquired and confirmed through social interaction and experiences (Merriam & 

Caffarella, 1999; Mezirow, 1991). Mezirow‘s theory of transformative learning extends the work 

of Malcolm Knowles (e.g., Knowles, 1984), who provided the foundation for most current studies 

in adult education (Cranton, 2006). Knowles acknowledged that adults may learn in ways 

different from school-aged children. Although some scholars describe Knowles‘ work as a theory 

of adult education, Knowles referred to his work as a conceptual framework that can serve as a 

basis for theory (Knowles, Holton III, & Swanson, 2005). Building from Habermas‘ (1971, 1984) 

distinctions between two learning domains and the transformative nature of learning for the 

development of transformation theory, Mezirow describes adult learners in a manner consistent 

with the characterization of adults as self-directed individuals who learn from experience 

(Knowles, Holton III, & Swanson, 2005; Merriam, 2001; Mezirow, 1985). The transformation 

theory of adult learning resulted from Mezirow‘s study of learning of adult women who enrolled 

in a community college program after a significant period of time away from formal education 

(Taylor, 1997). As with Mezirow‘s work, this study includes some teachers who had to learn 

statistics years after they completed their last formal undergraduate or graduate course. 
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Forms of Learning 

Although Mezirow and others who are conducting research to validate or refine 

transformation theory may view the theory as a ―theory in progress‖ (Jack Mezirow and 

Associates, 2000), the main elements of the theory remain constant throughout Mezirow‘s 

discussions, including Mezirow‘s characterization of learning. He articulates four forms of 

learning and describes learning as ―the process of using a prior interpretation to construe a new or 

revised interpretation of the meaning of one‘s experience as a guide to future action‖ (Mezirow, 

2000, p. 5).  

Learning Through Meaning Schemes 

Mezirow‘s (1991) first form of learning is ―learning through meaning schemes‖ (p. 93). 

Meaning schemes consist of specific expectations, knowledge, beliefs, attitudes, and feelings 

(Mezirow, 1991) that are the habitual, implicit rules that we use to interpret our everyday 

experiences (Cranton, 2006). Because meaning schemes are based on common expectations, 

people are often unaware of their meaning schemes as they interpret their experiences (Mezirow, 

2000). Learning through meaning schemes involves differentiating among or elaborating upon 

preexisting meaning schemes.  

To examine an example of learning through a meaning scheme, consider an individual‘s 

meaning scheme for the statistical concept of standard deviation. In general, researchers have 

found that many students and adults understand statistical concepts such as the mean purely 

procedurally (e.g., Mokros & Russell, 1995; Pollatsek, Lima, & Well, 1981). If an individual 

understands the standard deviation as a computation, then without calculating values, that 

individual would struggle to describe how adding an outlier to a set of univariate data might 
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affect the standard deviation. What that individual needs is an elaboration of his or her existing 

meaning scheme. By using dynamic software to explore how changing the value of an outlier 

affects the values of the mean and standard deviation, that individual may develop a dynamic 

conception that coordinates changes to the relative density of values about the mean with their 

deviation from the mean, a conception suggested by some researchers as necessary for 

understanding standard deviation (delMas & Liu, 2005, p. 56). With the development of this 

dynamic conception, the individual‘s meaning scheme expands to include both procedural as well 

as conceptual aspects of standard deviation. Although this example illustrates an individual‘s 

possible meaning scheme for standard deviation, there are other measures of variation in 

statistics, each of which would also be associated with different meaning schemes. 

Meaning schemes are contained within meaning perspectives, which consist of the web 

of interwoven assumptions and expectations through which the world is viewed (Cranton, 2006). 

A meaning perspective consists of broad predispositions formed from culture, personality, and 

prior experiences and is used to interpret current experiences (Mezirow, 2000). Perspectives are 

expressed through a point of view. For example, a mathematics teacher may have a personal 

theory of learning that assumes meaning is transmitted to learners by the mathematical authority 

in the classroom—a learning theory that is consistent with the transmission model of teaching. 

This personal theory, of which the individual may not be aware on a conscious level, most likely 

formed subconsciously from years spent in the ―apprenticeship of observation‖ (Lortie, 1975) as a 

student. This individual is likely to exhibit his or her point of view about learning through his or 

her teaching, which most likely is teacher centered and lecture driven.  
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Learning New Meaning Schemes 

Although Mezirow‘s first form of learning involves making changes to existing meaning 

schemes, a second form of learning involves the learning of new meaning schemes to 

complement and expand upon an existing meaning perspective or to lead to a new meaning 

perspective. Consider an individual‘s meaning perspective for variation that may consist almost 

entirely of knowledge about summary statistics values to describe variation in a data set. When 

learning about sampling and experimental design, the individual might form a meaning scheme 

for different types of variability, such as sampling variability or measurement variability. These 

new meaning schemes then become associated with the individual‘s existing meaning perspective 

for variation, with learning resulting in new knowledge about variation. Although an individual 

learns from both the elaboration of and the creation of meaning schemes, these forms of learning 

result in changes to what the individual knows and not why the individual knows (Kegan, 2000); 

neither of these two forms of learning results in transformational learning.  

Learning by Transforming Meaning Schemes 

Mezirow‘s third form of learning, learning by transforming a meaning scheme, occurs 

from reflecting on assumptions and results related to a particular meaning scheme when existing 

values or beliefs appear to be inadequate for current circumstances (Mezirow, 1991). Think about 

an individual‘s meaning perspective for statistics and his or her meaning scheme for variation—

specifically that individual‘s beliefs about statistics and variation. That person may have general 

assumptions and beliefs about statistics consistent with the somewhat traditional view of statistics 

as the ―churning out [of] dry statistical techniques‖ (Karpadia, 1980, p. 415). Given the 
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complexity and multifaceted nature of variation, however, that individual may encounter 

circumstances that precipitate reflection on those existing beliefs about variation. That individual 

may reject the belief that variation consists merely of dry techniques and transform his or her 

meaning scheme for variation into a more encompassing view of variation. At the same time, that 

individual‘s beliefs about statistics in general, namely, his or her meaning perspective for 

statistics, may not change. Mezirow (1994) acknowledges that transformations to a small 

percentage of an individual‘s meaning schemes occur regularly during the course of everyday 

events; a less common experience is the learning that results from the transformation of a 

meaning perspective, or a perspective transformation. 

Learning by Perspective Transformation 

Transformational learning results from transforming a meaning scheme or from 

transforming a meaning perspective, a fourth form of learning often referred to as a perspective 

transformation (e.g., Cranton, 2006). Often an individual‘s transformation of a particular meaning 

scheme within a meaning perspective precipitates the transformation of other meaning schemes 

within the same meaning perspective. A sequence of transformed meaning schemes within a 

particular meaning perspective can provoke transformation of the meaning perspective that 

encompasses the meaning schemes (Mezirow, 1991, 2000). Transformation of a meaning 

perspective is the fourth and most powerful form of learning identified by Mezirow (2000). A 

perspective transformation occurs when an individual reflects on the specific presuppositions 

upon which a current meaning perspective is based and for which these assumptions and beliefs 

are now seen by the individual as incomplete or invalid (Mezirow, 1991). Mezirow (1991) refers 

to these incomplete or invalid assumptions as distorted assumptions, although the negative 

connotation associated with the term, ―distorted,‖ has caused others to propose labeling these 
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assumptions as ―unquestioned‖ or ―unexamined‖ (Cranton, 2006). No matter how the 

assumptions are labeled, perspective transformation is the process by which meaning 

perspectives, consisting of ―uncritically assimilated assumptions, beliefs, values, and 

perspectives‖ (Cranton, 2006, p. 2), become transformed to give new meaning to an old 

experience. The result is that the meaning perspective becomes ―more open, permeable, and 

better validated‖ (Cranton, 2006, p. 2). These transformed meaning perspectives ―are more likely 

to generate beliefs and opinions that will prove more true or justified to guide action‖ (Mezirow, 

2003, p. 59), making the transformed meaning perspective better than the original perspective. As 

mentioned earlier, an individual‘s perspective transformation can be triggered internally by the 

accumulation of transformed meaning schemes within the same meaning perspective, or that 

individual‘s perspective transformation can be triggered externally by an event that Mezirow 

refers to as a disorienting dilemma (Mezirow, 1990). A disorienting dilemma seems to equate 

with what is referred to as ―perturbation‖ or ―cognitive conflict‖ in other research literature (e.g., 

Leikin & Zazkis, 2007; Polettini, 2000).  

To illustrate transformations of a meaning perspective, consider an individual‘s meaning 

perspective for statistics. That individual may believe that statistics is merely a subject of data 

manipulation, display, and calculation. Events may occur that prompt the individual to question 

assumptions about various statistical concepts and subsequently to transform the meaning 

schemes for those concepts, as in the example related to variation. This accrual of transformed 

meaning schemes may trigger an eventual perspective transformation for statistics in which 

statistics is viewed as a problem-solving process that allows decisions to be made from data. 

Alternatively, that same individual may attend a professional development workshop in which the 

individual experiences statistics actively as the study of the collection, organization, and analysis 

of data within a particular context. Attending this workshop may trigger a disorienting dilemma, 

such as being confronted with analysis that requires considering artistic aspects of statistics in 
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addition to scientific aspects to draw conclusions, which may eventually lead to a perspective 

transformation.  

Much of the literature on transformation theory focuses on the types of events that lead to 

a perspective transformation or on designing adult education to prompt an individual‘s inspection 

of distorted assumptions. As the examples used throughout the preceding sections might suggest, 

indications of transformed meaning schemes with respect to variation or transformed meaning 

perspectives with respect to statistics are important to identify because they are associated with 

significant learning. Of particular interest are the events that trigger the transformations of 

meaning schemes and meaning perspectives. The importance of perspective transformations 

warrants a more careful examination of perspective transformations, and in particular, the 

different types of perspectives that may be transformed. 

Types of Meaning Perspectives 

In his writings about transformation theory, Mezirow (1991) concentrated on perspective 

transformations with regard to three types of meaning perspectives: epistemic, sociolinguistic, 

and psychological. Although these meaning perspectives will be discussed separately in the next 

few sections, the perspectives are not clearly demarcated. An individual‘s interrelated 

perspectives comprise the individual‘s worldview.  

Epistemic Perspectives 

Epistemic meaning perspectives pertain to knowledge, including what an individual 

knows, how the individual gains or gained that knowledge, and the way the individual uses or 

acts upon that knowledge (Cranton, 1996). One way an individual‘s epistemic assumptions and 
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beliefs can be distorted is if the individual assumes that all knowing can be verified empirically 

and that there exists a correct solution for every problem (Kitchener & King, 1990; Mezirow, 

1991). Within education, a teacher may have one particular view for the defining features of 

effective teaching. Unless that teacher‘s assumptions about effective teaching are transformed, 

that teacher would not be open to alternative pedagogical techniques that are not characteristic of 

those in his or her meaning perspective (Cranton, 1996). Teachers can also have distorted 

epistemic assumptions if they have a narrow and limited view of teaching and learning. One 

example of a teacher with a limited perspective would be someone who has a particular preferred 

learning style, believes that this learning style should be the learning style of everyone, and 

teaches towards only this learning style (Cranton, 1996). A third example of a distorted epistemic 

assumption can result from an individual who views socially derived phenomena as beyond one 

person‘s control (Mezirow, 1991). In response to this assumption, for instance, a teacher might 

adopt district administrators‘ beliefs about teaching and learning unquestioningly (Cranton, 

1996).  

General examples of Mezirow‘s (1991) four forms of learning (learning through existing 

meaning schemes, learning new meaning schemes, learning by transforming meaning schemes, 

and learning by transforming a meaning perspective) that can change an individual‘s epistemic 

meaning perspectives are displayed in Table 3-1. Table 3-1 also includes descriptions of the four 

forms of learning for sociolinguistic and psychological perspectives and labels examples related 

to each of the meaning perspectives for the two domains of learning identified in transformation 

theory, the instrumental and communicational domains (Mezirow, 1991). These other types of 

perspectives and domains of learning are discussed in subsequent sections. 
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Type of Learning 
Meaning 

Perspective 
Instrumental and 

Communicational Domains of Learning 

Learning Through 
Meaning 
Schemes 

 
Learning through existing meaning schemes—differentiating among or elaborating upon current 
expectations, feelings, attitudes, or judgments pertaining to … 

Epistemic  empirically testable problems within a particular epistemic meaning perspective (instrumental) 
or based upon what others say about an issue related to a particular epistemic meaning 
perspective (communicational) 

Sociolinguistic  what is factually related to social norms and empirically testable within a particular 
sociolinguistic meaning perspective (instrumental) or subsequent to hearing what others say 
about social norms within a particular sociolinguistic meaning perspective (communicational) 

Psychological  empirically testable knowledge of oneself and how one came to form that image of self within a 
particular psychological meaning perspective (instrumental) or subsequent to hearing what 
others say about oneself within a particular psychological meaning perspective 
(communicational) 

Learning New 
Meaning 
Schemes 

 
Learning of new meaning schemes … 

Epistemic  related to factual knowledge (instrumental) or related to the perspective of others 
(communicational)  

Sociolinguistic  pertaining to factual information about social norms (instrumental) or related to the perspective 
of others (communicational)  

Psychological  pertaining to knowledge of oneself or how that knowledge complements or expands upon an 
existing psychological meaning perspective or that leads to a new psychological meaning 
perspective (instrumental) or the learning of new meaning schemes of oneself related to the 
perspective of others (communicational) 

 that complements or expands upon an existing (epistemic, sociolinguistic, psychological) 
meaning perspective or that leads to a new (epistemic, sociolinguistic, psychological) meaning 
perspective 

Table 3-1: Learning Related to Meaning Perspectives. 
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Learning by 
Transforming 

Meaning 
Schemes 

 
Learning by transforming meaning schemes, such as those that result from transforming and 
testing what is viewed as factual … 

Epistemic  along with examining the validation for this view (instrumental) or those that result from 
transforming what one views as factual by examining the views of others as well as integrating 
the views of others (communicational) 

Sociolinguistic  and related to social norms along with validation for this view (instrumental) or those that result 
from transforming what one views as a social or cultural norm by examining the views of others 
as well as transforming one‘s views based upon one‘s analysis of the views of others 
(communicational) 

Psychological  and related to one‘s image of oneself along with validation for this view (instrumental) or those 
that result from transforming a particular view of oneself by examining the views of others as 
well as transforming one‘s views based upon one‘s analysis of the views of others 
(communicational) 

Transformational 
Learning 

 
Learning by transforming an (epistemic, sociolinguistic, psychological) perspective, such as 
transforming perspectives …  

Epistemic  about why particular knowledge is (or is not) important (instrumental) or transforming 
perspectives about the validity and utility of a perspective based upon the conclusions drawn by 
using another‘s point of view (communicational) 

Sociolinguistic  about why knowledge related to social norms is (or is not) important (instrumental) or 
transforming a sociolinguistic meaning perspective about the validity and utility of a social norm 
based upon consideration of the conclusions drawn by using another‘s point of view 
(communicational) 

Psychological  about why knowledge related to one‘s image or perception of self is (or is not) important 
(instrumental) or by transforming perspectives about the validity and utility of a person‘s image 
based upon consideration of the conclusions drawn using another‘s point of view 
(communicational) 
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Sociolinguistic Perspectives 

An individual‘s sociolinguistic meaning perspectives form initially from the social and 

historical context in which the person lives and participates. His or her meaning perspectives 

include social norms and cultural expectations of which the individual may be consciously 

unaware (Cranton, 2006). Distortions in an individual‘s sociolinguistic assumptions result from 

the way that individual‘s society, culture, and language may limit understanding (Mezirow, 

1991). Related to education, a teacher may not question some of the negative ways educators are 

portrayed in the media, or the teacher may feel constrained by the educational system in which he 

or she teaches but never question or closely examine the system (Cranton, 1996). The underlying 

distorted beliefs could be that the media accurately portrays teachers, and the educational system 

in which the teacher participates is the best system for educating youth. Sociolinguistic 

perspectives often include metaphors that do not register within conscious thought processes, but 

which may affect behavior directly. One such perspective is the teacher who has an image of 

students as ―blank slates.‖ This teacher‘s view is consistent with a transmission theory of 

learning, which may translate to a practice that is teacher centered and lecture driven. This 

metaphor can provide a glimmer of the teacher‘s assumptions about and perspective of learning 

(Cranton, 1996). In many cases, metaphors for sociolinguistic perspectives reveal an image of 

distorted assumptions. General examples of learning that can change an individual‘s 

sociolinguistic perspectives are displayed in Table 3-1. In addition to assumptions and beliefs 

related to knowledge and society, individuals also form meaning perspectives about their inner 

beings, which relates to the psychological meaning perspectives. 
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Psychological Perspectives 

An individual‘s psychological meaning perspectives are formed by his or her self-

concept, feelings, and personality traits to form that person‘s self-image (Cranton, 2006). 

Distortions in psychological assumptions, when recognized, can cause individuals intense pain if 

there are inconsistencies with the way the individual views himself or herself (Mezirow, 1991). A 

teacher may have a distorted psychological belief or assumption if that teacher‘s behavior is 

influenced by personal negative childhood school experiences. An example of a teacher with this 

distortion is a teacher who subconsciously avoids discussing a child‘s potentially problematic 

behavior with the child, based on a subconscious reaction to another teacher‘s treatment of the 

teacher as a student (Cranton, 1996). Additionally, a mathematics teacher may see himself or 

herself as the mathematical authority in the classroom and thus have a self image of being the 

most knowledgeable person in the classroom. If continually confronted by a precocious student‘s 

questions, however, that teacher‘s self-image may be questioned and subsequently changed or 

transformed. General examples of the four forms of learning that can change an individual‘s 

psychological perspectives are displayed in Table 3-1. 

Perspectives and Learning 

The three types of perspectives interrelate to form a person‘s knowledge base. For that 

reason, when a meaning scheme or meaning perspective of any type is transformed, it can affect 

meaning schemes and perspectives of other types. Although this study focuses on teachers‘ 

epistemic meaning schemes and perspectives for variation and statistics, dilemmas triggered and 

resolved with respect to sociolinguistic or psychological perspectives can cause a teacher to 

question assumptions, beliefs, and perspectives related to their epistemic schemes and 
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perspectives. As a result, an awareness of different types of perspectives can inform learning 

related to the specific epistemic perspectives of interest. As an example, reconsider a mathematics 

teacher who sees himself as the mathematical authority whose self-image is questioned and 

transformed subsequent to critically reflecting on a precocious student‘s questions. Although that 

teacher transformed a psychological meaning perspective, the student‘s questions are likely to 

have impacted epistemic meaning schemes and perspectives for the teacher based on factual 

information related to the questions. That teacher may accumulate factual information in answer 

to the student‘s questions or may learn by inquiring about and considering the student‘s 

perspectives behind what prompted the questions. The teacher‘s subsequent learning may occur 

in the instrumental domain of learning, the communicative domain, or both. 

Domains of Learning 

Table 3-1 displays characteristics typical of learning for the four forms of learning 

identified by Mezirow and displays learning within two distinct domains: the instrumental 

domain of learning and the communicational domain of learning. Both instrumental learning and 

communicational learning can result in changes to an individual‘s epistemic, sociolinguistic, or 

psychological perspectives. Learning rarely occurs in a distinctly single domain of learning and 

can be triggered from dilemmas for any of the three types of meaning perspectives.  

When an individual experiences a disorienting dilemma or undergoes a succession of 

meaning scheme transformations within a meaning perspective, that individual may not possess 

the knowledge needed to resolve the dilemma or to transform the meaning perspective. 

Additional learning is needed for transformation to be achieved. Based on Habermas‘ (1971) 

classifications for knowledge generation, Mezirow (1991) identified two broad domains of 

learning in which adults may acquire the necessary knowledge for transformation. The 
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instrumental domain of learning pertains to technical learning, or learning that concerns ―the way 

we control and manipulate our environment, including other people‖ (Mezirow, 1991, p. 73), and 

the communicative domain of learning pertains to practical learning, or learning related to 

understanding others, both through attempting to understand others‘ meanings and through 

communicating one‘s own meanings. Most adult learning occurs in both domains, with 

instrumental learning occurring subsequent to communicative learning, for example. Although 

learning typically involves aspects characteristic of both domains, these two domains of learning 

are discussed separately. 

Instrumental Domain 

Learning in the instrumental domain results in technical knowledge, or knowledge related 

to empirical, task-based problem solving. It is learning predominantly related to learning ―how to 

do something‖ that can be validated empirically. Instrumental learning results from examining 

factual information related to a problem, examining alternative strategies for solving the problem 

in the most efficient and effective manner, and testing the envisioned course of action empirically 

to solve the problem (Cranton, 2006; Mezirow, 1990). This learning extends an individual‘s 

current technical knowledge and deepens the knowledge in existing meaning perspectives, as 

shown in the descriptions of learning depicted in Table 3-1 (Kegan, 2000). Action within this 

domain is based upon empirical knowledge and ―centrally involves determining cause–effect 

relationships‖ (Mezirow, 1991, p. 73). Learning occurs when an individual reflects on the 

contextual or procedural assumptions used to guide problem solving and when the assumptions 

lead to strategies and tactics that are more efficient in producing the cause–effect relationship 

(Mezirow, 1990, 1991). Learning can also occur upon examining and critically reflecting upon 

the importance of instrumental knowledge. Most adult learning from experience falls within the 
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instrumental domain (Marsick, 1990). Consider someone who may learn a new technique for 

modeling data, such as the use of time-series models rather than least squares regression for 

modeling data collected over time. This method then becomes a part of that person‘s meaning 

perspective for data analysis. Because most learning falls within the instrumental domain, most 

learning is associated with the instrumental domain. Mezirow (1991) considers the learning that 

occurs within the communicative domain to be more significant than instrumental learning, since 

it involves ―understanding the meaning [italics in original] of what others communicate‖ 

(Mezirow, 1990, p. 8).  

Communicative Domain 

Learning in the communicative domain is learning that occurs through discourse and is 

validated through consensus (Mezirow, 1985). Learning in the communicative domain may occur 

when an individual attempts to understand the meaning of what others communicate either 

verbally or in written form with respect to values, feelings, and beliefs. It also can occur when an 

individual attempts to make his or her own values, feelings, and beliefs be understood or when an 

individual attempts to integrate the points of view of others into his or her own perspectives 

(Mezirow, 1990, 1991). In this domain of learning, the focus is on the justification of beliefs 

through understanding, describing, or explaining values, feelings, and beliefs and reaching 

consensus on the validity of the beliefs (Cuddapah, 2005; Mezirow, 1991). Learning in the 

communicative domain potentially has the greatest effect on an individual‘s sociolinguistic and 

psychological meaning perspectives (Marsick, 1990), as depicted in Table 3-1. By interacting and 

communicating with others, an individual may need to view an experience in terms of a different 

meaning scheme, necessitating one of the first three forms of learning (Mezirow, 1990). The 

individual also may reflect critically on the assumptions of others in relation to his or her own 
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assumptions to transform a meaning perspective. Continuing with the previous example of a 

someone whose meaning perspective for data analysis expanded to include time-series models, 

consider a difference in beliefs between individuals about the most appropriate technique, using 

linear regression models or time-series models, to analyze a particular set of data. In such a case, 

communication between the individuals could ensue, with each person attempting to understand 

the analysis beliefs of the other. In this manner, a change in meaning schemes may occur for one 

or both individuals for those particular statistical techniques. 

Elements of Transformational Learning 

Learning in the instrumental domain results from reflection on the content of problem 

solving through questioning the problem, context, and premises about the importance of the 

problem (Cranton, 2006; Mezirow, 1985). Learning in the communicative domain results from 

interacting with and sharing values and beliefs with others, often in the context of problem 

solving, and while questioning the validity of existing assumptions and beliefs (Cranton, 2006; 

Mezirow, 1985). As mentioned previously, learning in both the instrumental and communicative 

domains is interdependent and interrelated in an individual‘s learning and results in that 

individual‘s technical and practical knowledge. An individual‘s reflection on the content and 

process of problem solving, often while engaging in dialogue with others about the problem, 

typically results in meaning schemes that are changed, created, or transformed (Mezirow, 1991). 

An even more powerful form of learning may result from an individual critically reflecting on the 

premises of problem solving, that is, questioning the importance of or the validity and utility of 

the problem-solving content and process, often while engaging in dialogue with others (Cranton, 

2006; Mezirow, 1985). Critical reflection can result in a perspective transformation and begins by 
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critiquing the presuppositions upon which beliefs from prior learning are built (Mezirow, 1990, 

1991).  

Most current professional development efforts focused on educational reform are 

undertaken to bring about a change, or transformation, in teachers‘ beliefs and ideals. Although 

few individuals have linked transformation theory directly to their descriptions of teacher learning 

and change (Cuddapah, 2005), the applicability of transformation theory can be seen in 

researchers‘ descriptions about reform. For example, Thompson and Zeuli (1999) state that 

reforms ―call for very deep changes—even a transformation—in teachers‘ ideas about and 

understandings of subject matter, teaching, and learning‖ (p. 350). In particular, they note that 

―transformative learning [would] be required to realize science and mathematics education 

reformers‘ visions of curriculum and teaching‖ (p. 350). For reform to occur, Thompson and 

Zeuli posit that many mathematics teachers would need to examine and change their beliefs about 

mathematics, teaching, and learning and seek to enhance their understandings related to each. 

Transformation theory provides the mechanisms behind transformed learning. To examine the 

processes associated with perspective transformations in teaching, it makes sense to look at the 

processes in conjunction with the processes contained in a model for teacher change. In 

particular, the model of professional growth described by Clarke and Hollingsworth (2002) aligns 

well with elements of perspective transformation. 

In his initial research, Mezirow identified ten phases for perspective transformation, but 

recent research suggests that not every one of these ten elements is necessary for a perspective 

transformation to occur (Taylor, 1997, 1998, 2000). This same body of research also suggests that 

the transformation process is less linear and more recursive than originally envisioned by 

Mezirow (Merriam, 2001; Taylor, 1997, 1998, 2000). Agreement does appear to exist on the 

three main phases of transformative learning that result in a perspective transformation: critical 

reflection, rational discourse, and action (Cuddapah, 2005; Merriam & Caffarella, 1999). Table 
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3-2 displays those three elements for perspective transformation, along with the corresponding 

elements originally posited by Mezirow. The table also shows how the elements of Clarke and 

Hollingsworth‘s model for professional growth correspond with Mezirow‘s elements of 

transformation. Whereas the table gives the impression of a linear process or sequential steps for 

perspective transformation and teacher change, individuals‘ transformational learning and change 

may not occur in this order. Elements related to the three main phases of transformative learning 

in combination with elements from Clarke and Hollingsworth‘s Model of Professional Growth 

are examined in the next section. 
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Main Elements 
of a Perspective 
Transformation 

Mezirow‘s Elements of 
Perspective Transformation 

Corresponding Elements of Clarke and 
Hollingsworth‘s Model of Professional 

Growth 

Critical 
Reflection 

Disorienting dilemma or 
sequence of transformed meaning 
schemes 

External stimuli or culmination of 
internal reflections 

Self-examination, accompanied 
by emotions 

Reflecting on the personal domain 
(knowledge, beliefs, and attitudes) 
and/or the domain of practice 

Critical assessment of 
assumptions related to epistemic, 
sociolinguistic, or psychological 
perspectives 

Reflecting critically on the personal 
domain and reflecting critically on the 
domain of consequence (salient 
outcomes) 

Rational 
Discourse 

Recognition that others have 
experienced similar discontent 
with their perspectives 

Acting on and reflecting on the external 
domain (sources of information) 

Exploring new roles, relationships 
and actions through engaging in 
rational discourse with others – 
learning in the communicative 
domain 

Acting on the domain of practice 
(professional experimentation) and 
acting and reflecting on the external 
domain (sources of information) 

Action Planning a course of action Reflecting on the personal domain, the 
domain of practice and/or the domain 
of consequence 

Constructing the knowledge and 
skills needed to enact the plan – 
learning in the instrumental 
domain and possibly in the 
communicative domain 

Acting on and reflecting on the external 
domain and reflecting on the personal 
domain 

Experimenting with new roles Acting on the domain of practice  

Building a sense of competence 
and self-confidence for new roles 
and relationships 

Reflecting on the domain of practice 
and the domain of consequence 

Reintegration into life based on 
the transformed perspective 

Acting on the domain of practice 

Table 3-2: Comparison of Perspective Transformation With Professional Growth. 
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Critical Reflection 

Perspective transformations typically begin with one or more events that precipitate a 

disorienting dilemma or an examination of presuppositions for which current problem-solving 

processes do not provide resolution to the problem at hand (Merriam & Caffarella, 1999). 

Although Clarke and Hollingsworth do not specify the need for a disorienting dilemma to 

stimulate professional growth, teachers typically have some motivation for pursuing professional 

development that results in change. That motivation may come internally from an individual‘s 

experience of a disorienting dilemma or transformed meaning schemes, or the motivation may 

come externally from reform efforts within the individual‘s school or professional community. 

Internal motivation proceeds in a manner similar to the process described by transformation 

theory; external motivation, however, requires some action to precipitate the teacher‘s need to 

reflect on practice and on assumptions and beliefs about teaching and learning. 

A second characteristic of critical reflection is self examination, which is often 

accompanied by strong emotions (Mezirow, 1991). Mezirow (2000) acknowledges that becoming 

aware of previously implicit presuppositions and recognizing a need for change can present a 

threatening, emotional experience for many adults. As a result, some individuals resort to 

accepting the status quo or succumbing to the perspective of an authority, whereas others proceed 

to critically assess their epistemic, sociolinguistic, or psychological assumptions through critical 

reflection (King, 2002; Mezirow, 1994, 2000). Clarke and Hollingsworth incorporate the need for 

teachers to reflect on practice and for teachers to reflect on assumptions and beliefs about 

teaching and learning for professional growth throughout their model.  
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Rational Discourse  

Upon engaging in critical reflection, an individual may take consolation in the fact that 

others have experienced similar discomfort when examining their assumptions and beliefs 

(Mezirow, 1991). In advance of preparing a plan of action to resolve a dilemma, an individual 

may explore options for new roles, relationships, and actions by either engaging in rational 

discourse with others or internally engaging in rational discourse. Through discourse, the 

individual can examine the experiences of others and gain insights into both his or her own 

assumptions and the assumptions of others. The resultant learning falls mainly within the 

communicative domain (Mezirow, 1991, 2000). It is in this phase that the establishment of 

trusting relationships with others may play a role, since open and frank discussions can occur 

(Mezirow, 2000). Obtaining emotional support can take the form of support from colleagues who 

simultaneously engage in a change process or through rational discourse with colleagues 

pertaining to assumptions and beliefs about teaching and learning. Although Clarke and 

Hollingsworth do not explicitly address the role of others in rational discourse, their model of 

professional growth takes into account information gained from external sources, which does not 

preclude information gained through rational discourse with colleagues. Additionally, the support 

of others could be one part of the change environment in which the teacher participates. 

Action  

To bring about resolution to a dilemma, an individual may plan a course of action and 

then go about constructing the knowledge and skills for enacting the plan. The resultant learning 

falls mainly within the instrumental domain (Mezirow, 1991). Acting on plans for change is a 

major element of Clarke and Hollingsworth‘s model for professional growth. After a teacher 
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develops a sufficient knowledge base, the teacher may experiment by taking on new roles to build 

competence and self-confidence with the new roles and relationships (Mezirow, 2000). The final 

result is that the individual lives life based on a newly transformed perspective—a perspective 

that is more inclusive, open, and discriminating (Mezirow, 2000). Taking action to make changes 

in practice may precipitate the need for further reflection and emotional support, which may 

suggest the need for increased knowledge in preparation for further action.  

Conditions for Perspective Transformation 

Much of the research on transformation theory has been focused on validating and 

expanding the theory; less research has been conducted to investigate under what conditions a 

perspective transformation might be likely to occur (Taylor, 1997, 1998, 2000). Several adult 

educators have speculated about some of the conditions they believe are conducive to enabling 

perspective transformations. These conditions include some or all of the following for teachers: 

dissatisfaction with current practice, occurrence of a disorienting dilemma, critical examination of 

beliefs, support and freedom to pursue alternatives, support and opportunity to engage in rational 

discourse, readiness for change, and openness to alternative perspectives (Cranton, 2006; 

Cuddapah, 2005; Merriam, 2004a). A teacher‘s experience with a disorienting dilemma related to 

teaching or learning or a teacher‘s dissatisfaction with teaching practices are conditions that may 

precipitate the teacher‘s critical examination of beliefs (Cranton, 1994). A teacher‘s readiness for 

change might also increase the likelihood of engaging in the difficult task of critically examining 

beliefs. Critically questioning previously unexamined assumptions and beliefs about teaching and 

learning, particularly through discourse with others, may motivate a teacher to listen to and 

consider alternative perspectives. Administrative support and emotional support from peers may 

create ―safe‖ conditions under which the teacher feels free to experiment with new roles. Others 
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have speculated that long-term work with a mentor, faculty developer, group of faculty members, 

or network of teachers from multiple districts can sustain transformative learning in teachers by 

providing the emotional support needed for perspective transformation.  

Professional development workshops in many districts are of short duration and focus 

strictly on technical knowledge; they result in little meaningful teacher change (Desimone, Porter, 

Garet, Yoon, & Birman, 2002). In contrast, researchers who examined programs designed to 

effect change found that the most successful programs were those that provided long-term 

support and assistance to teachers (Shields, Marsh, & Adelman, 1998). To facilitate the change 

process, teachers need support to battle through the emotional strain that accompanies the 

examination of underlying beliefs. Teachers also need to engage in rational dialogue with 

colleagues and take action to learn the new content and strategies required for transformed 

practices. Current prevalent professional development practices for teachers of grades K-12 often 

appear to be unfocused and disconnected (Cohen & Hill, 2001). These programs do not seem to 

provide a focus on creating conditions that are indicative of transformation-provoking and 

transformation-sustaining activities, and most importantly, activity to support teachers‘ 

examination of beliefs and engagement in rational discourse.  

 In contrast to traditional professional development endeavors, Whitelaw, Sears, and 

Campbell (2004) provide an example of a program that was supportive for provoking teachers‘ 

transformations. They studied instructors‘ learning within an initiative designed to promote 

faculty members‘ technology use. The program invited teachers to examine their teaching 

practices under the umbrella of incorporating technology into practice. The program itself 

focused on technical knowledge. Teachers worked in pairs to explore the technology and to 

dialogue about how the technology could be used. For some pairs, this dialogue resulted in 

practical knowledge. The researchers found that those pairs who self-reported significant learning 

recognized the value of examining their beliefs about teaching, engaging in dialogue with their 
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partners, and exploring how technology use could support their beliefs. Additionally, several 

participants experienced a misalignment between their expectations for the initiative and their 

experiences while participating in the initiative. The authors contend that this misalignment 

provided an opportunity for participants to engage in critical reflection on their practice through 

the triggering of a disorienting dilemma. 

There are also other professional development opportunities that are available to teachers 

and that may precipitate a change in practice. Within mathematics and statistics education, there 

exist several independent educational organizations, such as the National Council of Teachers of 

Mathematics. These organizations provide both formal and informal learning opportunities for 

self-directed learners, including workshops, conferences and publications (Merriam & Caffarella, 

1999). Such workshops and conferences provide teachers with opportunities to exchange 

information with others and to examine educational publications and materials— activities that 

may prompt critical reflection and discourse (Cranton, 1994). Similar venues for prompting 

critical reflection and discourse are available in formal educational settings, such as graduate 

classes or degree programs offered by colleges and universities (Merriam & Caffarella, 1999).  

 Lastly, proponents of adult education suggest that emotional maturity is required for a 

perspective transformation to occur (Mezirow, 2000). Although there is some question about 

whether precocious teens may experience perspective transformations, transformation theory is 

considered by many to be strictly an adult theory of learning (Taylor, 2000). Mezirow (1985) 

defines an adult as ―one who fulfills adult social roles and who sees himself or herself as a self-

directed person‖ (p. 17). Associated with emotional maturity are the abilities to be critically self-

reflective as well as to engage in rational dialogue (Cuddapah, 2005). Others (e.g., Knowles, 

Holton, & Swanson, 2005) suggest that only adults have the types of experiences and resources 

necessary to be able to critically examine previously uncritically assimilated assumptions and 

beliefs, and only adults have the desire to resolve any contradictions between beliefs and 
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experiences (Mezirow, 1991). The main factors that seem to distinguish transformation theory 

from learning theories used to investigate students‘ learning are recognition of the need for 

emotional maturity and acknowledgement of the role of emotion in transformational learning 

coupled with the realm of experiences needed for critical reflection. In addition, others (e.g., 

Merriam, 2004b) suggest that a ―mature level of cognitive functioning‖ (p. 60) is required for 

transformational learning—cognitive development that may extend beyond Piaget‘s formal stage 

of cognitive development. As the preceding descriptions suggest, viewing teacher learning 

through the lens of transformation theory is consistent with current explanations for teacher 

change.  

The SOLO Model 

Transformation theory provides explanatory power for what prompts adults to construct 

the knowledge and beliefs necessary to function at advanced cognitive levels as well as for how 

adults construct that knowledge. Whereas transformation theory does provide explanatory power 

for adult learning, it offers only a global perspective of learning and gives little insight into the 

intricacies of an individual‘s meaning perspectives and the complex, interrelated web of 

knowledge, assumptions, and beliefs associated with the meaning schemes that combine to form 

these meaning perspectives. In relation to this study, transformation theory may provide insight 

into how professional development can provoke individuals‘ construction of robust 

understandings of variation by examining closely teachers‘ activities and actions that may 

contribute to their development of that understanding. Ensuring that teachers have robust 

understandings of variation to answer the second research question of this study, however, can be 

accomplished best by examining teachers‘ understanding through a lens different from 
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transformation theory. The Structure of the Observed Learning Outcome (SOLO) Model (Biggs 

& Collis, 1982, 1991) provides such a lens.  

Establishing teachers‘ understandings of variation can be accomplished by examining 

their responses to interview tasks using the SOLO Model (Biggs & Collis, 1982, 1991). The 

SOLO Model is an empirically derived, neo-Piagetian model of cognitive development that 

assumes individuals actively construct knowledge through interactions with the world around 

them (Pegg & Tall, 2001, 2004), thus sharing similar constructivist assumptions with 

transformation theory. Unlike transformation theory, however, SOLO allows for both a global 

analysis of long-term growth and a local analysis of conceptual growth (Pegg & Tall, 2001), thus 

enabling description of both cognitive development and the complexity and cogency of the 

knowledge that results from learning (Cantwell & Scevak, 2004). It is in the latter sense that 

SOLO is considered for this study.  

Collis, Romberg, and Jurdak (1986) describe the dual phenomena that the SOLO Model 

addresses and mention two descriptors initially used by Biggs and Collis for the phenomena: 

Hypothetical Cognitive Structure and the Structure of the Learned Outcomes or Responses. The 

Hypothetical Cognitive Structure is the tool for describing cognitive development, and the 

Structure of the Learned Outcomes or Responses is the tool for describing an individual‘s 

structure of response to a task, with the response not necessarily indicative of development. As 

Biggs and Collis (1982) observe, the SOLO levels ―describe a particular performance at a 

particular time‖ (p. 23). An individual may respond to a task using a lower mode of reasoning 

even though the individual is capable of reasoning at a higher mode. Much of the research in 

mathematics education and in statistics education alludes to the developmental nature of the 

SOLO Model while using the model to describe the structure of students‘ responses to 

mathematical or statistical tasks. For this study, SOLO is used to examine the structure of 

teachers‘ responses to statistical tasks and provides a useful lens through which to design tasks to 
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elicit understanding and to examine an individual‘s knowledge subsequent to learning. Because it 

can be used to describe developmental levels, SOLO offers a way to describe varying depths of 

understanding. In this study, the varying depth is not that of one individual across time, as it 

would be in developmental research, but rather the varying depths of understanding at one time 

across individuals. 

The SOLO Model (Biggs & Collis, 1982, 1991) consists of five modes of functioning 

that correspond closely to Piaget‘s developmental stages: the sensorimotor, ikonic, concrete 

symbolic, formal, and postformal modes. Each mode of learning reveals the ―level of abstraction 

that a learner uses when handling the elements of a task‖ (Biggs & Collis, 1982, p. 152), with 

each successive mode increasing in the degree of abstraction needed to reason within that mode. 

Thought processes in each successive mode are qualitatively more complex than thought 

processes in earlier modes.  

This study focuses strictly on the formal mode of reasoning. Reasoning within the formal 

mode can be used to generate speculations that both incorporate and transcend particular 

situations; characteristic of this mode is reasoning that does not require reference to a particular 

concrete setting. Although some adults never develop sufficient understanding of concepts within 

particular areas of study to reason in the formal mode for those areas, thinking in the formal mode 

is seen as representative for the type of thinking exhibited by undergraduates and professionals 

(Biggs & Collis, 1982; Groth & Bergner, 2006). Secondary statistics teachers in particular should 

be able to think and reason about variation in the formal mode. Not only does the SOLO Model 

provide a means to examine individual responses on a global level, SOLO also affords the use of 

a finer grain of analysis by examining learning cycles within each mode (Pegg & Tall, 2005). 
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Levels of Response 

There exists essentially a cycle of three levels of response, or levels of thinking, to 

describe cognitive growth in the formal mode: unistructural, multistructural, and relational (Biggs 

& Collis, 1991). The underlying cognitive structure of a response may reveal different foci in an 

individual‘s response. At the unistructural level, an individual focuses on one relevant aspect that 

lies in the formal mode, whereas at the multistructural level the individual focuses on more than 

one relevant aspect without integrating the aspects. At the relational level, the individual 

integrates all relevant aspects to reveal coherent structure and meaning. The three levels within a 

mode form a cycle of cognitive growth (Pegg, 2003), with the cycle being hierarchical in nature 

and generally accepted as developmental in nature (Pegg, 2003). 

Recent empirical studies identify more than one cycle of levels of response that a learner 

exhibits within a mode before possibly reasoning beyond that mode (Callingham, 1997; Pegg, 

2003; Watson, Collis, Callingham, & Moritz, 1995). Pegg and Tall (2001) provide one of the few 

descriptions of the SOLO Model that acknowledges the possibility of multiple cycles of levels 

within a mode. They suggest that multiple cycles within a mode occur after  

the individual meets new stimuli and begins to react first to one aspect, then 
another, to give multiple responses, which begin to be related together, then the 
whole structure is conceptualized as a new single structure. This structure can 
retain characteristics of the initial cycle. (Pegg & Tall, 2001, p. 2) 

This single new structure characterizes the unistructural level in a second cycle of levels within a 

mode. Given the complex nature of variation, it seems possible that individuals may be able to 

reason relationally about aspects of variation in the formal mode while not integrated reasoning 

among aspects, suggesting that relational reasoning about variation in the formal mode might 

encompass more than one level of reasoning. 
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The SOLO Model as a Tool for Eliciting Understanding of Variation 

To date, researchers have used the SOLO Model to explore issues of individuals‘ 

understanding and reasoning about variability in the concrete-symbolic and ikonic modes 

(Reading, 2004; Watson, Kelly, Callingham, & Shaughnessy, 2003). A few statistics education 

researchers have used the SOLO Model to examine and describe reasoning in the formal mode 

(e.g., Groth & Bergner, 2006), and mathematics education researchers have described students‘ 

reasoning in the formal mode for mathematical topics in several areas of mathematics (e.g., Pegg 

& Tall, 2005; Serow, 2006). The body of statistics education research work consists of analyzing 

students‘ responses to form descriptions of understanding and reasoning in relation to the levels 

of reasoning within a mode or to distinguish reasoning between modes. In these studies, either the 

participants were unable to reason in the formal mode, or the tasks did not elicit reasoning 

indicative of the formal mode. Mathematics education researchers (e.g., Collis, Romberg, & 

Jurdak, 1986) have used an alternative process with the SOLO Model to reverse the usual order 

from response to level classification to address the latter situation. The alternative process is used 

to write tasks that elicit responses reflective of SOLO levels within the mode intended to be 

studied or that distinguish between modes (Collis, Romberg, & Jurdak, 1986; Rider, 2004). This 

alternative process was used in this study to design tasks to elicit reasoning in the formal mode 

along with empirical verification of responses to confirm the tasks elicited formal reasoning. The 

process also was used to analyze responses to describe reasoning and understanding about 

variation in the formal mode. 

Figure 3-1 provides a simplified graphical representation for the first cycle of levels of 

understanding variation using the SOLO Model. This figure shows that an individual can have an 

integrated understanding for each perspective of variation in the formal mode. The first cycle of 

unistructural, multistructural, and relational levels within the formal mode is a cycle of levels 
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within each perspective of variation, with the levels subscripted with a ―1‖ depicting the first 

cycle for each perspective and the arrows representing the hypothetical development of an 

understanding of variation and increased sophistication in reasoning from each perspective. For 

example, an individual who provides evidence of relational reasoning (R1) within the design 

perspective displays integrated reasoning with statistical problem-solving elements related to 

design. In contrast, unistructural reasoning (U1) from the design perspective is evidenced by 

reasoning about a single problem solving element related to design, and multistructural reasoning 

(M1) is evidenced by reasoning about multiple elements without integration of the elements.  

The second cycle of levels in the formal mode (the cycle in the bottom half of Figure 3-2) 

requires integrating the three perspectives to reveal a holistic understanding of variation. The 

levels subscripted with a ―2‖ depict this second cycle and the arrows represent hypothetical 

development and increased sophistication towards relational reasoning across perspectives. An 

individual who reasons relationally from each perspective and integrates reasoning from the three 

perspectives is reasoning at a relational level (R2) in the second cycle of levels in the formal 

mode. Relational reasoning across perspectives is indicative of robust understanding of variation. 

Relational reasoning within only one perspective is indicative of unistructural reasoning (U2) in 

 

 

Figure 3-1: SOLO and the Cycle of Levels for Each Perspective.  
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the second cycle, and relational reasoning within more than one perspective without integration 

between perspectives is indicative of multistructural reasoning (M2) in the second cycle. 

Although individuals who reason at the unistructural and multistructural levels in this second 

cycle exhibit relational reasoning from one or more perspectives, they do not exhibit reasoning 

indicative of an overall robust understanding of variation. The interview tasks and the lines of 

questioning related to each task in this study were designed to elicit reasoning about variation in 

the formal mode and to allow determination of levels of reasoning in both cycles of levels, thus 

providing a view of robust understanding of variation as relational reasoning across the three 

perspectives. 

 

 

Figure 3-2: The SOLO Model and Robust Understanding of Variation.  



 

 

Chapter 4 
 

Research Methods 

In addition to investigating teachers‘ conceptions of variation, a major goal of this study 

is to understand the nature of experiences that secondary mathematics teachers believe 

contributed to their development of robust understandings of statistical variation. To examine the 

fundamental nature of these experiences and to obtain a holistic description of the nature of the 

experiences, I use phenomenological methods (Moustakas, 1994), for which the phenomenon 

under study is secondary mathematics teachers‘ development of robust understandings of 

statistical variation. A major requirement for phenomenological study is that the topic and 

research questions be of social significance (Moustakas, 1994); the perceived need for students to 

become statistically literate and to have statistically literate teachers suggests the significance of 

this study. This study can contribute to the future design of programs that advance the 

development of a statistically literate society. In this chapter, I describe in detail the processes 

that I used to conduct this study. Specifically, I describe the processes used to select participants, 

to collect data, and to analyze data in order to examine teachers’ conceptions of variation and to 

establish that teachers experienced the phenomenon under study as well as to identify 

characteristics of experiences identified by teachers as important for their learning during the 

course of experiencing the phenomenon. 

Participant Selection 

In order to study the phenomenon of coming to understand variation, participants must 

have experienced the phenomenon (Moustakas, 1994). To ensure the highest probability of 
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finding teachers who have robust understandings of variation, I established explicit criteria for 

individuals‘ addition to the participant pool (Merriam, 1998). The resulting purposeful sample 

consisted of 16 high school statistics teachers from across the country; a different group of three 

teachers participated in a pre-pilot study and another three teachers participated in a pilot study. 

To establish the selection pool, I considered teachers who have been active in The College 

Board‘s Advanced Placement® (AP) Statistics Program. 

Background Information  

The AP program allows secondary students to receive college credit for courses taken 

during their high school years (Collegeboard.com Inc., 2007a). To potentially receive credit in 

statistics, students take the AP Statistics exam, which consists of multiple choice and free 

response questions. Each year, secondary AP Statistics teachers and college statistics instructors 

meet in a central location (the AP Reading site) to score students‘ free response solutions (R. 

Peck, Personal communication, May 21, 2007).  

The College Board requires that secondary mathematics teachers have a minimum of 

three years of experience in teaching AP Statistics or the equivalent before they can attend the AP 

Reading (Collegeboard.com Inc., 2007c), although exceptions have been made when the demand 

for readers has exceeded the available pool of readers. As part of the application process, teachers 

provide information about their educational experiences and submit a curriculum vita and course 

syllabus (Collegeboard.com Inc., 2007c). Subsequent to examining the application materials, the 

Chief Reader—a college statistics professor who has served various roles at the AP Reading and 

who is hired to be a ―content arbitrator‖—extends invitations to the Reading (R. Peck, former 

Chief Reader, personal communication, May 21, 2007). The teachers who attend the Reading are 

the readers. 
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At the conclusion of each AP Reading, readers are evaluated and must exhibit proficiency 

in evaluating student responses for statistical completeness and correctness to be invited back to 

the AP Reading in subsequent years (R. Peck, Personal Communication, May 21, 2007). To 

evaluate student responses for students from multiple states and countries—responses that include 

both conventional and unconventional methods—readers need to have and exhibit flexibility in 

their understanding of statistics. Attending the AP Reading also presents a unique learning 

experience for teachers. As noted by one first-time AP Statistics reader, ―[t]he greatest gain that 

readers will take away from an AP Reading … is an increase in their own knowledge and skills 

within their chosen fields‖ (Rees, 2007).  

With the selection criteria for AP readers and the educational benefit from attending an 

AP Reading, secondary teachers who attend the AP Reading pass a screening process that 

suggests some level of competence in the area of statistics, and they participate in potentially 

powerful professional development. Table leaders pass through an additional screening process. 

To become a table leader, a teacher typically must serve as a reader for six years, currently teach 

AP Statistics or an equivalent course, and exhibit characteristics of leadership (R. Peck, Personal 

Communication, May 21, 2007). They also must be recommended by an existing table leader or 

serve the AP program in a particular type of leadership role (Collegeboard.com Inc., 2007d). In 

general, table leaders have taught statistics for a minimum of six years and exhibit their statistical 

knowledge through the selection process for readers and table leaders. 

Selection Criteria 

With AP readers‘ and table leaders‘ wealth of background experiences, these teachers are 

more likely to exhibit robust understandings of variation than a random sample of AP teachers 

(e.g., R. Peck, Personal Communication, May 21, 2007) and thus are more likely to have 
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experienced the phenomenon of interest—a key consideration for participant selection in 

phenomenological studies (Moustakas, 1994). For that reason, AP readers and teacher leaders 

formed the population of interest for this study. In particular, teachers who attended the 2006 and 

2007 AP Statistics Readings as readers or table leaders comprised the initial group of teachers 

considered for this study. Of the 16 teachers ultimately selected for participation, 15 attended a 

minimum of two AP Readings,3 including one teacher who attended nine. On average, teachers 

attended 4.6 AP Readings, with a median of 4 AP Readings. Six of the teachers currently serve or 

served in the past as table leaders at the AP Reading and averaged 5.167 years of service as a 

table leader, with a median of 5 years of service.  

To achieve a participant pool that represented some diversity in experiences, I selected 

teachers who differed in the number of years they taught statistics. My belief was that individuals 

who have more recently begun to teach statistics may be able to recount the activities and actions 

that contributed to their current understanding of variation better than veteran teachers, whereas 

veteran teachers may have a greater variety of activities and actions that contributed to their 

understandings. The teachers in this study taught statistics for as few as 3 years and for as many 

as 30 years. The mean number of years that teachers taught statistics at the time of data collection 

was 10.75 years, with a median of 9.5 years. 

Secondary considerations for participant selection included selecting teachers with a 

variety of educational backgrounds and statistical experiences. Many teachers who have served as 

readers and table leaders have attended or conducted professional development. In many cases, 

attendance is self-initiated and less formal than an undergraduate or graduate-level statistics 

course. Professional development workshops are likely to include pedagogical strategies for 

teaching statistics along with discussions related to statistical content. My belief was that 

                                                      
3 One of the teachers in the study is not an AP Statistics reader; however, she was recommended by an AP 
teacher-leader because of her participation in leadership institutes and her leadership in providing 
professional development in statistics for teachers at local and state levels. 
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selecting teachers with a variety of professional development backgrounds would help to isolate 

characteristics of effective professional development. The 16 teachers attended between 1 to 30 

professional development sessions, inclusive, in statistics, with a mean of 9.44 sessions and a 

median of 6.5 sessions. Nine teachers conducted professional development in statistics, with the 

number of sessions varying from 1 to 60, inclusive. The mean number of sessions conducted was 

22.56 sessions, and the median was 23 sessions. The mean and median values, however, are 

deceptive because five teachers conducted 23 or more professional development sessions, and the 

remaining four teachers conducted 7 or fewer sessions. 

In addition to displaying a variety of professional development experiences in statistics, 

teachers in this study have a mixture of formal, course-related experiences in statistics. Whereas 

no teacher with a statistics degree participated in this study, one teacher has a minor concentration 

in statistics, and seven teachers completed three or more formal courses in probability and 

statistics at the secondary, undergraduate, or graduate level. Only one teacher never completed a 

formal probability or statistics course. Two of the pilot study teachers had minors in statistics. 

Twelve teachers have undergraduate degrees in mathematics or mathematics education, and ten 

have graduate degrees in mathematics or mathematics education. Several teachers have 

undergraduate or graduate degrees in other fields, including marketing and advertising, chemical 

engineering, counseling, psychology, and varying exceptionalities. Two teachers have 

undergraduate degrees in science or engineering and completed coursework to obtain secondary 

mathematics certification. By selecting teachers with a wide variety of informal and formal 

educational experiences, my belief was that I could isolate characteristics of both formal and 

informal experiences that may have contributed to teachers‘ development of robust 

understandings of variation.  

I selected teachers using general characteristics typically considered in phenomenological 

research, including gender (Moustakas, 1994). I selected equal numbers of male and female 
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teachers from fourteen different states across the continental United States and Washington, D.C., 

including teachers from the North, East, South, West, and Midwest, in an attempt to select 

teachers that obtained their undergraduate and graduate degrees from different universities, taught 

in different school systems, and experienced different professional development programs. Three 

teachers have assumed leadership roles in the College Board organization in ways beyond table 

leadership, and seven have statistics-related publications, including textbook and textbook-related 

publications, magazine or web-based articles and activities, and workshop-related publications. 

Serving in leadership positions or publishing statistics-related work provides additional learning 

opportunities for teachers—opportunities not necessarily duplicated in other criteria used to select 

participants. As the diversity of teachers‘ experiences might suggest, my main goal was to have 

teachers with as many varied learning opportunities as possible. 

Selection Process 

To select participants, I began by contacting a table leader to obtain the names and e-mail 

addresses of current and past table leaders and readers. Using e-mail communication, I contacted 

approximately 125 secondary teachers in the continental United States who attended the 2006 and 

2007 AP Readings and who voluntarily included their e-mail addresses on a list generated at the 

AP Reading. Teachers who were interested in hearing more about the study included contact 

information in their responses to the e-mail. I called or e-mailed approximately 45 teachers who 

expressed interest, described the study to them, and ascertained their level of interest. When 

teachers stated a preference for e-mail, I e-mailed the introductory script approved by the Office 

of Research Protections. I read the script to everyone else. As part of my conversations with 

teachers, I received recommendations and contact information for three additional teachers, who I 

then contacted in the same manner as described. After my initial contact, if a teacher expressed an 
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interest in participating in the study, I e-mailed a password-protected questionnaire and asked him 

or her to return the completed questionnaire to me as soon as possible. The questionnaire, 

displayed in Appendix A, was the primary tool I used for participant selection. 

To obtain participants who represented a wide variety of experiences, I waited to review 

questionnaires until I received fifteen. Initially I believed that I would have sufficient diversity of 

experiences with ten participants; fifteen responses seemed to be sufficient for making 

preliminary choices. From this pool of fifteen teachers and with input from another mathematics 

education researcher, I selected male and female participants who exhibited diversity in years of 

teaching mathematics in general and teaching statistics in particular; years as readers and table 

leaders; formal degree work; and experiences with attending or conducting professional 

development. In particular, I selected a pool of participants with a variety of experience 

configurations while ensuring that not all of the teachers had the same experiences. If two 

teachers had a similar configuration of experiences, I gave priority to the teacher in closer 

geographical proximity to me.  

An example of the types of decisions I made while selecting participants can be 

illustrated with the experiences of Blake,4 Eden, and a gentleman not selected for participation. 

These three teachers were among the fifteen who initially expressed interest in the study. The 

gentleman not assigned a pseudonym had 29 years of teaching experience and taught statistics for 

eight of those years. He attended five AP Readings, had undergraduate and graduate degrees in 

mathematics education, attended approximately 40 professional development sessions related to 

statistics, and conducted five professional development sessions in statistics. In comparison, 

Blake attended a total of seven AP Readings, one for which he was a table leader. He has an 

undergraduate degree in mathematics and a graduate degree in mathematics education. He 

attended approximately 30 professional development sessions related to statistics. Eden taught for 

                                                      
4 Blake, Eden, and all other participant names are pseudonyms. 
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30 years, including statistics for 10 of those years. She attended seven AP Readings, conducted 

two professional development sessions, and served as a statistical consultant for her high school. 

Arguably, when Blake and Eden are considered together, their experiences overlap with the 

unnamed gentleman‘s experiences to a large extent. Additionally, Blake and Eden add unique 

experiences to the study—experiences that potentially affected their statistical understandings. 

Eden has an undergraduate degree in chemistry, with a minor in physics. Blake has been teaching 

statistics for 18 years, including seven years before the AP Statistics course existed and is a table 

leader. Eden and Blake added unique characteristics to the study, while also having experiences 

similar to those of the gentleman. Other participants also had experiences that overlapped with 

those of the gentleman. Because they had unique experiences, Blake and Eden were selected to 

participate in the study; because the gentleman had common experiences that were experienced 

by others with additional unique experiences, he was not selected for the study. 

From the initial pool of questionnaire respondents, I selected ten participants and e-

mailed the teachers to inform them of their selection and to request additional information from 

them. Nine of the ten teachers returned a signed consent form to me and participated fully in the 

study. After these ten individuals were contacted, I continued to receive questionnaires. I 

expanded the number of participants if an individual had a unique characteristic or experience 

that may have related to statistics learning and that was not represented or experienced among 

those teachers already selected. Additional experiences included engineering coursework, degree 

work for teaching students with varying exceptionalities, degree work for an MBA, unique 

statistical publications, leadership separate from the AP Reading and the College Board, and 

leadership roles in AP statistics different from table leading. Adding participants with these 

experiences brought the total number of participants to sixteen. Three teachers participated in a 

pilot study, and a total of thirty teachers returned signed informed consent forms stating a 
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willingness to participate in the study. Teachers who agreed to participate in the study and who 

were selected for participation were compensated monetarily for their participation. 

Seidman (2006) suggests two criteria for determining sample sizes for qualitative studies: 

sufficiently large yet not exceeding saturation. Using these criteria for this study, the sample size 

is sufficiently large to reflect the variety of experiences for teachers who experience the 

phenomenon of coming to understand variation yet sufficiently small so that the point of 

saturation is not exceeded. These 16 teachers, eight male and eight female, studied statistics both 

formally and informally and had a variety of experiences in learning and teaching statistics, a 

variety of educational and cultural experiences, and a variety of leadership experiences in AP 

Statistics.  

Data Collection to Address Research Question One 

To obtain information about teachers‘ conceptions of variation and to establish whether 

they have robust understandings of variation, I conducted a 90- to 120-minute semi-structured 

content interview with each of the 16 teachers. During the interview, teachers responded to a set 

of tasks that required them to reason about variation from data-centric, modeling, and design 

perspectives. Each task statement was purposefully vague to allow teachers to approach the task 

from multiple perspectives, allowing insights into aspects of variation most prominent for each 

teacher. Each task was designed to allow teachers to exhibit formal, abstract reasoning from 

individual perspectives and integrated reasoning across perspectives through the process 

associated with the design of tasks using the SOLO Model. As a collection, the tasks are 

extremely open-ended and not the kind of tasks that many teachers are likely to have encountered 

previously; however, the tasks are approachable with introductory-level statistics knowledge.  
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The SOLO Model in Relation to Data Collection 

The SOLO Model provides a tool for investigating teachers‘ understandings of variation 

through analysis of their responses to the interview tasks. The model aids in classifying different 

levels of responses—responses that provide insight into statistical understandings (Biggs & 

Collis, 1982). The interview tasks and the lines of questioning related to each task in this study 

were designed to elicit reasoning in the formal mode and to allow determination of levels of 

reasoning for both cycles of levels of the formal mode.  

Figure 4-1 shows an abbreviated description of the four elements (variational disposition, 

variability in data for contextual variables, variation and relationships among data and variables, 

and the effects of sample size on variability) from each perspective that emerged from analysis of 

the pilot interviews and that were subsequently used to establish levels of reasoning in the SOLO 

Model.5 Integrated reasoning involving the four elements from a particular perspective is 

indicative of relational reasoning within that perspective. In general terms, the four elements 

correspond with an expectation for and consideration of variation in statistical problem solving, 

consideration and exploration of variation related to specific contextual factors, consideration of 

variation to reveal relationships among data and variables, and consideration of the effects of 

sample size on data analysis. A description of the analysis that led to identifying these four 

elements appears in the section titled ―Data Analysis to Address Research Question One.‖ 

Discussion of how the interview tasks were designed to educe teachers‘ understanding of 

variation uses the shorthand notation for elements of perspectives shown in Figure 4-1 (e.g., DP1, 

DCP1, MP1, etc.). 

                                                      
5 Chapter 6 contains detailed descriptions of each element. 
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Figure 4-1: Elements and Indicators of Robust Understanding as Two Cycles of Levels in the 
SOLO Model.  
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The Consultant Task 

The first task presented to teachers was the Consultant Task6 shown in Figure 4-2. 

Although I describe the task by attending to the design perspective first, the order of questions 

used with any one teacher was determined by the direction taken by the teacher in response to the 

task statement. I anticipated that the task statement could elicit reasoning from any of the three 

perspectives. By providing no information about how administrators selected exams, teachers 

could respond that no conclusion is possible because the samples might be biased, which would 

lead into reasoning from the design perspective. Because the only summary measures included in 

the statement were the average scores for each sample, teachers could respond that they needed 

additional information about the data to form a conclusion, leading into reasoning from the data-

centric perspective. Finally, by presenting information about means and asking for a comparison 

between consultants, teachers could respond by suggesting that they would conduct a test of 

inference to form a conclusion, which would lead into reasoning from the modeling perspective. 

                                                      
6 The Consultant Task is an original task created by the researcher for the content interview. 

 

To improve students‘ test scores on state assessments, administrators from a large school 
district require students to take practice exams. Two outside consultants create and score the 
open-ended questions from these exams. Although both consultants use the same rubric to 
score student responses, the administrators suspect that the consultants do not interpret and 
apply the rubric in the same way, resulting in differences in scores between the exams scored 
by the two consultants. The consultants‘ contract with the district is up for renewal, and the 
administrators are trying to decide if they should renew the contract. They decide to use the 
most recent practice exam to compare the scores assigned from each consultant and to decide 
whether there is a difference in the way the exams were scored. The administrators select 50 
exams scored by the first consultant and 50 exams scored by the second consultant. They find 
that the average score for the 50 exams scored by the first consultant was 9.7 (out of a 
possible 15 points), while the average score for the 50 exams scored by the second consultant 
was 10.3 (out of a possible 15 points). What should the administrators conclude about the 
scores assigned by these two consultants? 

Figure 4-2: The Consultant Task.  
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Design Perspective  

Teachers tended to offer critiques of the data collection methods used by the 

administrators. In particular, when teachers noted missing information such as sampling 

technique, I asked them to describe why the information was important, how the information 

would enable them to answer the administrators‘ question, and what conclusions they could draw 

in the absence of that information. Asking why additional information was important provided 

opportunities for teachers to express recognition of the omnipresence of variability (DP1), to offer 

concerns related to the effects of potential sources of variation specific to the context (DP2), and 

to express a need to know how those potential sources of variation were controlled (DP3). By 

considering how the additional information would help and probing for justifications to support 

responses, teachers could reason about design elements in general terms that transcend multiple 

contexts and provide information of their reasoning in the formal mode. Lastly, through attention 

to what conclusions could be drawn strictly from the given information, further insight of 

teachers‘ variational dispositions could be obtained. 

After teachers commented on the design implemented by the administrators, I asked them 

to describe and defend the design they would have instituted to answer the administrators‘ 

question. Through this question, teachers were given an additional opportunity to reason about 

the DP1, DP2, and DP3 elements offered in their critiques as well as an opportunity to consider 

additional controlling strategies (DP3) and to describe the effects of sample size in their proposed 

designs (DP4). 
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Data-Centric Perspective  

When teachers addressed how they would analyze the administrators‘ data, they typically 

began by requesting information about the variation in scores to complement the given 

information about centers. I asked them to describe why they needed information about variation, 

which offered insights into their variational disposition (DCP1). I provided values for measures of 

variation and dotplots of the data separately and only after teachers requested the information. 

The summary values and dotplots are shown in Figure 4-3. From the summary measures, I asked 

teachers to describe the distributions they would expect to see associated with the given summary 

values to inform how they described variation and interpreted standard deviation (DCP2). When 

teachers examined the dotplots, they tended to notice a discrepancy between Consultant Two‘s 

summary measures and dotplot.7 I asked teachers to estimate values for the mean and standard 

deviation of the data displayed in the dotplot and to explain how they estimated the values to 

inform how they used data to reason about variation (DCP2). I also asked teachers to reason 

about what the administrators could conclude from the given information, which allowed them to 

reason about variation within each distribution (DCP2) and to compare variation between 

distributions using summary measures and graphical representations of the data (DCP3). 

                                                      
7 The discrepancy in Consultant Two‘s scores appeared from one misentered test score value, 150, in place 
of a score of 15. The summary measures for Consultant Two‘s scores were calculated using the value of 
150. The dotplot of Consultant Two‘s scores only displays scores on the interval from 0 to 15. 
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Teachers had additional opportunities to reason about variation from the data-centric 

perspective by addressing all four elements of the data-centric perspective in response to 

questions such as those asked of the original data for the corrected summary measures and dotplot 

for Consultant Two‘s scores, which are displayed in Figure 4-4. 

As a second part of the Consultant Task, I asked teachers to describe expected differences 

between size-15 samples and either size-30 or size-50 samples to ascertain their perceptions of 

the effects of sample size on variability (DCP4). I then gave teachers the scores of 15 exams 

Random 50

Row

Summary

Consultant

Consultant_2

Consultant

Consultant_1

Value
9.7

3.3760864

10.3

20.205324

10

14.4152

S1 = mean

S2 = stdDev
 

Figure 4-3: Summary Values and Dotplots for Sample Exam Scores.  

 

Random 50  

Row

Summary

Consultant

Consultant_2

Consultant

Consultant_1

Value
9.7

3.3760864

7.6

1.7261494

8.65

2.8687624

S1 = mean

S2 = stdDev
 

Figure 4-4: Corrected Summary Values and Dotplots for Sample Exam Scores.  
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randomly selected from those scored by each consultant and asked them again to determine 

whether there appeared to be a difference in the way the consultants scored the exams. The scores 

are displayed in Table 4-1. Because these sample data were presented in tabular form and 

available in lists on a TI-84 graphing calculator if teachers expressed a desire to use a calculator, 

teachers chose summary measures, graphical representations, or strategies to use in analyzing the 

data and reasoning about issues of representing, measuring, and describing variation (DCP2) for 

each consultant and to compare variation between the two consultants (DCP3). Through the 

variety of situations and questions present in the Consultant Task, teachers could represent, 

measure, describe, and reason about variation in multiple ways. 

Consultant 1 Consultant 2 

8 14 

4 13 

3 11 

7 13 

6 9 

4 12 

3 11 

10 7 

8 6 

3 8 

15 1 

5 12 

3 13 

5 10 

2 11 

Table 4-1: Exam Scores for Randomly Selected Exams Scored by the Two Consultants. 
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Modeling Perspective  

As part of their comparison of scores for the two consultants, many teachers discussed 

formal inferential comparisons of the two groups, which provided opportunities for reasoning 

about distributions to model the pattern of variability in the data (MP2) and to model sampling 

distributions for sample statistics from samples of a given size (MP3). I also asked teachers to 

respond to questions related to their expectations for additional samples of different sizes selected 

from the same population (MP4), which informed how they balanced the ideas of sample 

representativeness and sample variability (Rubin, Bruce, & Tenney, 1990). The way teachers 

expressed their conclusions provided insight into their variational disposition (MP1). Although 

teachers had the opportunity to reason from the modeling perspective in the Consultant Task, the 

Caliper Task was specifically designed to elicit reasoning about variation from the modeling 

perspective.  

The Caliper Task 

Figure 4-5 and Figure 4-6 show the graph and question initially presented for the Caliper 

Task.8 By failing to mention any kind of context for the data, I anticipated that teachers would 

initially reason from the design perspective or from the modeling perspective. Teachers who first 

attended to considerations for making a prediction exhibited reasoning from the modeling 

perspective, whereas teachers who expressed a need to know the context of the data to consider 

the nature of or expected pattern of variability for the data reasoned from the design perspective. 

                                                      
8 The Caliper Task is an original task created by the researcher for the content interview. 
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Design Perspective  

Teachers who expressed a need to know the context were asked to articulate the reasons 

behind their requests and to justify the legitimacy of their concerns related to context. Responses 

to these questions tended to provide information about a teacher‘s variational disposition (DP1) 

or how the teacher used context to consider the variability expected in data for each variable and 

in the relationship between variables (DP2). The small sample size offered additional 

opportunities for teachers to reason about the effects of sample size on data variability, as did a 

larger sample presented later in the Caliper Task (DP4). I gave teachers information about the 

context after they reasoned about the data absent context: The data in the scatterplot are 

measurement data for an object manufactured to have a specified length measured in centimeters 

as the explanatory variable. The corresponding response value is a student‘s Vernier caliper 

 

Figure 4-5: Initial Graph for the Caliper Task.  

 

Imagine that one of your students asked you to look at this graph of data their lab partners collected 

during a science lab. The student‘s partners did not give the names of the variables represented by x 

and y. The student asks you how they might use this graph to predict a value for y, given a value of 4 

for x. What would you say to the student? 

Figure 4-6: Initial Question for the Caliper Task.  
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measurement of the same object to the nearest thousandth of an inch. I asked teachers to describe 

reasons behind why the data did not exactly match the pattern of the known theoretical 

relationship between inches and centimeters, which provided additional opportunities for teachers 

to reason about sources of variability in the given context (DP2) and to offer suggestions for how 

design strategies could have controlled the variability from those sources (DP3).  

Data-Centric Perspective  

When teachers speculated about various models the student could use to make a 

prediction from the given data, I encouraged them to describe the conditions under which each 

response would be appropriate and to describe how the student could decide which model was the 

best to use to make a prediction. Their responses suggested how teachers focus on the aggregate 

of the data to reason about the pattern of the variability in the data (DCP2) and how they use the 

correlation, the coefficient of determination, or a residual plot to evaluate each model (DCP2) and 

select the best model (DCP3).  

Modeling Perspective 

 In order to make a prediction for y in response to the student‘s question, many teachers 

offered a function they would use to model the data. In addition to asking how they formulated 

the model, I asked teachers to defend their choice of model, to describe the goodness of their 

models‘ fit, and to articulate their prediction along with why their prediction made sense. 

Articulating their predictions allowed me to observe teachers‘ reasoning about reasonable 

variability (MP1). Defending their choice of model and describing goodness of fit informed how 

teachers identified patterns of variability in the data and model use to explain variability in data 
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(MP2) as well as how they reasoned about random variability by examining deviations from the 

model (MP3). If teachers suggested models that were not linear, I asked them how they could fit a 

line to the data to inform their considerations about transforming data to improve fit and explain 

more variability (MP3).  

 After I told teachers the context, I asked them to reconsider their responses and their 

reasons for any changes in their responses in light of the context. In particular, I asked probing 

questions to elicit reasoning about how context affected model selection (MP2) and reasoning 

relating to the amount of variability allowed in predictions (MP1). To establish how teachers 

reasoned about the effects of sample size on bivariate data (MP4), I asked questions similar to 

those for the original scatterplot in response to the scatterplot shown in Figure 4-7. 

In addition to describing and justifying a model to best fit the bivariate data, I asked 

teachers to describe a reasonable model to fit the univariate distributions formed at the seven 

discrete centimeter measurements to gather further information about the extent to which context 

influences pattern expectation (MP2). I also asked teachers to consider the pattern of variability in 

univariate distributions under conditions that would produce different lines of best fit, which 

informed the meaning they associated with ―good‖ fit (MP3). 

 

 

Figure 4-7: Scatterplot Resulting From a Larger Data Set.  
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If the content interview took no more than seventy-five minutes at this point, I asked 

teachers to describe different measures of variation displayed in the linear regression output 

shown in Figure 4-8. In particular, I asked teachers to reason about the coefficient of 

determination in light of the apparent deviation of data from the line. I also asked teachers to 

reason about s, the standard deviation of the residuals. Asking these questions provided 

information about how teachers reasoned about summary measures for bivariate data. I provided 

a residual plot if teachers indicated they needed one in order to reason about goodness of fit.  

The Handwriting Task 

The Caliper Task was designed for teachers to reason from the modeling perspective, and 

the Handwriting Task was designed to elicit reasoning from the design perspective. There are two 

parts to the Handwriting Task,9 as shown in Figure 4-9 and Figure 4-10. The first part relating to 

                                                      
9 The first part of the Handwriting Task stemmed from an idea posted on the AP Statistics electronic 
discussion group by Joshua Zucker on October 13, 2006 . The second part of the task stemmed from an 
idea posted by Floyd Bullard on October 11, 2006. Both ideas originated from an article published in the 
Washington Post on October 11, 2006 (Pressler, 2006). 

 

 

Figure 4-8: Regression Output for the Data Displayed in Figure 4-7.  
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the quote shown in Figure 4-9 typically was not discussed if less than ten minutes remained in the 

interview. Figure 4-9 presents a quote from a newspaper article in which the author describes 

parts of an experimental study but fails to describe key features of the study. I asked teachers to 

describe the apparent or missing features they would expect their students to notice and to 

describe any features they noticed that they would not necessarily expect their students to notice. 

For each feature, I asked teachers to describe the importance of the feature and the benefit or 

detriment of the features to gain insight into the types of variables teachers would attribute to the 

setting (DP2) and the aspects of control they would stress for the given setting (DP3), including 

aspects of randomization and sample size (DP4).  

In the quote displayed in Figure 4-10, the author conjectures that a relationship exists 

between handwriting quality and composition scores assigned by adults. I asked teachers to 

describe how they would design a study to test the stated conjecture. As teachers created their 

designs, I asked them to explain the decisions they made and their reasons for making those 

decisions. The questions targeted issues of replication, randomization, and control in relation to 

variation to gather information about teachers‘ reasoning about their expectation of variation 

(DP1), consideration of variation sources (DP2), attempts to control variability (DP3), and 

reasoning about sample size (DP4). If teachers did not mention sample size or blocking, I asked 

 

―In one of the studies, Vanderbilt University professor Steve Graham, who studies the acquisition of 
writing, experimented with a group of first-graders in Prince George's County who could write only 

10 to 12 letters per minute. The kids were given 15 minutes of handwriting instruction three times a 

week. After nine weeks, they had doubled their writing speed and their expressed thoughts were 

more complex. He also found corresponding increases in their sentence construction skills‖ (Pressler, 
2006). 

Figure 4-9: Excerpt to Critique Design.  

 

―When adults are given the same composition written in good handwriting and poor handwriting, 
‗they still give lower grades for ideation and quality of writing if the text is less legible,‘ he said‖ 
(Pressler, 2006). 

Figure 4-10: Excerpt to Create Design.  
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them to consider each as part of their design to provide further information about their 

consideration of control in study design (DP3) and control related to sample size (DP4).  

As the preceding descriptions of the tasks and the lines of questioning related to each task 

suggest, aspects of reasoning from the design, data-centric, and modeling perspectives were 

touched upon in several of the tasks, thereby providing opportunities for teachers to integrate 

reasoning about variation from the three perspectives throughout the entire problem-solving 

session and to reason about variation in different contexts.  

Data Analysis to Address Research Question One 

The content interviews were the primary sources of data for determining teachers‘ 

conceptions of variation and for determining those teachers whose reasoning was indicative of 

robust understandings of variation. To analyze the interview data, I used annotated transcripts of 

interviews with each teacher and examined teachers‘ statistics course syllabi10 and content-

focused excerpts from their context interviews. The analysis consisted of multiple stages, with 

each successive stage building on the previous one.  

Pre-Pilot and Pilot Study Analysis 

Prior to data collection for the 16 teachers in the study, I conducted a pre-pilot study with 

three teachers, followed by a pilot study with three teachers. I piloted the content interview 

schedule and tasks with AP Statistics teachers who were not considered for inclusion in the study. 

Some are friends who I have known for a number of years, and although it seemed inappropriate 

to include them in the participant pool for the main study, I hypothesized that including them in 

                                                      
10 Fifteen of the 16 teachers in this studied provided either paper or electronic copies of their AP Statistics 
syllabi. 
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the pilot studies could inform the design of tasks without compromising the participant pool. 

Other pilot study teachers were AP Statistics teachers who are not currently leaders in the AP 

Statistics program (using ―leader‖ as it is defined in the ―Selection Process‖ section).  

The main purpose of the pre-pilot and pilot studies was to determine whether the content 

interview tasks and prompts could elicit evidence of teachers‘ reasoning about variation from the 

design, data-centric, and modeling perspectives and elicit evidence of relational-level reasoning 

in the formal mode. Using insights about what it means to understand variation extrapolated from 

existing expository and research literature that mainly draws from my synthesis of the writings of 

Franklin and colleagues (2007); Garfield and Ben-Zvi (2005); Garfield, delMas, and Chance 

(2007); Moore (1990); Reading and Shaughnessy (2004); Reading and Reid (2006); and Wild and 

Pfannkuch (1999), I created a list of indicators for each perspective that suggested reasoning 

indicative of someone who understands variation. Table 4-2 contains the original list of 

indicators.  
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Pre-pilot and pilot content interviews were videorecorded, transcribed, and annotated 

prior to analysis. Analysis consisted of matching passages of individuals‘ reasoning about 

variation to the indicators in Table 4-2 to determine whether the tasks evoked reasoning aligned 

Table 4-2: Initial List of Indicators of Robust Understanding. 

Perspective Indicators 

Design D1:  Anticipation of the omnipresence of variability and acknowledgement of natural 
variability, particularly when designing a study and making conclusions from the 
study 

D2: Anticipation of possible sources of variability (such as measurement variability) in the 
context of the study and description of the differences in the magnitude of the effects 
various sources may have on the variability in measured characteristics 

D3: Anticipation of the effects of sample size on both the variability of the sample and on 
the statistics characteristic of the sample (statistics used to make inferences about 
parameters) for designing a study or in consideration of a study design 

D4: Acknowledgement of controllable and uncontrollable variability, such as explicating 
the benefit of using random assignment or random selection of 
observational/experimental units in the context of a particular study, and the need for 
control to be able to isolate systemic variation from random variation 

Data-
Centric 

DC1:Creation, use, or interpretation of various representations of data to highlight patterns 
in the variability of the data and to focus on the aggregate features of the data 

DC2:Calculation of summary statistics values or acknowledgement of the utility in having 
summary measures for measuring the variability in the data or the use of and 
interpretation of appropriate summary statistics (including measures of variation such 
as range, interquartile range, and standard deviation for univariate sets of data or 
correlation and the proportion of variability for bivariate sets of data) to describe 
holistic features of the distribution 

DC3:Estimation of measures of variability for a set of data based upon characteristics of the 
data distribution, including shape, center, and the presence of outliers for univariate 
sets of data, or correlation and the proportion of variability for bivariate sets of data 

DC4:Use of summary statistics measures, including measures of variation, to make group 
comparisons and to examine the variability within and among groups 

Modeling M1:  Use of a normal distribution to model patterns of variation for symmetric, bell-shaped 
data distributions (along with the corresponding use of other probability distributions 
for nonnormal distributions) and use of the characteristics of a normal distribution 
(based on center and spread and the effects of sample size on spread) to examine 
characteristics of the data, including invocation of the empirical rule to estimate 
variability by using knowledge that approximately 68% of the data lies within one 
standard deviation of the mean, approximately 95% of the data lies within two 
standard deviations of the mean, and approximately 99.7% of the data lies within 
three standard deviations of the mean 

M2: Use of appropriate models or transformations to account for the variability in data and 
to isolate the signal from the noise (i.e., variation in the data from the signal or 
expected pattern of data) for univariate or bivariate sets of data 

M3: Use of deviations from the model fit to variable data that deviates from the expected 
pattern to describe the goodness of fit of the model 

M4: Use of models to make predictions or statistical inferences from the data while 
allowing for variability with predictions or when interpreting results  
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with indicators and to determine if additional indicators needed to be added to the table. One of 

the changes to the interview schedule occurred subsequent to analysis of Consultant Task data 

with respect to the indicator listed as DC1 in Table 4-2. The indicator, ―creation, use, or 

interpretation of various representations of data to highlight patterns in the variability of the data 

and to focus on the aggregate features of the data,‖ suggests that teachers might create or use 

multiple data representations to analyze data. However, the original task gave teachers dotplots 

for both size-50 samples and size-15 samples, with most teachers reacting by reasoning strictly 

from the dotplots. Figure 4-11 displays the dotplots used in the pilot studies for the size-15 

samples. To provide a higher probability for evoking reasoning about multiple representations, 

the data were presented in tabular form for the main study (see Table 4-1), with the result that 

some teachers created and interpreted dotplots, boxplots, and summary measures of the data. 

Analysis of pre-pilot and pilot data also led to the development of a framework consisting 

of a set of lists of observable indicators for perspectives crossed with four considerations or 

aspects of variability that transcend perspectives, hereafter referred to as elements. (See Table 4-

 

 

Figure 4-11: Original Presentation of Size-15 Samples in the Consultant Task.  
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3, which appears at the end of this section.) To exemplify both how indicators, elements, and 

understandings are related and how the framework for robust understanding of variation 

developed from its roots in extant literature and empirical data, I summarize the development of 

several indicators related to one element. Similar evolution led to the final collection of elements 

and indicators, which I discuss in detail in Chapter 6.  

The element of a variational disposition originated from statistics education literature 

that focuses on the role of variation in statistics and in statistical problem solving (e.g., Cobb & 

Moore, 1997; Franklin et al., 2007). In particular, much discussion attends to the ―omnipresence 

of variability‖ and the importance of recognizing it. Statisticians opine that the discipline of 

statistics arises from a need to deal with the ―omnipresence of variability‖ (e.g., Cobb & Moore, 

1997; Moore, 1990; Snee, 1990; Wild & Pfannkuch, 1999). Most expository literature and 

curricular recommendations related to the learning and teaching of statistics identify recognition 

of the omnipresence of variability as foundational for students‘ development of increasingly 

sophisticated understandings in statistics (e.g., Franklin et al., 2007; Garfield & Ben-Zvi, 2005; 

Garfield & Ben-Zvi, 2008). The authors of the GAISE report articulate additional needs related to 

recognizing the omnipresence of variability in relation to study design—needs for anticipating 

variability when formulating statistical questions and for acknowledging variability when 

considering methods of data collection (Franklin et al., 2007). This body of literature led to the 

identification of an indicator for anticipating and acknowledging variation in study design.  

Although anticipation and acknowledgement of variation were originally associated only 

with reasoning from the design perspective, analysis of pre-pilot and pilot data revealed related 

observable indicators in reasoning that included anticipation and acknowledgement of variation 

from data-centric and modeling perspectives. Teachers who participated in the pre-pilot and pilot 

studies displayed variational dispositions—states of mind in which variation is expected. 

Evidence of a variational disposition arose when one of the pilot-study teachers discussed the 
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standard deviation value of 20 for Consultant Two‘s scores in the Consultant Task. The teacher 

considered both context and distributional characteristics of data to question the legitimacy of the 

value. She argued that scores ranging in value from 0 to 15 could not produce the given standard 

deviation value. Using the dotplot of Consultant Two‘s scores, she approximated the correct 

value to be between one and two. She conveyed a tolerance and expectation for variation but 

concluded that 20 was an unreasonable value for the standard deviation. She acknowledged the 

existence of variability and identified problematic characteristics of variability attributed to data 

in her reasoning about variation from the data-centric perspective. Her reasoning contributed to 

the identification of indicators for a variational disposition from the data-centric perspective. In 

particular, her reasoning contributed to the development of an indicator for anticipating 

reasonable variability in data by considering the context of data and an indicator for anticipating 

reasonable variability in data by recognizing unreasonable variability in data. A third indicator 

related to anticipating reasonable variability, recognizing that data descriptions should include 

descriptions or measures of variability (and center), originated from Garfield and Ben-Zvi‘s 

(2005) framework for teaching and assessing reasoning about variability. This indicator was 

grouped with the others through its connection to anticipating variability with respect to data. 

A second teacher expressed anticipation of variability and allowance for variability in 

response to the Consultant Task as he reasoned about whether there was a difference in scoring 

based on the values of the means. He anticipated that consultants‘ scores are likely to differ, but 

he noted that means of 9.7 and 10.3 may not indicate a true difference in scoring. He articulated a 

need for information about the spread of scores to determine whether the difference was 

significant. In his reasoning, he showed evidence of anticipating and expecting variation while 

reasoning about variation from the modeling perspective as he talked about a t-distribution from 

which to make inferences. His reasoning contributed to the identification of an indicator of a 

variational disposition from the modeling perspective: anticipating and allowing for reasonable 
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variability in data when using models for making inferences from data. A second indicator, 

anticipating and allowing for reasonable variability in data when using models for making 

predictions from data, stemmed from discussion in the GAISE report about allowing for 

variability in looking beyond data (Franklin et al., 2007). 

The reasoning of these two teachers illustrates a variational disposition from different 

perspectives. Through analysis of teachers‘ responses and considerations of statistics education 

literature, a total of four considerations of or aspects of variability that transcend perspectives, 

hereafter referred to as elements, emerged from the data, along with detailed characteristics of 

indicators for each element. The four elements that elicit reasoning about considerations or 

aspects of variation across perspectives are: variational disposition, variability in data for 

contextual variables, variability and relationships among data and variables, and the effects of 

sample size on variability. I discuss these elements in detail in Chapter 6.  

In-Depth Analysis of Data in Response to Research Question One 

Analysis of the data for the main study began with a preliminary stage in which I 

examined each content interview and syllabus for each teacher before I conducted his or her first 

context interview and again before the second context interview to determine if content-focused 

questions needed to be asked in an attempt to assure a high probability for obtaining evidence of 

teachers‘ reasoning about variation for each element across each perspective. The content 

interview tasks were created through the alternative process of SOLO, and elements of reasoning 

that tasks were designed to elicit were used in the analysis of interview data because, ―the SOLO 

taxonomy not only suggests an item writing methodology, but the same taxonomy can be used to 

score the items‖ (Hattie & Purdie, 2003, p. 17). In this preliminary stage, I listened to the audio 

recording of the teacher‘s content interview and noted evidence of reasoning that corresponded 
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with particular elements for each of the three perspectives. If evidence was lacking for any 

element-perspective pair, I incorporated questions intended to elicit reasoning about the missing 

element in the context interviews. As an example, consider Haley‘s Content interview and 

Context I interview. Haley‘s work with the Consultant Task did not naturally lead to her 

reasoning about the effect of an outlier on the variation of a distribution. During her Context I 

interview, I made sure to ask about her learning experiences related to the effects of an outlier. In 

particular, I asked about her experience in learning ―how the outlier affects the standard 

deviation‖ (Haley, Context I, Lines 627-628). By asking context questions focused on particular 

content, I was able to gain insights into how each teacher thought about that content. In Haley‘s 

case, I was able to learn more about her reasoning about variation from the data-centric 

perspective for the element of variability in data for contextual variables. 

For my first pass through the data after I completed data collection, I created a matrix for 

each teacher with columns labeled by perspective and rows labeled by element. Any time the 

teacher exhibited reasoning that included evidence of an element or reasoning related to an 

element from one or more perspectives, I copied and pasted the passage from the annotated 

interview transcript to the appropriate cell(s) of the matrix and spaced interview passages in 

temporal sequence across perspectives for each element. I also wrote a summary of the indicators 

evidenced by each passage and made note of whether the teachers‘ reasoning was prompted by 

my questions. Figure 4-12(a) displays a portion of Everett‘s matrix for the variational disposition 

element and begins with an entry for reasoning with a variational disposition from the data-

centric perspective, which is shown in Figure 4-12(b). The next occurrence of Everett‘s reasoning 

with a variational disposition included aspects of reasoning from the design perspective and from 

the data-centric perspective, whereas the next passage offered reasoning from the modeling 

perspective. The intent behind creating matrices for each teacher was to provide a coherent 

picture of the teachers‘ reasoning from which to obtain an image of dominant elements or 
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perspectives in reasoning as well as a sense of teachers‘ integrated reasoning across perspectives. 

Annotated interview transcripts and matrices for some teachers were discussed with another 

mathematics education researcher until agreement was reached on the placement of evidential 

passages. 

After I created matrices with evidence related to each teacher‘s reasoning about variation, 

I compared and contrasted passages illustrative of teachers‘ reasoning for each of the four 

elements and from each of the three perspectives to then look for commonalities or differences in 

reasoning among elements and perspectives and patterns in reasoning. For each teacher, I made 

conjectures about their conceptions of variation, identified evidence of understandings of 

variation, and recorded summaries. Figure 4-13 shows a portion of a summary written to describe 

Everett‘s reasoning about variation from the data-centric perspective and illustrates Everett‘s 

tendency to focus on finding signals, such as the average score assigned by consultants in the 

Consultant Task, within the noise of data. 

 

 

Figure 4-12(a) and 4-12(b): Example of the Matrix Layout (a) and Matrix Entry (b).  
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As I analyzed teachers‘ data, I mildly revised descriptions of the indicators based upon 

characteristics of teachers‘ responses that were not accounted for in the initial descriptions. For 

example, the final MP2 indicator of ―considering or creating distribution-free models to explore 

contextual variables‖ was modified from ―considering models to explore contextual variables‖ 

because of teachers‘ suggestions to use randomization tests to determine whether consultants 

scored exams differently in their responses to the Consultant Task.11 I reread participants‘ 

responses and updated participants‘ summaries based upon the revised level descriptions using 

the constant comparative method articulated by Glaser and Strauss (1967), and I considered the 

need for further refinement of the list of indicators. Although indicators required revision, the 

main elements of the matrix remained constant throughout data analysis. The table of elements 

and indicators for each perspective allowed responses to the interview tasks to be compared 

against indicators to determine levels of understanding of variation using SOLO from teachers‘ 

reasoning about variation. The complete list of indicators for each element that emerged from the 

data is shown in Table 4-3.  

During the course of revisiting characteristics of reasoning, different patterns of 

reasoning associated with different conceptions of variation began to emerge from the data. As I 

made continued comparisons through multiple additional passes through matrices and summaries 

of teachers‘ reasoning, distinguishing features of different conceptions were delineated. Analysis 
                                                      

11 For example, Everett described a randomization test as taking combinations of the original 100 
consultants‘ scores to form two new size-50 samples for each consultant.  He therefore randomly selects 50 
tests from the combined 100 tests, and considers characteristics of the newly formed samples in comparison 
with the observed difference in means of 0.6 for the size-50 samples. 

After Everett is satisfied that appropriate methodology generated data representative of a larger population 
or populations via randomization, he explores data to identify any potential signals that can be observed 
through the noise of the data before attempting to establish the significance (or not) of the signals. In 
general, there are two types of signals to which Everett attends–signals in the form of statistics representing 
one or more populations and signals about the relationships that exist among two or more variables. Everett 
reasons from the data-centric perspective when he calculates, represents, or interprets characteristics of 
data or makes informal inferences from a sample or samples.  

Figure 4-13: Sample Summary Statements of Everett‘s Data-Centric Reasoning.  
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continued until there no longer existed any conflicts for describing teachers‘ conceptions of 

variation. Details about the conceptions appear in Chapter 5. 
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 Design Perspective Data-Centric Perspective Modeling Perspective 

Variational 

disposition 

DP1:  
Acknowledging the existence of 
variability and the need for study design 
in  

 controlling the effects of variation from 
extraneous variable(s); 

 including considerations of variation for 
variable(s) of interest during data 
analysis; or 

 using sample statistics to infer 
population parameters for the 
variable(s) of interest  

DCP1:  
Anticipating reasonable variability in data 
by  

 considering the context of data; 

 recognizing that data descriptions 
should include descriptions or measures 
of variability (and center); or 

 recognizing unreasonable variability in 
data (e.g., that which could result from a 
data entry error)  

MP1:  
Anticipating and allowing for reasonable 
variability in data when using models for 

 making predictions from data or  

 making inferences from data  

Variability in 

data for 

contextual 

variables  

DP2:  
Using context to consider sources and 
types of variability to inform study design 
or to critique study design by 

 considering the nature of variability in 
data (e.g., measurement variability, 
natural variability, induced variability, 
and sampling variability) or  

 anticipating and identifying potential 
sources of variability  

 

DCP2:  
Describing and measuring variability in 
data for contextual variables as part of 
exploratory data analysis by 

 creating, using, interpreting, or fluently 
moving among various data 
representations to highlight patterns in 
variability; 

 focusing on aggregate or holistic 
features of data to describe variability in 
data; or 

 calculating, using, or interpreting 
appropriate summary measures for 
variability in data (e.g., measures of 
variation such as range, interquartile 
range, standard deviation for univariate 
data sets; correlation and coefficient of 
determination for bivariate data sets)  

MP2:  
Identifying the pattern of variability in 
data or the expected pattern of variability 
for contextual variables by 

 modeling data to explain variability in 
data or 

 considering contextual variables in the 
formulation of appropriate data models 

or in 

 modeling data to describe holistic 
features of data or 

 considering or creating distribution-free 
models to explore contextual variables 

  

Table 4-3: Indicators of Robust Understanding of Variation. 
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Variability and 

relationships 

among data 

and variables 

DP3:  
Controlling variability when designing 
studies or critiquing the extent to which 
variability was controlled in studies by 

 using random assignment or random 
selection of experimental/observational 
units to (in theory) equally distribute the 
effects of uncontrollable or unidentified 
sources of variability or  

 using study design to control the effects 
of extraneous variables (e.g., by 
incorporating blocking in experimental 
design or stratifying in sampling 
designs) to isolate the characteristics of 
the variable(s) of interest or to isolate 
systematic variation from random 
variation  

DCP3:  
Exploring controlled and random 
variability to infer relationships among 
data and variables by  

 using and interpreting patterns of 
variability in various representations of 
data;  

 focusing on aggregate or holistic 
features of variability in data to make 
comparisons; 

 using or interpreting appropriate 
summary measures of the variability in 
data to make comparisons (e.g., 
transformed versus untransformed data); 
or 

 examining the variability within and 
among groups 

MP3:  
Modeling controlled or random 
variability in data, transformed data, or 
sample statistics for 

 making inferences from data (e.g., 
isolating the signal from the noise for 
univariate or bivariate sets of data or 
formally testing for homogeneity in 
variances) or 

 assessing the goodness of a model‘s fit 
by examining deviations from the model  

Effects of 

sample size on 

variability 

DP4:  
Anticipating the effects of sample size on 
the variability of 

 a sample or 

 statistics used to characterize a sample 
(e.g., mean, proportion, median) 

when designing a study or critiquing a 
study design 

DCP4:  
Examining the effects of sample size on 
the variability of 

 a sample or  

 statistics used to characterize a sample 
(e.g., mean, proportion, median) 

through the creation, use, or interpretation 
of data-based graphical or numerical 
representations  

MP4:  
Anticipating the effects of sample size on 
the variability of a sampling distribution 
to 

 model the sampling distribution or 

 consider the practical and statistical 
significance of inferences 
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Data Collection to Address Research Question Two 

To investigate the second research question, I incorporated data gathering methods that 

allowed me to examine teachers‘ perceptions and recollections of variation-related activities and 

actions. The best way to determine an individual‘s perceptions of experiences to then extrapolate 

the nature of the experiences is to engage in dialogue with the person to obtain his or her first-

person accounts of the experiences (Moustakas, 1994).  

Self-Report Methods 

Phenomenological studies often include the use of semi-structured, in-depth interviews to 

elicit individuals‘ feelings about and experiences with the phenomenon under study (Seidman, 

2006). Because participants in these studies have already experienced the phenomenon, 

participants are able to provide a retrospective recall of their experiences and feelings through self 

report. Because of the reliance on participants‘ memories and the accuracy of those memories, the 

collection and analysis of retrospective data brings issues of reliability and validity into question 

(Martyn & Belli, 2002). However, to study a phenomenon as it is happening presumes that one 

can create conditions under which the phenomenon will occur and that subjects for whom these 

conditions would bring about the intended phenomenal experience can be selected. Even if the 

experience could be provoked, research techniques for collecting and analyzing data for such a 

phenomena would be extremely time consuming and costly (Freedman, Thornton, Camburn, 

Alwin, & Young-DeMarco, 1988). Additionally, since it is not possible to observe an individual‘s 

feelings about experiences, self-report interviews would still need to be conducted retrospectively 

to obtain affective information about the experiences (Cuddapah, 2005; Loftus, 2000). Given the 
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paucity of research that has been conducted to study advanced knowers‘ development of 

understandings of variation, I chose to use self-report methods to study the nature of experiences 

that provoked teachers‘ constructions of robust understandings of variation by examining the 

experiences of individuals who already have robust understandings. Concerns about the 

conclusions that can be drawn from this type of study will be addressed in the next three sections. 

Recall Effects  

Research work using self-report data has uncovered several characteristics that may 

inhibit individuals‘ abilities to recall or report events accurately. As noted by Ross (1989) in his 

review of the self-report literature, the tendency of an individual to present a favorable image to 

an interviewer brings into question the accuracy of descriptions. However, there are people who 

would argue that an individual‘s motivation to misreport experiences should be considered before 

discounting the accuracy of self-report data (e.g., Baldwin, 2000; Loftus, 2000). For example, it is 

posited that little motivation for misreporting exists when individuals participate in interviews 

where anonymity is preserved through the use of pseudonyms (Baldwin, 2000). Specific to this 

study, teachers were informed that pseudonyms would be used in reports from this study. 

Additionally, the sixteen teachers in this study seemed to be motivated to collaborate with me to 

provide information about how teacher education in statistics might be improved.  

Research reports and syntheses of research literature suggest other characteristics that 

may affect the accuracy of reported events. These characteristics include the recency of events to 

be recalled (Eisenhower, Mathiowetz, & Morganstein, 1991; Tourangeau, 2000; Van der Vaart, 

Van der Zouwen, & Dijkstra, 1995), the saliency of the effects of events from the perspective of 

the individual (Brewer, 1994; Eisenhower, Mathiowetz, & Morganstein, 1991; Van der Vaart, 

Van der Zouwen, & Dijkstra, 1995), the number of times events have occurred (Brewer, 1994; 
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Van der Vaart, Van der Zouwen, & Dijkstra, 1995), differences in experiences among all event 

occurrences (Eisenhower, Mathiowetz, & Morganstein, 1991; Tourangeau, 2000; Van der Vaart, 

Van der Zouwen, & Dijkstra, 1995), and the affective state of the individual when the events 

occur (Brewer, 1994; Eisenhower, Mathiowetz, & Morganstein, 1991; Tourangeau, 2000). 

Strategies that can reduce the impact of these characteristics include the use of event history 

calendars and critical incidents. 

Event History Calendars  

As noted by Tourangeau (2000) in his review of the research literature on the self report 

of autobiographical data, ―no single variable seems to have such a profound impact on the 

accessibility of a memory than its age‖ (p. 36). Individuals are less likely to recall events, 

particularly dated events, when retrieval cues are not incorporated in study design (Tourangeau, 

2000). Research suggests that event history calendars (EHCs), sometimes called life history 

calendars, provide a means for individuals to accurately and completely reconstruct past events 

and experiences through the use of cues for significant past events (Martyn & Belli, 2002). The 

format of the EHC is a matrix, with columns containing timing cues for recording behaviors and 

rows containing behaviors—significant activities or events related to the goals of the research—

that can help individuals to frame the occurrence of important events (Freedman, Thornton, 

Camburn, Alwin, & Young-DeMarco, 1988). Event history calendars have been shown to provide 

significant agreement about the timing of events when compared with survey results acquired one 

year, five years, and eighteen years earlier (Freedman, Thornton, Camburn, Alwin, & Young-

DeMarco, 1988; Martyn & Belli, 2002). Research suggests that an orderly review of events 

enables greater recall by participants than when participants are asked to recall events in a 

haphazard fashion (Eisenhower, Mathiowetz, & Morganstein, 1991). Additionally, landmark 



111 

 

events can be included in the calendar to aid participants in recalling events that occur in close 

temporal proximity to landmark events (Eisenhower, Mathiowetz, & Morganstein, 1991; 

Tourangeau, 2000). Event history calendars can help to avoid recall concerns related to the 

recency of an event and the number of times the event occurred.  

In the context of learning statistics, the calendar included landmark events of the initial 

release year for commonly used statistics education resources, including textbooks and 

technology items, as these events were perceived to be events that might enhance teachers‘ recall 

ability (Means, Swan, Jobe, & Esposito, 1991). Additional events listed on the calendar included 

the landmark events of the first year of the AP Statistics examination, the location of the AP 

Reading for each year, and the context for the most talked about and notable free response 

questions for examinations in each year, as determined from archived discussions on an electronic 

discussion group monitored by many statistics teachers (Collegeboard.com Inc., 2007b). A partial 

sample of an EHC is shown in Appendix B; teachers were asked to complete a similar calendar in 

electronic form to provide the details of their personal histories and to expedite the process of 

returning the completed calendars to me. (I provided teachers with a password-protected, 

electronic template of the calendar that could be returned to me via e-mail.) The events displayed 

in the sample are events from my life that align with my personal transformative learning 

experience. In completing this portion of the EHC, the year of the first AP Statistics Reading 

served as my reference point for much of the professional development training I attended prior 

to that Reading as well as the professional development workshops I conducted subsequent to that 

Reading.  

I asked teachers to record their personal information on the calendar, including the times 

in which they were taking statistics classes and the time(s) when they had obtained employment 

in education. A sample of the template that teachers used can be found in Appendix C. While the 

EHC shown in Appendix C contains no active links, teachers were able to use links to navigate 
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through the document when completing their EHCs. I also asked teachers to record events and 

experiences related to their statistics education—events that are either already listed on the 

calendar or events that needed to be added in the ―other‖ category. The calendar has events 

related to AP Statistics already listed on the calendar, so teachers only needed to record the 

timing of these experiences. The precise timing of key events in teachers‘ experiences is less 

important than teachers‘ ability to recall information about each experience. For each experience, 

I asked teachers to record details of the event and people, places, and feelings associated with the 

experience in prose form (Cuddapah, 2005). I also provided the sample event history shown in 

Appendix B to serve as a resource to aid teachers in completing their individual event histories. 

Teachers were encouraged to contact me if any questions arose during completion of the EHCs. 

Of all of the events recorded by teachers, some were more salient than others. Teachers 

elaborated further on their salient events, or critical incidents, to enhance their recall of those 

events and to explore affective dimensions of their experiences. 

Critical Incidents  

Research suggests that individuals tend to remember well unique events that evoke 

emotion at the time of occurrence or events that mark a transition point in their lives (Eisenhower, 

Mathiowetz, & Morganstein, 1991). Critical incidents are defined to be these unique events that 

are significant in the lives of individuals (Brookfield, 1990). There exists a long history for the 

use of critical incidents in research (Butterfield, Borgen, Amundson, & Maglio, 2005; Flanagan, 

1954), with recent usage in retrospective self-report accounts of incidents that include aspects of 

the thoughts, feelings, and reasons behind each individual‘s actions taken in response to the 

incidents (Butterfield, Borgen, Amundson, & Maglio, 2005). Critical incidents provide 

participants with an opportunity ―to highlight particular, concrete, and contextually specific 
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aspects of people‘s experiences‖ (Brookfield, 1990, p. 180) because participants choose which 

incidents to discuss. Recent research uses critical incidents as a window for inferring people‘s 

assumptions and beliefs (Butterfield, Borgen, Amundson, & Maglio, 2005), under the rationale 

that participants‘ assumptions are likely to be implicit within their descriptions of the incidents 

(Brookfield, 1990). While individuals may struggle to articulate the underlying assumptions and 

beliefs that guide their actions, critical incidents provide a means for researchers to infer 

participants‘ assumptions and beliefs from the experiences and actions of the incidents recorded 

by participants (Brookfield, 1990).  

In his use of critical incidents with adult learners, Brookfield (1990) gave instructions for 

the types of experiences to describe, and he encouraged individuals to write brief descriptions of 

the critical events in their lives, detailing the time, place, and other people involved. He also 

asked individuals to write explanations for their selection of critical events. To provide an even 

fuller picture of a person‘s assumptions, researchers (e.g., Cuddapah, 2005) have asked 

participants to focus on one successful, or positive, critical incident and one failure, or negative, 

critical incident. Some researchers suggest that participants should also include the actions they 

took in response to the critical incident, the thoughts and feelings they had about the event, and 

their actions in response to the event (Kennedy & Wyrick, 1995). In their study that incorporated 

the use of critical incidents with teachers, Kelchtermans and Vandenberghe (1994) found that 

―teachers will mention these moments as important for their professional development‖ and that 

―as a result of some critical incidents the teacher has to change a habitual approach to cope with 

new challenges‖ (p. 48), suggesting that critical incidents may be triggers for significant, 

transformational learning experiences for teachers. Kelchtermans and Vandenberghe 

acknowledge that while certain events may be critical incidents for some teachers, resulting in a 

change in professional behavior, the same events may not be critical events for others. Because 

teachers may experience professional growth as a slow and gradual process, they may struggle to 
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find a single, salient event related to a particular aspect of their professions. In such cases, 

however, the teachers can still identify and describe in great detail experiences that influenced 

their professional development (Kelchtermans & Vandenberghe, 1994).  

I asked teachers to recount two critical incidents related to their study of variation or 

statistics—one positive experience related to their informal or formal study and one negative 

experience. Limiting the number of critical incidents focused teachers on their most salient 

experiences; other experiences were included in the EHC and discussed in subsequent interviews. 

The two critical incidents were used to identify potential disorienting dilemmas. Teachers were 

asked to write brief descriptions of these critical events, detailing the time, place, and other 

persons involved in the events. Research suggests that participants who can provide detailed 

information about their critical incidents provide valid descriptions of those experiences (e.g., 

Eisenhower, Mathiowetz, & Morganstein, 1991). Additionally, asking details about the timing, 

location, and individuals involved in the incident helped to place the critical incidents temporally 

in teachers‘ event histories. I also asked teachers to provide explanations for selecting the critical 

events they chose to write about and to describe the actions they took subsequent to the events. 

The information provided by the teachers yielded insight into the existence of disorienting 

dilemmas as well as details about the characteristics of events that created the dilemmas. Lastly, I 

asked teachers to express the thoughts and feelings they had about the event and their feelings 

about the actions they took in response to the event. As discussed in the section on transformation 

theory, disorienting dilemmas can precipitate self-examination, which may be accompanied by 

strong emotion. Thus, the descriptions teachers provided about their critical incidents provided 

me with valuable information about events or experiences that may provoke disorienting 

dilemmas for statistics teachers as well as information about actions teachers might take to 

resolve their dilemmas. The critical incidents questions that teachers were asked to consider are 
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contained in Appendix D. I gained further insight into these events by interviewing teachers about 

the finer details of these events. 

Teacher Interviews 

Three interviews are common in phenomenological research (Seidman, 2006). In a 

phenomenological study, the main goal is to have participants reconstruct experiences related to 

the topic of the research. A series of three interviews gives participants an opportunity to reflect 

on the events and to provide detailed accounts of the events, as evidenced by the rich descriptions 

resulting from those who have employed the use of three interviews (Seidman, 2006). Seidman 

(2006) suggests that the first interview should ―establish the context of the participants‘ 

experience‖ (p. 17), while others use the first interview to also establish rapport with study 

participants (Cuddapah, 2005). This study required an initial interview to establish that teachers 

experienced the phenomenon of developing robust understandings of variation; I worked towards 

establishing rapport with each teacher during our introductory conversations and during the 

content interview. Further, the teachers in this study established the context of their experiences 

by completing event history calendars and critical incident descriptions outside of my presence. 

They electronically completed and returned these documents to me. It was therefore possible to 

collect sufficient retrospective data for analysis with two context interviews for each teacher. 

Although EHCs are typically completed during the course of an interview (Freedman, Thornton, 

Camburn, Alwin, & Young-DeMarco, 1988; Martyn & Belli, 2002), research exists to suggest 

that successful retrieval of event details takes considerable time (Schwarz, Hippler, & Noelle-

Neumann, 1994; Tourangeau, 2000)—time that individuals would not necessarily have if they 

completed the EHCs as part of an interview. Seidman (2006) acknowledges that deviations from 

his recommended course of three interviews can occur ―as long as the overall structure is 
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maintained‖ (p. 21). I provided teachers with clear directions for completing the EHCs and for 

describing their critical incidents and I made myself available for any questions that arose in 

completing the documentation, thus maintaining the structure of data collection for this 

phenomenological study. The pre-pilot and pilot studies were used to establish whether the 

directions for completing the documents were clear, to establish the viability of teachers 

completing the documents prior to the first context interview, and to establish whether the 

questions contained in the interview schedule provided evidence of individuals‘ perceptions of 

characteristics of experiences that enhanced their learning related to variation using 

transformation theory as the lens through which to view the experiences.  

I conducted a face-to-face interview with each teacher to reconstruct the finer details of 

the experiences he or she listed in the completed EHC and described in the critical incidents 

reports (Seidman, 2006). The content interview and this first context interview were conducted on 

consecutive days, with the content interview occurring first. In most cases, teachers had returned 

their completed documents to me well in advance of the context interview, and in all cases, I had 

a chance to review the documents before the first context interview took place. I perused the 

documents to gain a sense of the temporal positioning of educational experiences, to become 

familiar with experiences listed as pivotal or influential, and to construct a preliminary set of 

questions unique to each individual, in consideration of transformation theory, and guided by the 

general questions contained in the interview schedule. An abbreviated form of the interview 

schedule for the first context interview appears in Appendix E. Individualized questions also 

included questions to connect context with content to gather additional evidence for any facets of 

variation that were not addressed thoroughly in the content interview and to clarify unclear 

statements written in the EHC and critical incident descriptions.  

To illustrate the type of individualized questions I asked during the context interviews, I 

describe part of a context interview with Faith, a teacher who participated in the main study. Faith 
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completed her first statistics course in her undergraduate program and disliked it. She wrote that 

she could not ―use calculators and all I remember is the constant crunching of numbers. Thought 

statistics was incredibly boring and was glad never to take another course‖ (Faith, EHC). 

Questions I developed based on Faith‘s comments were similar to the following.12  

 You mention that you had only taken one statistics course, and you thought statistics was 

incredibly boring. What caused you to change your mind about statistics? 

 How did you think about standard deviation upon completing this course? 

 What, if any, value did you see in this course? 

 How, if at all, did this course help you to learn the statistical content you needed to teach 

in AP Statistics? 

These questions were developed in consideration of an apparent subsequent change in Faith‘s 

beliefs about statistics and statistics teaching, which suggested a possible disorienting dilemma 

that may have caused Faith to reconsider the assumptions and beliefs she formed in response to 

this course.  

Individualized questions were asked in addition to some of the general questions outlined 

in the interview schedule in conjunction with related ideas from other experiences. With Faith, I 

initially asked her to describe the experience she found to be most valuable for her learning of 

statistics. She responded, ―I didn‘t care to learn statistics at all until a teacher at my school asked 

me to teach AP Statistics‖ (Faith Context I, Lines 11-12). Her comment allowed for discussion 

about this positive learning experience, using the questions contained in the interview schedule as 

a guide, as well as the course that initially removed any motivation Faith had to learn statistics.  

In general, I asked teachers to describe experiences that were valuable for their learning 

of statistics and variation, the statistics learned during the course of their experiences, their belief 

                                                      
12 The questions written here differ slightly from those asked during the interview in order to remove 
personal information and to maintain the anonymity of the teacher. 
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about why the experiences benefitted their learning, their emotions associated with the 

experiences, influential people associated with the experiences, actions taken in response to the 

experiences, and how, if at all, the experiences changed the way they thought about statistics and 

variation. In all cases, teachers referred to their critical incident experiences in their responses to 

these questions. I used the information teachers provided in the critical incident descriptions 

similar to the way I used the information from their EHCs. Throughout the interview, teachers‘ 

descriptions moved from a general description of events to a more detailed accounting of the 

events (Tourangeau, 2000), and the interview provided details about memorable events and 

actions taken subsequent to the events (Peters, 1991; Seidman, 2006). Further details about why 

the events transpired in the way they did were reserved for a follow-up interview (Peters, 1991; 

Seidman, 2006), the Context II interview. An abbreviated interview schedule for this second 

context interview is contained in Appendix F.  

Within several weeks of conducting the first context interview, I conducted this third and 

final interview with each teacher via telephone. The span of time between the two context 

interviews provided an opportunity for teachers to reflect on the reasons for their actions and on 

the meaning of their experiences—elements that comprised the focus of the third interview 

(Peters, 1991; Seidman, 2006). In the time between interviews, I asked teachers to record journal 

entries of their reflective thoughts related to their statistical experiences and events, and I 

provided them with a small tablet upon which to record their thoughts. During the same interval 

of time, I reviewed both the content and the context interviews for each teacher to determine any 

remaining questions I might have from the first two interviews.  

I began the final interview by asking teachers to describe any experiences that needed to 

be added to their descriptions of events. I then asked teachers probing questions to explore what 

they perceived to be the meaning behind the events and actions they saw as valuable in their 

journeys towards understanding variation. During the interviews, I asked teachers questions about 
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the experiences that were most valuable for their learning in the areas of exploratory data 

analysis, study design, and inferential statistics—areas that align well with the development of 

data-centric, design, and modeling perspectives. Questions focused on extracting features of the 

experiences that teachers found to be valuable and those found to be ineffective for their learning 

about variation and the reasons they attributed to the effectiveness of particular features. Because 

meaning making ―requires that the participants look at how the factors in their lives interacted to 

bring them to their present situation‖ (Seidman, 2006, p. 18), I also asked teachers to describe 

how they believed their collective group of experiences contributed to their learning about 

variation and their reasons for that belief. Questions that guided the last interview appear in the 

interview schedule and align well with characteristics of transformative events using the lens of 

transformation theory. As with the content interviews, I transcribed both context interviews from 

each teacher and annotated the first context interview for my subsequent analysis of the data.  

Additional Data Sources 

To obtain additional information about teachers‘ experiences and understandings, I asked 

teachers to provide their most recent resume or curriculum vita if it was available in paper or 

electronic form. Ten of the 16 teachers in the study were able to fulfill this request. In addition to 

this documentation, teachers‘ recording of events and description of critical incidents, followed 

up in subsequent interviews, provided a form of triangulation for their retrospective accounts of 

experiences, actions, and events with as much accuracy as possible. The data collection and 

analysis schedule I followed for the pre-pilot, pilot, and main phenomenological studies is 

displayed in Table 4-4.
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Data Source/ 
Background Work 

Timing Purpose Data Format 

Pre-pilot EHCs and 
critical incident (CI) 
descriptions with 3 
teachers 

May-June 2007 Establish the viability of  

 the directions and categories of information on the EHC to determine 
usefulness of the document and 

 the directions and information about participants‘ critical incidents to 
determine usefulness of the document 

Electronic files 

Pre-pilot 1.5-hour 
Content interview 

May-June 2007 Establish the viability of the instrument for ascertaining robust 
understandings of variation 

Video and audio 
recordings 

Pre-pilot 1.5-hour 
Context I interview 

June-July 2007 Establish the viability of the instrument for ascertaining characteristics of 
actions and activities that led to an understanding of variation in 
conjunction with the EHCs and critical incident descriptions 

Video and audio 
recordings 

Pre-pilot 1.5 hour 
Context II interview 

July 2007 Establish the viability of the instrument for ascertaining characteristics of 
actions and activities that led to an understanding of variation in 
conjunction with the first context interview 

Audio 
recordings 

Pilot study July-August 2007 Fine-tune instruments and probing questions with the goal of establishing 
that 

 tasks and questions from content interview can elicit reasoning about 
variation from the data-centric, design, and modeling perspectives 

 the data for research question one can be analyzed using the SOLO 
Model to frame data analysis 

 documentation and context interviews can elicit detailed descriptions of 
important learning experiences related to variation 

 the data for research question two can be analyzed using the lens of 
transformation theory 

Electronic files, 
video and audio 
recordings 

Participant selection July-August 2007 Establish initial pool of potential participants 
Initiate e-mail contact with potential participants 
Contact volunteers and e-mail questionnaires 
Select participants from questionnaires returned 
E-mail participant files for EHC and CIs 

Electronic files 

Table 4-4: Data Sources and Data Collection. 
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Establish dates for content interview and first context interview with 
teachers 

1.5-hour Content 
interview 

August-December 
2007 

Establish teachers‘ understanding of variation: 
 from the data-centric perspective 

 from the modeling perspective 

 from the design perspective 

 from the integration of these three perspectives 

Video and audio 
recordings, 
transcribed, and 
annotated 

Preliminary analysis of 
Content interviews 

August-December 
2007 

 Establish that evidence exists to examine teachers‘ reasoning about 
variation from, data-centric, modeling, and design perspectives 

 Determine content questions to ask during context interview in areas for 
which content evidence is weak or missing 

 

EHCs, descriptions of 
CIs, and preliminary 
analysis of documents 

August 2007-
January 2008 

Establish potential 

 disorienting dilemmas 

 opportunities for rational discourse 

 significant events that contributed to understanding 

 actions taken in response to critical reflection 
Establish teacher-specific questions for first context interview 

Electronic files 
of EHC and CI 

1.5-hour Context I 
interview 

August-December 
2007 

Establish teachers‘ view of 
 the significance of events listed on their EHC 

 characteristics of events from which participants learned 

 organizational support, including resources, for events listed on the EHC 

 interactions with others that supported learning 

 reasons for their selection of critical incidents 

 experiencing Mezirow‘s different elements of transformation 

Video and audio 
recordings, 
transcribed and 
annotated 

Preliminary analysis of 
Context I interview 

September 2007-
January 2008 

Establish participant-specific questions for second context interview  

1.5-hour Context II 
interview 

September 2007-
January 2008 

Establish teachers‘ view of 
 improper characterization of events 

 the meaning of any disorienting dilemmas 

 the meaning of events identified by them as contributing to their 
understanding of variation 

Audio recorded 
and transcribed 
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Data Analysis to Address Research Question Two 

My analysis of teachers‘ documents and interviews to address the second research 

question, characterizing statistics teachers‘ perceptions and recollections of activities and actions 

that contributed to their understanding of variation, followed the detailed, systemic procedures 

recommended for analysis in phenomenological studies (Moustakas, 1994). Throughout the 

process, I attempted to put aside my preconceived notions about how individuals might come to 

understand variation, to the extent possible, so that I could envision the experiences of 

participants without bias, a process called bracketing (Moustakas, 1994; Stanage, 1987). One 

recommended bracketing method suggests that repeated reflection allows me to disconnect from 

my experiences (Moerer-Urdahl & Creswell, 2004) so that my experiences are no more or no less 

important than the experiences of others. Dialoguing with other statisticians and mathematics 

educators, including members of my thesis committee, provided further means to accomplish 

bracketing, as did conducting and analyzing the context interviews from the pre-pilot and pilot 

studies. 

Pre-Pilot and Pilot Study Analysis 

In addition to piloting the content interview process, my pre-pilot and pilot studies also 

focused on the viability of the instruments and context interview schedules in consideration of 

research question two. The same teachers agreed to participate in this second part of the pilot 

studies. The main purpose of the pre-pilot and pilot studies was to ensure that directions for 

completing the EHC and CI descriptions were clear and could elicit sufficient information to 
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allow in-depth conversation about learning experiences and allow the second research question to 

be answered.  

The pre-pilot and pilot Context I interviews were videorecorded, transcribed, and 

annotated prior to analysis, and the Context II interviews were audiorecorded and transcribed 

prior to analysis. Analysis consisted of matching passages of individuals‘ descriptions of 

perceived learning experiences to the elements of transformative learning listed in Table 4-5. 

 Elements of Perspective Transformation 

Critical 
Reflection 

Disorienting dilemma or sequence of transformed meaning schemes 

Self-examination, accompanied by emotions 

Critical assessment of assumptions related to epistemic, sociolinguistic, or 
psychological perspectives 

Rational 
Discourse 

Recognition that others have experienced similar discontent with their 
perspectives 

Exploring new roles, relationships and actions through engaging in rational 
discourse with others—learning in the communicative domain 

Action Planning a course of action 

Constructing the knowledge and skills needed to enact the plan—learning in 
the instrumental domain and possibly in the communicative domain 

Experimenting with new roles 

Building a sense of competence and self-confidence for new roles and 
relationships 

Reintegration into life based on the transformed perspective 

From the identified elements of transformative learning for each pilot-study teacher who 

exhibited robust understandings, I wrote a summary of characteristics of experiences that they 

perceived to be valuable for their learning. The intent was to describe a coherent and cohesive 

picture of the teacher‘s learning. Interview transcripts and summaries for some teachers were 

discussed with another mathematics education researcher until agreement was reached on the 

viability of the instruments for providing sufficient evidence to respond to research question two. 

Table 4-5: Elements of Transformative Learning. 
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In-Depth Analysis of Data in Response to Research Question Two 

Subsequent to the completion of data collection, I examined teachers‘ context interviews 

and documents to find statements that provided information about experiences related to the 

development of a robust understanding of variation for those teachers identified as exhibiting 

reasoning consistent with robust understandings. This was accomplished by recording 

experiences the teachers identified as important for their development of understandings of 

variation, as well as their perceptions of characteristics that helped or hindered their development 

(Cuddapah, 2005). I sought evidence of elements related to transformative learning as well as 

evidence potentially refuting transformative learning. In particular, I sought evidence of events 

that triggered dilemmas, critical reflection, rational discourse with self or others, seeking 

additional knowledge related to statistics, experimenting with new roles, and changes in beliefs 

and assumptions related to the teaching and learning of statistics. Interview passages for each 

teacher were grouped in a table according to the elements of perspective transformation (Moerer-

Urdahl & Creswell, 2004; Moustakas, 1994), and a separate table was created for learning 

experiences that occurred prior to and learning experiences that occurred subsequent to triggers of 

transformational experiences.  

During the next phase of analysis, I organized statements from context interviews into 

themes and grouped them to produce a textual, or factual, description of the phenomenon for each 

teacher (Creswell, 1998; Moustakas, 1994) in relation to elements of transformative learning. For 

each element, I extracted the essence of the phenomenological experience by viewing the 

phenomenological descriptions from divergent perspectives, including some input from another 

mathematics educator, and continually reread the descriptions to gain further insight into 

teachers‘ experiences (Moustakas, 1994). Whereas textual descriptions of teachers‘ phenomena 

describe what their experiences were, the descriptions that result from this phase of analysis 
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describe how teachers experienced the phenomena. The resulting description, a structural 

description that explicates the essential structures of the phenomenon, was recorded for the 

experiences of each teacher and for the larger group of teachers (Moerer-Urdahl & Creswell, 

2004; Moustakas, 1994). 

The final stage of analysis involved integrating the textual descriptions of teachers‘ 

experiences into a composite textural description. To do so, I combined individual teachers‘ 

evidence related to each element of transformational learning into a larger table that contained 

evidence of each element for the larger group of teachers. For example, Table 4-6 contains a list 

of disorienting triggers for the group of teachers. Detailed descriptions of the types of triggers 

teacher experienced appear in Chapter 7.  

Triggers 

Whys behind hows and making connections between concrete and abstract and 
among concepts 

Listening to statisticians‘ ―arguments‖ 

Awareness of questions and knowledge limitations from various sources: (a) 
Conversations with colleagues and/or statisticians (b) Listening to conversations at 
AP Reading (c) Solving AP free-response questions 

Design and recognition of differences between mathematics and statistics 

Language discrepancies 

Subtleties 

Limitations of only introductory-level understanding of statistics 

Teaching AP Statistics; AP requirements 

Participating in activities such as those used with students in introductory courses 

Identification of commonalities was followed by integrating the structural descriptions of 

teachers‘ experiences into a composite structural description (Moustakas, 1994) to form a 

synthesis of these composite descriptions that characterize the overall essence of the experience 

of developing robust understandings of variation (Moerer-Urdahl & Creswell, 2004). This 

description appears at the end of Chapter 7. 

Table 4-6: Disorienting Triggers for Learning. 
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Concluding Comments 

As the preceding sections suggest, the 16 teachers who participated in this study formed a 

purposeful sample of secondary statistics teacher–leaders. To answer the first research question of 

what conceptions of statistical variation they exhibit, data collection and analysis used a protocol 

for conducting task-based interviews framed by the SOLO Model and for analyzing interview and 

artifact data with the constant comparative method. Chapter 5 details the answer that followed 

from implementing the processes outlined in this chapter. Through data analysis to answer the 

question of teachers‘ conceptions of statistical variation, an empirically derived framework 

consisting of indicators of robust understandings for statistical variation emerged. That 

framework is described in detail in Chapter 6. Learning experience data collected from the five 

teachers who exhibited reasoning consistent with robust understandings of variation were 

collected and analyzed following protocol for phenomenological studies. Chapter 7 details 

influential factors for learning that emerged from analysis in answer the second research question: 

―For those secondary AP Statistics leaders who exhibit robust understandings of variation, what 

are the activities and actions that contributed to their current understandings of variation as 

reflected in their perceptions and recollections of experiences?‖ 



   

 

Chapter 5 
 

Conceptions of Variation 

Three types of conceptions of statistical variation emerged from analysis of the content 

and context interviews with 16 teacher-leaders: Expected but Explainable and Controllable 

(EEC), Noise in Signal and Noise (NSN), and Expectation and Deviation from Expectation 

(EDE). Individuals with EEC conceptions see variation as something that needs to be controlled 

and explained and hence tend to focus their attention on issues of design. In contrast, individuals 

who harbor NSN conceptions see variation as something that needs to be explored, which 

manifests in strong consideration of variation during exploratory data analysis. Lastly, individuals 

who conceive of variation as EDE see variation as something that can be expected and modeled, 

and their reasoning about variation is typified by a focus on models, and in particular, models 

related to inference. As their different statistical foci of design, exploratory data analysis, and 

inference might suggest, individuals with different conceptions view variation from 

predominantly different perspectives. Specifically, the design, data-centric, and modeling 

perspectives are prevalent for individuals with EEC, NSN, and EDE conceptions, respectively. 

Discussion of the conceptions is organized around the design, data-centric, and modeling 

perspectives to allow focus on the most salient characteristics of each conception while providing 

a means to make comparisons across the conceptions. This chapter describes each conception in 

detail, associates teachers in the study with each conception and provides examples from 

interviews to support the existence and nature of each conception. The chapter concludes with a 

comparison of the key similarities and differences of the conceptions. 
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Conception: Expected but Explainable and Controllable (EEC) 

Individuals with EEC conceptions of variation see variation as not only omnipresent and 

unavoidable but also as explainable and controllable. Their sense of the omnipresence and 

unavoidability of variation leads them to expect variation in statistical settings, and their view of 

variation as controllable focuses on design strategies for both observational and experimental 

studies. Their view of variation as explainable aligns with their focus on context to identify 

factors that potentially contribute to variability in data and their attraction to designs that allow 

them to determine cause-and-effect relationships.  

Individuals‘ search for causes or explanations is a phenomenon witnessed by Reading 

and Shaughnessy (2004). They noticed that primary and secondary school students in their study 

provided explanations and causal reasons in their responses to sampling tasks even though 

students were not asked to consider causes. Their study suggests that a search for explanations 

may be fairly typical of children, intimating that EEC conceptions may emerge early and 

potentially develop into conceptions similar to that of Isaac and Haley, the two teachers in this 

study who clearly viewed variation as EEC. 

Throughout discussion of the EEC conception, I draw on examples from Haley‘s and 

Isaac‘s Content interviews to illustrate facets of their conceptions. Haley‘s and Isaac‘s general 

reactions to the interview tasks are strikingly similar but differ in terms of details. For example, 

they both consider multiple sources of variation when they design studies for the Handwriting 

Task, but the sources differ. Isaac mentions the quality of writing and scorer training as potential 

sources of variation, and Haley cites the reading level and subject matter of essays as potential 

contributors to variation. When Haley and Isaac reason similarly in response to a task, I describe 

the clearer and more succinct example. On several occasions, I note that neither Haley nor Isaac 

was prompted to address a particular aspect of design or analysis. My intention is not to imply 
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that they were prompted in other cases but to draw a comparison with a number of other teachers 

who addressed the same issue only after they were asked to do so. Instances in which any teacher 

received prompting will be noted as such.  

EEC and the Design Perspective 

Isaac‘s and Haley‘s view of variation as EEC seems to lie at the heart of their privileging 

of the design perspective and their desire to know as much as possible about context. Statisticians 

note that obtaining background knowledge about context is a critical component of statistical 

problem solving (Pfannkuch, 1997; Pfannkuch & Wild, 2000). Whereas some preliminary 

research suggests that some teachers view considering sources of variation as one of the primary 

statistical areas in which they need support for teaching (Arnold, 2008), Isaac and Haley are 

extremely adept at using contextual information to consider a variety of variables that may 

confound their results. Their EEC conceptions also may be the source of their criticisms of 

studies whose designers do not anticipate the general presence of variation, do not consider 

potential sources of variation, or do not design studies with explanation and control in mind.  

Expected  

Individuals with EEC conceptions attend to context through anticipation. Their 

expectation of variation is most noticeable when they design studies or examine studies 

conducted by others. For example, when Haley first reacts to the Handwriting Task, she suggests 

designing a study that uses essays written on a reading level known to be understandable by most 

adults.  

Well, I would take, um, I would take something typed from USA Today because I 
know that‘s a sixth grade reading level. And I know most adults could 
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comprehend a sixth grade reading level. And I would make sure that the adults at 
least could read a sixth grade reading level. (Haley, Content, Lines 1916-1924) 

Haley‘s inclination to ―make sure‖ adults can read the essays suggests that she anticipates reading 

levels could contribute variation to the resulting scores if left unchecked. Haley‘s expectation of 

variation presumably leads her to devise a strategy that may reduce variation from reading 

levels—that of selecting readings on a sixth grade level—resulting in a treatment that allows her 

to study the variable of interest while reducing the potential for large errors from scorers‘ reading 

levels. As someone who expects variation, Haley focuses on identifying potential sources of 

variation for a given context and ways to reduce the effects of the sources she identifies.  

For individuals with EEC conceptions, their expectations for variation couple with their 

affinities for explanation and for control. They use context to identify potential sources of 

variation and use knowledge related to those sources to select and implement design strategies 

that allow them to explain as much variation in data as possible and to control variation. The 

effects of Haley‘s and Isaac‘s expectations of variation will be considered further in concert with 

their reasoning about variation in terms of explanation and control. 

Explainable 

Someone with a view of variation as explainable relies heavily on context to consider 

factors that may explain variability in data for the variable or variables of interest in a statistical 

study. That person attends to context before conducting any type of formal or informal data 

analysis. Consider Isaac‘s initial reaction to the Caliper Task. When he sees the scatterplot with 

axes labeled x and y, he does not outwardly attend to the pattern of variability in the seven plotted 

points. Instead, he seeks information about context to consider whether there is a known 

relationship or pattern between contextualized variables in the student‘s science lab. He notes, 
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―the student asks you how they might use this graph to predict a value for y… Whew. Well, did – 

I‘m – I think my first question of one of my students would be, um, the nature of the data‖ (Isaac 

Content, Lines 1298-1302). The intent of Isaac‘s request for the ―nature of the data‖ may not be 

clear at first. He later offers situations for which he knows the ―nature of the data‖, and he 

describes how that expectation affects the way he looks at data and the models he considers to fit 

the data. One example is found in his descriptions of a relationship between test anxiety and 

student achievement. 

Uh, if I knew what the data were, I‘d want a model that was consistent with the 
current scientific understanding of the relations between the two variables…Um, 
if this were say, uh student achievement as a function of background anxiety – 
test anxiety…it makes sense that, um, a student has to have a certain amount of 
anxiety just to even take the test, but after, after some point that anxiety becomes 
debilitating and so hmm, in that case maybe a quadratic model makes sense. 
(Isaac, Content, Lines 1337-1370) 

Isaac also offers a setting from which he might expect the data to exhibit an exponential pattern. 

For that setting, he suggests that the two rightmost points would have to be ―errors.‖ Considering 

Isaac‘s initial comments along with his later comments, it seems that Isaac wants to know more 

about context to gain a sense of expectation for a pattern of variability and to explain variation in 

the response variable based on a known theoretical relationship between variables. He offers 

examples of different relationships and the corresponding models for those relationships. He uses 

the models to explain variability in values for the response variable, thereby reducing the amount 

of unexplained variability. For Isaac and others with EEC conceptions, considerations of 

contextual factors are necessary precursors to using statistical methods of analysis.  

Individuals with EEC conceptions seem to attribute value to patterns and relationships in 

data only if they are plausible within the context of the data—deliberations that are characteristic 

of statistical thinking (Cobb & Moore, 1997). Results that stem solely from the application of 

statistical procedures seem to have little meaning for them. Indicative of this stance is Isaac‘s 

reaction to the Caliper Task. In addition to desiring contextual information to consider possible 
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data patterns, Isaac provides evidence that he would like contextual information when asked to 

make a meaningful prediction for y when x is four. 

Well, what you might do is assume an underlying linear relationship. Get a 
regression line and predict that way … What you might do is assume an 
underlying quadratic relation … And so, it seems to me, what I would – if their 
question is how might you use this graph, well here‘s a bunch of alternatives. If 
the question is how might you validly do this, then I think I‘d want a little bit 
more information than what‘s here. (Isaac, Content, Lines 1311-1326) 

Isaac does not make a prediction based strictly on a model that ―best‖ fits the data; he seems to 

prefer combining contextual considerations with statistical procedures to help the student make a 

prediction. Although his language suggests that he can model the data to explain variation in the 

response variable, Isaac suggests that using context during model selection allows conclusions to 

be ―valid.‖ Individuals with EEC conceptions espouse Moore and Cobb‘s observation that 

―context provides meaning‖ in data analysis (Moore & Cobb, 2000, p. 615).  

Context also allows for considerations of variation beyond association or theoretical 

relationships among variables towards a search for explanations or causes behind unusual 

variation in data. Haley suggests that a search for causes is normal, noting, ―I think that‘s just part 

of human nature… is naturally to question variation. To think for a reason‖ (Haley, Content, 

Lines 2127-2129). Both Haley and Isaac seem to seek causal relationships even when analyzing 

data from non-experimental studies. For example, after Isaac is given centimeters and inches as 

the names of the variables for x and y, respectively, in the Caliper Task, he seeks to explain why 

the two rightmost points vary from the theoretically increasing and linear relationship between 

centimeters and inches. He notes the following. 

My suspicion would be that somehow or other when you get to that level of 
measurement, uh, maybe they‘ve gone beyond what the caliper was designed for. 
Maybe the student‘s hand is too small or something, uh, makes it perhaps 
problematic to accurately measure above two point five. (Isaac, Content, Lines 
1479-1484)  
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Isaac‘s explanation resides in the tool used to measure objects of varying lengths. Haley attributes 

the error in the rightmost point not to the physical apparatus as Isaac does but to student error, 

immediately reacting to the variable names with ―somebody made a little flaw here. [Haley points 

to the rightmost point.] I would think‖ (Haley, Content, Lines 1686-1687). Both teachers identify 

contextual factors that could feasibly contribute variation to the measurements displayed in the 

scatterplot, and both suggest a causal relationship for their identified factors. Moreover, they each 

present a conjecture to explain the deviation of the rightmost points. 

A view of variation as explainable also may be at the heart of privileging experiments 

over observational studies. A fundamental advantage of experiments is the capacity to establish 

cause-and-effect relationships, which provides a stronger explanation than is possible from 

association alone. Haley, in particular, has a strong affinity for experimental design. Although the 

Consultant Task presents data from an observational study, Haley seems to be dissatisfied with 

the limited conclusions that she can draw. After she reads the task statement, she observes, ―I 

don‘t understand, if you do a difference of two means, what‘s that going to prove?‖ (Haley, 

Content, Lines 44-46). Haley seems to expect the administrators to want more information than a 

comparison of means will allow—she may be looking for a potential cause for improved scores 

or alternatively for a potential cause for changes in scores. Specifically, she notes the 

administrators‘ stated goal of improved scores, and she suggests that their design will yield little 

information towards achieving their goal. 

They want—what—what is their goal…they‘re trying to get to improve students‘ 
test scores on the state assessment…The consultants‘ contract—see I‘m not quite 
sure how that‘s going to improve, how that‘s going to show improvement. 
There‘s no treatment there. (Haley, Content, Lines 58-69) 

Haley notes that the administrators have not designed an experiment—no treatment exists for 

determining how to improve scores. Comparing average scores for consultants seems to make 

little sense to Haley if the ultimate goal is to improve scores. She seems to struggle with the 
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administrators‘ use of an observational study that from the task description appears to provide no 

explanatory power for how to improve scores. She spends a considerable amount of time 

questioning their methods before she addresses the question posed in the Consultant Task 

statement. Even after she focuses on analyzing the collected data, she remains critical of the 

design. Haley‘s analysis of the methods employed by others and consideration of alternative 

designs that achieve greater explanatory power are hallmark characteristics of those with EEC 

conceptions.  

The search for both causal and associational relationships and explanations is not unique 

to those with EEC conceptions of variation. Some statisticians even suggest that statistics 

education should focus on the search for causes and emphasize how statistics can aid in the 

pursuit of causes (Wild & Pfannkuch, 1999). What seems to separate Haley and Isaac as teachers 

with EEC conceptions of variation from other teachers in this study is the extent to which they 

search for explanations, particularly causal explanations, and the extent to which they focus on 

context and issues of design. Closely tied to their selection of design strategies is their utilization 

of methods that control variation in variables of interest. 

Controllable 

A second characteristic theme in the statistical reasoning of teachers with EEC 

conceptions of variation is control of variation through design. For example, Haley and Isaac seek 

to control variation (or to evaluate the extent to which designers of studies with published results 

controlled variation) and to seek potential explanations for uncontrolled variation. They design 

experiments to determine the significance of induced, systematic variation in response values in 

comparison with naturally expected random variation. They use design strategies such as 

blocking to combat the effects of variables that are likely to contribute variation to the response 
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variable(s) but are not particularly of interest to the study. Haley‘s (and Isaac‘s) design for the 

Handwriting Task incorporates blocking as one method to control variation. She suggests using 

essays with varied subject matter based on her expectation that subject matter makes a 

―difference‖ in scoring.  

Then I would take a, a story —I‘d take a sports, I‘d take something about 
fashion, something about news… Block design for sports, block design for 
fashion, block design…The block would, um, hopefully minimize the variation 
because I really think—I honestly think sports, fashion, and news—I really think 
there‘s a difference...So the variation between this, somebody might score 
fashion a lot higher than they do sports because they hate sports. (Haley, Content, 
Lines 1924-2056) 

Based on her belief that adults may score essays according to personal interest, Haley suggests 

blocking by subject matter to control variation in scores assigned by the adults. Unlike many of 

the other teachers in this study (but not unlike Isaac), Haley suggests blocking without prompting 

from the interviewer. Haley‘s efforts to control variation from sources that might interfere with 

her ability to address the Handwriting Task are closely tied to her expectations. For her, 

expectation and control are intimately related. Her use of context to identify potential sources of 

variation that then can be controlled typifies the reasoning of individuals with EEC conceptions 

of variation.  

Given EEC conceptions, strategies to control variation are not limited to experimental 

design. Haley and Isaac also recommend control strategies for observational studies, including the 

observational study analog to blocking in experimental design: stratified sampling. For example, 

when Isaac is asked how he would design the study described in the Consultant Task, he 

considers selecting a stratified sample in order to sample exams over the entire interval of scores 

from 0 to 15. He notes that one advantage of a stratified random sample over a simple random 

sample is precisely this dispersed effect. Using a stratified sample, he controls variation by 

imposing greater variation on each set of exams but (presumably) reduces variation overall by 

considering each stratum separately. Isaac even states that his goal is control: ―If I could get a 
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stratified sample, then I could in a sense control that [sample] distribution‖ (Isaac, Content, Lines 

287-288). As these examples suggest, Haley and Isaac use design strategies for experiments and 

observational studies for the purposes of controlling variation. Their strategies for controlling 

variation align with the designs they suggest based on their expectations and their attempts to find 

explanations. 

Haley‘s and Isaac‘s desires to control variation in data and to explain as much variation 

in data as possible, characteristic of EEC conceptions of variation, may elucidate their dismay 

with less-than-ideal designs employed by others. In particular, they look for designs that are 

appropriate for the research and statistical questions under consideration. For example, when 

Isaac first reads the Consultant Task, he believes that the administrators are ―looking for the 

reliability of the, uh, the interrater reliability‖ (Isaac, Content, Line 32-33), which he seems to 

associate with correlation, between the consultants. He suggests there is a mismatch between the 

administrators‘ professed goals and their design when he says, ―I don‘t see how they‘re going to 

get that from looking at two independent samples‖ (Isaac, Content, Lines 33-34). Isaac suggests 

that a more informative approach would be to examine consultants‘ scores for the exact same 

sample of exams. He proposes considering the strength of the association between the two 

consultants‘ scores, noting that he would be looking for ―some indication of a strong association 

between the scores‖ (Isaac, Content, Lines 37-38). By focusing on interrater reliability, he in a 

sense controls the natural variation in scores that can be expected on assessments taken by 

multiple students and focuses his attention on the variation in scores due to consultants‘ scoring. 

Isaac‘s approach would provide information about how the scores differ rather than simply if they 

differ by calculating a measure that reveals the consistency of agreement between consultants.  

When Haley is asked how she might use the data from the two samples, she proposes a 

design somewhat similar to the paired approach of Isaac. Because she reasons about scores from 

two independent samples, though, she does not suggest comparing the two sets of consultants‘ 
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scores. Instead, she suggests comparing consultants‘ scores against some known standard by 

analyzing the same students‘ results from a previously administered standardized exam to 

determine whether distributional characteristics are similar between the consultants‘ scores and 

the standardized scores. Haley controls variation in the data she uses for comparison by removing 

the variation in scores that could be expected regardless of scorer (i.e., students‘ standardized 

scores). This allows focus to remain on the variation in scores contributed by consultants. Like 

Isaac, Haley suggests a design method that provides information beyond whether there was a 

difference in means or a mean difference for the consultants‘ scores. Characteristic of their EEC 

conceptions, they incorporate design strategies to control variation for greater explanatory power 

from data. 

Although individuals with EEC conceptions show some creativity and ingenuity in 

implementing strategies to control variation, they also employ relatively common strategies of 

control, including strategies for randomization and sample size. For example, Isaac suggests 

incorporating random assignment into his design for the Handwriting Task. He notes that: ―I‘m 

really, um, bringing any difference between… these into a probabilistic model as, as opposed to 

depending on me making the judgment‖ (Isaac, Content, Lines 1892-1898). Isaac recognizes 

random assignment as a method to control variation by theoretically distributing variation from 

uncontrolled sources equally among treatment groups, clarity largely unseen in a study by Derry, 

Levin, Osana, Jones, and Peterson (2000). He mentions that without randomization, he might 

believe that he creates equal groups, but there might be some underlying cause that creates bias in 

the way he selects groups. Isaac also mentions the advantage of increased sample size in relation 

to the reduced variability in sampling distributions, as does Haley. Their recognition of the effects 

of sample size stands in contrast to a common misconception that sample size is irrelevant 

(Fischbein & Schnarch, 1997).  
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Summary of Design Perspective and EEC Conceptions 

Individuals with EEC conceptions exhibit telltale signs of their conceptions in their 

reasoning, including explicit and thorough consideration of contextual factors that might be 

sources of variation—a key consideration that some would argue distinguishes statistics from 

mathematics (e.g., Cobb & Moore, 1997). They seek to collect data in ways that allow them to 

discover patterns and relationships in data, with a preference for establishing cause-and-effect 

relationships. They use their knowledge of context to implement design techniques that allow 

them to control and to explain variation to yield meaningful results. Finally, yet importantly, they 

tend to do each of these things naturally and without prompting. These signs of an EEC 

conception of variation align with factors seen as necessary for understanding variation: 

recognizing the omnipresence of variability, considering potential sources of variation and 

distinctions among the types of variation, explaining variation based on context and current 

knowledge of sources of variation, and considering unexplained variation (Pfannkuch, 1997). No 

single factor or combination of factors appears to be exclusive to those with EEC conceptions, but 

the totality of and tightly interwoven nature of reasoning about design issues is unique to those 

with EEC conceptions of variation.  

EEC and the Data-Centric Perspective 

When individuals with EEC conceptions reason from the data-centric perspective, they 

tend to view data through a lens of expectation—an expectation that if they properly control and 

explain variation, what remains will be random variation. In the absence of apparent random 

variability, they seek explanations for aberrations. As a result, when they reason from the data-

centric perspective, their reasoning often contains elements reminiscent of reasoning from the 
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design perspective. In working with data, they gather information about variation by exploring 

data through graphical representations and measurements, and they compare the characteristics 

and relationships they see in data with their expectation of randomness.  

In bivariate settings, individuals‘ EEC conceptions become visible in their expectation for 

patterns of random variability for data in the form of residuals. After they fit a model to data, they 

expect the resulting residual plot to display a random scattering of points. For example, Isaac 

suggests having consultants score the same 50 exams as he reasons about the Consultant Task. He 

notes that he would expect a strong association between scores and also notes that ―what I 

basically want is, uh, a high interrater correlation with a small confidence interval around it… in 

my dream world, I could get reliabilities in excess of point seven‖ (Isaac, Content, Lines 336-

343). Isaac mentions that he would like to see a tight confidence interval around a high 

correlation coefficient value, suggesting that the data would be tightly grouped about a linear 

pattern. Isaac expects to explain most of the variation in consultants‘ scores with the linear 

relationship, and he presumably expects the remaining unexplained variation to be revealed in 

random patterns. In contrast with Isaac, Haley is more explicit in her articulation of an 

expectation for random variability in residual plots. In describing her expectation, she notes, ―if 

your residual plot shows a pattern… like say it goes in a pattern like this. [Haley draws a residual 

plot. See Figure 5-1.] Some kind of pattern. Then these distances [residuals] are not random‖ 

(Haley, Content, Lines 1614-1618). Haley associates the pattern in her residual plot with a model 

that does not provide a good fit to data, which suggests to her that variation has not been 

adequately explained. Characteristic of their EEC conceptions, Haley‘s and Isaac‘s reasoning 

about data from the data-centric perspective reveals considerations consistent with their views of 

variation as explainable and controllable. 
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Individuals with EEC conceptions also consider random variability in bivariate settings 

through their considerations of outlying values. As noted previously, Isaac reacts to being given 

centimeters and inches as the names of the variables for x and y in the Caliper Task by focusing 

on the rightmost two points and seemingly treating the points as outliers. 

So these ought to line up straight. Uh, if we look at these first, uh, n minus 2 
points as kind of representative [Isaac traces a path back and forth over the first 
five points in the scatterplot.], then we‘re left to worry about well what the heck 
is going on here at the end? [Isaac points back and forth between the two 
rightmost points in the scatterplot.] (Isaac, Content, Lines 1473-1479) 

Isaac evaluates the scatterplot with labeled axes by noting the representative pattern in the 

leftmost five points. He reacts to the rightmost two points by searching for an explanation for 

why the points are not representative of the known relationship, suggesting that he considers the 

variation in the rightmost points to be more than random variation. Haley also seeks an 

explanation for the unrepresentative nature of the data pattern. Unlike Isaac, she focuses only on 

the rightmost point. She ponders reasons behind why the rightmost point differs considerably 

from what the theoretical relationship would predict, wondering, ―how we got one point oh, 

instead of one point three seven, unless he was just rounding‖ (Haley, Content, Lines 1735-1736). 

Like Isaac, she seems to be concerned about magnitude of the residual and immediately tries to 

find an explanation for why the rightmost value varies so far from the theoretical value. Neither 

Haley nor Isaac comment on the deviation of the leftmost five points from their theoretical 

values, suggesting that both can tolerate random variability. When the magnitude of the residual 

 

Figure 5-1: Haley‘s Sketch of a Nonrandom Residual Plot.  
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reaches a certain level, however, they seek explanations for variation that is greater than what 

chance would suggest. 

In univariate settings, an expectation of random variability appears in recognition of 

reasonable variation in data and explanations for outlying values and extreme measures. For 

example, after Isaac looks at the sheet upon which the means and standard deviations for 

consultants‘ scores are written, he immediately reacts to the standard deviation value of 20. 

Isaac: Okay, so I‘ve got, um, let‘s see. [Isaac picks up the task sheet, and he 
reacts to something while looking at the sheet.] 

R: Okay, I just saw your eyes get – 
Isaac: Twenty? 
R: Really big. 
Isaac: Uh, huh, huh, huh. [Isaac laughs.] (Isaac, Content, Lines 451-456) 

Isaac‘s reaction to the standard deviation value of 20 suggests there is a limit to how much 

variation he expects in this context. He begins to ponder conditions that would produce a standard 

deviation of that magnitude.  

Isaac: The, the—it would seem to me clear that the, that the difference in 
variances in these two samples aren‘t occurring—this isn‘t occurring by 
chance alone. There‘s something else operating here. Um, a standard 
deviation of 20 in a scale from 0 to 16. I think—wow. How would you 
get a standard deviation that big? 

… 
R: So how could you explain that? 
Isaac: [Pause 5 seconds.] The explanation that leaps to mind is that somebody‘s 

just flipping a coin here. It could be a mis—it could be a misscoring. I 
mean, something like that can happen. Um, so maybe that would be my – 
I‘d say look, let‘s go back and see the original data. This just really looks 
fishy. (Isaac, Content, Lines 478-498) 

Shortly after he notices the value of the standard deviation for the second consultant‘s scores, he 

questions how that standard deviation might be obtained. Although Isaac suggests possible 

explanations at the prompting of the researcher, it appears that he had begun to consider 

explanations prior to the prompt. Isaac mentions that the difference between the standard 

deviations does not appear to occur by chance—the value is larger than what he would expect 

from random variation given the restrictions that exist in this context. He appears to immediately 



142 

 

look for an explanation or cause for the unusual measure. He suggests that the value is suspicious, 

and his quest for explaining the variation seems to lead to his request for the actual data. 

Characteristic of EEC conceptions, even though Isaac is not reasoning about design but reasoning 

about data and characteristics of data, his reasoning remains consistent with a view of variation as 

expected but explainable and controllable. 

Although the main examples presented in this section come from Isaac‘s interviews, the 

lesser focus on examples from Haley is not intended to suggest that Haley‘s reasoning from the 

data-centric perspective is less consistent with an EEC conception. Haley also expects random 

variability, and she suggests contextual explanations for the descriptions, patterns, and 

relationships she sees in data during exploratory data analysis. True of both Haley and Isaac is an 

expectation for patterns of random variability and a desire to explain apparent nonrandom 

patterns and unusual data values when they reason about data. 

EEC and the Modeling Perspective 

When individuals with EEC conceptions reason about variation from the modeling 

perspective, they tend to view models through a relationship lens. They use models to capture 

relationships among data or among variables and evaluate models according to the extent to 

which the models capture relationships. They also use models to determine or confirm the 

strength or significance of the relationships among data or among variables.  

Individuals with EEC conceptions of variation seek to fit models to data with a goal of 

explaining variation by capturing the nature of the relationships seen in the data and doing so in 

ways consistent with any theoretical relationships that exist within a particular context. For 

example, lack of context prevented Isaac from fitting a model to the seven points in the Caliper 

Task. Even after he is told the context, he does not model the data based strictly on the known 



143 

 

theoretical relationship between centimeters and inches. Although he may consider using the 

theoretical relationship to model the data or a line that ―best‖ fits the seven data points, Isaac 

verbalizes an alternative model he would use to fit the data. 

I would probably say okay, here‘s what you do. Don‘t tell your stat teacher, but 
toss these out. [Isaac covers up the two rightmost values in the scatterplot. See 
Figure 5-1.]… And then phew, fit that. [Isaac quickly traces a linear path over 
the first five points. A segment has been superimposed in Figure 5-2 to illustrate 
the path.] And use that for a prediction. (Isaac, Content, Lines 1487-1494) 

Isaac notes that the data should be linear, and supposing that the five leftmost points form a 

representative sample, he recommends fitting a linear model to those points and using that model 

to make a prediction. Presumably, Isaac combines his consideration of context with his 

observations of the data to model the data in a way that allows the student to make a meaningful 

prediction. Consistent with her view of variation as EEC, Haley offers a solution that is nearly 

equivalent to Isaac‘s. Because Haley focused on the rightmost point only, her recommendation is 

to ignore the rightmost point and fit a linear model to the remaining six points. Both Haley and 

Isaac fit a model to the data that captures the nature of the relationship among the points they use 

and that is consistent with the theoretical relationship between the variables.  

Regardless of whether they have EEC conceptions of variation, data analysts should 

consider context when fitting models to data. What seems to be different for Haley and Isaac as 

teachers with EEC conceptions is the extent to which context influences their decisions. Like 

 

 

Figure 5-2: Isaac‘s Recommendation for the Student.  
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others, Isaac suggests the best-fitting line for the full scatterplot of data for the Caliper Task 

would be one that passes through the approximate midrange for each vertical grouping of points. 

He posits that the patterns of variability in the residuals for vertical groupings would be 

approximately normally distributed. Where he differs from others13 is in his reaction to whether it 

would be possible to have a different line as the line of best fit—a line parallel to, but below, the 

line he indicated. (See Figure 5-3.) 

Isaac: I suppose it could, if you—I mean you‘d have to have—you‘d have to 
have pretty seriously skewed errors. [Isaac draws a curve by the leftmost 
vertical grouping of points. See Figure 5-3.] 

R: Okay. And why do you say that? 
Isaac: Well, I‘m thinking that when I do a regression, essentially what I‘m 

doing is coming up with a model for the means at the different levels. 
And if I‘m going to have a regression line go through there [Isaac points 
to a value near the intersection of the newly drawn line and the leftmost 
vertical grouping of points.], then the means are going to be closer over 
here [Isaac points to a value near the bottom of the leftmost vertical 
grouping of points.], which would suggest to me that those are skewed. 
I‘m—I‘m having a devil of a time trying to figure out how you would get 
skewed errors, though. (Isaac, Content, Lines 1616-1631) 

Although Isaac describes how data would need to be distributed for the alternative model to be 

the ―best‖, he seems to hesitate in embracing the alternative model as a viable alternative. 

Because he later attributes error to the measurement context, noting, ―there shouldn‘t be any 

factors other than, um, measurement error that would account for the y value‖ (Isaac, Content, 

Lines 1735-1737), it seems reasonable to believe that he is considering context when he reasons 

between best-fitting lines and struggles to explain how the (measurement) errors could be 

skewed. His reaction was unlike that of any other teacher in the study and suggests his desire to 

have context-based explanations for the variation he sees in data.  

                                                      
13 Due to the length of time Haley spent on the Consultant Task and the time limitations of the interview, 
she was not asked any questions about the full scatterplot of points for the Caliper Task nor was the graph 
ever shown to her. 
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Summary 

The preceding examples illustrate how conceptions of variation as expected but 

explainable and controllable influence Haley‘s and Isaac‘s reasoning not only from the design 

perspective but also from the data-centric and modeling perspectives. Although they reason from 

the three perspectives, their focus on reasoning from the design perspective reveals identifiable 

and consistent differences in the way they view variation from the views of others. They view 

design through dual lenses of explanation and control. Their affinity for explanation becomes 

evident through their privileging of experimental studies to determine cause-and-effect 

relationships. They view models through a relationship lens, hoping to determine or confirm the 

strength or significance of relationships among data and variables. They view data through a lens 

of expectation, expecting that if their models fit data well, what remains is data that exhibits 

patterns of random variability. They view the purpose of data exploration as gathering 

information about variation to explore and compare data characteristics and relationships. 

 

Figure 5-3: Scatterplot With the Lines of Best Fit Suggested by Isaac and by the Researcher. 
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Conception: Noise in Signal and Noise (NSN) 

At the heart of Noise in Signal and Noise (NSN) conceptions of variation is a view of 

summary measures, data patterns, and relationships among variables as signals that are sometimes 

lost within noisy data. As the two teachers in this study with NSN conceptions of variation, 

Everett and Cheyenne see variation as the noise in data for data that does not precisely match 

underlying parameters, patterns, and relationships and thus interferes with identifying signals. 

Their view of variation as noise focuses their attention on exploring data; their quest to find 

patterns and relationships focuses their attention on aggregate features of data distributions while 

simultaneously considering individual datum that do not clearly fit the patterns and relationships. 

Their focus on individual and aggregate features of data is indicative of sophisticated reasoning 

about data and distribution (Hancock, Kaput, & Goldsmith, 1992; Konold & Higgins, 2002). 

Their view of variation and ―the examination of data for interesting patterns and striking 

deviations from those‖ (Moore, 1997, pp. 3-4) aligns well with what Moore (1997) considers to 

be a major focus of contemporary statistics. Throughout discussion of the NSN conception, I 

draw on examples from Cheyenne‘s and Everett‘s Content interviews to illustrate facets of their 

conceptions, selecting the clearer and more succinct examples for description.  

Everett‘s and Cheyenne‘s views of variation as noise are consistent with the idea of noise 

implicit in mathematics and statistics educators‘ descriptions of data as noise and signal. Konold 

and Pollatsek (2002) describe one interpretation of average as signal in noise and associate 

measures of center, including mean and median, with signal. It follows that measures of variation 

such as standard deviation and interquartile range describe the noise in data, and a data 

distribution becomes a ―‗distribution around‘ a signal‖ (Konold & Pollatsek, 2002, p. 262). Wild 

and Pfannkuch (1999) apply the notion of data as signal and noise more broadly than Konold and 

Pollatsek and describe statistics as existing to isolate and model signals in the presence of noise. 
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They note that making sense of statistical data ―begins by trying to find patterns in the data‖ (p. 

240). This search for patterns and relationships using summary measures and data representations 

during exploratory data analysis is of utmost importance to Everett and Cheyenne. As a focus on 

data might suggest, the data-centric perspective is prominent in their reasoning about variation. 

NSN and the Data-Centric Perspective 

Both Everett and Cheyenne are adept in reasoning about variation from the data-centric 

perspective. When they explore data, they view data through the lens of distribution (Wild, 2005), 

viewing data without regard for individual case information beyond the values for the variable(s) 

under study. Everett and Cheyenne employ what Bakker and Gravemeijer (2004) describe as an 

upward and downward view of data and distribution. Through an upward view of data, Everett 

and Cheyenne see a data set as a frequency distribution—a pointwise collection of individual 

values from which they can calculate summary measures (Bakker & Gravemeijer, 2004). 

Through downward views of data, they see an idealized distribution that they can characterize 

with aggregate features such as shape, center, and spread (Bakker & Gravemeijer, 2004). When 

they reason about patterns and trends using aggregate views and reason about individual cases 

such as outliers from pointwise views, they engage in what has been called distributional 

reasoning (Ben-Zvi, Gil, & Apel, 2007). When Everett and Cheyenne look at data, they see both 

the idiomatic trees and the forest with their pointwise and aggregate views, respectively. 

Noise With Measure of Center as Signal  

Individuals with NSN conceptions of variation see exploration of data as a necessary 

precursor to employing inferential methods. They explore data to identify potential signals and to 
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gauge the magnitude of noise in data before attempting to establish the significance (or not) of 

signals. In response to reading the Consultant Task, Cheyenne and Everett both acknowledge the 

insufficiency of making decisions from average scores alone. Cheyenne states that: 

I would have liked to have taken a look at, um, I guess I‘m a graphical person. I 
like to see the, the spread of the distribution to see what it is. Just looking at the 
means without knowing anything else about the distribution isn‘t gonna help an 
awful lot in making the decision. (Cheyenne, Content, Lines 61-65)  

Through stating a need to see the ―spread of the distribution,‖ Cheyenne indicates that she needs 

to see the ―distribution around‖ (Konold & Pollatsek, 2002) a signal in order to compare 

distributions by ―reading between the data‖ (Curcio, 1987). Everett also notes that he would 

―need to know about the distribution of scores‖ (Everett, Content, Line 105). Both Cheyenne and 

Everett mention that a difference of 0.6 does not seem to be indicative of a problem; without 

additional information, they would be loath to state that any difference exists. What distinguishes 

Everett‘s and Cheyenne‘s reasoning is their request for information about the distributions rather 

than information about specific characteristics of the distributions, namely values for measures of 

variation in general or standard deviations in particular.  

Everett and Cheyenne choose not to reason about data from summary measures alone. 

Rather, they seem to use summary measures to obtain an aggregate view of data, and they use the 

actual data values in the form of tables, dotplots, or stemplots to view data pointwise. Cheyenne‘s 

allusion to her graphical disposition and her presumed request for a graph to see the ―spread of 

the distribution‖ suggests a desire to gain a pointwise and aggregate view of the consultants‘ data. 

Cheyenne‘s desire becomes clear when she is given values for the standard deviations in addition 

to the means. 

They [the administrators] wouldn‘t have done anything like five number 
summaries or graphical displays or anything like that? Because, again here 
what‘s missing is—this could be as simple as one huge score. [Cheyenne points 
to the values of the standard deviations.] (Cheyenne, Content, Lines 180-184) 
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Cheyenne‘s reaction suggests that she cannot get a clear image of a distribution from only the 

mean and the standard deviation. Her desire to examine multiple representations reveals evidence 

of transnumeration: a fundamental element of statistical thinking in which the thinker represents 

data in numerous forms to develop a better understanding of the system in which the data is 

embedded (Wild & Pfannkuch, 1999).  

Cheyenne‘s reactions also present evidence of a desire to engage in reasoning 

characteristic of distributional reasoning (Ben-Zvi, Gil, & Apel, 2007; Reading & Shaughnessy, 

2004; Shaughnessy, Ciancetta, and Canada, 2004). In particular, Cheyenne struggles with 

Consultant Two‘s standard deviation of 20, noting, ―there‘s something strange going on there. I 

can‘t visualize that distribution‖ (Cheyenne, Content, Lines 204-205). Using pointwise logic, she 

suggests that the large standard deviation value could result from one outlier. She struggles to 

visualize a distribution with the noted aggregate features, suggesting that an outlying value might 

contribute so much noise that the summary measure of the mean produces a signal too weak to 

characterize the entire distribution of scores adequately.  

Like Cheyenne, Everett fluently reasons about data using a lens of distribution. At times 

he combines aspects of reasoning from the data-centric perspective with reasoning from the 

modeling perspective. If he reasons about data as an aggregate collection that approximates a 

typical distribution pattern and uses known properties of the distribution to reason about the data, 

he is simultaneously reasoning from both perspectives. When Everett is given the standard 

deviations for the consultants‘ scores, he reacts to the large standard deviation for Consultant 

Two‘s scores, noting that ―if it‘s out of 15 points, that seems unrealistic for a standard deviation‖ 

(Everett, Content, Lines 187-188). Unlike Cheyenne‘s initial reaction but similar to her later 

reasoning, Everett identifies a problem with the standard deviation when he focuses on aggregate 

features of the distribution. He notes that his ―experience with test scores, is that they tend to be 

reasonably normally distributed‖ (Everett, Content, Lines 191-192). As a result, he suggests that a 
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standard deviation of 20 with a mean of 10 ―would indicate that scores could go from negative 10 

to 30, which is way out of the range of 0 to 15‖ (Everett, Content, Lines 198-200). He indicates 

that Consultant Two‘s data do not produce the data pattern, or signal, one typically finds with test 

scores. There is too much noise for the data to be normally distributed. To justify his conclusion, 

he uses the interval bounded by one standard deviation above the mean and one standard 

deviation below the mean to argue against a normal pattern for the data. He later indicates his 

belief that the standard deviation of 20 is not possible for data on an interval from zero to 15. His 

aggregate view of the data (and the model he would normally associate with test scores) proves 

insufficient for adequately describing the data, and he asks to see either a stemplot or dotplot of 

the data, pointwise representations, so that he can identify any aberrations that exist in the data. 

He moves away from an aggregate view in favor of a pointwise view to explore the data further. 

Everett and Cheyenne both provide evidence of considering pointwise and aggregate views of 

data and of variation and offer no conclusions based on the conflicting messages they get when 

they compare their images to the summary values provided. Their flexible and seemingly 

effortless movement between viewing data pointwise and viewing data as an aggregate collection, 

which provides evidence of what some would term ―expert‖ distributional reasoning (Bakker & 

Gravemeijer, 2004), typifies the data-centric reasoning about variation and patterns of variability 

for those who have NSN conceptions of variation.  

Everett is particularly adept at simultaneously combining procedural and conceptual 

aspects of center and variation, or signal and noise, and combining pointwise and aggregate views 

to reason about data. Everett‘s reasoning through the Consultant Task highlights his fluency in 

reasoning from the data-centric perspective and his ability to draw on knowledge of procedures 

and conceptual properties to argue for the value that resulted from a data-entry error. Initially 

Everett estimates the missing score for Consultant Two by considering the signal—using 

calculations and properties for the mean. Everett is asked to address whether the standard 



151 

 

deviation value of 20 could result from entering a large score for Consultant Two. Everett uses 

his description of a ―casual understanding‖ (Everett, Content, Line 552) of standard deviation as 

the average deviation from the mean to form his response.14 Although other teachers expressed 

similar conceptualizations of standard deviation, none of them used their informal 

characterizations to reason about the data in the Consultant Task. The absence of informal 

characterizations of standard deviation in reasoning is a result seen elsewhere (Clark, Kraut, 

Mathews, Wimbish, 2007) and suggests the novelty of Everett‘s reasoning. Everett estimates the 

average deviation from the mean for the 49 values displayed in the dotplot shown in Figure 5-3 

and combines the squared deviations for these 49 values with the squared deviation from the 

mean for the proposed missing score. He essentially calculates a weighted average for the 50 

squared deviations, and he takes the square root of this result to confirm the value of the 

misentered score (Everett, Content, Lines 480-596). In his reasoning, Everett uses his informal 

characterization of standard deviation as a measure of noise in combination with the procedural 

formula for calculating a value for standard deviation to confirm the value of the 50th point. He 

combines pointwise reasoning related to the outlier and estimates for deviations from the mean 

with aggregate, conceptual reasoning about the average absolute deviation to form his conclusion. 

Everett‘s fluency in reasoning about standard deviation stands in stark contrast to previous 

research that suggests many ―successful‖ introductory statistics students have not developed 

appropriate process conceptions15 of standard deviation (Mathews & Clark, 2005). 

 Although Cheyenne was not asked the same question that spurred Everett‘s thoughts 

about standard deviation, Cheyenne displays proficient reasoning about variation and data in 

                                                      
14 Everett notes that the mean absolute deviation describes the actual average absolute deviation from the 
mean and not the standard deviation. 
15 Mathews and Clark (2005) and Clark, Kraut, Mathews, and Wimbish (2007) use APOS theory (Asiala, 
Brown, DeVries, Dubinsky, Mathews, & Thomas, 1996) to suggest levels of understanding for standard 
deviation. Students with action-level understandings are unable to compute or to discuss standard deviation 
without the standard deviation formula. Those with process-level understandings are able to describe 
standard deviation in terms of a distance measurement from the mean.  
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other ways. Cheyenne seems to want as much information as she can possibly have to reason 

about data. She prefers having multiple representations of data and multiple summaries measures 

of data to make decisions from data. When she is given a table of values for the size-15 samples 

in the Consultant Task, Cheyenne uses technology (Minitab) to calculate descriptive statistics 

values, including five-number summaries, means, and standard deviations. In addition to the 

columns of data values she is given, Cheyenne displays boxplots and dotplots of the data for each 

consultant. In doing so, she examines more representations of this data and its variation than does 

any other teacher in the study. From the information she generates, she has multiple opportunities 

to examine pointwise and aggregate features of distributions in general and variation in particular. 

By examining the boxplots and summary values, for example, Cheyenne is able to develop an 

aggregate view of the data, whereas the dotplots and the table provide her with a pointwise view. 

Her reasoning combines ―rule-based comparisons‖ (Rubin, Hammerman, Campbell, & Puttick, 

2005), calculating a statistic and using it for comparisons, with ―value-based comparisons‖ 

(Rubin, Hammerman, Campbell, & Puttick, 2005), comparing salient features tied to the context 

from which the data originate. Although Cheyenne reasons about data and variation in ways that 

differ from Everett, both Cheyenne and Everett reason through the pointwise and aggregate lenses 

of data and distribution. Neither draws conclusions from data before they carefully and 

thoroughly consider both signal and noise for data. By the time they turn to formally determining 

the significance of signals, they have already formed conclusions on an informal level. Their 

informal inferential reasoning, in which considerations of variation or noise play a crucial role, is 

particularly visible when they compare sets of data. 
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Noise With Data Patterns/Distributions as Signal  

In a setting where data are properly collected and comparisons between sets of data are 

desired, some might succumb to the temptation to turn to inferential methods immediately. Those 

individuals might start with assumptions that samples originate from the same population and 

differences in samples are due to sampling variability. In contrast, individuals with NSN 

conceptions of variation turn to comparisons of data and reasoning from data to consider whether 

samples could plausibly be drawn from the same population. In this way, they are reading beyond 

the data to make predictions and inferences from the data and displaying advanced 

comprehension of data structure in their reasoning from data representations (Curcio, 1987; Friel, 

Curcio, & Bright, 1991). Their comparisons of two sets of data could include comparisons for 

variation within each distribution as well as comparisons of the variation between distributions as 

steps towards determining the relationship between data sets. For example, after Cheyenne has 

the graphs and summary values for the size-50 samples in the Consultant Task, she notes that: 

There is a tendency for both of them to score within the 6 through 8 range. Um, 
this Consultant One has a—the distribution is more spread [Cheyenne points to 
the extreme values for Consultant One’s scores.], um, on both ends, um, but 
more so on the high end. Um…it makes me a little more cautious that it‘s not 
quite the same. (Cheyenne, Content, Lines 377-382)  

Cheyenne leans towards saying that the consultants do not score the tests in the same manner 

based partially on the larger range shown in the dotplot for the first consultant‘s scores in 

comparison with the other consultant‘s scores. When Everett was given the initial dotplots, he 

commented on not just the difference in variability seen within each distribution but also the 

difference in means between the distributions, displaying what Makar and Confrey (2002) term a 

―tolerance for variability‖ (p. 2).  

I see, um, two differences, at least. One is that, um, the center, or the average 
score for Consultant One definitely seems higher, uh, than Consultant Two. Also, 
Consultant One has quite a bit more variability in his scores, uh, than Consultant 
Two. (Everett, Content, Lines 305-309) 
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Neither Cheyenne nor Everett saw the initial difference in means of 0.6 as problematic and 

neither was initially willing to state that a difference existed. It seems Cheyenne is beginning to 

think ―that it‘s not quite the same.‖ Although we cannot be sure about her meaning of ―it‖, she 

does seem to be suggesting that the signal for ―it‖ might differ between the two distributions 

based on the difference in ―spread‖, or noise, in the two distributions. Similarly, Everett suggests 

that a difference exists in both ―the center‖ and the ―variability‖ for consultants‘ scores based on 

the noise he sees within each distribution and the difference in means he sees between the two 

distributions. For both Cheyenne and Everett, it is plausible that they see the differences between 

consultants‘ scores as more than just noise about a single signal but as a true difference in signals. 

Informal inferences using data-based considerations are characteristic of individuals with 

NSN conceptions. They reason not only from sample distributions, but they also make 

comparisons that include considering the plausibility of selecting distributions with similar 

characteristics in repeated samplings. For example, after Cheyenne has the graphs and summary 

values for the size-50 samples in the Consultant Task, she sits quietly. When asked what she is 

thinking about, she says ―I‘m just looking at—well, I‘m thinking about, um, if I repeat this, this 

50 again and again, um, how likely would it be to get these two differences‖ (Cheyenne, Content, 

Lines 387-389). Like Cheyenne, Everett turns to comparing two distributions to determine 

whether there is a difference between populations. He considers what he calls a randomization 

test to compare the size-50 consultants‘ samples. He describes the test as follows. 

We could throw all 100 of these scores into, you know, one set and then split 
them up into groups of 50, um, find the averages for both groups. See what the 
difference is. And then do that a bunch of times, over and over and over and over 
again. And see if a difference of point 6 [Everett points to the mean values of 9.7 
and 10.3 displayed in the summary table.] is likely to come up just due to the 
random separation of the scores into two groups. (Everett, Content, Lines 364-
374) 

Everett‘s method would allow him to test for multiple signals, including means and standard 

deviations, although he focuses on means. His method is based on data in that it essentially 
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involves taking combinations of the original data to form two new samples. In this case, he 

randomly selects 50 tests from the combined 100 tests, and considers characteristics of the newly 

formed samples in comparison with the observed difference in means of 0.6. Everett‘s method 

allows him to determine if the noise he literally sees is noise that is consistent with a single signal 

for a population mean or consistent with noise for two separate signals or population means. The 

examples from Everett and Cheyenne are not intended to suggest that they never consider formal 

parametric tests of inference. They do—Everett considers a two-sample t-test for the size-50 

samples and Cheyenne considers the two-sample t-test for the size-15 samples. These examples 

do, however, illustrate Everett‘s and Cheyenne‘s tendency to view variation (as well as center and 

distribution) through a data-centric lens. Their flexibility in reasoning about data from this 

perspective offers them the benefit of considering signal and noise when traditional probabilistic 

models do not apply. Everett also notes that his randomization approach ―just helps me think 

about – get a first impression‖ (Everett, Content, Line 879) for the significance of a signal, 

leaving formal inferential methods to serve a somewhat confirmatory role. Everett‘s and 

Cheyenne‘s focus is on exploratory analysis, whereas formal inference is used in confirmatory 

analysis, a term introduced by Chatfield (1988). 

Noise With the Relationship between Variables as Signal 

When exploring relationships among variables, those with NSN conceptions seek to find 

a signal, if one exists, for the relationship(s). Although they consider context in their reasoning 

about data, context is not their main focus. They seem to be willing, although hesitant, to search 

for signals when no context is given. They may have a lesser sense of expectation or a lesser need 

to have an explanation for observed patterns of variability than others. For example, Everett and 

Cheyenne both express hesitation in making a prediction from the seven points plotted in the 
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scatterplot from the Caliper Task. Although their reasons differ based on the signal of the 

relationship between variables that they see, both are willing to offer advice to the student. The 

noise, or scatter of data away from the observed relationship, does not appear to be sufficiently 

large to prohibit making a prediction. To do so, Cheyenne asserts that assumptions need to be 

made about the distribution, namely that the pattern seen in the distribution must continue beyond 

the rightmost point. In the end, Cheyenne notes that ―if I were going to be forced to make a 

prediction, I would probably try to, um, do a best fit graph for the data…It looks like it might be, 

um, quadratic… it‘s where the flow of the data tends to be‖ (Cheyenne, Content, Lines 858-881). 

Initially Cheyenne suggests that the data could come from a linear, quadratic, or cubic 

distribution. She settles on quadratic based on the ―flow,‖ or pattern, of the data. Implicit in her 

selection seems to be a sense that the noise in the variability of the data from the quadratic pattern 

is less than the noise in the variability from linear or cubic patterns. She seemingly sees the 

strongest signal in the ―flow‖ of a parabolic pattern.  

For individuals with NSN conceptions of variation, their reasoning from the data-centric 

perspective at times overlaps with reasoning from other perspectives. To a large extent, looking 

for relationships between variables often includes a modeling component as the signals 

sometimes take the form of a model. Like Cheyenne, when Everett examines the scatterplot with 

seven points in the Caliper Task, he sees a signal for a quadratic pattern. 

It does seem like a quadratic [Everett traces a parabolic path over the points 
displayed in the graph.], but again, it‘s only 7 points, so I wouldn‘t—I wouldn‘t 
bet my life on it or anything like that. It could be that, you know, one, if I move 
this point up [Everett points to the rightmost value in the graph.], then I would 
think it‘s linear. [Everett points to a location above the rightmost point. See 
Figure 5-4.] (Everett, Content, Lines 964-971) 

Everett does not state a quadratic fit with great certainty, but he suggests the student could use the 

quadratic relationship between the variables to make a prediction. Everett, however, does note 

that relocating just one point—the rightmost point—would change the signal that he sees 
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emanating from the data from quadratic to linear. The amount of noise, or deviation of the points 

from the pattern, would be less for a linear model than for a quadratic pattern if the ordinate value 

of the rightmost point increased. The parabolic signal that Cheyenne and Everett see in data that 

do not all lie on the curve of a parabola is strong enough for them to offer advice, albeit 

hesitantly. 

Summary of Data-Centric Perspective and NSN Conceptions 

Individuals who view variation as noise in the signals and noise of data exhibit revealing 

indicators of their conceptions as they reason while exploring data. Those indicators include 

explicit, thorough, and flexible consideration of variation, in addition to center and shape, when 

they view data through a lens of distribution. They consider variation through pointwise and 

aggregate examinations of data and distributions. They use the same distributional characteristics 

to compare distributions, considering variation within and between distributions while 

contemplating the relationship between data and the populations from which the data are drawn. 

Finally, they look for signals in bivariate distributions to determine the relationship between 

variables. They examine noise pointwise in terms of outliers and influential values and examine 

noise in the aggregate of data, looking at residuals as part of their attempts to isolate signals. No 

single characteristic in their reasoning about data appears to be exclusive to those with NSN 

 

 

Figure 5-4: Everett‘s Linear Pattern. 
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conceptions, but the totality of their facility in reasoning about and from data and their continued 

focus on data to reason about variation is unique to those with NSN conceptions of variation. 

NSN and the Design Perspective 

Cheyenne and Everett reason about variation from the design perspective using a lens of 

control. They seek to control variability in data to strengthen signals and thus enable 

identification of signals of interest. In their considerations of design, Cheyenne and Everett do not 

focus on expectation and explanation. Their desire is to reduce noise in data to isolate a signal in 

data rather than the expected signal. They also do not seem to have a strong need for determining 

cause-and-effect relationships. 

Cheyenne and Everett employ some of the same design strategies to control variation as 

teachers with other conceptions of variation. One of those strategies includes using sample size to 

isolate signals of sufficient strength. Consider Everett‘s comments about the seven-point 

scatterplot from the Caliper Task discussed in the last section. One of the reasons Everett 

hesitates to make a prediction is the small sample size, noting that ―it‘s only 7 points, so I 

wouldn‘t—I wouldn‘t bet my life on it or anything like that‖ (Everett, Content, Lines 966-967). 

Implicit in his words is the sense that if he had more points, he might get a stronger signal from 

the data. Consider this reaction with his reaction to the size-15 samples from the Consultant Task, 

where he notes that ―it‘s obviously harder to draw conclusions with smaller sample sizes, um, 

because there is more variability that can be expected‖ (Everett, Content, Lines 758-760). Everett 

seems to associate smaller sample sizes with increased noise (more variability) and decreased 

opportunity for finding or isolating a signal or signals from the data. One way that he can control 

variation in the studies he designs is to select large samples, something he suggests for the study 

he designs in the Handwriting Task. 
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Individuals with NSN conceptions of variation design studies and offer justifications for 

the elements of their designs. Everett and Cheyenne consider contextual factors to speculate about 

potential sources of variation, and they consider explanations for variation based on the context of 

data. Compared to others, the difference in their reasoning lies in their primary rationale. For 

example, when Everett is asked how he would design the consultants‘ study, he reacts as follows. 

I would suggest that you pull a random sample of papers from the district and 
make two copies of each of those particular papers…and then distribute them to 
both consultants. So there‘s maybe a set of 50 papers that they both grade, and 
then since they‘re grading the exact same papers, we know there should be no 
difference in the scores other than their own personal scoring biases or scoring, 
um, decisions. (Everett, Content, Lines 63-71) 

Everett does not offer the same design as the administrators reportedly used. Instead, he offers a 

matched-pairs design, presumably to control variation from the effects of variables different from 

consultants‘ scoring. He offers a design that benefits from his consideration of the context and 

that seems to focus on isolating a signal for the factor of interest—differences in scores. Although 

he briefly mentions scoring bias, he mentions no specific bias and seems to stop himself and 

focus instead on scoring decisions. From a focus on scoring decisions, he attributes differences in 

scores to the consultants, but he does not attribute any particular cause for the differences. 

In addition to considering the general design of observational and experimental studies 

and the size of samples used in the studies, those with NSN conceptions of variation also consider 

the use of randomization in their designs. Neither Cheyenne nor Everett seems to see much value 

in finding or considering signals that come from non-random data. Everett‘s immediate reaction 

to the Consultant Task strongly suggests that he sees little meaning in results from biased samples 

caused by lack of randomization. 

I‘d want to know first how the consultants were assigned to grade the exams. For 
instance, um, is it just sort of everybody‘s exam gets thrown in the pile and then 
they just grab half at random to grade—Or does one consultant get tests from one 
school in the district and the other consultant get tests from other schools in the 
district. If the sec—if that latter is the truth, then I don‘t think you can get 
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anything meaningful out of the results that are here. (Everett, Content, Lines 21-
31) 

Although Everett‘s language is somewhat loose when he inquires about data collection, he is 

clear in making the point that samples collected without randomization and with an obvious 

possibility for bias will not produce meaningful conclusions from data analysis. Although she 

personalizes the example by referring to her own school, Cheyenne offers the same example in 

her argument for selecting random samples. Everett and Cheyenne are consistent in making sure 

that the data they examine are selected randomly. Neither is willing to analyze the data from the 

size-15 samples without some assurance of randomization. Even though their primary focus in 

data analysis seems to be finding signals in noise, their actions seem to suggest that the signal, no 

matter how much noise or how little noise, may be misleading without randomization as part of 

the design. 

NSN and the Modeling Perspective 

Cheyenne and Everett tend to reason from the modeling perspective either in conjunction 

with or subsequent to reasoning from the data-centric perspective. They tend to view data through 

a lens of relationships, searching for patterns and relationships among data values or among 

variables. Because of the close connection with their reasoning from the data-centric perspective, 

some of their modeling reasoning has been discussed. For example, in the section discussing 

noise when the measure of center is a signal, I noted that Everett‘s experience with test scores 

formed the basis for his generalized statement that scores tend to be normally distributed. He 

seems to consider a potential model for the test data—a normal distribution—which would be the 

signal he considers. A normal distribution has known properties against which he can compare 

characteristics of the data. As noted earlier, he suggests that a set of scores with a standard 



161 

 

deviation of 20 and a mean of 10 ―would indicate that scores could go from negative 10 to 30, 

which is way out of the range of 0 to 15‖ (Everett, Content, Lines 198-200). Although he does not 

specifically mention the property that approximately 68% of the data lies within one standard 

deviation of the mean for a normal distribution, Everett does consider the interval of values 

within one standard deviation of the mean. He compares the interval against that of possible 

values and notes that the two intervals do not align. Although he does not state that the data 

cannot follow a normal distribution, there is an implication that the data contain more noise than 

he would expect from a normal signal. Everett‘s reasoning simultaneously incorporates data-

centric elements in reasoning about aggregate features of the data with modeling elements in 

reasoning about the feasibility of a model for the data.  

Most often, Cheyenne and Everett reason from the modeling perspective after they 

carefully reason about data from the data-centric perspective. They tend to use models as signals 

or in determining the significance of signals, but they typically wait to do so until after they have 

thoroughly explored data. Formal inferential methods based on parametric methods that assume a 

normal model for a sampling distribution seem to serve a confirmatory purpose for Cheyenne and 

Everett. For example, Everett states a clear preference for comparing the size-15 samples in the 

Consultant Task with an empirical model rather than a theoretical model, particularly when the 

scores in the size-15 samples are labeled as scores of students from two teachers. 

Everett: I was more thinking about putting all 30 of these in one pile—And 
seeing how they split up. That it‘d be—this is an unusual split in my 
mind. [Everett points to the two columns of values for the size-15 
samples, with scores labeled as A’s and B’s for Teacher A and Teacher 
B. See Figure 5-5.] More of a, sort of a randomization test. 

R: Okay. And so when you originally looked at the 15 and 15, before you 
knew about the different teachers, that one you were thinking about the, 
um, two-sample t? 

Everett: No, more of the randomization test also. Just looking at—there‘s way 
more double digits here [column of values for Consultant Two.] than 
here [column of values for Consultant One.], and it would be unusual if 
it really was equally likely to get them to both—I‘d expect them to be 
one, two, three, four, five, six, seven, eight, nine, ten. [Everett points 
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from bottom to top at the double digit values in the column of scores for 
Consultant Two as he counts.] There‘s twelve scores in the double 
digits, and I‘d—I wouldn‘t expect it to be exactly six and six. [Everett 
points to the two columns of scores.] But maybe five and seven, or four 
and eight, but it seems like ten and two is pretty—an extreme split. 
(Everett, Content, Lines 847-876) 

Even though the researcher believed that Everett compared the size-15 samples with a t-test, 

Everett clarifies that when he was comparing both the size-15 samples as originally presented and 

the size-15 samples with scores divided between the students of two teachers, he was basing his 

conclusions on a randomization test and the likelihood of achieving the observed division of 

scores if the 30 scores were repeatedly combined and randomly divided into two groups. He 

clearly explores the data and engages in modeling through use of his empirical test to think about 

whether the observed difference could result from the same population with a single signal for the 

mean or if each consultant produced separate and distinct signals for their average test scores. In 

this case, Everett suggests that there is too much noise to believe that the two consultants graded 

uniformly. 

 

 

Figure 5-5: Consultants‘ Size-15 Samples Broken Down by Teacher. 
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As mentioned earlier, context does not play the same prominent role for Cheyenne and 

Everett as it does for others; Cheyenne and Everett are willing to reason about data without 

context and without a need to know the causes behind their observations. As mentioned earlier, 

Everett was willing to help the student from the Caliper Task. To test whether Everett would be 

less likely to make a prediction from a linear model, the researcher tells Everett that the student 

later stipulated that he needed to use a line. Unlike others who were asked the same question,16 

Everett did not fit a line to the data. Rather, he fit a piecewise function consisting of two linear 

pieces. 

Okay, what I would have them do is I would have them divide it into two 
different data sets and look at the first five. [See Figure 5-6(a).] Create a linear 
model going like this. [Everett traces a linear path over the first five points. A 
segment has been added to the Figure 5-6(b) to show the path of the trace.] And 
then use the last three, this middle point [Everett points to the value vertically 
highest on the graph.], a second time. Have them create a linear model that goes 
like that. [Everett traces a linear path from left to right over the rightmost three 
points. A second segment has been added to Figured 5-6(c) to show the path of 
the trace.] (Everett, Content, Lines 1000-1012) 

                                                      
16 Due to time limitations for the length of the content interviews, not every teacher was asked this 
question. In particular, Cheyenne was one of the teachers who were not asked the question. 

 

 

Figure 5-6(a): Everett‘s First Data Set. 

 

 

Figure 5-6(b) and 5-6(c): Everett‘s First (b) and Second (c) ―Pieces.‖ 
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Although context does not seem to overly influence Everett when he makes decisions from data, 

signals do seem to influence him. Everett earlier acknowledged that the movement of the 

rightmost point would suggest a signal different from a parabola. Even with the tenuous signal of 

an increasing followed by decreasing pattern, it seems to be sufficiently strong for him to control 

noise by fitting two linear segments to the data. Everett also shows less concern for context than 

other teachers when he considers the full scatterplot of points for the Caliper Task. He draws a 

line for the theoretical relationship but suggests that the caliper tends to under-measure objects. 

When he draws the line for the theoretical relationship, he actually creates a line with a y-

intercept greater than 0. (See the line with a positive slope in Figure 5-7.) When asked if the 

theoretical line could be the line of best fit, he responds as follows. 

Uh, no. The, the real—the least squares regression line would be, uh, shifted 
lower and pretty much trying to go, it would go through the—or attempt to go 
through the means of all of these little distributions. [Everett traces a path from 
left to right through the approximate middles of each vertical grouping of 
points.] So I would suspect that, for the most part, it would just be shifted a little 
lower. (Everett, Content, Lines 1324-1330) 

Even though Everett previously stated the theoretical relationship between centimeters and 

inches, the signal he sees in the data does not seem to contain enough noise for him to consider a 

different signal. Everett disagrees with the theoretical model as a possibility for best fit despite 

the context that might suggest agreement to others.  

 

 

Figure 5-7: Complete Scatterplot for the Caliper Task and Everett‘s Theoretical Relationship. 
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Summary 

The preceding examples illustrate how conceptions of variation as noise in signal and 

noise influence Cheyenne‘s and Everett‘s reasoning not only from the data-centric perspective but 

also for the design and modeling perspectives. Although they reason from the three perspectives, 

their reasoning about variation is dominated by the data-centric perspective. Their reasoning 

about variation from the three perspectives closely relates to their search for signals. They reason 

about variation from the design perspective using a lens of control, with a goal of controlling 

variability to strengthen signals in data. They search for those signals through a lens of 

distribution when reasoning about variation from the data-centric perspective. To model signals 

or to confirm the significance of outcomes hypothesized from their data-centric explorations, they 

tend to reason about variation from the modeling perspective using a relationship lens. Their 

reasoning reveals identifiable and consistent differences in the ways they view variation from the 

ways in which individuals with other conceptions of variation view variation. 

Conception: Expectation and Deviation from Expectation (EDE) 

A view of variation as expectation and as deviation from expectation was the most 

prevalent form of variation conception among the teachers in this study. Eight teachers—Blake, 

Carl, Dana, Dustin, Frank, Gavin, Hudson, and Ivy—provided evidence to support interpretations 

of their conceptions as a form of Expectation and Deviation from Expectation (EDE). The most 

distinguishing feature of their conceptions is a view of variation juxtaposed with expectation—

either an a priori expectation or an expectation acquired from exploratory analysis. They often 

approach statistical situations with some hypothesized expectation—expectation for particular 

outcomes or measures (including measures of variability), particular parameter values, particular 
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patterns of variability, or particular relationships among variables. Their expectations stem from 

the statistical questions they wish to answer or from the context in which their statistical problems 

are set. In settings for which they have no a priori expectation, they explore data to develop a 

sense of expectation. In addition to expected amounts of variation, they view variation as 

deviation from expected outcomes or measures, deviation of statistics from parameters, deviation 

of observed data from expected patterns, or deviation of observed data from expected 

relationships.  

Aspects of the preceding descriptions of expectation and deviation from expectation can 

be seen in the levels of appreciation for expectation and variation articulated by Watson, 

Callingham, and Kelly (2007). Watson and colleagues speculate that increased appreciation of the 

interaction between expectation and variation matches a developmental progression of 

increasingly sophisticated statistical ideas for students in grades three through nine, forming a 

critical foundation for statistical understanding. They describe expectation in terms of 

―probabilities, averages, ‗caused‘ differences, and random distributions of outcomes,‖ which 

somewhat align with variation as ―uncertainty,‖ ―outliers,‖ ―anticipated change,‖ and 

―unanticipated change‖ (Watson, Callingham, & Kelly, 2007, p. 84). Watson and colleagues‘ 

descriptions of variation roughly align with variation for those with EDE conceptions: deviation 

of statistics from parameters, observed data from expected variation or patterns of variability, 

observed data from expected outcomes or relationships, or expected variation in the form of 

random variation, respectively. In general, the descriptions of reasoning from individuals with 

EDE conceptions of variation in this study are intended to provide a broad overview of reasoning 

about expectation and deviation from expectation, with expectation referring to a broader range of 

measures, patterns and relationships and a priori expectation than Watson and colleagues.  

Even though eight teachers provided evidence of EDE conceptions, I mainly limit my 

discussion to examples from three teachers (Blake, Dustin, and Hudson) with EDE conceptions. I 



167 

 

introduce examples from other teachers only when their reasoning provides a contrast to 

examples discussed previously. Focusing on examples from three teachers provides the reader 

with a more complete image of reasoning for individuals who view variation as EDE than would 

be possible using examples from all eight teachers.  

EDE and the Modeling Perspective 

As individuals who view variation as expectation and deviation from expectation, Blake, 

Dustin, and Hudson tend to reason about variation from the modeling perspective through a lens 

of expectation. In general, in familiar context settings, individuals with EDE conceptions 

determine the extent to which models for relationships among data or among variables conform to 

expectation, and they use models to determine if deviation from expectation is greater than 

chance would predict. Their views of variation align with the view of statistics articulated by a 

statistician in Pfannkuch and Wild‘s (2000) study: ―statistics as the fitting of models, formal 

analysis, and the ‗measuring of evidence‘‖ (p. 198). These three articulated characteristics of 

statistics align with the main statistical foci of individuals with EDE conceptions: modeling 

patterns and relationships, using formal inferential methods, and interpreting p-values in context. 

Individuals with EDE conceptions also reason from the modeling perspective to develop a sense 

of expectation in settings for which they have no a priori expectation and then reason about 

deviations from their newly formed expectations.  

Deviation of Statistics From Parameters 

Individuals with EDE conceptions of variation approach inferential settings with 

expectations for the relationships between statistics and parameters. Their expectations for 
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parameters are determined by the statistical questions they hope to answer, and they attempt to 

determine if observed statistics are reasonable given their stated expectations. With the 

dominance of traditional parametric methods in introductory statistics courses (Cobb, 2005), it is 

not surprising that many of the teachers in this study tended to approach settings relating means 

and proportions with parametric methods that necessitate comparisons of observations with 

theoretical models. Each teacher with an EDE conception of variation suggested conducting an 

inferential test in their initial analytical reactions to the Consultant Task. For example, after Blake 

reads the Consultant Task description, he notes the following. 

You can see that it‘s nine point seven versus a ten point three, we can obviously, 
uh, do some sort of t-test or something like that on it to, to see if that result is 
significant…Obviously we got the one score was ten point three. We could, 
everybody could see that that was higher. The issue and the statistic—from a 
person who‘s trained in statistics—is it significantly higher. (Blake, Content, 
Lines 56-66) 

Blake‘s initial reaction is to compare the means using a t-test to establish if one mean is 

significantly higher than the other mean. For Blake, the question is not whether a difference in 

means exists—he expects to see a difference—but whether the observed difference in means 

deviates from expectation by more than what is probable. Although he does not explicitly 

acknowledge that he is using a theoretical model to model the situation, he later notes that ―the t-

test is a nice approximation to the model we‘re seeing‖ (Blake, Content, Line 170), and he 

clarifies that to him significance means ―not reasonably attributed to chance‖ (Blake, Content, 

Line 70). Focus on the difference in means of 0.6 and determining whether the difference 

deviated significantly from the expected difference in means of zero seems to dominate Blake‘s 

initial considerations for analysis and the initial analysis considerations for others with EDE 

conceptions. Their considerations invoke comparisons of sample characteristics with theoretical 

models. 
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 For those with EDE conceptions of variation, determining whether observed results 

deviate from expectation by more than chance would predict tends to be at the forefront of their 

considerations of data. Blake describes his view of variability in statistics as something that he 

expects to see in a ―sampling distribution-type thing.‖ He clarifies what he means by suggesting 

that variability is his ―expectation given the confines of the problem that has been presented, uh, 

in sort of random repetition of the, um, of the event‖ (Blake, Content, Lines 1939-1942). It seems 

plausible that his ―sampling distribution-type thing‖ refers to an empirical sampling distribution 

built from sample statistics measured from repeated random samples of a population and for 

which there is an expectation that some or all sample statistics will differ in a predictable manner 

from the parameter of a larger population. This distribution of statistics resulting from random 

repetition provides Blake with an image of expectation and a model against which he can 

determine the plausibility of a particular event occurring based on deviation from expectation for 

a characteristic of the event. In contrast to Blake, Hudson states a clear relationship between 

variation and chance, noting that ―often we‘re asking questions about whether it [sample result] 

could have been due to chance variability‖ (Hudson, Content, Lines 2206-2207). For both Blake 

and Hudson, their views of variation connect tightly with formal or informal inferential 

methods—methods that rely on the use of models to determine whether observed data or statistics 

differ from expectation by more than chance would predict—and reasoning from the modeling 

perspective. Each teacher who views variation as EDE introduced the idea of chance variability 

either early in their response to the Consultant Task or in response to the question of their 

associations with the word variation.  

Although a suggestion to use significance tests in situations typically associated with 

parametric methods is neither unusual nor unique to individuals with EDE conceptions, their 

immediate suggestions to employ formal inferential methods subsequent to checking conditions 

or subsequent to making assumptions about conditions being met differs from the reactions of 
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those with other conceptions. Individuals with EDE conceptions offer inferentially-linked 

reactions to statistical situations through the ideas of expectation and deviation from expectation. 

The exact ways in which they do so may differ from individual to individual and task to task. For 

example, Blake notes that he does not have sufficient information to conduct a t-test for 

comparing consultants‘ means. In response to a question of why he needed the standard deviation 

values he requested, Blake introduces the idea of expectation for standard deviation. 

If everybody in the whole world, uh, in every measurement that we ever did, if 
the variability, you know, from the mean, from person to person, was consistent 
in all measurements, then yes, we could take some universal variation amongst 
people, but I have no knowledge of how kids typically vary in their scores on this 
test. (Blake, Content, Lines 226-232) 

Whereas most of the teachers with EDE conceptions commented on needing to know how the 

difference in means of 0.6 related to the spread of scores associated with the specific samples 

from both consultants, Blake observes that he has no general expectation or model for reasonable 

standard deviation values. His request centers on expectation for standard deviation in a way that 

parallels the use of sample means as estimates of expectation for population means. In contrast to 

Blake, although Hudson does not state a particular expectation for standard deviation, he has 

some idea about values that would be outside his realm of expectation for concluding a difference 

exists. He tests his conjecture by conducting a two-sample t-test with hypothesized standard 

deviation values and then proceeds to conduct additional tests to determine standard deviations at 

the threshold for declaring a difference exists. Although Blake and Hudson reason differently in 

the absence of standard deviation values, their reasoning contains considerations of expectation 

for variation based either on students‘ historical performance on the assessment or the limited 

interval of possible scores. Additionally, although both Blake and Hudson seemingly approach 

standard deviation with little sense of expectation, their approach to the overall task is based on 

expectation—expectation that the deviation in means for consultants‘ scores will not differ 

significantly from an expectation of zero.  
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Deviation of Observed Data From Expected Patterns  

In addition to characteristically using models to reason inferentially, individuals with 

EDE conceptions of variation tend to use models to reason about data and expectation. They use 

properties of the models to develop a sense of expectation for characteristics of data or to decide 

if observed data deviate from expectation. For example, consider Dustin‘s method for estimating 

the standard deviation of Consultant Two‘s size-50 sample. After Dustin notices a mismatch 

between the value of the standard deviation and the dotplot for the second consultant‘s size-50 

sample, he estimates the standard deviation from the dotplot to be around two. 

Here‘s a spread of 6 [Dustin points to the minimum value and the maximum value 
on the dotplot for Consultant Two’s scores. See Figure 5-8. A line has been 
added to portray Dustin’s estimate for the mean of Consultant Two’s scores.] 
Reasonably symmetric, um, given some variation, so you‘ve got 6 wide…let‘s 
divide it by four rather than six, uh, for two standard deviations on each side, six 
divided by four is… one and a half. So let‘s say around 2 for just want of 
anything—a nice number to use. (Dustin, Content, Lines 844-853) 

Dustin calculates the range of Consultant Two‘s scores and divides that range by four. Although 

he does not specify here that he considers an interval of values within two standard deviations of 

the mean, he later notes, ―the vast majority of the data really falls within two on each side‖ of the 

mean (Dustin, Content, Lines 871-872). He uses that information to estimate the standard 

deviation for this ―reasonably symmetric‖ distribution (Dustin, Content, Line 861). Dustin 

compares the observed distribution of values against an expected pattern with known 

characteristics—a normal distribution model. He earlier implied an expectation of normality for 

test scores, and he acknowledges that these data deviate from the idealized normal pattern. He 

rounds his calculation to two to account ―for a couple of extreme values‖ (Dustin, Content, Lines 

875-876). Although not a perfect fit, his model provides him with a sense of expectation and 

estimates for the mean and standard deviation of Consultant Two‘s scores. Not every teacher with 

an EDE conception of variation reasoned from a normal distribution model to estimate values for 
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Consultant Two‘s mean and standard deviation, although they all reasoned about the values based 

on some sort of expectation. For example, Frank uses his knowledge of Chebyshev‘s Theorem 

and the fact that ―almost all the data is plus or minus three standard deviations, generally, in a 

distribution, unless it‘s a really wild distribution‖ to estimate whether the given standard 

deviations match his expectation and to estimate values if his expectation is not met (Frank, 

Content, Lines 395-397).  

Empirical rules are often invoked by individuals with EDE conceptions to reason about 

characteristics of normal or approximately normal distributions and to reason about how data are 

distributed. For those who reason about expectation and deviation from expectation, it is not 

unusual for them to appeal to expectations of known distributions, such as normal distributions, to 

estimate values for all distributions. They seem view data as a combination of ―pattern and 

deviation‖ (Borovcnik, 2005), with substantial deviation at times. For example, even when Dustin 

seems to examine data without expectation for characteristics of the data, he turns to models to 

help him develop a sense of expectation. When he is faced with a distribution in which data 

deviate far from expected patterns, such as the distribution of Consultant One‘s scores, his 

estimates are less accurate. For the data from Consultant One, Dustin uses characteristics of a 

normal model and considers how much he needs to adjust for nonnormality in order to estimate a 

value for expectation and a value for typical deviation from expectation. Even though he stated 

that the data were clearly skewed, he still chose to reason from a flawed model for the data, 

 

 

Figure 5-8: Dustin‘s Interval for Estimating Consultant Two‘s Standard Deviation. 
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suggesting his need for models in characterizing distributions. Other individuals with EDE 

conceptions used models in similar ways to develop a sense of expectation for nonnormal data 

distributions. 

Deviation of Observed Data From Expected Relationships  

Relationships between variables seem to offer those with EDE conceptions a stronger 

sense of expectation than relationships in univariate data or between sets of univariate data, 

although context surely plays a role in determining their level of confidence for expectation. Even 

before the context of the Caliper Task is given to Blake, he uses patterns in the data to gain a 

sense of expectation for the relationship between x and y. When Blake responds to the task, he 

suggests there is a somewhat periodic trend or pattern in the data. He also suggests a somewhat 

linear trend in the data by suggesting a model that considers all but the rightmost point. Blake‘s 

implication is that the trends or models for the data can be used to make a prediction for y when x 

is four. His final suggestion, however, offers no prediction for the student. It is here that we see 

his sense of expectation. 

I‘m not going to tell you anything because you‘re outside of the domain of the 
data that I had to make a decision on, and so, so really I can make predictions 
comfortably if…I‘m gonna put some boundaries on my abilities between, say 1 
and I guess about 3. [Blake points to the values of 1 and 3 on the horizontal axis 
of the scatterplot.] (Blake, Content, Lines 1062-1068) 

Blake suggests he can comfortably make predictions for only a restricted interval on x; the value 

of four lies outside the domain for which he has some sense of expectation. Although he 

recognizes several possibilities for making a prediction when x is four, he objects to extrapolating 

those patterns beyond the given data as well as within the right-most portion of the given data. 

Blake seems to be willing to offer a prediction, but his prediction is limited to values of x between 

one and three, inclusive. Most teachers with EDE conceptions of variation expressed hesitation in 
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making a prediction based on extrapolation. When asked if they would be willing to make a 

prediction from different values of x, such as a value of three or a value close to three, they 

offered predictions. For this data, they were willing to interpolate but not extrapolate to read 

beyond the data (Curcio, 1987; Friel, Curcio, & Bright, 2001). For example, Gavin notes that he 

would be willing to make a prediction when x is 3.25 ―because it‘s, uh, it‘s within the range of 

our data… our x values. Um, and it seems like we have a pretty clear pattern of increasing‖ 

(Gavin, Content, Lines 1088-1091). The combination of a value within the domain of given data 

along with a ―pretty clear‖ increasing pattern of variability provides Gavin an expectation for y if 

x is 3.25. For Gavin and others with EDE conceptions, their confidence in and willingness to 

make predictions seems to be based on their level of certainty for expectation. 

 One of the main reasons for modeling variation is for the purpose of prediction (Wild & 

Pfannkuch, 1999). Individuals with EDE conceptions of variation are more willing to make 

predictions when the value of the explanatory variable falls clearly within an interval about the 

expected value. Although not everyone with an EDE conception reacts to statistical situations in 

the same manner, they do reason in ways consistent with expectation and deviation from 

expectation. Although Blake and others were uncomfortable in offering the student a prediction 

for x equal to four in the Caliper Task, Hudson offers a different reaction. Hudson also hesitates 

to offer advice to the student based in the value of x not staying ―strictly within the bounds of x‖ 

(Hudson, Content, Line 1273). Like Blake and Gavin, he seems to have no expectation for y when 

x is four. He suggests that information about the variables might help him to model the data based 

on a theoretical relationship that he ―might bring…into the thinking‖ (Hudson, Content, Lines 

1329-1330). By having information about the context, he suggests that he might be able to form a 

better sense of expectation for the relationship between x and y. Hudson discusses a variety of 

options for modeling the data, including a line, a piecewise function with linear pieces, or a 

parabola. He stops by concluding, ―absent any idea of the relationship between x and y, we might 
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just guess the mean y value‖ because ―the mean is the point that minimizes the sum of squared 

deviations around it‖ (Hudson, Content, Lines 1370-1375). Although he never states a definitive 

conclusion, Hudson suggests that the average, or expected, value for y minimizes vertical 

deviations from the mean, making it (for him) as good for predicting y as the other models he 

mentioned. Unlike Blake and Gavin, he seems to come to some resolution for how the student 

might make a prediction based on expectation. His reasoning differs from Blake‘s and Gavin‘s 

and ultimately his conclusion differs as well, but despite the outward differences in their 

conclusions, at the core of their rationales are the ideas of expectation and minimizing deviation 

from expectation. 

 As Hudson‘s comments might suggest, context plays a role in enabling those with EDE 

conceptions to develop a stronger sense of expectation for patterns in data; their sense of 

expectation plays a prominent role in their reasoning about relationships. After Blake is given the 

context of the Caliper Task, he reacts by noting, ―the relationship between centimeters and inches 

is going to be a linear function‖ (Blake, Content, Lines 1152-1153). When asked what he would 

suggest to the student, he seems to ignore the data and offers advice based strictly on expectation 

from the context. 

Well I would tell them to just take the formula, the, the 2 point 5, 4 centimeters 
equals 1 inch, and convert it. They could, they could um, if they know that, they 
can just make the conversion and fudge the whole thing. (Blake, Content, Lines 
1184-1187) 

Rather than fit a model that ignores the two rightmost points that he believed were mistakes, 

Blake suggests the student should make a prediction based solely on his expectation from the 

theoretical relationship. Blake does not fit a model that takes context into consideration; instead 

he suggests the theoretical relationship that only takes context into consideration. After he is told 

that the student needs to include the data as part of the assignment, Blake notes the following. 

I would still—now that I know this, you—I would insist on the linear 
relationship, insist well does he want the formula or to do some sort of regression 
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on a linear relationship, it‘s got to go up here. [See Figure 5-9.]…If these are, if 
these [seven points] are locked in, I would go to the teacher and whoever you‘re 
dealing this with, this assignment and hope to make a—start over with a new 
graph. Because you know you‘re in error here. [Blake points to the rightmost 
point.] (Blake, Content, Lines 1203-1207) 

Blake does not seem to consider legitimate reasons for why the two rightmost points might 

deviate from expectation. Instead, he suggests that the student use either the theoretical formula 

or a linear relationship that would produce a prediction in agreement with his expectation. In the 

end, he seems to be unwilling to have the student complete the assignment from the given data.  

Although Blake might not react in the same manner if he were making a prediction for 

his own purposes, his sense of expectation for the relationship between the two variables along 

with the deviation from expectation for the rightmost point, perhaps coupled with his expectations 

about the student‘s grade, seems to be so strong that he is not willing to use the given data. To 

him, the data are flawed and do not adequately represent the situation and thus should not be 

used. He focuses on what Gould (2004) refers to as deterministic variation, that which has a 

―regular structure,‖ to the exclusion of stochastic variation.  

Unfortunately due to time constraints, not every teacher who views variation as EDE was 

asked to make a prediction after the context was given. Those who were asked either suggested 

using the theoretical relationship to make a prediction, tossing out the rightmost point and then 

using subsequent regression to make a prediction, or having the student ask their lab partners for 

 

 

Figure 5-9: Blake‘s Prediction When x is Four. 
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more information about the rightmost point. In each case, their suggestions were based in their 

expectations within the context of measurement. 

Context provides such a strong sense of expectation for those with EDE conceptions that 

it might unconsciously guide their development of models. Consideration of the data produced 

within the context matters for modeling data. For example, after Hudson is given the full 

scatterplot of data in the Caliper Task, he examines the data in contrast with his expectation from 

the context. He plots two points, one at the origin and the other at the point with x-coordinate of 

2.54 (centimeters) and y-coordinate of one (inches), and draws a line through the two points to 

represent the theoretical relationship between variables. [See the darker line displayed in Figure 

5-10(a) and the upper line displayed in Figure 5-10(b).] Because of the imprecise nature of the 

points he plotted, the line he draws has a slightly greater slope than that of the theoretical 

relationship, which in actuality corresponds with the line of best fit that passes through the center 

of each of the vertical groupings of points. Hudson also draws a second line through the centers 

and describes it as the best-fit line. [See the lower line displayed in Figure 5-10(b).]  

Although he is aware of the theoretical relationship, Hudson does not seem to be so 

influenced by the context that he cannot consider a different model that provides a better fit to the 

data. Later, after he is given the regression output, Hudson observes that ―I did something back 

here [graph of best-fit line] that there was actually no, no reason to do. I fixed the point at the 

origin because I would like, uh, something that has zero dimension to have a measurement of 

 

 

Figure 5-10(a) and 5-10(b): Hudson‘s Theoretical Relationship (a) and Line of Best Fit (b). 
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zero‖ (Hudson, Content, Lines 1743-1747). Even though Hudson was consciously aware that he 

was fitting a line to the data that did not match the theoretical relationship, the imprecise nature of 

his measurements and freehand drawing allowed him to draw a line through the centers of the 

vertical groupings of points and through the origin. Not until he saw the nonzero value for the 

intercept in the regression output did he seem to realize the effect context had on his sense of 

expectation. Although Hudson did not seem to be consciously aware of the powerful effect 

context had for his expectation, Dana recognizes the pull that context has on her thinking, noting 

that she was ―being colored by the fact that I know the relationship between centimeters and 

inches‖ when she considered models for the data from the Caliper Task (Dana, Content, Lines 

1057-1059). For Dana, Hudson, and others with EDE conceptions, their expectations from the 

known theoretical relationship between inches and centimeters influences their analysis. They are 

consciously or subconsciously influenced by the expected theoretical relationship. 

Summary of Modeling Perspective and EDE Conceptions  

Whether consciously aware of how their sense of expectation influences their reasoning 

or not, it seems clear that individuals with EDE conceptions of variation reason with a focus on 

expectation and deviations from expectation, particularly in deciding whether deviations go 

beyond what random processes should produce. Their consistent focus on models for developing 

a sense of expectation, use of models for examining deviation from expectation, and use of 

models to decide whether there is too much deviation from expectation characterizes their 

reasoning and distinguishes their views of variation from other views. Their reasoning seems to 

incorporate models naturally and without prompting. Horvath and Lehrer (1998) suggest that a 

―model-based perspective‖ aligns with the nature of statistics, which they describe as being ―all 

about modeling data‖ (p. 147). No single characteristic appears to be exclusive to those with EDE 
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conceptions, but the totality of their reliance on reasoning from models and expectation is unique 

to those with EDE conceptions of variation. Blake, Dustin, and Hudson are most adept at 

reasoning about variation from the modeling perspective. They are, however, capable of 

reasoning from other perspectives. When they reason from the design and data-centric 

perspectives, elements of their expectation and deviation from expectation view of variation 

appear in their reasoning.  

EDE and the Design Perspective  

As already mentioned, individuals with EDE conceptions of variation tend to view 

context with a lens of expectation. They use context to develop a sense of expectation for factors 

of interest to as well as factors tangential to studies. They view design through the lens of control. 

They attempt to design studies in ways that control variability in data in order to minimize 

deviation from expectation and to increase the probability that they will be able to detect 

significant deviations from expectation. For example, Blake, Dustin, and Hudson recommend 

matched pairs designs for the Consultant Task. Blake suggests pairing students by similar 

qualities for ―every variable that I think would affect their scores‖ (Blake, Content, Lines 93-94), 

whereas Dustin and Hudson suggest having consultants score the same tests. Consider Dustin‘s 

reasoning for a matched-pairs design. 

Essentially what would be probably a better approach is to give 50 exams to 
Consultant A [Consultant One] and the same 50 randomly selected exams to 
Consultant B [Consultant Two], doing a matched pair and see if in fact there was 
a difference. Now you‘ve controlled the variability of the tests between the two 
groups, where you‘re looking now strictly at, since you‘re giving the same test, is 
there a real difference between the consultants. (Dustin, Content, Lines 111-118) 

Dustin essentially suggests that the matched-pairs design controls most, if not all, variation from 

sources other than the consultants and allows focus to be on any differences in consultants‘ 
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scoring. Specifically, he notes that a matched-pairs design will allow him to determine ―if in fact 

there was a difference.‖ His words imply that he connects his design with a test of inference, with 

the design enabling him to determine if the average difference in scores deviates too far from his 

expectation of no difference to be plausible. By connecting design with inference, Dustin presents 

evidence that he considers models when he reasons about design. In general, Dustin and others 

with EDE conceptions desire design strategies that produce clear models for making decisions 

from data. 

Individuals with EDE conceptions use sample size and randomization to control variation 

in observational studies and experiments, and they consider blocking as a strategy for controlling 

variation in experiments. The rationale behind their suggestions focuses on designing conditions 

conducive to determining significance. For example, when Blake designs a study to test the 

conjecture in the Handwriting Task, he mentions controlling for a variety of factors and then 

randomly assigning papers ―after I‘m done with everything that I think I can control‖ in the ―hope 

that the rest of the stuff gets smoothed through‖ (Blake, Content, Lines 1746-1772). He focuses 

on control and seems to hope that the effects of any remaining confounding factors are divided 

evenly among observational or experimental groups. Blake also expresses concern about the 

effects of small samples, and he suggests that large sample sizes are more likely to produce 

―equal‖ groups. In particular, he notes, ―small just means—like I said small just makes it harder 

to find a significant difference. Your difference typically has to be of a higher magnitude to make 

it significant‖ (Blake, Content, Lines 1798-1801). His words imply that small samples require 

deviations from expectation to be of larger magnitude for determining whether the deviation 

differs significantly from expectation. Not only does Blake suggest design strategies that allow 

him to make comparisons, but he connects his design to inference and the reasoning from the 

modeling perspective that would follow. By controlling variability, he and others with EDE 
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conceptions reduce the variation in sampling distributions, making it easier to identify significant 

deviations from expectation. 

EDE and the Data-Centric Perspective 

Those who view variation as expectation and deviation from expectation tend to explore 

data to gain a sense of expectation or to explore whether data conforms to expectation. They view 

data and characteristics of data through a lens of expectation. For example, some sense of 

expectation for reasonable standard deviations in scores can be formed from reading the 

Consultant Task description. The range of values is 15, which even from a conservative stance 

suggests that the standard deviation needs to be smaller than 15. The strong reactions of Dustin 

and Hudson at seeing the standard deviation for Consultant Two‘s scores in the summary table 

certainly suggest that the value of 20.2 significantly deviated from their expectations. Hudson 

reacts with ―holy moly!‖ (Hudson, Content, Line 563) and Dustin says ―Yowza‖ (Dustin, 

Content, Line 326). In both cases, they confirm that their reactions were in response to the large 

value of the standard deviation. Their strong reactions and the reactions of several others with 

EDE conceptions were the strongest external reactions that were observed in response to the large 

standard deviation value.  

In general, Blake, Dustin, Hudson, and others with EDE conceptions of variation reason 

about data with help from models and do not exhibit reasoning dominated by the data-centric 

perspective. They use theoretical models and characteristics of those models to reason about data 

when possible, and the models tend to match with their expectation for data. As a result, their 

reasoning from the data-centric perspective often reveals characteristics reminiscent of their 

reasoning from the modeling perspective. This connection between their reasoning from the 

modeling and data-centric perspectives was discussed in the section titled ―Deviation of Observed 
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Data from Expected Patterns.‖ Additionally, even when they are asked to think outside the 

context of statistics, just the word variation has connotations of expectation for them. When Blake 

is asked to describe what he thinks about when he hears the words variation or variability, he 

states that his view of variability ―outside statistics‖ is ―anything that‘s different‖ (Blake, 

Content, Lines 1950-1953). When he describes this view further, he likens his view to an outlier 

―that varies quite a bit from what I would expect‖ (Blake, Content, Lines 1949-1958). His follow-

up suggests that he conceives of variability in terms of expectation and deviation–expectation for 

a distribution of values and the deviation of a data value from expectation of particular outcomes.  

Summary 

The preceding examples illustrate how conceptions of variation as expectation and 

deviation from expectation influence Blake‘s, Dustin‘s, and Hudson‘s reasoning not only from 

the modeling perspective but for the design and data-centric perspectives as well. Although only a 

few examples were drawn from the data from the other five teachers with EDE conceptions, their 

reasoning about variation is consistent with a view of variation as expectation and deviation from 

expectation. Examples to support this claim would look similar to examples presented throughout 

discussion of EDE conceptions. The dominance of the modeling perspective and consideration 

for expectation and deviation from expectation in their reasoning reveals identifiable and 

consistent differences in the ways they view variation from others.  

Comparison of Conceptions 

Similarities and differences can be seen throughout the preceding discussion of the three 

types of conceptions: expected but explainable and controllable (EEC) conceptions, noise in 
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signal and noise (NSN) conceptions, and expectation and deviation from expectation (EDE) 

conceptions of variation. Those differences are elucidated further in this section. Because this 

section will include examples from individuals for each of the three conceptions throughout, a 

recap of the teachers and their conceptions is displayed in Table 5-1.  

Conception Expected but 
Explainable and 

Controllable  
(EEC) 

Noise in Signal 
and Noise  

(NSN) 

Expectation and Deviation from 
Expectation  

(EDE) 

Teachers Haley 
Isaac 

Cheyenne 
Everett 

Blake 
Carl 
Dana 

Dustin 

Frank 
Gavin 

Hudson 
Ivy 

Summary of the Three Conceptions 

Individuals with different conceptions of variation view variation in distinctly different 

ways. Individuals with EEC conceptions of variation primarily see variation as something they 

need to control and explain to uncover relationships among data and among variables. They 

control variation by implementing carefully selected data collection methods; they seek to explain 

as much variability in data as possible and privilege explanation of systematic variation 

contributed by causal factors. As a result, the design perspective dominates considerations of 

variation for those with EEC conceptions. Although design considerations are prominent in the 

reasoning of individuals with NSN and EDE conceptions of variation, their views of variation do 

not align as closely with design considerations as the views of those with EEC conceptions. 

Individuals with NSN conceptions of variation see variation in data as something through 

which they need to sort to find signals. Variation is the noise in data that sometimes obscures the 

Table 5-1: Teachers and Their Conceptions of Variation. 
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signals of interest. They prefer to explore variation in data through measures and multiple 

representations, which results in the data-centric perspective as most present in their reasoning 

about variation.  

Unlike those with NSN conceptions, individuals with EDE conceptions of variation tend 

to explore data through the use of models. They see variation as something that can be expected 

in data, in statistics, and in patterns of variability for relationships in data for variables or among 

variables. They expect that data, statistics, and patterns can be modeled and at times have 

expectations for the form of the models. They also see variation in deviations or differences from 

expectation. They use models to describe variation and patterns of variability in data and to 

determine whether deviation from expectation is greater than what they would expect from 

random variability. Reasoning about variation through models results in reasoning dominated by 

the modeling perspective. 

As differences in the dominance of perspectives and differences in the views of variation 

associated with the three types of conceptions of variation might suggest, the ways in which 

individuals reason about variation differ in relation to constructs associated with each perspective. 

Analysis of the 16 teachers‘ data revealed that the ways individuals look at design, data 

exploration, and models differ according to their conceptions. Succeeding discussion about the 

similarities and differences of the three conceptions of variation focuses on not only how 

individuals view design, data, and models but also their perceived purposes for these things. 

Additionally, contextual considerations affect reasoning about variation with regard to design, 

data exploration, and models. Because context transcends all areas of statistics, individuals‘ views 

of context and their perceived roles of context are discussed. Table 5-2 contains a summary of the 

lenses and purposes for design, data exploration, models, and context that are characteristic of 

each type of conception. Similarities and differences among conceptions in each of these areas 

are discussed next.
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 EEC Conception NSN Conception EDE Conception 

Relationship to variation Explain it and control it Sort through it Expect it and model patterns of it 

Dominant perspective from 

which variation is viewed 

Design Data-Centric Modeling 

Dominant lens through 

which design is viewed 

Explanation and control lens Control lens Control lens 

Purpose of design Control variability in data to increase potential 
for determining and explaining relationships, 
particularly cause-and-effect relationships 

Control variability in data to strengthen signals 
and enable identification of signal(s) of interest 

Control variability in data to minimize deviation 
from expectation and to increase probability for 
detecting significant deviations from 
expectation  

Dominant lens through 

which data are viewed 

Expectation lens—look for patterns of random 
variability  

Distribution lens—search for patterns and 
relationships as signals in noise 

Expectation lens—look for whether data 
conform to expectation 

Purpose of data exploration Gather information about variation (in the form 
of descriptions, measurements, and 
representations) to explore and compare data 
characteristics and relationships 

Find signals—summary statistics, data patterns, 
or relationships among variables—in the noise 
of data that do not precisely match the statistics, 
patterns, or relationships 

Explore data to gain a sense of expectation and 
to explore whether data conform to expectation 
(with expectation taking the form of particular 
outcomes or measures, parameter values, 
patterns of variability, or relationships among 
variables) 

Dominant lens through 

which models are viewed 

Relationship lens—use models to capture 
relationships among data and among variables 

Relationship lens—search for patterns and 
relationships among data and among variables 

Expectation lens—determine the extent to 
which models for relationships among data and 
among variables conform to expectation 

Purpose of models Determine or confirm strength or significance of 
relationships among data and among variables 

Model signals to explore characteristics of the 
data or to determine, quantify, or confirm 
significance of signals or of including factors in 
the models of signals 

Determine if deviation from expectation is 
greater than chance would predict and 
determine the significance (or not) of expected 
relationships 

Dominant lens through 

which context is viewed 

Explanation and control lens—look for factors 
that are potential contributors of variability and 
that need to be controlled or explained  

Anticipation lens—consider potential 
contributors to noise and reasonable variability 
in data 

Expectation lens—develop a sense of 
expectation for or recall a priori knowledge 
about expectation for variation in factors of 
interest and factors tangential to studies  

Purpose of context Identify potential sources of variation; identify 
theoretical values or relationships among 
parameters or variables, respectively; and 
determine feasibility of conclusions 

Identify potential contributors to noise and to 
identify reasonable variation in the factor or 
factors of interest  

Develop expectation for particular outcomes or 
measures, parameter values, patterns of 
variability, or relationships among variables 

Table 5-2:  Dominant Lenses and Purposes for Models, Data Exploration, Design and Context for Each Type of Conception of Variation. 
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Design 

Controlled variation in data is an important outcome of well-designed statistical studies, 

and control is part of how individuals with each of the three conceptions view design. Individuals 

with NSN conceptions and individuals with EDE conceptions view design primarily through 

lenses of control, whereas individuals with EEC conceptions mainly view design through lenses 

of both explanation and control. Although each of the lens descriptors alludes to control, there are 

two ways in which the conceptions differ: purposes for viewing design and the role of 

explanation in design. 

Individuals with different conceptions differ in their purposes for viewing design and do 

so in ways that reflect crucial aspects of their conceptions. Teachers with EEC conceptions of 

variation see the main purposes of design as both controlling variability in data to increase the 

probability for determining relationships among data and among variables, and explaining the 

relationships apparent in data. Those with NSN conceptions view the primary purpose of design 

as controlling variability in data to strengthen signals that emanate from data and to allow them to 

identify signals of interest for their research questions. Individuals with EDE conceptions view 

the main purpose of design as controlling variability in data to minimize deviation from 

expectation and to increase probability for detecting significant deviation from expectation. From 

these descriptions, we see that design is a tool for those with EEC conceptions to maximize their 

potential for describing relationships, particularly cause-and-effect relationships; for those with 

NSN conceptions to identify signals of interest by strengthening signals in noisy data; and for 

those with EDE conceptions to detect significant deviations from expectation by minimizing 

deviations in data. 
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Differences in reasoning aligned with differences in conceptions appear in individuals‘ 

reactions to considering study design and in designing studies. For example, after Everett, who 

has an NSN conception of variation, describes the signal he sees in the initial scatterplot for the 

Caliper Task, he hesitatingly uses the pattern to extrapolate a predicted value. He bases his 

hesitation on the small sample size of seven and indicates that a different signal emerges with a 

change in just one point. Implicit in his reaction to the small sample size and unclear signal is a 

sense that increased sample sizes amplify signals from data. In alignment with an NSN 

conception, he associates sample size as an element of design with control; a larger sample size 

should control noise in data and strengthen the signal for the relationship between variables. 

Blake also describes the controlling effects of sample size when he designs a study for the 

Handwriting Task. Typical of his EDE conception of variation, he focuses on minimizing 

deviations. He implies that small samples require deviations from expectation to be of larger 

magnitude to determine significant deviations from expectation. We see evidence that Blake 

controls variability by increasing sample size; he reduces variation in a sampling distribution and 

enables easier identification of significant deviations from expectation.  

Haley describes the controlling effect of sample size on the variation of sampling 

distributions as she reasons about sample sizes for the Consultant Task. She notes that by 

increasing sample size, she ―tightens‖ the sampling distribution, which allows her to draw ―more 

accurate‖ conclusions (Haley, Content, Lines 693-694). True to her EEC conception, she 

considers not only how sample size affects her abilities to determine whether the consultants 

differ in their scoring but also how methods can be used to show how the consultants differ in 

their scoring. She suggests determining the relationship between consultants‘ scores by 

comparing their scores against some known standard. As an individual with an EEC conception, 

Haley evidences using sample size as one strategy to control variation for determining the 

relationship between consultants‘ scores and complementing her control strategies with strategies 
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that allow greater explanatory power for the relationship between consultants‘ scores. From these 

three teachers with three different conceptions, we see evidence of using sample size as a design 

strategy to control variation. The reasons for controlling variability, however, differed in ways 

consistent with their conceptions.  

For each conception of variation, control is part of how design is viewed. One definition 

of control is ―changing the pattern of variation to something more desirable‖ (Wild & Pfannkuch, 

1999, p. 236). The major differences among conceptions appear to be in what individuals 

consider ―more desirable.‖ For those with EEC conceptions, more desirable means controlling 

variation and achieving explanatory power. They privilege experimental design, as experiments 

provide much greater explanatory power than observational studies for observed patterns of 

variability. For those with NSN conceptions, more desirable means improved ability to sort 

through the variability in data by strengthening signals coming from data. Individuals with EDE 

conceptions desire increased ability to detect significant variation, or deviation, from expectation. 

Data  

To answer statistical questions, data collected from observational studies and experiments 

are typically explored before formal inferential methods are employed. Individuals with NSN 

conceptions explore data by primarily using a lens of distribution, whereas individuals with EEC 

conceptions and individuals with EDE conceptions explore data by predominantly using lenses of 

expectation. Differences among conceptions appear both in approaches to exploring data and in 

the purposes for exploring data. 

Teachers with NSN conceptions explore data to search through the noise of data to find 

patterns and relationships, or signals, in data. They see the purposes of data exploration as finding 

signals in the form of summary values, data patterns, or relationships among variables. Those 
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with EEC conceptions explore data to compare data characteristics and relationships. They expect 

that properly controlled and explained variation will produce data with random patterns of 

variability. Individuals with EDE conceptions explore data to gain a sense of expectation or to 

determine whether data conform to expectation. When they attempt to establish conformance, 

their expectation stems from a priori contextual knowledge, including knowledge formed from 

prior statistical study. Data exploration is a tool for individuals with EDE conceptions to develop 

a sense of expectation or determine whether data conform to expectation; for individuals with 

EEC conceptions to determine the extent to which variation has been explained, with an 

expectation that data will reveal random patterns of variability; and for those with NSN 

conceptions to search for signals in the noise of data largely without expectation for the signals 

that may underlie the data. 

Differences in reasoning during data exploration are visible in individuals‘ reasoning 

about relationships. Those differences align with differences in conceptions. In her reasoning 

about the size-15 samples in the Consultant Task, Cheyenne, a teacher with an NSN conception 

of variation, looks for signals in data for the population distribution of scores and characteristics 

of the distribution. She initially examines descriptive statistics, dotplots, and boxplots of the data 

for each consultant to see what the data ―[a]re telling me‖ (Cheyenne, Content, Line 605) about 

the distribution(s). She later comments that a sample of size 15 is "silly" because, with a larger 

sample size, she can ―get a clearer picture of the distribution‖ (Cheyenne, Content, Lines 560-

567). In alignment with her NSN conception of variation, Cheyenne approaches data to hear the 

signals told by the data through reasoning about data and distribution. She explores data to get a 

picture of the larger population distributions and parameters that characterize the populations by 

identifying patterns and relationships in data. 

In alignment with her EEC conception of variation, Haley approaches data with a sense 

of expectation. For example, as Haley reasons about the initial scatterplot in the Caliper Task, she 
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states that she expects to see a patterned residual plot when a model fit to data does not properly 

explain variation. Presumably, she would explore data to produce a residual plot and would 

expect random scatter in residual plots for models that provide a good fit to data. Compare 

Haley‘s expectation with the expectation articulated by Hudson, a teacher with an EDE 

conception of variation, in his reasoning about the same scatterplot. Hudson seemingly expects a 

linear relationship between inches and centimeters. He notes that proper measurement with a 

caliper results in points plotted close to what his model would predict, and he expresses surprise 

at how the points in the scatterplot deviate from his expectation. He seems to mentally explore the 

data in a residual plot to discuss how each point of data differs from his expectation. True to his 

EDE conception of variation, Hudson approaches the Caliper Task data with a sense of 

expectation and explores the data to reason about how the data deviate from his expectation of a 

linear relationship. In contrast, Haley approaches the Caliper Task data with an expectation for a 

residual plot that exhibits random variability. Representative of her EEC conception of variation, 

Haley reasons about the fit of a model by examining the pattern of variability in the plot of 

residual values.  

To answer statistical questions, Cheyenne, Haley, and Hudson create and manipulate data 

representations, transform data as needed, and consider multiple summary measures to find 

signals in data or to consider whether data conforms to expectation. They explore the data 

collected from observational studies and experiments through what Wild and Pfannkuch (1999; 

Pfannkuch & Wild, 2000) call transnumeration. Transnumeration encompasses transforming data 

by manipulating graphical displays of data, transforming data by using different types of 

graphical displays, considering multiple summary measures, and using the displays and measures 

that best represent data for further analysis. Transnumeration is a foundational aspect of statistical 

thinking (Pfannkuch & Wild, 2000; Wild & Pfannkuch, 1999), and every teacher in this study, 

regardless of their conception, explored data through transnumeration for reasoning about 
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variation. Differences among conceptions appear in the perceived purposes for transnumeration 

and in the ways in which data are approached. Individuals with EEC conceptions approach data 

with a sense of expectation. They transnumerate to determine the extent to which variation in data 

are explained, and they expect random patterns of variability for data in which variation in 

characteristics and relationships is explained. Individuals with EDE conceptions also approach 

data with a sense of expectation, but their expectation is tied to the characteristics and 

relationships they expect data to exhibit. They transnumerate to gain a sense of expectation or to 

explore whether data conform to expectation. Those with NSN conceptions approach data with an 

eye towards distributional characteristics. They transnumerate to search for patterns and 

relationships, or signals, in the noise of data. The signals for which they search include signals for 

summary measures, data patterns, or relationships among variables. 

Models 

Fitting models to data and reasoning from models are important aspects of statistical 

thinking (Pfannkuch & Wild, 2000). Individuals with EDE conceptions of variation view models 

primarily through lenses of expectation for relationships—they have some preconceived 

expectation for relationships among data or among variables and expect models to convey these 

relationships or to clarify how a situation deviates from expectation. Individuals with EEC 

conceptions and individuals with NSN conceptions view models predominantly through 

relationship lenses. Differences among the three types of conceptions appear in the degree of and 

focus of expectation with which data models are approached.  

Individuals with EDE conceptions of variation view models with expectation; they 

determine the extent to which models conform to expectation, determine if deviation from 

expectation is greater than chance would predict, and determine whether the expected 
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relationships are significant. Those with EEC conceptions approach models and modeling not 

with pre-existing expectations for relationships but rather with expectations that they can use 

models to capture relationships among data and among variables and determine or confirm the 

strength or significance of relationships. Individuals with NSN conceptions approach models with 

a sense of anticipation for the significance of patterns and relationships formed during their 

explorations with data. In combination with searching for patterns and relationships among data 

or variables, they model signals to explore characteristics of data and to determine, quantify, or 

confirm the significance of outcomes or of including factors in a signal‘s model.  

Differences in reasoning representative of differences in conceptions are seen in teachers‘ 

reactions to using models to make predictions or making predictions for a model after being told 

the context for the Caliper Task. Blake, a teacher with an EDE conception of variation, describes 

an expectation for data to match the theoretical model of the known relationship between inches 

and centimeters. He suggests that the student use the theoretical model to predict the caliper 

measure in inches, essentially ignoring the data in the scatterplot. Blake implies that the rightmost 

point deviates too far from his expectation for the deviation to be a result of random variability. 

True to his EDE conception of variation, Blake bases the prediction on a model generated from 

his expected relationship between inches and centimeters. He seemingly concludes that an 

empirical model fit to the data deviates further from his expectation than chance would predict. 

In his response to the student in the Caliper Task, Isaac, a teacher with an EEC 

conception of variation, explains how he could attribute an error in measurement to the rightmost 

two points as he recommends ignoring the rightmost two points.17 He suggests that the student fit 

a model to the five remaining points and make a prediction from that model, presumably noting 

the residuals for a model of the targeted relationships would not be randomly scattered if the 

                                                      
17 Isaac posits a reasonable explanation for the error in the rightmost two points, which he suggests would 
allow him to safely disregard the points. 
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omitted points were included. In alignment with his EEC conception, Isaac suggests a model that 

captures the relationships both in the data and between the variables and one that produces a 

residual plot pattern that suggests his model captured the relationships as well as possible. 

Everett, a teacher with an NSN conception of variation, constructs a linear model for the 

underlying signal of caliper measurements and not for the theoretical relationship between inches 

and centimeters (inches = centimeters/2.54), which may or may not match the caliper 

measurements. He uses context to suggest a linear model but fits a model to all seven points. He 

examines a few residual distances and concludes that the line he fit to the data is ―reasonable‖ 

based on the amount of noise he estimates. Characteristic of his NSN conception of variation, 

Everett models the signal he sees for the relationship between variables.  

Some statisticians describe statistics, in part, ―as the fitting of models‖ (Pfannkuch & 

Wild, 2000, p. 138). As the preceding consideration of teachers‘ reasoning with and about models 

illustrates, characteristics of an individual‘s conception of variation can be seen in foci to which 

the person attends while fitting models and in evidence the person uses to make predictions and 

decisions about relationships from models. Individuals with EDE conceptions approach models 

with expectation and examine evidence for the extent to which data deviate from expectation. 

Their reasoning often incorporates formal inferential analyses to determine whether deviation 

from expectation is more than what chance would predict. Those with NSN conceptions focus on 

models for the relationships they hear through the noise of data as they make informal inferences 

from data and approach these models with expectation that forms during their explorations with 

data. The degree of their emerging expectation is less than that of the pre-existing expectation that 

dominates how individuals with EDE conceptions approach models to formally determine the 

strength of evidence for their hypotheses. Like those with NSN conceptions, individuals with 

EEC conceptions focus on relationships in their modeling activities. They fit models to data to 
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capture the relationships among data or among variables. They employ formal inferential 

techniques to measure the strength of the evidence for the relationships they capture.  

Context 

Context plays a central role in statistical reasoning and forms the basis of distinctions 

between mathematical reasoning and statistical reasoning (e.g., Moore, 1990, 1997). The role of 

context in statistical reasoning is much richer than the brief mentions of it in the preceding 

comparisons suggest. Individuals with EEC conceptions of variation view context primarily 

through lenses of explanation and control when they look for factors that are potential 

contributors to variability that then needs to be controlled or explained. Those with EDE 

conceptions of variation view context through lenses of expectation—expectation for particular 

outcomes or measures, parameter values, patterns of variability, or relationships among variables 

based on context. Individuals with NSN conceptions of variation view context through lenses of 

anticipation by considering potential contributors to noise and considering reasonable variability 

for data. Context plays a lesser role for those with NSN conceptions than for those with other 

conceptions.  

Isaac, an individual with an EEC conception, exemplifies using context to consider 

potential sources of variation that he then needs to control when he describes the design he would 

use for the Consultant Task. He suggests that various student characteristics, including gender, 

ethnicity, and socioeconomic status, might contribute variability to consultants‘ scores. He bases 

his suggestions on contextual considerations that include the subject matter of the assessments 

and typical ways that student data are disaggregated in reports from state assessments. He 

suggests selecting exams using a stratified sampling scheme to control the variability he expects 

from these sources. Characteristic of his EEC conception of variation, Isaac uses context to 
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identify factors with potential to contribute variability along with a strategy for controlling the 

variation. Hudson‘s main focus in the Caliper Task is his expectation for the relationship between 

inches and centimeters. As often happens with those with EDE conceptions, prior knowledge 

indicates the expected pattern of variability for the relationship among variables. Everett, who has 

an NSN conception, uses context to anticipate reasonable variation in measurements for the 

Caliper Task. He anticipates that students‘ measurements will differ and that the underlying 

signal might be linear based on the linear relationship between inches and centimeters and 

reasonable variation in residual values. True to his NSN conception of variation, he uses context 

to consider contributors to the noise in data and whether the observed variability in data is 

reasonable for his anticipated contributors.  

Isaac‘s, Hudson‘s, and Everett‘s uses of context differ according to their perceived roles 

of context. Individuals with EEC conceptions of variation perceive context to be a tool for 

explanation and control. Individuals with both NSN conceptions of variation and EDE 

conceptions of variation perceive the role of context in terms of expectation, but to different ends. 

Those with NSN conceptions see context as an aide in anticipating potential sources of 

variability, whereas those with EDE conceptions see context as a tool for forming particular 

expectations related to the variation contributed by different sources. 

Conceptions and Teachers in This Study 

There are four teachers whose names do not appear with any of the conceptions listed in 

Table 5-1. Each of these four individuals reasons without elaboration and in ways that make their 

conceptions difficult to identify. In general, they each reason in ways that are not inconsistent 

with one of the three conceptions, but they do not present adequate evidence to definitively 

identify their conceptions. Although Eden, Faith, Georgia, and Jenna do not exhibit a clear type 
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of conception of variation, they each exhibit reasoning that suggests their conceptions may align 

with one of the EEC, NSN, or EDE conception types.  

As an example, consider Jenna‘s reasoning about the Consultant Task. Upon reading the 

task description, she suggests conducting a test of inference to determine whether the consultants‘ 

scores differ. With every successive question she is asked, she describes steps for the inference 

test in a procedurally-sequenced order. She refers to using a normal model as she responds with 

reasoning from the modeling perspective. She draws a generic normal curve and describes how 

the curve relates to a p-value. A portion of her reasoning about the task is duplicated below. 

Bolded statements provide some evidence of Jenna‘s conception of variation, which will be 

discussed after the passage. 

Jenna: From a statistical point of view, I mean, point 6 could be nothing or it 
could be a lot. It really— 

R: So when you say that. It could be nothing. In order for it to be nothing, 
what would need to be true? 

Jenna: In order for it to be nothing, you would have to fail to reject the null 
hypothesis… they computed an average score. And so now you need a 
test to see whether or not these average scores—if there‘s a difference 
between the two scores. Difference between the average scores…you 
would fail to reject the null if your p value would be greater than the 
significance level...So to figure out a p value, you need to come up with 
the test statistic. 

… 
R: And what does this test statistic do? 
… 
Jenna: Okay, so you want to base everything on the pretty normal curve. And 

then you‘re going to have. Let‘s see, here, something like this [Jenna 
draws a normal curve. See Figure 5-11.]…Okay. And we‘re testing to 
see, going extreme… And so these are extremes. [Jenna points to the two 
shaded regions under the curve she has drawn. See Figure 5-11.] 

R: So you‘ve drawn this picture. How does that relate to what‘s here? [R 
points to the Consultant Task description.] 

Jenna: Because the value of x down here [Jenna points to x.], which is the test 
statistic, okay, is actually computed using the information that is given to 
you here. [Jenna points to the task sheet.] (Jenna, Content, Lines 50-125) 
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In Jenna‘s response to the Consultant Task, we see no evidence that she considers issues 

of design, or in particular, how data were collected, as she immediately suggests conducting a 

significance test. Nor do we see any consideration of the consultants‘ data. Jenna indicates that a 

difference of 0.6 could be ―nothing.‖ Unlike others, when she is asked what would need to be true 

for the difference to be nothing, she responds by stating a conclusion in terms of the null 

hypothesis. She indicates that she wants to determine if there is a difference between average 

scores based on an implied expectation that the difference is ―nothing.‖ Her reference to ―going 

extreme‖ seems to coincide with determining whether the difference in means deviates further 

from expectation than chance would predict. Implicit in her consideration of a normal distribution 

may be some sense of variability, but her reasoning does not stray from modeling variability in 

sample statistics for making inferences from data [MP3]. We see that Jenna‘s reasoning about the 

normal distribution is consistent with the purpose of models described by those with EDE 

conceptions. She provides little evidence in this passage, however, for how she views design, data 

exploration, or context. Jenna‘s reasoning for the remainder of the Consultant Task as well as for 

the Caliper and Handwriting Tasks remains at a general level that is not inconsistent with an EDE 

conception but that does not fully evidence the characteristics of an EDE conception as shown in 

Table 5-2. 

 Eden‘s reasoning suggests alignment with a view of variation as EEC. She focuses on 

context throughout her consideration of variation for the three tasks. For example, she hesitates to 

draw any conclusions from the size-50 samples in the Consultant Task based on the design 

employed by the administrators. She seeks explanations for the variation she sees, including 

 

Figure 5-11: Jenna‘s Normal Curve.  
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wanting an explanation for why the rightmost point in the seven-point scatterplot for the Caliper 

Task varied from the other six points. She seems to view the purpose of design in ways consistent 

with increasing her potential for determining and explaining relationships and in particular cause-

and-effect relationships. Although she does not exhibit other characteristics of EEC conceptions, 

she also does not exhibit any of the defining characteristics of NSN or EDE conceptions. 

Faith and Georgia reason about variation in ways consistent with one or more of the 

identifying characteristics discussed for NSN conceptions. For example, Faith engages in 

exploratory data analysis in ways consistent with NSN conceptions. As soon as Faith has the data 

for the size-15 samples in the Consultant Task, she uses technology to construct boxplots of the 

data and to calculate five-number summaries. Although she does not calculate values for means 

and standard deviations, she indicates that she thought she already had the values—the summary 

values for the size-50 samples. She seems to be viewing the data through a distribution lens as she 

searches for signals in the noise of data. At no point does Faith suggest conducting a t-test or any 

other test of significance to determine whether a difference in consultants‘ scoring exists. Instead, 

she seems to prefer making a data-based argument to suggest a difference exists. Both Faith and 

Georgia do not provide evidence of reasoning consistent with every characteristic of NSN 

conceptions as shown in Figure 5-2. They also do not provide evidence of reasoning inconsistent 

with NSN conceptions, such as reasoning characteristic of the other two types of conceptions. 

These four teachers exhibit what appears to be superficial and at times faulty reasoning 

about variation. The reasoning they do exhibit, however, is suggestive of one of the three types of 

conceptions of variation. Their conceptions of variation appear still to be developing. 
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Concluding Comments 

This chapter answers the research question, ―What conceptions of statistical variation do 

secondary mathematics teachers who are recognized leaders in AP Statistics exhibit?‖ Three 

types of conceptions of statistical variation emerged from analysis of the 16 teacher-leaders‘ 

content and context interviews: Expected but Explainable and Controllable (EEC), Noise in 

Signal and Noise (NSN), and Expectation and Deviation from Expectation (EDE). These three 

types of conceptions reveal identifiably unique views of variation, but they do not form a 

hierarchy with regard to understanding of variation. At least one teacher with each conception 

exhibited reasoning consistent with robust understanding of variation. In the next chapter, I 

describe what it means to have a robust understanding of variation and how robust understanding 

of variation arises for these three different types of conceptions of variation.  



    

 

Chapter 6 
 

Robust Understandings of Variation 

A prerequisite to addressing the second research question of this study (For those 

secondary AP Statistics leaders who exhibit robust understandings of variation, what are the 

activities and actions that contributed to their current understandings of variation as reflected in 

their perceptions and recollections of experiences?) was the development of a description for 

what it means to have robust understandings of variation. For the purposes of this study, robust 

understandings of variation are defined to be integrated understandings of variation from the 

design, data-centric, and modeling perspectives. This chapter elaborates on this definition and 

provides evidence of reasoning that is indicative of robust understandings drawn from the 

responses of the five teachers who exemplified robust understanding. The chapter concludes with 

a description of a relationship between robust understandings of variation and the Expected but 

Explainable and Controllable (EEC), Noise in Signal and Noise (NSN), and Expectation and 

Deviation from Expectation (EDE) conceptions of variation. 

The description of robust understandings of variation draws on a conceptual framework 

using the Structure of the Observed Learning Outcome (SOLO) Model (Biggs & Collis, 1982, 

1991). Development of the conceptual framework began with descriptions of conceptions and 

understandings of variation and reasoning about variation in existing expository and research 

literature, much of which utilizes the SOLO Model. The framework evolved further from analysis 

of the 16 teachers‘ conceptions and understandings of variation.
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Framework Based on SOLO Model 

In Chapter 3, the SOLO Model (Biggs & Collis, 1982, 1991) was introduced to cast 

understandings of variation in terms of levels of response in the formal mode. To recap what was 

described in Chapter 3, the unistructural (U1), multistructural (M1), and relational (R1) levels 

within the formal mode form a cycle of levels of reasoning about variation for each perspective: 

design, data-centric, and modeling. Figure 6-1 displays a graphical representation of the cycle of 

levels of response for understandings of variation within each of the three perspectives as used in 

this study. The unistructural level corresponds with responses focused on a single element from a 

given perspective, such as anticipating the effects of sample size on the variability of a sample or 

statistics used to characterize a sample when designing a study or critiquing a study design from 

the design perspective. (Table 6-1, which appears at the end of this discussion of the ―Framework 

Based on SOLO Model‖ and the ―Development of the Detailed Framework,‖ contains a complete 

list of these elements and indicators of the elements for each perspective, which will be discussed 

in greater detail in succeeding sections of this chapter.) The multistructural level corresponds with 

responses that embody two or more disconnected elements from a given perspective. The 

relational level corresponds with responses that reveal integrated reasoning among elements from 

a given perspective, indicative of relational reasoning within a perspective.  
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Figure 6-2 depicts two cycles of levels for understandings of variation. The second cycle 

of levels in the formal mode (the cycle in the bottom half of the figure) represents integrated 

reasoning about variation from the three perspectives. The levels subscripted with a ―2‖ depict the 

second cycle and the arrows represent increasingly sophisticated reasoning. Reasoning indicative 

of relational reasoning within a perspective (R1) becomes the unistructural level in the second 

cycle of levels of response (U2). Individuals who reason at the multistructural level in this second 

cycle (M2) exhibit relational reasoning for two or three perspectives. Relational reasoning across 

perspectives, indicative of robust understandings of variation, requires an integration of 

reasoning about variation across the three perspectives (R2). 

 

Figure 6-1: SOLO and the Cycle of Levels for Each Perspective. 
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Development of Detailed Framework 

Chapter 4 details the data analysis that guided development of the framework for robust 

understandings of variation. Through analysis of teachers‘ responses and considerations of 

statistics education literature, a total of four considerations of or aspects of variability that 

transcend perspectives, referred to as elements, emerged from the data, along with detailed 

characteristics of indicators for each element. The four elements that elicit reasoning about 

considerations of or aspects of variation across perspectives are: variational disposition, 

variability in data for contextual variables, variability and relationships among data and variables, 

 

Figure 6-2: The SOLO Model and Robust Understandings of Variation. 
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and the effects of sample size on variability. The list of observable indicators was a major tool in 

the analysis and development of the framework (See Table 6-1, which appears at the end of this 

section.)  

The four elements and reasoning indicative of the elements for each perspective are 

displayed in Figure 6-3 and discussed in greater detail in succeeding sections. Figure 6-3 also 

shows how the elements fit into the SOLO Model. For the first cycle of levels of response, 

attention is on elements from one perspective. The unistructural level (U1) corresponds with 

responses focused on a single element, and the multistructural level (M1) corresponds with 

responses focused on a number of disconnected elements. The relational level (R1) corresponds 

with responses that exhibit integrated reasoning among elements from a given perspective and is 

indicative of relational reasoning about variation within that perspective. Interpretation of the 

second cycle of levels remains as initially described in discussion of the SOLO Model, with the 

presence of elements and integrated reasoning from multiple perspectives as one means to 

identify integrated reasoning across perspectives to determine robustness of understanding. Table 

6-1 contains an elaboration of the table in Figure 6-3 and contains indicators indicative of each 

type of reasoning. 

 



   205   

 

 

Figure 6-3: SOLO and Elements and Reasoning Indicative of Robust Understanding of Variation. 
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 Design Perspective Data-Centric Perspective Modeling Perspective 

Variational 

disposition 

DP1:  
Acknowledging the existence of variability and the need for 
study design in  

 controlling the effects of variation from extraneous 
variable(s); 

 including considerations of variation for variable(s) of 
interest during data analysis; or 

 using sample statistics to infer population parameters for 
the variable(s) of interest  

DCP1:  
Anticipating reasonable variability in data by  

 considering the context of data; 

 recognizing that data descriptions should include 
descriptions or measures of variability (and center); or 

 recognizing unreasonable variability in data (e.g., that 
which could result from a data entry error)  

MP1:  
Anticipating and allowing for reasonable variability in data 
when using models for 

 making predictions from data or  

 making inferences from data  

Variability in 

data for 

contextual 

variables  

DP2:  
Using context to consider sources and types of variability to 
inform study design or to critique study design by 

 considering the nature of variability in data (e.g., 
measurement variability, natural variability, induced 
variability, and sampling variability) or  

 anticipating and identifying potential sources of variability  
 

DCP2:  
Describing and measuring variability in data for contextual 
variables as part of exploratory data analysis by 

 creating, using, interpreting, or fluently moving among 
various data representations to highlight patterns in 
variability; 

 focusing on aggregate or holistic features of data to 
describe variability in data; or 

 calculating, using, or interpreting appropriate summary 
measures for variability in data (e.g., measures of variation 
such as range, interquartile range, standard deviation for 
univariate data sets; correlation and coefficient of 
determination for bivariate data sets)  

MP2:  
Identifying the pattern of variability in data or the expected 
pattern of variability for contextual variables by 

 modeling data to explain variability in data or 

 considering contextual variables in the formulation of 
appropriate data models 

or in 

 modeling data to describe holistic features of data or 

 considering or creating distribution-free models or 
simulations to explore contextual variables 

  

Variability and 

relationships 

among data 

and variables 

DP3:  
Controlling variability when designing studies or critiquing the 
extent to which variability was controlled in studies by 

 using random assignment or random selection of 
experimental/observational units to (in theory) equally 
distribute the effects of uncontrollable or unidentified 
sources of variability or  

 using study design to control the effects of extraneous 
variables (e.g., by incorporating blocking in experimental 
design or stratifying in sampling designs) to isolate the 
characteristics of the variable(s) of interest or to isolate 
systematic variation from random variation  

DCP3:  
Exploring controlled and random variability to infer 
relationships among data and variables by  

 using and interpreting patterns of variability in various 
representations of data;  

 focusing on aggregate or holistic features of variability in 
data to make comparisons; 

 using or interpreting appropriate summary measures of the 
variability in data to make comparisons (e.g., transformed 
versus untransformed data); or 

 examining the variability within and among groups 

MP3:  
Modeling controlled or random variability in data, transformed 
data, or sample statistics for 

 making inferences from data (e.g., isolating the signal from 
the noise for univariate or bivariate sets of data or formally 
testing for homogeneity in variances) or 

 assessing the goodness of a model‘s fit by examining 
deviations from the model  

Effects of 

sample size on 

variability 

DP4:  
Anticipating the effects of sample size on the variability of 

 a sample or 

 statistics used to characterize a sample (e.g., mean, 
proportion, median) 

when designing a study or critiquing a study design 

DCP4:  
Examining the effects of sample size on the variability of 

 a sample or  

 statistics used to characterize a sample (e.g., mean, 
proportion, median) 

through the creation, use, or interpretation of data-based 
graphical or numerical representations  

MP4:  
Anticipating the effects of sample size on the variability of a 
sampling distribution to 

 model the sampling distribution or 

 consider significance, practical or statistical significance, of 
inferences 

Table 6-1: Indicators of Robust Understandings of Variation. 
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Elements and Reasoning Indicative of Robust Understandings of Variation 

 As illustrated, reasoning with a variational disposition can be implicit in reasoning from 

the design, data-centric, or modeling perspectives. Reasoning with a variational disposition from 

the design perspective occurs when expectation of variation accompanies recognition of a need to 

consider and implement design strategies for collecting data. When expectation exists outside 

design, a variational disposition arises in reasoning from the data-centric perspective or from the 

modeling perspective. Specific examples were discussed in a previous section of Chapter 4, ―Pre-

Pilot and Pilot Study Analysis‖ as part of ―Data Analysis to Address Research Question One.‖ 

General descriptions of reasoning about a variational disposition from the three perspectives and 

a similar set of descriptions of the other elements, which will be discussed below, appear in 

Figure 6-3. 

Reasoning about variability in data for contextual variables is a second element of 

variability for which reasoning can transcend all three perspectives. Reasoning about variation 

across the three perspectives for this element would include anticipating potential sources and 

types of variability in study design, exploring contextual data by identifying characteristics of the 

data through representations and measurements, and fitting models to the data. A general 

description of reasoning about this element from the three perspectives is provided in Figure 6-3. 

One example or type of integrated reasoning about variability in data for contextual variables 

from both data-centric and modeling perspectives is distributional reasoning (e.g., Bakker & 

Gravemeijer, 2004; Ben-Zvi, Gil, & Apel, 2007). Distributional reasoning, or reasoning about 

patterns and trends in data from aggregate views based on data models and reasoning about 

individual values, such as outliers or influential observations, from pointwise views, is reasoning 

that transcends perspectives.  
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Reasoning about variability in examining relationships among data and variables, a third 

element that may be implicit in reasoning from any or all of the three perspectives, includes 

reasoning about strategies to control variability when designing studies or considering study 

designs, exploring controlled and random variability in data, and modeling controlled or random 

variability in data.  

Reasoning about the effects of sample size on variability is reasoning associated with a 

fourth element. It includes reasoning about the effects of sample size on a sample and the effects 

of sample size on statistics used to characterize a sample—reasoning that can stem from design, 

data-centric, or modeling perspectives. General descriptions of reasoning about all four elements 

from the three perspectives appear in Figure 6-3. 

For the purposes of this study, robust understandings of variation are indicated by 

relational reasoning across the design, data-centric, and modeling perspectives. Teachers‘ 

understandings are inferred through the structure of indicators evidenced in their reasoning about 

variation. The integration implicit in relational reasoning occurs within perspectives and across 

perspectives. Returning to Figure 6-3, table cells in the figure contain general descriptions of 

reasoning about an element of variation from a particular perspective. Relational reasoning about 

variation within a perspective is indicative of relational reasoning about the elements of 

variability for that perspective in the first cycle of levels, R1. For example, relational reasoning of 

variation within the design perspective is indicated by integrated reasoning about variation for the 

four elements from the design perspective—reasoning that contains the indicators represented by 

cells DP1, DP2, DP3, and DP4 in integrated form. Relational reasoning of variation across 

perspectives that includes relational reasoning within all three perspectives, indicative of robust 

understandings of variation, is integrated reasoning about elements of variation across 

perspectives in the second level of cycles, R2. The cells of the table contain descriptions of 
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reasoning, each of which can be realized in multiples ways. Identification of and discussion about 

the detailed indicators of reasoning about variation are presented by perspective. 

Design Perspective 

Indicators illustrative of reasoning about variation for each element from the design 

perspective appear in Table 6-2. Cell headings indicate general reasoning about variation for the 

given element from the design perspective. For example, ―acknowledging the existence of 

variability and the need for study design‖ exemplifies general reasoning about variation with a 

variational disposition from the design perspective. Cell headings in combination with lettered 

descriptors represent specific indicators of reasoning for each element. For example, indicator 

DP1(a) is ―acknowledging the existence of variability and the need for study design in controlling 

the effects of variation from extraneous variable(s)‖ and represents one way to exhibit a 

variational disposition from the design perspective. This section contains descriptors for each 

indicator from the design perspective and illustrates each indicator with examples from the data 

corpus.  
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Element Indicators for the Design Perspective 

DP1:  
Variational 
disposition 

Acknowledging the existence of variability and the need for study 
design in  
(a) controlling the effects of variation from extraneous variable(s); 
(b) including considerations of variation for variable(s) of interest 

during data analysis; or 
(c) using sample statistics to infer population parameters for the 

variable(s) of interest  

DP2:  
Variability in data 
for contextual 
variables  

Using context to consider sources and types of variability to (1) inform 
study design or to (2) critique study design by 
(a) considering the nature of variability in data (e.g., measurement 

variability, natural variability, induced variability, and sampling 
variability) or  

(b) anticipating and identifying potential sources of variability  

DP3:  
Variability and 
relationships among 
data and variables 

Controlling variability when (1) designing studies or (2) critiquing the 
extent to which variability was controlled in studies by 
(a) using random assignment or (b) random selection of 

experimental/observational units to (in theory) equally distribute the 
effects of uncontrollable or unidentified sources of variability or  

(c) using study design to control the effects of extraneous variables 
(e.g., by incorporating blocking in experimental design or stratifying 
in sampling designs) to isolate the characteristics of the variable(s) 
of interest or to isolate systematic variation from random variation  

DP4:  
Effects of sample 
size on variability 

Anticipating the effects of sample size on the variability of 
(a) a sample or 
(b) statistics used to characterize a sample (e.g., mean, proportion, 

median) 
when (1) designing a study or (2) critiquing a study design  

Variational Disposition (DP1)  

Relational reasoning about variation within the design perspective encompasses 

reasoning about variation with a variational disposition. Acknowledging the existence of 

variability and the need for study design to deal with variability exemplifies reasoning for a 

Table 6-2: Indicators of Relational Reasoning About Variation Within the Design Perspective. 
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general indicator of reasoning with a variational disposition from the design perspective [DP1]. 

We see evidence of specific indicators for dealing with variability when acknowledgment 

accompanies articulation of the need for study design to control the effects of variation from 

extraneous variable(s) [DP1(a)], include considerations of variation for variable(s) of interest 

during data analysis [DP1(b)], and use sample statistics to infer population parameters for 

variable(s) of interest [DP1(c)]. As mentioned previously, general and specific indicators of a 

variational disposition [DP1] arise from statistics education literature (e.g., Cobb & Moore, 1997; 

Moore, 1990; Snee, 1990; Wild & Pfannkuch, 1999). One objective of statistics education is to 

develop students‘ statistical thinking, which has been described, in part, as dealing with the 

―omnipresence of variability; statistical problem solving and decision making depend on 

understanding, explaining, and quantifying the variability‖ in data (Franklin et al., 2007, p. 6). 

Acknowledging the existence of variability and articulating the role of study design in 

understanding, explaining, and quantifying variability are similar to the DP1(a), DP1(c), and 

DP1(b) indicators of a variational disposition from the design perspective, respectively. 

Reasoning that evidences the general indicator of a variational disposition and specific 

indicators of a variational disposition from the design perspective appears in Dustin‘s articulation 

of what he thinks about when he hears the word variation. Key phrases are highlighted in bold 

font and labeled according to the general and specific indicators illustrated by the phrases. 

What comes to mind immediately is it is, um, the fact that in any situation, with 
a school or ten students, not everybody acts the same, reads the same, is the 

same [DP1]. So there is variation inherent in everything you look at 
[DP1]…Um, it‘s the reason you take samples larger than 1 [DP1(a)]. Because 
you want to meas – you want some measure [DP1(c)], so if you have some 
characteristic, some treatment A and you give it to one person, great, you‘ve got 
anecdotal evidence, but the question is you got a response, but over a group of 

people, what‘s the average response and how much variation is there 
[DP1(b)]?...So you always want a measure of how that variation is affecting, 
because it affects everything you do [DP1(a)]. Um, so, I mean variation is 

there, and you‘ve got to deal with it [DP1]. (Dustin, Content, Lines 2075-2100, 
[italics and coding added]) 
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Dustin acknowledges the existence of variability at several points while referring to sample size 

and treatments as elements of design [DP1]. He seems to acknowledge variation in conjunction 

with study design, and he mentions that in ―any situation‖, variation is encountered through a lack 

of ―sameness.‖ He notes that variation is ―inherent in everything‖ and something with which one 

needs to deal. The all-encompassing nature of his language indicates a broad sense of the 

omnipresence of variation in relation to study design [DP1].  

The passage also provides evidence of specific indicators of a variational disposition 

from the design perspective. Dustin introduces the need for sample sizes larger than one based on 

differences among individuals and variation affecting ―everything you do.‖ His words suggest 

that he might expect multiple sources of variability (everything) and that he can control the 

effects of variability associated with individuals by using sample sizes greater than one [DP1(a)]. 

He alludes to desiring some measurement of a (population) characteristic or the effect of a 

treatment that results from examining groups larger than one. He seems to be describing a general 

characteristic or effect, which may indicate reference to a population characteristic or an effect 

inferred from a sample characteristic or effect [DP1(c)]. Dustin also mentions identifying an 

―average response‖ and variation for ―a group of people.‖ His allusion to variation for a ―group‖ 

of people (without mentioning the entire population of people) may indicate that he considers 

variation in sample data for variable(s) of interest during data analysis [DP1(b)]. Through 

multiple acknowledgements of the existence of variation and links to design considerations, 

Dustin‘s passage provides an image of reasoning indicative of a variational disposition from the 

design perspective. 
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Variability in Data for Contextual Variables (DP2) 

Context plays an important and unique role in statistics. Cobb and Moore (1997) observe 

that meaning from data analysis ―depends on how the threads of those patterns [observed in data 

analysis] interweave with the complementary threads of the story line‖ (Cobb & Moore, 1997, p. 

803). Cobb and Moore see design as a core element of statistical thinking and note, ―the 

conclusions from a study depend crucially on how the data were produced‖ (Cobb & Moore, 

1997, p. 807). Taking both of Cobb and Moore‘s observations into consideration, we see that data 

production methods need to take context into consideration for analysis of data to have meaning. 

Indicators for the element of variability in data for contextual variables represent some needed 

contextual considerations for data production. Using context to consider sources and types of 

variability when designing a statistical study describes one general indicator for reasoning about 

variability in data for contextual variables [DP2(1)]. A second general indicator is considering 

sources and types of variability in a given context when critiquing statistical studies designed by 

others [DP2(2)]. Specific indicators include using context to inform study design (or to critique 

study design) by considering the nature of variability in data [DP2(1a) and DP2(2a)] and by 

anticipating and identifying potential sources of variability [DP2(1b) and DP2(2b)]. 

For this study, tasks were couched in contexts assumed to be familiar to most teachers for 

the purposes of allowing context considerations to arise naturally and to avoid having the 

researcher cast in an expert role. In particular, the Consultant Task uses the context of 

standardized assessment. We see an example of considering the nature of variability for a study 

designed by others in Hudson‘s reactions to reading the Consultant Task description [DP2(2a)]. 

He indicates that the observed difference in means for consultants‘ scores could be ―due to 

differences in grading practices [or differences in] applying the rubric [DP2(2a)],‖ or just 

―due to the random selection of the 50 papers for each of the two consultants [DP2(2a)]‖ 
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(Hudson, Content, Lines 68-71). Hudson considers two types of variability: chance variability as 

it relates to sampling variability and systematic variability from true differences in scoring 

[DP2(2a)]. He goes on to suggest that if consultants‘ scores were randomly selected, he would 

expect some variation and might conclude that any difference in means (grading practices) is due 

to chance variability. Alternatively, a large difference might indicate differences in grading 

practices or some type of systematic difference in the way consultants scored exams.  

Continuing with Hudson‘s reactions to the task statement, we see evidence of the second 

specific indicator of using context by anticipating and identifying potential sources of variability. 

Hudson notes, ―We know that, uh, individual student papers vary in terms of their quality 

[DP2(2b)] and the ease with which the rubric would be applied [DP2(2b)]‖ (Hudson, Content, 

Lines 119-121). Hudson identifies two potential sources of variability—variability in writing 

quality and consultants‘ ease of applying the rubric to each paper [DP2(2b)]—by considering the 

context of the consultant task. Hudson‘s reactions to the task description illustrate consideration 

of the nature of variability expected for the given context and anticipation and identification of 

potential sources of variability for the context as part of a critique of the study‘s design. The 

evidence presented here occurred in response to evaluating the administrators‘ design for the 

Consultant Task; parallel reasoning illustrative of considering the nature of and sources of 

variability, DP2(1a) and DP2(1b), occurs when designing a study. 

Variability and Relationships Among Data and Variables (DP3) 

The third design element of variability and relationships among data and variables refers 

to design strategies that control variability. General indicators of reasoning about this element 

appear from controlling variability while designing studies [DP3(1)] or critiquing the extent to 

which variability is controlled in studies designed by others [DP3(2)]. Wild and Pfannkuch 
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(1999) define control as ―changing the pattern of variation to something more desirable‖ (p. 236), 

and specific indictors of reasoning about variability and the relationships among data and 

variables involve the use of strategies to achieve the goal of control. Two specific indicators 

involve controlling variability by using random assignment [DP3(1a) and DP3(2a)] or random 

selection [DP3(1b) and DP3(2b)] of experimental/observational units to (in theory) equally 

distribute the effects of uncontrollable or unidentified sources of variability among study groups. 

A third specific indicator includes controlling variability by using study design to control the 

effects of extraneous variables in order to isolate characteristics of the variable(s) of interest or to 

isolate systematic variation from random variation [DP3(1c) and DP3(2c)]. 

Data production methods need to be carefully considered and implemented in order for 

subsequent analysis of the produced data to have meaning (Cobb & Moore, 1997), as mentioned 

previously. Development of the articulated set of indicators for variability and relationships 

among data and variables incorporated related aspects from expository and research literature. 

For example, Cobb and Moore (1997) emphasize the importance of distinguishing between 

randomness in experiments and randomness in observational studies. In particular they note the 

use of random assignment for experimental designs [DP3(1a) and DP3(2a)] and random selection 

for observational studies [DP3(1b) and DP3(2b)]. Their emphasis on this distinction, and similar 

emphases expressed by teachers in their reasoning about variation, prompted inclusion of 

indicators that highlight the distinction. 

Results of research also informed and confirmed the development of indicators for this 

element. For example, Groth (2003) investigated students‘ thinking with regard to study design 

and used the SOLO Model in the concrete-symbolic mode to describe students‘ reasoning. 

Reasoning was at the relational level if students strategized to produce representative samples and 

recommended more than one design method to ―ensure‖ representativeness for observational 

studies. Groth did not focus explicitly on variability in his study, but the idea of a representative 
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sample is related to random sampling that equally distributes the effects of uncontrollable or 

unidentified sources of variability [DP3(2b)]. This indicator, DP3(2b), also was informed by 

considering students‘ reasoning about representative and random samples in other research 

(Derry, Level, Osana, Jones, & Peterson, 2000; Rubin, Bruce, & Tenney, 1990; Watson & 

Moritz, 2000).  

Someone who can reason relationally about variation within the design perspective 

recognizes the controlling effects of randomization and considers additional strategies for 

controlling variation in observational or experimental studies [DP3(1a), DP3(2a), DP3(1b), and 

DP3(2b)]. That person also recognizes the differences between random assignment and random 

selection, a confusion observed in prior research (Derry, Levin, Osana, & Jones, 2000). For 

example, when Blake responds to the Handwriting Task, he provides evidence of recognizing the 

controlling effect of random assignment [DP3(1a)] and incorporating design strategies for the 

purposes of controlling variation from the effects of extraneous variables [DP3(1c)]. 

The thing I want to measure is simply does the quality of the handwriting affect 
the score given? Okay? And I guess what I want to look at is any other, any 

other thing that might affect the score given, I want to control for [DP3(1c)] 

… I guess [what] I was trying to do is create a homogeneous group. Usually you 
call it blocking of some sort, um, and so that all of the graders are very 

similar [DP3(1c)]…you can just randomly assign [DP3(1a)], and you just kind 
of hope all these variables that you‘re thinking about get smoothed over all the 
groups. (Blake, Content, Lines 1714-1753) 

Although Blake never mentions the word variation, when coupled with his earlier talk about 

using sample size to control variability and his later identification of variability as an underlying 

theme across interview tasks, it seems reasonable to believe that when Blake talks about control, 

he means control of variation. In this passage, control seems to be central to his reasoning about 

study design. Blake associates strategies such as blocking [DP3(1c)] and randomization 

[DP3(1a)] with control, and he sees control as something that enables him to isolate the 

systematic effects of handwriting on scores [DP3(1c)]. Blake introduces blocking to control 
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identified sources of variation different from handwriting [DP3(1c)], and he uses randomization 

to ―smooth over,‖ or equally distribute, the effects of extraneous factors [DP3(1a)]. This passage 

contains evidence of the indicator of using randomization for the purposes of control [DP3(1a)] 

and the indicator of using additional controlling strategies in the design of an experiment 

[DP3(1c)] to investigate the relationship between two variables. 

Parallel reasoning in reaction to a study designed by others appears in Hudson‘s 

reasoning about the Consultant Task. He mentions that he would like to know whether the ―50 

exam papers that each consultant scored were a random sample [DP3(2b)] from all the exam 

papers that they, that they had available‖ (Hudson, Content, Lines 55-57). He describes a need for 

a random sample in this observational study to avoid bias, such as a case in which ―consultant 

may have systematically scored the exams [initially], um, in a particular way based on their 

understanding of the rubric‖ before fully understanding the rubric [DP3(2b), Hudson, Content, 

Lines 39-41]. Hudson connects the idea of a representative sample to an unbiased sample, which 

is reasoning about sample that is more sophisticated than the relational level in the concrete-

symbolic mode identified by Watson and Moritz (2000). Further, Hudson suggests that a 

matched-pairs design would be one way to avoid issues such as ―individual student papers [that] 

vary in terms of their quality and the ease with which the rubric would be applied‖ (Hudson, 

Content, Lines 119-121). His matched pairs design effectively controls variation from sources 

such as differences in student papers and differences in ease of scoring [DP3(2c)]. Through the 

excerpts from Hudson‘s interview and from Blake‘s interview, a picture of reasoning about 

variability and the relationship among data and variables from the design perspective is conveyed. 
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Effects of Sample Size on Variability (DP4) 

There are two effects of sample size on variability that should be considered in concert 

with design—effects of sample size on the variability of a sample [DP4(1a) and DP4(2a)] and 

effects of sample size on the variability of a sampling distribution [DP4(1b) and DP4(2b)]—both 

when designing studies [DP4(1)] or critiquing the design of studies conducted by others [DP4(2)]. 

Research reports describe students‘ difficulties in recognizing the effects of sample size, 

particularly with regard to sampling distributions (e.g., Chance, delMas, & Garfield, 2004; 

Fischbein & Schnarch, 1997). Individuals who reason relationally about variation within the 

design perspective and reason relationally about variation across perspectives consider the effects 

of sample size on both samples and on sampling distributions.  

Everett‘s response to comparing a sample of size 15 with a sample of size 30 in the 

Consultant Task illustrates reasoning of anticipating the effects of sample size on the variability 

of a sample [DP4(2a)]. Everett notes, ―a sample of only 15‘s not going to give you a great 

picture of anything [DP4(a)]‖ (Everett, Content, Lines 900-901). He reasons that a larger 

sample gives him more confidence for hypothesizing population characteristics because larger 

samples more closely resemble the population distribution from which the sample is selected 

[DP4(a)]. He notes, ―the bigger your sample size, the closer it‘s going to resemble the 

population distribution [DP4(a)]‖ (Everett, Content, Lines 920-922).  

Indicators for anticipating the effects of sample size on the variability of a sample 

[DP4(a)] and on the variability of statistics used to characterize a sample [DP4(b)] can both be 

seen in Isaac‘s comparison of size-15 samples with size-50 samples. At one point, Isaac 

mentioned that a sample of size 50 is better than a sample of size 15 ―in any sampling scheme‖ 

(Isaac, Content, Line 1084). Isaac compares samples with different sizes as he considers issues of 

design. 



   219 

 

Well generally speaking … I would pretty much expect that I‘d get distributions 
in the same place in the same shape… I‘m just going to pick up a few in the 

tails [DP4(a)] but the, uh, I‘m going to expect that the average – the mean, is 

going to fluctuate a great deal less in the sample of size 50, um, than in the 

sample of size 15 [DP4(b)]. (Isaac, Content, Lines 1117-1147) 

In this passage, Isaac associates large sample size with samples more representative of a 

population [DP4(a)] than small samples. He mentions some characteristics of ―representative‖ 

samples, which suggests his awareness of the effects of sample size on the variability of a sample 

[DP4(a)]. Isaac also associates large sample size to the production of means that ―fluctuate a great 

deal less‖ [DP4(b)]. Less fluctuation in means translates into less variability in statistics used to 

characterize a sample, indicative of anticipating the effects of sample size on the variability of a 

statistic [DP4(b)].  

Relational Reasoning About Variation Within the Design Perspective  

Using the SOLO Model (Biggs & Collis, 1982, 1991), relational reasoning about 

variation within the design perspective can be manifested as the combination of indicators for 

each element and integrated reasoning of ideas across the four elements. The examples above 

convey what reasoning within an element might be. Evidence of reasoning for only one element 

is evidence of unistructural reasoning and reasoning for multiple elements is evidence of 

multistructural reasoning. In Blake‘s reasoning in response to the Handwriting Task, we see an 

example of integrated reasoning, indicative of relational reasoning. Of the examples already 

presented, Blake‘s reasoning about control in response to the Handwriting Task exemplifies 

integrated reasoning related to the four elements when extended beyond the passage presented 

here. In his reasoning, Blake expresses an expectation of variation from scorers as he exhibits a 

variational disposition while describing steps he would take to control some of the effects of 

variation from scorers [DP1a]. He reasons about variability in data for contextual variables such 
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as scorers [DP2(1a)] and the nature of variability as he considers some of the systematic variation 

that might be induced from giving different scorers essays with different handwriting qualities 

[DP2(1b)]. He recommends both blocking [DP3(1c)] and randomization [DP3(1b)] for the 

purposes of controlling variation. Prior to the passage presented earlier, Blake mentioned the 

controlling effects of sample size on variability and alluded to those effects in his design for the 

Handwriting Task [DP4]. Blake reasons about each element from the design perspective in close 

proximity and in a coordinated and cohesive manner, considering the combined effects of 

strategies, as he designs his study for the Handwriting Task. Blake‘s reasoning thus provides an 

image of relational reasoning about variation within the design perspective.  

The examples presented from Dustin, Everett, Hudson, and Isaac do not provide evidence 

of all four elements of reasoning from the design perspective. The teachers‘ reasoning beyond 

those excerpts does, however, provide evidence of integrated reasoning among the four elements. 

Additionally, because their reasoning with and without prompting extends beyond the given data 

for a particular task, their responses are consistent with thinking within the formal mode of SOLO 

(Biggs & Collis, 1982, 1991; Pegg, 2003). Dustin, Everett, Hudson, and Isaac reasoned in ways 

consistent with relational reasoning about variation within the design perspective in the formal 

mode. 

Data-Centric Perspective 

To examine teachers‘ reasoning from the data-centric perspective, I again consider 

reasoning with or about variation with regard to the four elements described previously. Table 6-3 

displays these four elements and indicators of reasoning illustrative of each element for the data-

centric perspective. There are many indicators associated with reasoning about variation from the 

data-centric perspective, with a large number involving creation, use, or interpretation of data 
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representations. To facilitate discussion of indicators for the data-centric perspective, the 

numbering system for creation DCPx(1); use DCPx(2); and interpretation DCPx(3), remains 

constant among elements. Due to the large number of indicators for the data-centric perspective, 

not every indicator is illustrated with an example from the data corpus, but each indicator is 

discussed. Relational reasoning within the data-centric perspective is discussed at the end of this 

section. 
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Element Indicators for the Data-Centric Perspective 

DCP1: 
Variational 
disposition 

Anticipating reasonable variability in data by  
(a) considering the context of data; 
(b) recognizing that data descriptions should include descriptions or 

measures of variability (and center); or 
(c) recognizing unreasonable variability in data (e.g., that which could 

result from a data entry error)  

DCP2:  
Variability in data 
for contextual 
variables  

Describing and measuring variability in data for contextual variables as 
part of exploratory data analysis by 
(a) (1) creating, (2) using, (3) interpreting, or (4) fluently moving among 

various data representations to highlight patterns in variability; 
(b) focusing on aggregate or holistic features of data to describe 

variability in data; or 
(c) (1) calculating, (2) using, or (3) interpreting appropriate summary 

measures for variability in data (e.g., measures of variation such as 
range, interquartile range, standard deviation for univariate data sets; 
correlation and coefficient of determination for bivariate data sets) 

DCP3:  
Variability and 
relationships among 
data and variables 

Exploring controlled and random variability to infer relationships among 
data and variables by  
(a) (2) using and (3) interpreting patterns of variability in various 

representations of data;  
(b) focusing on aggregate or holistic features of variability in data to 

make comparisons; 
(c) (2) using or (3) interpreting appropriate summary measures of the 

variability in data to make comparisons (e.g., transformed versus 
untransformed data); or 

(d) examining the variability within and among groups 

DCP4:  
Effects of sample 
size on variability 

Examining the effects of sample size on the variability of 
(a) a sample or  
(b) statistics used to characterize a sample (e.g., mean, proportion, 

median) 
through the (1) creation, (2) use, or (3) interpretation of data-based 
graphical or numerical representations 

Table 6-3: Indicators of Relational Reasoning About Variation Within the Data-Centric 
Perspective. 
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Variational Disposition (DCP1) 

Anticipating reasonable variability in data is indicative of reasoning with a variational 

disposition from the data-centric perspective [DCP1]. An awareness that data descriptions should 

include attention to variation in addition to center is one specific manifestation of a variational 

disposition [DCP1(b)]. Traditionally, instruction and curricula have focused on centers to the 

exclusion of spread (Shaughnessy, 1997). Many experienced teachers were educated during the 

time of this focus and may not have had sufficient opportunities to develop a variational 

disposition as students. Almost one fourth of the middle school teachers in a study by Canada 

(2008) alluded only to centers in their comparisons of two sets of data with equal means and 

unequal standard deviations—data specifically designed to elicit reasoning about variation and 

distribution. Those who understand variation recognize the insufficiency of reasoning about data 

from centers alone. They recognize a need not only to consider variation but also to use context to 

anticipate reasonable variability in data, a second specific indicator of a variational disposition 

[DPC1(a)]. Considerable research exists to suggest that anticipating reasonable variation is a 

nontrivial accomplishment. Middle school and high school students have difficulty anticipating 

reasonable variability in sampling settings (e.g., Reading & Shaughnessy, 2000; Shaughnessy, 

Canada & Ciancetta, 2003; Shaughnessy, Ciancetta, Best, & Canada, 2004; Shaughnessy, 

Ciancetta & Canada, 2004) and when estimating and comparing measures of variability in data 

(e.g., delMas & Liu, 2004; Lann & Falk, 2003; Loosen, Lioen, & Lacante, 1985). Related to the 

anticipation of reasonable variability is recognition of unreasonable variability in data, a third 

specific indicator of a variational disposition from the data-centric perspective [DCP1(c)].  

For this study, evidence of a variational disposition from the data-centric perspective 

appears throughout teachers‘ reasoning about the Consultant Task. Every teacher articulated the 

importance of knowing something about variability in addition to center [DCP1(b)]. Consider 
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Blake‘s reaction to the Consultant Task. He noted that he could use a t-test to compare 

consultants‘ scores, ―except for the fact that I don‘t know their standard, you know, their 

standard deviations [DCP1(b)]‖ (Blake, Content, Lines 215-217). Blake‘s variational 

disposition is noticeable in his articulated need for standard deviation values. Other teachers 

evidenced a variational disposition by asking for information about each consultant‘s distribution 

of scores, with requests for information about variation inherent in their requests. From these 

teachers, we see variational dispositions in their recognition that data descriptions should include 

information about variation to make comparisons or to come to statistics-based conclusions 

[DCP1(b)].  

A second data-based indicator of a variational distribution is recognition of unreasonable 

variation [DCP1(c)]. Blake‘s response to the Consultant Task exemplifies this recognition. After 

being given the standard deviation values for both consultants‘ scores, Blake does not conduct the 

t-test to which he alluded but instead focuses on the standard deviation value of 20.2. He 

immediately expresses concern and notes why the value is unreasonable, stating, ―a standard 

deviation of 20 almost seems absurd [DCP1(c)]…If you have a 10 as your mean, and you‘re 

saying on average…an individual scores 20 away from that, that‘s saying that it‘s not 

unusual…to see a score of 30…out of a possible 15 [DCP1(c)]‖ (Blake, Content, Lines 299-

323). We see recognition of unreasonable variation in Blake‘s statement about the absurdity of a 

standard deviation value of 20.2. We also see justification to support an assertion of absurdity. 

Blake argues against the value of 20.2 based on the context of having tests scores between 0 and 

15, inclusive, in combination with his view of standard deviation as an approximate average 

deviation. In his invocation of context, we also see evidence of considering context in reasoning 

about reasonable variability [DCP1(a)].  

A variational disposition also can be seen in reasoning that relies on context to consider a 

reasonable realm of possibilities for data [DCP1(a)]. Consider Isaac‘s reasoning in response to 
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evaluating the worth of calipers using the full scatterplot of points in the Caliper Task. He begins 

by considering the standard deviation of the residuals and estimates the value to be 0.08. He 

inquires about the purpose of the calipers and concludes that the standard residual error of 0.08 is 

―perfectly fine‖ for calipers used by middle school students (Isaac, Content, Line 1560). His 

justification relies on context. 

If you‘re selling this to the Charles River… measurement company…an 
estimated standard error measure of, um, point oh, eight would not be good 

enough [DCP1(a)]. But for middle schools… presumably there‘s an increased 
cost with the greater precision of the measurement…I think what you‘re 
primarily concerned with, um, well safety for one thing. Uh, and secondly that 
kids have an idea what measurement is about and so on. And you‘re not really 
concerned that they get it really right…that‘s good enough for the kids 

[DCP1(a)]. (Isaac, Content, Lines 1563-1578) 

In this passage, we see that context alone determined reasonableness for the measure. For middle 

school students, the amount of variation is reasonable given the constraints that are likely to exist 

in tools used by young adolescents. For a company that needs precise measurements, the amount 

of variation is unreasonable. Isaac‘s reasoning gives clear indication of an example of using 

context to determine whether a measure of variation is reasonable.  

Variability in Data for Contextual Variables (DCP2) 

Reasoning during exploratory data analysis is indicative of consideration of data for 

contextual variables. It follows that reasoning specifically about variation in contextual settings 

indicates reasoning about the element of variability in data for contextual variables from the data-

centric perspective [DCP2]. Specific indicators of reasoning consistent with robust understanding 

for this element include a focus on aggregate or holistic features of data [DCP2(b)] and 

calculation [DCP2(c1)], use [DCP2(c2)], or interpretation [DCP2(c3)] of appropriate summary 

measures to reason about data variability. Considerable research has focused on this element of 
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reasoning about variation and informed the identification of indicators for reasoning about this 

element. Results reported in these studies reveal the difficulties that students (and teachers) 

experience in transitioning from intuitive and informal reasoning about variation to reasoning 

with formal measures of variation (e.g., Garfield, delMas, & Chance, 2007; Makar & Confrey, 

2005), reasoning about aggregate aspects of and measures of data (e.g., Hammerman & Rubin, 

2004; Makar & Confrey, 2005), and reasoning about conceptual rather than procedural aspects of 

variation (e.g., Silva & Coutinho, 2006, 2008; Sorto, 2004).  

Numerous examples of reasoning indicative of this element from the data-centric 

perspective have been discussed already, particularly with regard to the reasoning of individuals 

with NSN conceptions of variation. Transnumeration (Wild & Pfannkuch, 1999), in particular, 

evidences the indicators of creation [DCP2(a1)], use [DCP2(a2)], and interpretation [DCP2(a3)] 

of various representational forms and fluent movement among representations [DCP2(a4)] to 

explore variability in data and to select appropriate summary measures for variability [DCP2(c)]. 

Additionally, upward and downward views of data and distribution (Bakker & Gravemeijer, 

2004) are indicative of reasoning about pointwise and, more importantly, aggregate aspects of 

data [DCP2(b)]. Transnumeration and reasoning about the aggregate of data are not limited to 

individuals with NSN conceptions. More generally, individuals transnumerate to select the best 

measures and representations to capture important characteristics of data and variation [DCP2(a) 

and DCP2(c)], and they use the measures and representations to reason about the aggregate of 

data [DCP2(b)]. 

Illustrative of reasoning that touches upon multiple indicators of data-based reasoning 

about variability from the data-centric perspective are Hudson‘s reactions to the size-15 samples 

from the Consultant Task. He immediately creates representations in the form of boxplots from 

the lists of scores given to him [DCP2(a1)], and he reasons from both forms of data [DCP2(a4)]. 

His decision to construct boxplots changes the focus on data from individual values to an 
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aggregate form, which allows reasoning, including reasoning about variation, to focus on the 

aggregate of data [DCP2(b)]. He reasons that boxplots allow him to identify outliers. He indicates 

that outliers affect values for the mean and standard deviation more so than for the median and 

interquartile range, making the median and interquartile range more appropriate for describing 

consultants‘ data [DCP2(c1) and DCP2(c3)]. Modified boxplots retain a pointwise nature in their 

treatment of outlying values, which then allows further interpretation of aggregate features of a 

majority of the data [DCP2(b)]. Hudson describes the variation in scores by using boxplots to 

focus on the variation in the upper and lower halves of the scores for both consultants 

[DCP2(a3)]. He uses representations and measures to describe features and patterns of data and 

variability for each distribution [DCP2(a2) and DCP2(c2)]. Hudson‘s reasoning exemplifies 

describing and measuring variability in data for the contextual variable of scores [DCP2] through 

his transnumerating among measures, representations, and data to describe aggregate features of 

the scores.  

Variability and Relationships Among Data and Variables (DCP3) 

Exploring variability in data for contextual variables often is done as part of or in 

preparation for investigating relationships among data and variables. Comparisons between data 

sets, between variables, and between samples and hypothesized populations are common in 

introductory statistics and are part of reasoning about the element of variability and relationships 

among data and variables from the data-centric perspective. A general indicator of this element is 

exploring controlled and random variability to infer relationships among data and variables 

[DCP3]. Specific indicators include using [DCP3(a1)] and interpreting [DCP3(a2)] patterns of 

variability from representations; using aggregate features of variability [DCP3(b)]; using 

[DCP3(c1)] or interpreting [DCP3(c2)] appropriate summary measures; and examining the 
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variability among groups in addition to within groups [DCP3(d)] to make comparisons among 

data and variables. Group comparisons have provided the setting for several studies to investigate 

students‘ and teachers‘ reasoning about variation (e.g., Makar & Confrey, 2004, 2005; Watson, 

Callingham & Kelly, 2007). Results from these studies informed the list of initial indicators for 

reasoning about variability and relationships—indicators that through data analysis became those 

displayed in Table 6-3. In one of these research studies, Makar and Confrey (2004) note 

similarities in teachers‘ reasoning about within-group variability but differences in their reasoning 

about between-group variability. Although all of their teachers were able to reason about within-

group variability, some struggled to make between-group comparisons. Others were able to 

articulate only intuitions about between-group variation in their comparisons of two distributions. 

Reasoning about both within-group and between-group variability from data using 

representations and characteristics of the data is needed for relational reasoning within the data-

centric perspective.  

Reasoning about the variability between distributions of consultants‘ scores exemplifies 

reasoning for the element of variability and relationships among data and variables. In one 

illustration of this element, Everett responds to the question of whether there is a difference in 

consultants‘ scoring by acknowledging two main differences. 

The center, or the average score for Consultant One definitely seems higher, 
uh, than Consultant Two. Also, Consultant One has quite a bit more 

variability in his scores, uh, than Consultant Two [DCP3(d)]…The standard 
deviation‘s larger, um, and the, uh, the range is obviously larger. (Everett, 
Content, Lines 306-313) 

In this passage, we see comparisons between distributions in terms of the aggregate measures of 

average, presumably mean; standard deviation; and range [DCP3(c2) and DCP3(d)]. Everett 

focuses on the aggregate [DCP3(b)] to compare consultants‘ scores and evidences informal 

inferential reasoning in suggesting differences in scores. 



   229 

 

Reasoning about relationships is not confined to comparisons of univariate distributions. 

Variability also needs to be considered in reasoning about the relationship between variables in, 

for example, bivariate data. The same indicators apply to reasoning about bivariate data. Some 

research exists to suggest that students and teachers tend not to reason about aggregate features of 

bivariate data (e.g., Hammerman & Rubin, 2004). For example, Brasell and Rowe (1993) found 

that the students in their study tended to construct and then interpret bivariate data by focusing on 

specific data points rather than general trends in the data. Students‘ difficulties in viewing data on 

a global level were also observed by Ben-Zvi and Arcavi (Ben-Zvi, 2004; Ben-Zvi & Arcavi, 

2001). They characterize two understandings of data: local understanding as a focus on an 

individual, or relatively few, data values within a larger group of data and global understanding 

that entails recognizing and describing general patterns of data. Ben-Zvi and Arcavi‘s description 

of global understanding of data aligns with aggregate reasoning about data. Individuals with 

robust understandings of variation are able to reason globally about data for both univariate and 

bivariate distributions and use multiple representations to interpret and use summary measures of 

variation, particularly for making comparisons and exploring relationships. 

Reasoning about relationships between variables can be seen in teachers‘ reasoning about 

the Caliper Task. Dustin provides evidence that he considers variation while reasoning about the 

relationship between variables in the Caliper Task. He interprets the pattern of variability in the 

data to possibly be quadratic and suggests that a transformation of the data may be needed 

[DCP3(a3)]. He also suggests creating a residual plot of the data and using an interpretation of the 

pattern of variability in the residual plot [DCP(a3)] in conjunction with values for the correlation 

coefficient and the coefficient of determination [DCP(c2) and DCP(c3)] to reason about 

aggregate features of the relationship between variables [DCP3(b)]. He notes that he would like 

to ―have a reasonably high correlation, r value, and r squared [DCP(c2) and DCP(c3)]. Um, 

and…the residuals are not showing a pattern [DPC3(b)]‖ (Dustin, Content, Lines 1428-1447). 
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Through his reasoning for the Caliper Task, Dustin exemplifies the indicators of reasoning about 

variability for the relationship between two variables. He focuses on aggregate measures—the 

correlation coefficient and the coefficient of determination—and on a holistic examination of the 

residual plot to consider whether there is any pattern of variability in residuals.  

Effects of Sample Size on Variability (DCP4) 

Considering the effects of sample size on the variability of a sample [DCP4(a)] or sample 

statistics [DCP4(b)] from the data-centric perspective entails examining the effects of sample size 

through the creation [DCP4(a1) and DCP4(b1)], use [DCP4(a2) and DCP4(b2)], or interpretation 

[DCP4(a3) and DCP4(b3)] of data-based graphical or numerical representations of data. A 

considerable amount of research has investigated students‘ reasoning about and understanding of 

sampling distribution, with common difficulties identified as confusion between a sample 

distribution and a sampling distribution (Saldanha & Thompson, 2002) and confusion between 

the variation of a sample and the variation of a sampling distribution (Garfield, delMas, & 

Chance, 2007; Meletiou-Mavrotheris & Lee, 2003). For someone to exhibit relational reasoning 

within the data-centric perspective, the person must articulate a clear distinction between the two 

types of distributions and be able to reason about the differences in variation between the two.  

Everett illustrates data-based reasoning about sample size in his reasoning to compare a 

size-15 sample from the Consultant Task with a larger sample.  

The bigger the sample size you have…the less likely it is that you‘re going to 
get one or two unusual values that‘s going to throw off an average or 

something like that. You might get a couple extra low values, or a couple 

extra high values, but the more you have, the better chance you have of 

those things balancing each other out. [DCP4(a3)] And looking more like the 
population. (Everett, Content, Lines 911-918) 
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In this passage, we see a data-based description of the effects of sample size on samples from an 

expectation that larger samples are more likely to exhibit distributional characteristics similar to 

the population [DCP4(a3)]. Everett also demonstrates reasoning indicative of considering the 

effects of sample size on the variability of statistics used to characterize samples when he alludes 

to the lesser effect of outliers on averages [DCP4(b)]. After he has the corrected summary 

measures for the size-50 samples of scores in the Consultant Task, Everett begins to reason about 

standard error to determine whether there is a significant difference in consultants‘ scoring. He 

notes the following. 

With a sample size of 50, I would be dividing by square root 50, which is a 
little over 7, so that would cut the standard error [DCP4(b1)] to a little bit less 
than half and like a quarter… these [sample means] are at least two standard 
errors, maybe two and a half standard errors apart. (Everett, Content, Lines 661-
672)  

We see that the actual characteristics of the samples are no longer considered to address the issue 

of whether a difference exists. Instead, characteristics of the samples, namely the mean and 

standard deviation, are used to reason about the difference in means in relation to the standard 

error. Reasoning shifts to consideration of the sampling distribution of differences in means and 

the effects of sample size on the variability of differences in means [DCP4(b1)]. 

Relational Reasoning About Variation Within the Data-Centric Perspective  

Using SOLO (Biggs & Collis, 1982, 1991), relational reasoning about variation within 

the data-centric perspective is evidenced by reasoning that includes indicators within each of the 

four elements and integrated reasoning across the four elements. Of the examples used to 

illustrate data-based reasoning, Everett‘s reasoning about size-50 samples in the Consultant Task 

shows integrated reasoning across the four elements. He provides evidence that he views a 

standard deviation of 20.2 as unreasonable for scores on an interval from zero to 15, evidence of a 
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variational disposition [DCP1(a) and DCP1(c)]. From the dotplot, he confirms that 20.2 cannot be 

the standard deviation for Consultant Two‘s scores. He focuses on holistic features of the data 

[DCP2(a2) and DCP2(b)] to estimate the actual value. He reasons about variation within each 

distribution to display evidence for reasoning about data for contextual variables [DCP2(c1)], and 

he reasons about the variability between the two distributions, which is indicative of reasoning 

about variability for the third element [DCP3(d)]. Lastly, he reasons about the difference in 

means in relation to the standard error to provide evidence that he considers the effects of sample 

size [DCP4]. Everett reasons about each element in close succession and in combination to form a 

conclusion about differences in scoring. Through his reasoning to determine whether a difference 

in scoring exists, Everett provides an example of relational reasoning about variation within the 

data-centric perspective. Examples indicative of relational reasoning exist in the reasoning of the 

four other teachers, Blake, Dustin, Hudson, and Isaac, whose reasoning was used to exemplify 

reasoning for a particular indicator. 

Modeling Perspective 

Relational reasoning about variation within the modeling perspective is evidenced by 

integrated reasoning among the indicators listed in Table 6-4 for the four elements.  
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Element Indicators for the Modeling Perspective 

MP1: 
Variational 
disposition 

Anticipating and allowing for reasonable variability in data when using 
models for 
(a) making predictions from data or  
(b) making inferences from data 

MP2:  
Variability in data 
for contextual 
variables  

Identifying the pattern of variability in data or the expected pattern of 
variability for contextual variables by 
(a) modeling univariate data to explain variability in data or 
(b) considering contextual variables in the formulation of appropriate 

data models 
or in 
(c) modeling data to describe holistic features of data or 
(d) considering or creating distribution-free models or simulations to 

explore contextual variables 

MP3:  
Variability and 
relationships among 
data and variables 

Modeling controlled or random variability in data, transformed data, or 
sample statistics for 
(a) making inferences from data (e.g., isolating the signal from the noise 

for univariate or bivariate sets of data or formally testing for 
homogeneity in variances) or 

(b) assessing the goodness of a model‘s fit by examining deviations from 
the model 

MP4:  
Effects of sample 
size on variability 

Anticipating the effects of sample size on the variability of a sampling 
distribution to 
(a) model the sampling distribution or 
(b) consider significance, practical or statistical significance, of 

inferences 

Variational Disposition (MP1) 

Indicators of a variational disposition from the modeling perspective center on 

anticipating and allowing for reasonable variability when reasoning from models [MP1]. One 

specific indicator is realized through allowing for variability when making predictions from data 

[MP1(a)], such as using interval estimates rather than point estimates for predictions. A second 

Table 6-4: Indicators of Relational Reasoning About Variation Within the Modeling Perspective. 
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indicator arises from anticipation for and allowance for variability when making inferences from 

data [MP1(b)]. Both indicators equate with reasoning about the probabilistic rather than 

deterministic nature of estimating population characteristics from sample characteristics. One 

description of deterministic thinking is that for which ―every result must have an explainable 

cause;‖ probabilistic thinking entails thinking about results as being ―due to many unexplainable 

factors coming together, the resulting effect of which is called chance‖ (Scheaffer, 2006, p. 310). 

Mathematical thinking is often deterministic, whereas statistical thinking is often probabilistic 

(e.g., Meletiou-Mavrotheris & Stylianou, 2003; Scheaffer, 2006). Researchers have noted the 

propensity of teachers trained to think mathematically to ―handle variability by [arranging data 

and] finding subsets of the data about which they can make more deterministic claims‖ 

(Hammerman & Rubin, 2004, p. 35). These researchers illuminate the difficulties some 

mathematics teachers have in thinking statistically as they apply their deterministic beliefs about 

the nature of mathematics to statistics (Meletiou-Mavrotheris & Stylianou, 2003). Inference—

particularly standard parametric methods—relies on probability models to make decisions from 

data. A variational disposition from the modeling perspective seems necessary for invoking 

inferential methods to make meaningful, probabilistically conditioned conclusions. Individuals 

with robust understandings of variation reason probabilistically to anticipate and acknowledge 

variability and exhibit a variational disposition from the modeling perspective. 

 Examples of reasoning with a variational disposition from the modeling perspective exist 

for every teacher in this study. The Consultant Task description was designed to reveal whether 

teachers would display a variational disposition. It was anticipated that individuals with 

deterministic dispositions would suggest that a difference in consultants‘ scoring exists based 

strictly on the observed difference in sample means, whereas those with variational dispositions 

would not draw definitive conclusions. Dustin‘s reasoning in response to the administrators‘ 

question is typical of reasoning that exemplifies a variational disposition. 
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Well, they can‘t conclude much of anything at this particular point. I mean, 
you‘ve got a ten point three versus nine point seven. The question is whether 

or not there‘s really a difference [MP1]— or, just in the random selection of 

the exams, um, that difference could occur on a fairly—would occur fairly 

often [MP1(b)]. (Dustin, Content, Lines 26-37) 

In this passage, Dustin draws no conclusion from different mean scores. He notes that the 

question is really whether the difference in means is one that random sampling could produce 

with reasonably high probability [MP1(b)], showing that he allows for variation in sample 

characteristics. We see evidence of a variational disposition through Dustin‘s probabilistic 

reasoning in suggesting that the observed difference be compared against differences that ―would 

occur fairly often.‖  

A variational disposition from the modeling perspective can also be seen when 

reasonable variability is allowed in predictions from data. The Caliper Task was designed to 

reveal this aspect of a variational disposition by asking for a prediction of caliper measurement 

for objects with a known length in centimeters. We see evidence of this indicator in Dustin‘s 

response to making a prediction from the full scatterplot of points in the Caliper Task. He notes 

that he would want to project ―a reasonable estimate for what it [caliper measurement] would be 

for 4…We would estimate, you know, an interval within which the measurements should 

show up [MP1(a)], uh, based on that‖ (Dustin, Content, Lines 1627-1640). In this passage, 

Dustin identifies a point estimate for the caliper measure that utilizes the best-fit line. We see 

allowance for variability in the prediction interval he draws around the point estimate [MP1(a)]. 

(See Figure 6-4.) Dustin‘s construction of a prediction interval and probabilistic anticipation of 

variability exemplifies reasoning indicative of a variational disposition from the modeling 

perspective. 
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Variability in Data for Contextual Variables (MP2) 

From the modeling perspective, reasoning about variability in data for contextual 

variables can be evidenced in multiple ways. Two indicators are identifying a pattern of 

variability in data or an expected pattern of variability by modeling data to explain variability in 

univariate distributions [MP2(a)] or by considering contextual variables in the formulation of 

models for data [MP2(b)]. Research suggests that students in introductory course settings tend to 

be drawn to normal distributions when reasoning about univariate distributions. At times students 

reason about data using characteristics of normality even when doing so makes little sense in a 

given context (delMas, Garfield, Ooms, & Chance, 2007). In part, students‘ difficulties may stem 

from solving standard textbook problems using characteristics of normal distributions with little 

understanding for why normal distributions are appropriate, a difficulty documented by Wilensky 

(1995, 1997) in work with students experienced in statistics. In their description of building 

blocks for understanding variability, Garfied and Ben-Zvi (2005) list knowing that the mean and 

standard deviation ―provide useful and specific information about variability‖ (p. 94) in normal 

distributions as necessary for deep understanding of variation. When considered in tandem with 

Wilensky‘s work, it seems that individuals who exhibit relational reasoning within the modeling 

perspective should be able to model data with distributions appropriate to a given context and 

with understanding for why their model is appropriate. 

 

Figure 6-4: Dustin‘s Prediction Interval for the Caliper Measure of a Four-Centimeter Object.  
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 Two additional indicators of a modeling perspective in reasoning about variability for 

contextual variables are using models to identify the pattern of variability in data in order to 

describe holistic features of data [MP2(c)] or to consider or create distribution-free models or 

simulations to explore contextual variables [MP2(d)]. Individuals who have relational reasoning 

within the modeling perspective at the introductory statistics level should be able to provide 

evidence of the first three indicators [MP2(a-c)]. Depending upon their learning experiences, they 

may also provide evidence of the fourth indicator—that of employing the use of simulations or 

distribution-free models [MP2(d)]. Students and teachers rarely have experiences with 

nonparametric methods in the setting of introductory statistics (e.g., The College Board, 2004), 

although recommendations for introducing nonparametric methods in introductory courses are 

becoming more common (e.g., Cobb, 2005). Additionally, teachers may not have experience with 

constructing simulated models to aid in inferential reasoning. As a result, it would not be 

surprising if this fourth indicator were not evidenced by AP Statistics teachers. The indicator was 

included because several teachers in this study alluded to, described, or recommended 

nonparametric methods and simulations to establish whether a difference exists in the samples for 

the Consultant Task.  

 An example of reasoning with distribution-free methods can be seen in Everett‘s 

reasoning for the Consultant Task. Everett introduces the idea of a randomization test in his 

comparison of size-50 samples, and he describes the process of conducting the test. 

We could do a sort of a randomization test [MP2(d)]…We could throw all 
100 of these scores into, you know, one set and then split them up into groups of 
50, um, find the averages for both groups. See what the difference is. And then 
do that a bunch of times, over and over and over and over again. And see if a 
difference of point six is likely to come up just due to the random separation of 
the scores into two groups. (Everett, Content, Lines 357-377) 

Although Everett does not actually create the model for the randomization test he describes, his 

suggestion provides evidence of exploring variability for the contextual variable of a difference of 



   238 

 

means through consideration of a distribution-free model [MP2(d)]. Creation and use of an 

empirical model lies at the heart of his reasoning about this indicator. 

We see examples of using models to reason holistically about data in teachers‘ reasoning 

about consultants‘ scores [MP2(c)]. Modeling data with a distribution that has known 

characteristics facilitates holistic reasoning about data. As an example, consider Everett‘s 

description of a possible distribution for Consultant Two‘s scores. Everett appeals to a normal 

distribution model to describe what a standard deviation of one would mean for data centered at 

10.3 [MP2(c)]. He notes, ―the person who averaged 10 point 3 would be, you know, giving 

scores mostly between like 8 and 12 [MP2(c)]‖ (Everett, Content, Lines 149-151). Everett 

clarifies that from his experiences with test data, he expects test scores to be normally distributed, 

which suggests to him that than an appropriate model for test scores is a normal distribution 

model [MP2(b)]. He notes that, ―in a distribution that‘s approximately normal, um, or at least 

symmetric like that, most of the values are going to be within two standard deviations 

[MP2(c)]‖ (Everett, Content, Lines 162-166). We see that Everett introduces a normal probability 

model to reason about probable scores for Consultant Two‘s tests. He exhibits holistic reasoning 

in his reasoning about standard deviation in general terms and in his consideration of the interval 

over which a majority of scores would fall. He reasons about data by using a model for the data 

and known characteristics of the model. In this case, the data are hypothetical rather than 

empirical. We see justification for the claim that a standard deviation of one would result in 

scores between 8 and 12 from holistic reasoning about data with the described characteristics.  

Everett‘s use of a normal distribution to model test scores exemplifies consideration of 

contextual variables in the formulation of appropriate models to fit data [MP2(a)]. Beyond 

univariate data, multiple regression provides a setting for demonstrating this indicator. As was 

true for distribution-free methods, many introductory courses do not include a focus on multiple 

regression but instead focus on linear regression (The College Board, 2004). As a result, it was 
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not expected that teachers participating in this study would consider multiple regression. Another 

setting in which this indicator arises naturally even in introductory settings is reasoning about the 

coefficient of determination for bivariate data and speculating about additional factors that might 

explain more variability. In a sense, this reasoning occurs as a prelude to multiple regression. 

Dustin illustrates this indicator in his reasoning about the coefficient of determination by 

introducing an example to clarify his description of the coefficient of determination. He describes 

a set of data consisting of ordered pairs of values for ―mileage on a car and the trade-in value of 

that car‖ (Dustin, Content, Lines 1500-1501). He sketches a scatterplot of hypothetical data along 

with a model for the relationship between variables, as shown in Figure 6-5, and then describes 

how he would think about a car with 60,000 miles that sells for $4500. 

This linear model pretty much can explain a sixty thousand car, uh, and let‘s 
say I‘ve got all the same make and model here so that I‘m comparing apples to 
apples. That the trade-in value—that this model will explain thirty-five 

hundred dollars…That‘s what cars that are about sixty thousand miles of that 
make and model tend to be getting. But what I‘m unable to explain is why is 

this car getting like…forty-five hundred dollars. Um, and it may be that it‘s 
like in mint condition [MP2(b)]. Um, it‘s been incredibly well taken-care of. 

It hasn‘t been ridden all over the country [MP2(b)]…so the model explains 

why the price should be here [$3500], but it doesn‘t explain why the price is 
at forty-five hundred dollars. (Dustin, Content, Lines 1516-1534) 

 

 

Figure 6-5: Dustin‘s Graph to Explain Coefficient of Determination and Sources of Variation.  
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In this passage, we see clear evidence of considering contextual variables in the formulation of a 

model for value versus mileage of a car [MP2(b)]. We also see consideration of additional factors 

that may contribute variability to the value of a car, such as the condition of the car, through focus 

on a point that deviates from the linear model. In this way, although Dustin does not suggest 

adding variables to the model, we see reasoning about contextual variables in relation to 

explained variability and the coefficient of determination and in relation to the model used for 

this set of data. 

Isaac exemplifies the indicator of considering contextual variables in the formulation of 

appropriate data models as he describes a view of statistics that is consistent with that of many 

statisticians (Wild & Pfannkuch, 1999). He speaks of statistics and the relationship of models and 

variability to statistics as he describes his evolving understanding of mathematical models. 

I think that generalized to more and more of statistics as a, as a kind of a 
modeling activity. Where you—somehow or other you‘re constructing a, um, 
a model of the behavior of the real world and trying to account for, um, the, 
uh, for the variability, uh, that you‘re observing by appealing to, uh, other 

variables that, that um, um, that I guess I would call, are being modeled. 
[MP2(b)] (Isaac, Context II, Lines 484-491) 

Although Isaac does not mention a specific model or specific variables, presumably context is 

taken into consideration when modeling real world behavior. Isaac notes that variables are 

considered in the construction of models that explain variability.  

 A fourth indicator of reasoning about variability in data for contextual variables is 

modeling univariate data to explain variability [MP2(a)]. As was true for the indicator of 

modeling data to describe holistic features of data, teachers‘ reasoning about the Consultant Task 

provided a large number of examples for this indicator. Dustin‘s process of estimating the 

standard deviation of Consultant Two‘s scores from the dotplot of 49 scores exemplifies 

modeling data to explain variability. He uses a normal distribution to model Consultant Two‘s 

scores to explain the variability in scores. From the model, he estimates a standard deviation 



   241 

 

value of two by dividing the range of six by four and noting that most of the data would fall 

within two standard deviations of the mean. We see evidence of using a normal model to estimate 

and describe aggregate measures of data. This example from Dustin provides evidence of 

modeling data to explain variability [MP2(a)] and to numerically describe holistic features of data 

[MP2(c)]. 

Variability and Relationships Among Data and Variables (MP3) 

Reasoning about variability with regard to relationships among data and variables often is 

indicated by reasoning that includes formal parametric methods, such as performing linear 

regression to model a bivariate set of data or employing the use of z procedures to model the 

sampling distribution of sample proportions. Evidence of reasoning about variability and 

relationships among data and variables stems from using theoretical models to make inferences 

from data [MP3(a)]. Saldanha and Thompson (2003) suggest that meaningful inferential analysis 

stems from a multiplicative conception of sample, in which a sample is viewed ―as a quasi-

proportional mini version of the sampled population, where the ‗quasi-proportionality‘ image 

emerges in anticipating a bounded variety of outcomes, were one to repeat the sampling process‖ 

(p. 266). In reasoning about the mean of a population from the mean of a sample, someone with a 

multiplicative conception of sample would anticipate the relative unusualness of the sample mean 

in relation to a distribution of sample means from repeated samplings from the population. In 

their work with eight inservice secondary mathematics and statistics teachers, Liu and Thompson 

(2009) found that only one teacher exhibited this multiplicative conception of sample. For 

someone to reason relationally within the modeling perspective, they need to be able to reason 

about the variability of a distribution of sample statistics to consider the relative unusualness of a 

sample. 
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Reasoning about relationships among data and variables from the modeling perspective is 

exemplified in many teachers‘ inferential considerations for the Consultant Task. Consider 

Blake‘s description for using a t-test to determine differences in the way consultants score exams. 

He describes modeling the average difference in scores from matched pairs of student exams with 

a t distribution centered at zero and with variability approximated from the sample standard 

deviation and sample size [MP3(a)]. He describes how the model is used to determine the 

probability of getting a result like that from the given sample difference. In this way, he reasons 

about a characteristic from a single mean difference in relation to a distribution of average 

differences, which allows him to make inferences about the true average difference in scores from 

the average of the sample differences [MP3(a)]. Blake‘s reasoning exemplifies using a model for 

sample statistics to make inferences from data. 

A second indicator of variability and relationships among data and variables arises in 

situations in which the goodness of a model‘s fit is determined by examining residual plots and 

evaluating the pattern of variability displayed in the plots. An example of this indicator can be 

seen in Dustin‘s reasoning about residual plots during the course of reasoning about the Caliper 

Task. 

What you want is each difference to essentially be independent of the x-value to 
which it is associated. Because if you end up with something like this [Dustin 
sketches a residual plot. See Figure 6-6.], then what we‘re saying is the 

prediction works pretty well at the beginning, then gets worse and worse 

and worse, so the value of x, I mean the residual is dependent upon the value 
of x. [MP3(b)] (Dustin, Content, Lines 1380-1387) 

From Dustin‘s words and diagram, we see that Dustin creates a residual plot with what is 

commonly known as a fanning effect in the residuals. He identifies this pattern as undesirable for 

a good model fit to data [MP3(b)]. In this way, he presents evidence of assessing goodness-of-fit 

for the model associated with this residual plot. 
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Effects of Sample Size on Variability (MP4) 

The final element of reasoning from the modeling perspective is reasoning about the 

effects of sample size on variability [MP4]. One indicator is anticipating the effects of sample 

size on the variability of a sampling distribution [MP4(a)] and the second is considering the 

significance, practical or statistical, of inferences based on the variability of a sampling 

distribution [MP4(b)]. As noted in the description of reasoning from the data-centric perspective, 

results of research have suggested a commonplace confusion between a sample distribution and a 

sampling distribution (Saldanha & Thompson, 2002) and between the variability of a sample and 

the variability of a sampling distribution (Garfield, delMas, & Chance, 2007; Meletiou-

Mavrotheris & Lee, 2003)—confusions that inhibit success in reasoning about the element of the 

effects of sample size on variability. Individuals with robust understandings of variation do not 

exhibit this confusion between samples and sampling distributions. 

We see anticipation of the effects of sample size on the variability of a sampling 

distribution in Hudson‘s analysis of the regression output for the Caliper Task. When asked 

whether any of the values in the output were surprising, Hudson focuses on the test statistic         

(t = 1586.27) and standard error for the slope (SE = 0.000248). He explains standard error as a 

way of ―accounting for the fact that in repeated runs of this measuring activity, the slopes would 

 

Figure 6-6: Dustin‘s Example of a Nonrandom Residual Plot.  
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themselves vary‖ (Hudson, Content, Lines 1799-1800). He notes that the standard error is 

surprisingly small, indicating, ―I‘m surprised it couldn‘t have varied more, but, um, there are 

a lot of points here [MP4(a)]. You said there were a number stacked on top of each other‖ 

(Hudson, Content, Lines 1813-1816). We see that Hudson is surprised by the low value produced 

for the standard error of the slope coefficient. He assuages his concerns by focusing on the 

sample size, implying that a large sample size can produce low variation in the standard error 

[MP4(a)]. In this way, Hudson‘s illustrates reasoning that considers the effects of sample size on 

sampling distributions. 

The second indicator of anticipating the effects of sample size on a sampling distribution 

to consider significance is exemplified by Blake when he responds to whether he would use a 

sample size of 50 in his design for the Consultant Task. 

Let‘s say that we had a smaller sample size, uh, because of, of practical 
constraints, that it isn‘t troubling statistically – the, the, the mathematics is still 
gonna be solid.,,it‘s—it‘s harder to find a significant difference, uh, with a 
smaller sample size…But you still need to see a bigger raw difference because 
we know that there‘s going to be more variability in the smaller sample size 
[MP4(b)]. (Blake, Content, Lines 138-152) 

From Blake‘s words, we can see that he considers the effects of sample size on a sampling 

distribution, noting that there is more variability for small samples [MP4] than for large samples. 

He evidences considering the effect of this greater variability through acknowledging that a 

bigger ―raw difference‖ is needed to obtain significant results [MP4(b)].  

Relational Reasoning About Variation Within the Modeling Perspective  

Indicators of understanding for each of the four elements of reasoning about variation 

from the modeling perspective are displayed in Table 6-4. Relational reasoning about variation 

within the modeling perspective is demonstrated by reasoning that includes indicators within each 
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of the four elements and integrated reasoning across the four elements. Dustin provides an 

example of relational reasoning. In his reaction to the Consultant Task, Dustin reveals a 

variational disposition by suggesting that the administrators‘ underlying question requires 

probabilistic consideration, namely whether the variation between consultants‘ scores is greater 

than chance would predict. He goes on to use characteristics of known models to numerically 

describe both distributions of consultants‘ scores, evidencing the second element. To respond to 

the administrators‘ question, Dustin describes how he would model the sampling distribution of 

differences in means to conduct a test of significance for inferring the relationship between 

consultants‘ scores, and through the formula he describes for calculating a test statistic, he 

considers the effects of sample size on the variability of a sampling distribution. The data corpus 

for Blake, Everett, Hudson, and Isaac—the other four teachers discussed in this section—

provides evidence of relational reasoning among the four elements from the modeling 

perspective.  

Relational Reasoning in the Second SOLO Level 

The preceding sections use a framework based on the SOLO Model to describe relational 

reasoning about variation within each of the design, data-centric, and modeling perspectives. As 

shown at the bottom of Figure 6-3, relational reasoning within each perspective (R1) represents 

reasoning in the first cycle of levels of the formal mode, which becomes the unistructural level in 

the second cycle of levels of response (U2). Individuals who reason at the multistructural level in 

this second cycle (M2) exhibit relational reasoning within two or three perspectives without 

exhibiting evidence of integrated reasoning across all three perspectives. Robust understanding of 

variation is evidenced by relational reasoning about variation across the three perspectives (R2) in 

addition to relational reasoning within each of the three perspectives. Relational reasoning across 
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perspectives is demonstrated through integrated reasoning across the three perspectives for one or 

more elements. 

Integrated Reasoning Across Multiple Perspectives for a Single Element 

Integrated reasoning across multiple perspectives is first illustrated for a single element 

using examples from individuals with different conceptions. As an example of integrated 

reasoning indicative of the element of a variational disposition, consider Hudson‘s (EDE) 

reasoning for the Consultant Task. He reasons from the design perspective when he 

acknowledges the need for proper study design to infer population parameters from sample 

statistics [DP1(c)] by confirming that consultants‘ scores were properly selected. Hudson displays 

a variational disposition from the data-centric perspective when he describes why he needs to 

know something about variation in addition to center to statistically address the administrators‘ 

question [DCP1(b)]. His justification transitions into the modeling perspective when he indicates 

that the difference in means seems to be small and that a measure of variability would help to 

determine whether the difference is large or small. Hudson exemplifies consideration of the 

difference in mean scores in relation to the larger population of scores for each consultant 

[MP1(a)]. In Hudson‘s reasoning, we see integrated reasoning through his consideration of the 

assumptions he needs to make with regard to data collection [DP1(c)] and the data characteristics 

he needs [DCP1(b)] to determine the significance of the difference in means, evidencing a 

variational disposition from all three perspectives in a coherent and connected manner. 

Integrated reasoning for a single element in a longer temporal period can be seen in 

Everett‘s (NSN) reasoning about the effects of sample size in consideration of the Consultant 

Task. As described in the section on the ―Effects of Sample Size on Variability (DCP4)‖, Everett 

suggests that larger samples are more likely to exhibit distributional characteristics similar to 
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those of the population than small samples. He includes mention of variability as a distributional 

characteristic. He provides a data-based description of the effects of sample size on samples 

[DCP4(a)] after he reasons from the design perspective to anticipate the benefits of larger samples 

[DP4(a)]. He confirms details about the methods used to select consultants‘ exams and establishes 

that a data entry error had been made before he returns to his consideration of sample size. 

Everett takes the effects of sample size on the variability of statistics used to characterize samples 

into account [DCP4(b)] in his interpretations of summary measures for the complete size-50 

samples. He identifies the standard deviations for each sample but then begins to reason about the 

standard error [MP4(a)] to contemplate whether there is a significant difference in consultants‘ 

scoring [MP4(b)], displaying reasoning from modeling perspective. Everett‘s reasoning about 

sample size spans across more than 30 minutes, but throughout, he remains focused on 

considering the effects of sample size through his anticipation related to study design and his 

anticipation in establishing significance of differences. Everett illustrates integrated reasoning 

across the three perspectives for the element of the effects of sample size. 

Integrated reasoning across multiple perspectives can be seen not only when considering 

variability within univariate sets or between univariate sets but also when considering variability 

in reasoning about the relationship between variables. An example of reasoning about variables in 

a bivariate setting is found in Isaac‘s (EEC) reaction to receiving the names of the variables in the 

Caliper Task. Isaac uses context to identify potential sources of variability [DP2(2b)] for the 

rightmost two points when he suggests the measurements exceeded the limits of the caliper or 

that students‘ hands were too small to measure beyond a certain length. He focuses on aggregate 

features of the data to describe the variability of the data displayed in the scatterplot [DCP2(b)], 

and he considers the context and the variables under study to suggest models to fit the data 

[MP2(b)]. Isaac exemplifies integrated reasoning about variability in data for contextual variables 

from all three perspectives.  
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Integrated Reasoning Across Multiple Perspectives for Multiple Elements 

Most often, reasoning across perspectives does not occur within a single element but 

rather spans multiple elements for one or more perspectives. Consider Dustin‘s (EDE) early 

considerations for the Consultant Task. He states a need for randomly selected exams and 

considers the potential effects of randomization on the variability of collected data. His 

acknowledgement of variation and focus on randomization suggests that he attributes importance 

to design, indicative of a variational disposition [DP1(a)]. Additionally, he considers the nature of 

variability within the Consultant Task context [DP2(2a)] and expresses concern about controlling 

variation from extraneous sources [DP3(2a)]. While continuing to familiarize himself with the 

problem setting, he indicates that he can only make inferences about consultants‘ scoring if in 

addition to data collection methods, he knows something about the standard deviations of each 

consultants‘ scores. He reasons from the modeling perspective when he acknowledges variability 

inherent to making inferences from data [MP1(b)] and a variational disposition from the data-

centric perspective when he acknowledges a need for measures of variability [DCP1(b)]. In his 

reasoning to establish the task setting, Dustin exemplifies integrated reasoning within the design 

perspective and across perspectives for the element of a variational disposition. It makes sense 

that in considering a study designed by others, one considers the data collection methods used by 

researchers and considers variability from multiple perspectives in anticipation of the data 

analysis needed to respond to researchers‘ questions. 

Integrated reasoning across multiple perspectives for multiple elements can also be seen 

in reasoning that takes place during analysis of data. Continuing to follow Dustin, we see that 

when he is given the standard deviations for consultants‘ scores (and prior to being given the 

dotplots of consultants‘ scores), Dustin interprets the variability in both sets of consultants‘ scores 

individually [DCP2(a)] and comparatively [DCP3(c)] before examining the variation between 
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distributions [DCP3(d)]. To do so, he constructs a model to represent the interval of scores within 

a multiple of the standard deviation from the mean for each consultants‘ sample scores [MP2(b)]. 

He uses summary measures [DCP3(b)] and his model [MP2(c)] to reason holistically about both 

distributions. (See Figure 6-7 for Dustin‘s sketch.) He uses his model in conjunction with the 

summary values to suggest that the amount of variability between distributions and within the 

second consultant‘s scores would prohibit a conclusion of significant differences in terms of 

means but not in terms of variances [MP3(a)]. In his reasoning, Dustin exemplifies integrated 

reasoning for two elements (variability in data for contextual variables and variability and 

relationships among data and variables) from two perspectives (data-centric and modeling).  

Robust Understandings of Variation 

As the preceding discussion might suggest, integrated reasoning across perspectives can 

occur through different combinations of indicators, elements, and perspectives. For the purposes 

of this study, robust understandings of variation are indicated from evidence of relational 

reasoning about variation within each perspective in the first cycle of levels and relational 

reasoning about variation across all three perspectives in the second cycle of levels. Evidence of 

robust understandings has four required components: (1) evidence of reasoning matching each 

general indicator for each element of each perspective, or evidence that falls into every cell of 

 

 

Figure 6-7: Dustin‘s Model to Compare Consultants‘ Scores From Means and Standard 
Deviations.  
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Table 6-1; (2) evidence of relational reasoning within each of the three perspectives; (3) evidence 

of integrated reasoning across the three perspectives for at least one element and integrated 

reasoning across at least two perspectives for each of the four elements; and (4) the absence of 

consistently faulty reasoning, unsubstantiated claims, and missing claims appropriate for the task 

under consideration. For general indicators with multiple specific indicators, there needs to be 

evidence of at least one specific indicator. For example, with the indicators of creating 

[DCP2(a1)], using [DCP2(a2)], interpreting [DCP2(a3)], or fluently moving among [DCP2(a4)] 

various data representations to highlight patterns in variability for reasoning about variability in 

data for contextual variables [DCP2(a)], evidence is interpreted to be at least one specific 

indicator from DCP2(a1) to DCP2(a4) appropriate to the task under consideration. For those 

teachers identified as having robust understandings of variation, the teacher‘s data showed no 

evidence of missing indicators appropriate to a task or faulty reasoning about variation. 
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Conceptions and Robust Understanding 

Relationship Between Conceptions and Robust Understanding 

Achieving robust understanding of variation is not dependent upon viewing variation as 

Expected but Explainable and Controllable (EEC), Noise in Signal and Noise (NSN), or 

Expectation and Deviation from Expectation (EDE). At least one teacher with each type of 

conception exhibited integrated reasoning of indicators for each element of each perspective and 

reasoned in ways consistent with robust understandings of variation. Although these teachers 

exhibited relational reasoning across all three perspectives in the second level of SOLO, the 

emphases of their reasoning differed across conceptions. For example, an individual with robust 

understandings of variation who views variation as EEC exhibits relational reasoning about 

variation across all three perspectives, with the design perspective more dominant in his or her 

reasoning than the data-centric or modeling perspectives. Figure 6-8 shows a modified diagram 

from Figure 6-2, which highlights more prominent reasoning from the design perspective. What 

this diagram fails to show, however, is how that dominance looks in the second cycle of levels for 

which reasoning is integrated across perspectives. 
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Robust Understanding, Conceptions, and Teachers in This Study 

The teachers participating in this study exhibited sophisticated reasoning about variation. 

With a few minor exceptions, all of the teachers in this study reasoned in the formal mode. They 

also reasoned at the highest level of the hierarchies from previous research that focused on 

students‘ descriptions and considerations of variation in particular contexts or in a repeated 

sampling environment (e.g., Reading, 2004; Reading & Reid, 2004; Reading & Shaughnessy, 

2004; Reid & Reading, 2006; Watson & Kelly, 2004a), and a majority of the teachers reasoned 

 

Figure 6-8: The SOLO Model and Robust Understandings of Variation for EEC Conceptions. 
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about variation in the formal mode in ways consistent with the highest levels of hierarchies 

focused on students‘ considerations of variation in multiple contexts and environments (Reid & 

Reading, 2008; Watson, Kelly, Callingham, & Shaughnessy, 2003). As use of the word 

―majority‖ suggests, however, not every teacher who participated in this study exhibited 

reasoning indicative of the highest levels identified by those researchers. A majority of teachers 

in this study did not exhibit reasoning indicative of robust understanding of variation as defined 

in this study. In part, time limitations of the content interviews did not allow enough time for 

every teacher to respond to every aspect of every task. As a collection, the tasks were intended to 

elicit reasoning about different aspects of variation and some tasks focused more on eliciting 

reasoning from a particular perspective. Because the interview tasks were designed to elicit 

reasoning about different aspects of variation, some teachers were deprived of opportunities to 

exhibit reasoning for some of the large number of indicators shown in Table 6-1. There also were 

teachers who did not display indicators appropriate to the task under consideration or displayed 

faulty reasoning with regard to some elements and indicators. Of the 16 teachers participating in 

this study, five teachers exhibited evidence of robust understandings of variation. For these 

teachers, the data showed no evidence of faulty reasoning about variation.  

For examples of relational reasoning about variation across all three perspectives for the 

five teachers identified with robust understandings, consider the examples of their reasoning 

presented in earlier sections. Table 6-5 displays the sections in which evidence was presented for 

each of the five teachers, with the lists within each cell appearing in the order in which the 

evidence was presented. Although reasoning about multiple elements or from multiple 

perspectives was not part of the discussions of the examples as they were presented in Chapter 5, 

many of the discussions implicitly present evidence of integrated reasoning. Additionally, at least 

one example of integrated reasoning for each of the five teachers was described in this chapter. 

Other examples of integrated reasoning occurred throughout their content interviews.  
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 Design Perspective Data-Centric Perspective Modeling Perspective Integrated Reasoning 

Variational disposition  Isaac, EEC data-centric 

 Hudson, EDE data-centric 

 Dustin, DP1 

 Hudson, DP2 

 Isaac, EEC data-centric 

 Everett, NSN center as signal 

 Blake, EDE dev of statistics 

 Dustin, EDE data-centric 

 Hudson, EDE data-centric 

 Blake, DCP1 

 Isaac, DCP1 

 Isaac, EEC data-centric 

 Dustin, MP1 

 Hudson, R2 

Variability in data for 
contextual variables 

 Isaac, EEC conception 

 Isaac, EEC explainable 

 Isaac, EEC data-centric 

 Everett, NSN design 

 Blake, EDE design 

 Hudson, DP2 
 

 Isaac, EEC controllable 

 Isaac, EEC data-centric 

 Everett, NSN center as signal 

 Dustin, EDE dev from patterns 

 Hudson, DCP2 
 

 Isaac, EEC explainable 

 Everett, NSN center as signal 

 Everett, NSN patterns as signal 

 Everett, NSN modeling 

 Dustin, EDE dev from patterns 

 Everett, MP2 

 Dustin, MP2 

 Isaac, MP2 

 Isaac, R2 

Variability and 
relationships among 
data and variables 

 Isaac, EEC explainable 

 Isaac, EEC controllable 

 Everett, NSN design 

 Hudson, EDE dev from relationships 

 Blake, EDE dev from relationships 

 Blake EDE design 

 Dustin EDE design 

 Blake, DP3 

 Hudson, DP3 
 

 Isaac, EEC explainable 

 Isaac, EEC modeling 

 Everett, NSN patterns as signal 

 Everett, NSN rel between variables  

 Everett, NSN modeling 

 Blake, EDE dev of statistics 

 Blake, EDE dev from relationships 

 Hudson, EDE dev from relationships 

 Everett, DCP3 

 Dustin, DCP3 

 Isaac, EEC explainable 

 Isaac, EEC data-centric 

 Isaac, EEC modeling 

 Everett, NSN patterns as signal 

 Everett, NSN rel between variables  

 Everett, NSN modeling 

 Blake, EDE dev of statistics 

 Hudson, EDE dev of statistics 

 Blake, EDE dev from relationships 

 Hudson, EDE dev from relationships 

 Blake, MP3 

 Dustin, MP3 

 Dustin, R2 

Effects of sample size 
on variability 

 Isaac, EEC controllable 

 Everett, NSN design 

 Blake, EDE design 

 Everett, DP4 

 Isaac, DP4 

 Everett, DCP4  Isaac, EEC controllable 

 Blake EDE design 

 Hudson, MP4 

 Blake, MP4 

 Everett, R2 

Integrated reasoning  Blake, DP  Everett, DCP  Dustin, MP  

Table 6-5: Illustration of Robust Understanding Categories Using Only Examples From Teachers With Robust Understandings. 
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From Table 6-5 we see that the elements of variability in data for contextual variables 

and variability and relationships among data and variables are most common in the examples 

presented from the data corpus. This distribution of examples seems to be reasonable in light of 

the fact that these elements have more indicators than the remaining two elements and thus 

require more examples for illustration. Evidence among perspectives is distributed similarly. 

From the criteria established in this study, Blake, Dustin, Everett, Hudson, and Isaac provide 

evidence of robust understandings of variation. Their learning experiences are analyzed in 

Chapter 7. 



    

 

Chapter 7 
 

Influential Factors for Learning 

In answer to the second research question, this chapter focuses on factors that may have 

influenced the statistical learning of the five teachers in this study who exhibited robust 

understandings of variation. In particular, I examine the nature of activities and actions that, in the 

teachers‘ perceptions, contributed to their current understandings of statistical variation. I use 

transformation theory to frame how these experiences may have contributed to learning that 

deepened their statistical knowledge. To begin, I examine the experiences that prompted 

dilemmas for these five teachers, the resolution of which allowed them to construct statistical 

knowledge. In subsequent sections, I expound on personal and environmental influences for their 

learning in addition to characteristics of their learning methods. Throughout the chapter, I present 

representative examples of the larger body of examples for each claim. 

Triggers 

Through events related to their teaching of statistics, each of the five teachers 

experienced one or more ―triggers‖ that prompted self-awareness of limitations in their 

knowledge of statistics. By trigger I mean what Marsick and Watkins (2001) refer to as ―an 

internal or external stimulus that signals dissatisfaction with current ways of thinking or being‖ 

(p. 29). The trigger stimulates one of two types of dilemmas. An epochal dilemma is resolved 

through transformation of a meaning perspective (Mezirow, 2000), or changes in the interwoven 

assumptions and expectations through which the world is viewed to make sense of current 

experiences (Cranton, 2006). An incremental dilemma is resolved through the creation, 

enhancement, or transformation of a meaning scheme (Mezirow, 2000) that consists of a specific 
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expectation, knowledge, belief, attitude, or feeling (Mezirow, 1991) used to interpret everyday 

experiences (Cranton, 2006). 

An epochal dilemma can be a disorienting dilemma (Mezirow, 1990), terminology which 

has become synonymous with a dramatic crisis that provokes strong, painful emotions such as 

anger, shame, intimidation, or fear (e.g., Baumgarner, 2001; Erickson, 2000; King, 2000; Taylor, 

1997). Epochal dilemmas also may induce positive emotions through perceived affordances for 

learning (Erickson, 2007). To accommodate dilemmas that are accompanied by positive or 

negative emotion, researchers have either broadened their definition of ―disorienting‖ (Taylor, 

1987) or applied different adjectives that better capture the nature of dilemmas (Erickson, 2007). 

To describe other types of epochal dilemmas, I will use the terminology of opportunity dilemma 

for an epochal dilemma that is viewed as an opportunity for learning (Erickson, 2007) and 

touchstone dilemma for an epochal dilemma that is revisited often for meaningful resolution 

(Erickson, 2007). These different types of dilemmas are not necessarily disjoint. Although none 

of the teachers recounted experiences indicative of a disorienting dilemma, Isaac experienced a 

dilemma characteristic of both opportunistic and touchstone dilemmas. 

In contrast to epochal dilemmas, incremental dilemmas are less intense emotionally and 

may induce questioning of assumptions related to meaning schemes. Resolution to this second 

type of dilemma produces a new, enhanced, or transformed meaning scheme. A series of 

resolutions to incremental dilemmas for meaning schemes within a meaning perspective can 

result in a transformed meaning perspective (Taylor, 2000). Because resolution of this second 

type of dilemma contributes to a perspective change that is incremental and cumulative, I refer to 

this second type of dilemma as an incremental dilemma.  

The five teachers in this study experienced transformational learning in the form of a 

transformed meaning perspective for statistics, of which variation is a part. As a result, variation 

may not be central to their dilemmas, but resolution of the dilemmas may result in changed 
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understandings of variation. Table 7-1 contains a brief description of each type of dilemma, along 

with the triggers experienced by teachers in this study. The nature of these types of triggers is 

discussed in greater detail in succeeding sections. 

Dilemma Type Characteristics Triggers 

E
p
o
ch

al
 d

il
em

m
a 

 

Disorienting 
dilemma 

Dramatic crisis that 
provokes strong, 
painful emotion 
while reflecting 
critically on 
assumptions and 
beliefs 

Learning experience or event that creates 
dissonance with assumptions and beliefs about 
the field of statistics 
 
Resolution results in a transformed meaning 
perspective 
 

Opportunity 
dilemma 

Dramatic event 
viewed as 
opportunity for 
learning, with the 
individual‘s search 
for answers satisfying 
intellectual needs 

Learning experience or event that stimulates 
intellectual needs which are viewed as 
opportunities for learning about the field of 
statistics 
 
Resolution results in a transformed meaning 
perspective 

Touchstone 
dilemma 

Dramatic event that is 
revisited often and 
reformed to reflect 
new experiences and 
learning for 
resolution 

Learning experience or event that stimulated 
thought about the field of statistics and that is 
revisited often during resolution 
 
Resolution results in a transformed meaning 
perspective 

Incremental 
dilemma 

Event that provokes 
discomfort in relation 
to a particular 
assumption or belief 
 
 
 
 
 
Resolution may result 
in a transformed 
meaning scheme. A 
series of resolutions 
to incremental 
dilemmas may result 
in a transformed 
meaning perspective 

Learning experience that suggests 
misunderstanding with respect to a particular 
statistical topic or concept 
 
Exposure to previously unknown subtleties in 
content assumed to be known 
 
Attempts to make connections across content 
topics, particularly during lesson planning 
  
Active engagement in activities designed to 
elicit particular understandings 
 
Encountering new content/ terminology that 
conflicts with current understandings 
 
Considering subtleties in students‘ responses or 
in response to student inquiries 

Table 7-1: Types of Dilemmas and Triggers. 
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Triggers of Epochal Dilemmas 

Of the five teachers who exhibited robust understandings of variation, only Isaac 

describes a trigger consistent with producing an epochal dilemma. This trigger—the statistical 

ideas encountered during a four-week institute focused on the learning and teaching of 

statistics—precipitated actions resulting in increased statistical knowledge for Isaac. In particular, 

the content of the institute triggered a dilemma that was both touchstone and opportunistic.  

Prior to the institute, Isaac taught a statistics course that was ―basically…the college 

course that I had had‖ (Isaac, Context I, Line 406). The institute stimulated changes in the way 

Isaac thought about statistics, which resulted in Isaac making changes to the content and 

pedagogy of his statistics course reflective of his changing perspective. Isaac notes, ―content-wise 

that was where I learned about EDA [Exploratory Data Analysis]‖ (Isaac, Positive CI). ―We spent 

a week doing EDA stuff. And so I went and I—I went back and said well I‘m going to put this in 

my class. So I put that in, [and] learned, uh, a lot more about it‖ (Isaac Context I, Lines 418-421). 

Isaac‘s experience at the institute triggered an opportunistic dilemma in the sense that he saw 

possibilities in the ideas he encountered at the institute for his learning (and teaching).  

Isaac resolved the dilemma by incorporating EDA in his statistics class, including 

elements related to statistical variation, and by learning additional content related to EDA. 

Professionally, the institute served as, ―the genesis of all my subsequent work in the area of 

statistics education, and AP Statistics in particular‖ (Isaac, Positive CI). As Isaac continued to 

learn statistics through his experiences, he often revisited ideas that originated from this institute. 

The institute triggered a touchstone dilemma in that it prompted Isaac to think about statistics as 

the science of exploring data to answer questions of interest, an image of the subject that he 

revisited often throughout his varied experiences, as opposed to a set of procedures performed on 

data in an established and predetermined manner. In addition to experiencing the trigger of an 
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epochal dilemma, Isaac encountered triggers of incremental dilemmas throughout his continued 

learning experiences in statistics. 

Triggers of Incremental Dilemmas 

Unlike triggers for the relatively rare epochal dilemma seen in this study, triggers for 

incremental dilemmas were commonly encountered by Blake, Dustin, Everett, Hudson, and Isaac. 

Most of the dilemmas articulated by the five teachers were triggered while engaging in workshop 

or conference activities, engaging in dialogue about the learning and teaching of statistics, 

planning to teach AP Statistics, or teaching statistics.  

Triggers From Workshop or Conference Activities 

A major purpose of professional development is promotion of teacher learning, including 

learning of subject-matter content. In alignment with this purpose, all five teachers in this study 

encountered dilemmas that were triggered from engagement in workshop or conference activities. 

The dilemmas arose when teachers were active listeners to presentations or participants in 

statistical activities.  

The Conference Board of the Mathematical Sciences (2001) recommends that 

prospective secondary teachers take two courses in probability and statistics: ―a calculus-based 

survey course in probability and statistics and a course in data analysis‖ (p. 137). Of the five 

teachers, only Hudson completed an exploratory statistics course focused on exploring data in 

context. As a result, teachers‘ experiences with data analysis were largely limited to the 

introductory topics they teach. Data analysis content beyond that encountered in AP Statistics 
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tended to trigger incremental dilemmas. Consider Everett‘s reaction to a conference presentation 

he attended.  

The topic of [the] talk was Linear Models and the connections between Multiple 
Regression and ANOVA…Based on this experience, I realized that I needed to 
fill in lots of missing steps if I was to ever understand the material. (Everett, 
Negative CI) 

Everett left this session with a dilemma triggered from an awareness of limitations in his meaning 

scheme for regression. For Everett, this session, and others like it, stimulated action toward filling 

in the ―missing steps‖ to resolve the dilemma and form deepened understandings of regression 

and the connections between variation and regression. These changes to his meaning schemes 

contributed incrementally to his transformed view of statistics. 

Some incremental dilemmas were triggered from workshops or conference sessions that 

incorporated participants‘ engagement with exploratory activities. As an example, consider 

Hudson‘s engagement in a simulation activity that resulted in greater insight into how 

randomization allows him to determine whether an experimental result deviates from expectation 

by more than chance would predict. The activity incorporated two types of simulations—physical 

simulation with cards and computer simulation with a java applet. Hudson describes the effects of 

his engagement in the activity. 

By combining results from all those with decks of cards, [Presenter] produced a 
preliminary estimate of the likelihood that the experimental result could have 
been ―just due to chance.‖ He then presented a computer simulation [java applet] 
that was designed to mimic the physical card shuffling and dealing simulation. 
Using the computer simulation … [Presenter] developed another estimate for the 
likelihood of obtaining results as ―unusual‖ as those that occurred in the actual 
experiment ―just by chance.‖…To this point in my career, I don‘t think I fully 
grasped the meaning of ―just by chance‖ in an experimental setting…This 
revelation on that evening in June really excited me! (Hudson, Positive CI) 

Hudson suggests that he gained insight into affordances that arise from random assignment in 

experimental design—affordances that he did not ―fully grasp‖ prior to this activity. Engagement 

with the activity triggered a dilemma through awareness of his gap in understanding. Resolution 
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of the dilemma altered Hudson‘s meaning scheme for random assignment by illustrating for him 

how random assignment allows him to determine chance probability under the conditions of a 

null hypothesis. 

Triggers From Dialogue With Colleagues and Statisticians 

Learning occurred in response not only to incremental dilemmas triggered from 

experiences designed to facilitate learning but also from dilemmas triggered from statistical 

dialogue with colleagues and statisticians. Blake describes how interactions at the AP Readings 

often trigger dilemmas based on shortcomings in his understandings, particularly when the 

interactions focus on scoring rubrics. Discussion of responses for which students receive or do 

not receive full credit surfaces new issues that become the object of attention and conversation. 

During the course of conversation, Blake describes how he ―runs into conflict where… either my 

knowledge is wrong, and probably…hardly ever wrong per se, but incomplete, okay, not fine 

tuned. And so then as I hear the discussion I‘m able to fine tune my own thinking‖ (Blake, 

Context I, Lines 1511-1581). These interactions and conversations trigger dilemmas that Blake 

seeks to resolve. Although he suggests quick resolution to dilemmas, which may be indicative of 

learning through meaning schemes or learning new meaning schemes, he recognizes that not all 

dilemmas meet with immediate resolution: ―It creates an understanding or a question that has to 

be resolved, and it sometimes takes years‖ (Blake, Context II, Lines 878-897). Blake suggests the 

AP Reading is a venue that regularly triggers subsequent learning for him.  
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Triggers From Classroom Teaching 

A venue not designed for the primary purpose of enhancing teachers‘ learning but that 

regularly triggers incremental dilemmas that lead to learning is teaching. Each teacher describes 

interactions with students that triggered incremental dilemmas and provided the impetus for 

learning through students‘ unique observations and questions. Dustin describes dilemmas 

triggered by student questions, his lack of confidence ―that I totally understand the intricacies‖ 

(Dustin, Context I, Lines 1785-1786), and the steps he takes to resolve his dilemmas and to 

answer students‘ questions. Blake indicates that as his students began to ask questions of ―why‖ 

in his class, he sought answers for his students and for himself—answers to questions such as 

why use a measure of variation calculated from squared deviations (standard deviation) in place 

of a more intuitive measure of variation calculated from absolute deviations (average absolute 

deviation). His resolutions to answer questions of ―why‖ may come about through 

transformations of meaning schemes. He also notes how his maturing understandings may evoke 

deeper questions from his students—questions that produce what Blake calls a ―conflict of 

thought,‖ a dilemma. He notes, ―maybe as I matured…then kids are satisfied…through level one, 

and now they‘re asking questions on level two, where they never asked questions on level two 

before because I wasn‘t even satisfying them on level one‖ (Blake, Context I, Lines 1074-1092). 

Blake suggests that as his knowledge of statistics deepens over the years, the knowledge he 

observes among students also seems to deepen, or perhaps he becomes more aware of the depth 

of students‘ knowledge. In response to students‘ triggering of ―conflicts of thought,‖ Blake seeks 

resolution.  
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Triggers From Planning for AP Statistics Instruction  

Many triggers arose for these teachers during the course of planning for instruction, 

particularly when planning to teach the AP Statistics course for the first time. Even though 

several taught probability and data analysis courses before the advent of AP Statistics, the AP 

course outline (The College Board, 1996) contained content not previously encountered. In 

particular, each of the five teachers commented that study design was a required area but one for 

which they had insufficient previous experiences to teach comfortably. Planning to teach the 

design of observational studies and experiments triggered numerous incremental dilemmas for 

them. Dustin attributes his early struggles with the course to the inclusion of design and his 

planning to teach design. ―I think that‘s why the first couple years I struggled, because I really 

had not had any formal design. So I was… trying to figure out what I should be doing in AP stat, 

in the design area‖ (Dustin, Context I, Lines 661-670).  

The main purpose of design is controlling variability to deal with the uncertainty that 

arises from the omnipresence of variability—a largely nonmathematical endeavor (e.g., Groth, 

2007). Dustin indicates a difference in the way he needs to think about statistics from the way he 

thinks about mathematics, noting that statistics ―was something of an art form‖ (Dustin, Context I 

Lines 146-147). He contrasts statistics with mathematics, noting the following. 

Most of my courses, being math courses, it was like well there‘s always a 
formula lying around. Just apply the formula and you‘re done. But here, you 
actually could step back and say well, if I look at it this way, this is what I see. If 
I look at it this way, this is what I see. (Dustin, Context I, Lines 124-130) 

For these teachers who each took numerous mathematics courses, the artistic aspects of design 

may explain why the area of design is the only broad content area in which their learning and 

planning for instruction triggered disorientation. Blake describes design as ―one of those places 

where…you may learn some facts and then you understand why the facts later‖ (Blake, Context I, 

Lines 1013-1073). 
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Some design triggers stemmed from issues related to language. In particular, Dustin 

describes how he and another teacher would consult textbooks to resolve issues, and how 

differences in terminology, particularly in the area of design, would trigger incremental dilemmas 

that required learning through meaning schemes or learning new meaning schemes to resolve. In 

large part, Dustin describes confusion stemming from different terms for what appeared to be the 

same concept, such as treatments and factors or lurking variables and extraneous variables. 

We would go find a textbook and try to figure out what‘s going on. And because 
of the lack of a codified language, if you will, treatments, factors, all these issues, 
experimental units, lurking versus extraneous…That was one of those points 
where, you know, like so what is this lurking versus—are they the same? And 
we‘d go and look and, and so we spent a lot of time just trying to figure stuff out. 
(Dustin, Context I, Lines 746-757) 

Dustin suggests that different authors‘ terminology for seemingly identical concepts triggered 

dilemmas that required ―a lot of time‖ to resolve.  

Beyond different terminology for the same concept, subtleties in students‘ solutions to 

open-ended problems also created triggers. Everett credits the AP Statistics free response 

questions for alerting him to some wording subtleties. He often ―solved‖ the free response 

questions from each year‘s examination in preparation for post-examination lessons. He describes 

how incremental dilemmas were triggered at the AP Reading when he discovered that the 

―solution‖ he presented to his students would not have received full credit. Of the AP Reading, he 

also notes that distinguishing between students‘ ―essentially correct‖ and ―substantially correct‖ 

responses—two holistic designations given to student response at the AP Reading for responses 

that have at most a trivial error or omission and responses that may be missing one essential 

aspect, respectively—illuminates, ―the subtleties of, of what words mean and the ideas. I hadn‘t 

gotten the big picture in all those things yet‖ (Everett, Context I, Lines 49-59). He notes that the 

free response questions, particularly those focused on design, trigger incremental dilemmas that 
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required additional learning about design—learning through his meaning schemes related to 

design—to resolve.  

Reactions to Triggers 

When these five teachers encounter triggers that stimulate an awareness of an epochal or 

incremental dilemma, they act to resolve their dilemmas. Dustin, for example, notes how he 

consults ―another source [to] see what they have to say‖ (Dustin, Context I, Lines 1766-1767) or 

pages through his notes, which consist of folders that contain articles and items related to 

particular concepts. When he is unable to resolve his dilemmas after consulting the references 

readily available to him, he is apt to search the archives from the electronic discussion group or to 

consult secondary statistics teachers and statisticians to ask for help in resolving his dilemmas. 

When Dustin and the other four teachers experience dilemmas, they devise plans of action to 

resolve their dilemmas in the most expeditious manner possible. 

Recursive Nature of Learning 

These five teachers are open in acknowledging that they continue to encounter triggers 

that reveal previously unrecognized holes in their knowledge—triggers that create mostly 

incremental dilemmas for them. For example, when Dustin started teaching AP Statistics, his 

triggers stemmed mainly from the area of design. As he began to learn more statistics through 

attending professional development, teaching statistics at the secondary level, and conducting 

professional development, he began ―to realize how little I truly know about the basics‖ (Dustin, 

EHC). Triggers arose in areas beyond design. Like some of the adult educators in King‘s (2004) 

study, deepened understanding in one domain leads to recognition of additional areas for study. 
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As one of her teachers describes, ―I realize that not only have I learned a lot, but there is a lot 

more to learn!‖ (King, 204, p. 163).  

Personal Factors Related to Learning 

Numerous individuals encounter experiences and circumstances that trigger epochal or 

incremental dilemmas without the same learning effects in resolution to the dilemmas (e.g., 

Lohman & Woolf, 2001), leaving what types of factors or conditions facilitate perspective 

transformation as an open question for transformation theory (Taylor, 1997, 1998, 2000). 

Although teachers‘ statistical learning may not be attributable to specific factors, common to all 

five teachers are personal factors that may have had some influence on their transformative 

learning. Key among these factors are interest in the field of statistics, motivation to encounter 

and resolve dilemmas, confidence in their abilities to learn, reflection on content, commitment to 

their students and to teaching, and statistical knowledge, with prior knowledge determining 

readiness for learning and teachers‘ perceived need for an overarching framework in which to 

organize their knowledge. 

Interest in the Field of Statistics 

Each of the five teachers has an interest in statistics that seems to spur his desires to learn 

statistics. For example, Blake cites a clear interest in statistics that stemmed from his senior-level 

college statistics course. Although he does not attribute much of his learning to the course, he 

does credit the course and the instructor with piquing his interest in statistics. 

And my experience…I don‘t know if I learned a lot of statistics there,…but what 
I did see, uh, I was interested in probability and statistics…I did see in 



268 

 

[Professor] the passion and the, and so forth, and it kind of sparked an interest. 
(Blake, Context I, Lines 12-20) 

Blake‘s instructor would describe his statistical work and the analysis he was doing with data 

from the America‘s Cup and from Big-Ten athletics. According to Blake, his instructor would 

give daily updates in class. The combination of sheer enjoyment and passion apparent in the 

instructor‘s storytelling, the sports context, and the clear practicality of the subject matter served 

as ―the triggering mechanism[s] [for an interest in statistics], that somehow the statistics that he 

knew…he was using and enjoying‖ (Blake, Context I, Lines 128-131). Blake is not alone in 

having his interests piqued by an influential instructor. Hudson suggests that his instructor‘s 

―enthusiasm for the subject was, uh, part of what got me excited about it‖ (Hudson, Context I, 

Lines 22-23).  

As was true for Blake, Dustin had an instructor who initiated classroom discussion 

around real problems on which she was working. For Dustin, it was the problem-solving and 

open-ended nature of the instructor‘s examples from which his interests in statistics arose. As he 

indicates, ―I thought it was an enjoyable thing to say…let‘s look at this…how you looked at the 

data, um, would make a difference...I felt, I think, less straight-jacketed in what my options 

were...I liked having options‖ (Dustin, Context I, Lines 135-153). 

Although the examples from Blake, Dustin, and Hudson suggest that their interests arise 

from the actions and interests of others, these five teachers also have interests that may originate 

internally. Everett, for example, notes that he is interested in answering more statistical questions 

than time allows for him to answer. He observes, ―there‘s always questions rattling around in my 

mind about if I ever have the time, I‘d like to pursue this and try to figure this thing out. I even 

have a file with questions, like things to think about‖ (Everett, Context I, Lines 674-675). 

Similarly, Isaac describes how his inquisitive nature feeds into his interest in statistics in a way 

that parallels Everett‘s expressions of interesting questions and problems. He notes, ―I saw 
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interesting problems that I could look at statistically and so in order to solve those particular 

problems I had, I learned a lot of stuff‖ (Isaac, Context I, Lines 1182-1208). As Isaac‘s words 

suggest, however, interests only stimulate a desire to learn; in order to learn, interests need to be 

pursued. 

Motivation to Encounter and to Resolve Dilemmas 

Motivation, the set of reasons that underlie behavior, is needed to act in pursuing interests 

and resolving epochal and incremental dilemmas. The reasons for acting may be intrinsic, with no 

clear external incentives for acting, or extrinsic if engagement in the behaviors stems from 

external sources. All five teachers exhibit interests in and actions towards learning the intricacies 

of statistics in order to develop their conceptual understandings, indicative of intrinsic motivation, 

and to benefit the learning of their students, reflective of extrinsic motivation.  

The five teachers‘ intrinsic and extrinsic motivation at times leads them to add, alter, or 

transform meaning schemes. Blake‘s motivation in part seems to stem from his desire to resolve 

what he describes as his ―own conflicts,‖ suggesting that his motivation is at least partially 

intrinsic. He states a desire to understand why statistical formulas and procedures work, noting 

that ―I want to know why‖ (Blake, Context I, Lines 1588-1711). He seems to find the applications 

of procedures to be fairly routine, but he seeks to know why a particular procedure is useful in a 

particular situation and why it might be more useful than another procedure. For example, one of 

the ―why‖ questions he pursued was why the interquartile range as a measure of variation was 

needed when there was the standard deviation to measure spread. Even though Blake is motivated 

to learn, he is perhaps even more motivated to learn on behalf of his students and his teaching—

external sources of motivation. For instance, he uses his oversights or mistakes as motivation to 

learn more in order to ―teach it better‖ (Blake, Context II, Lines 467-468).  
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As with Blake‘s motivation to resolve conflicts that he creates for himself, each teacher is 

motivated to resolve dilemmas that he experiences. Consider Isaac‘s incremental dilemma that 

was triggered from an activity that placed him in close contact with statisticians and with access 

to statistical conversations among statisticians. He indicates, ―I was only dimly aware of what 

they were talking about… especially about probability [and] experimental design‖ (Isaac, Context 

II, Lines 515-539). Their discussions served to make him ―realize, uh, uh, pretty much how 

shallow my knowledge was‖ (Isaac, Context II, Lines 720-722). In order to deepen his knowledge 

and build new meaning schemes, he describes how he would take notes during the discussions 

and subsequently consult reference sources and spend considerable time making sense of the 

discussions of which he had been part. He observes, ―I went back home… got some books and 

studied‖ (Isaac, Context II, Lines 716-718), with the intention of ―making sure that, that my idea 

was consonant with what they were saying‖ (Isaac, Context II, Lines 737-738). Because Isaac 

met with these statisticians on a regular basis, his motivation to resolve his incremental dilemmas 

may have been partially extrinsic in that he may have wanted to appear knowledgeable to these 

individuals.  

As Isaac‘s example might suggest, he and the other four teachers are motivated not only 

to resolve dilemmas but are also motivated to put themselves in positions that are likely to trigger 

dilemmas. Each teacher serves one or more leadership roles in AP Statistics—positions they 

knew might challenge their still-developing understandings when they accepted the positions. For 

example, when Dustin accepted a leadership position that required interacting with other leaders 

in AP Statistics, including statisticians, Dustin describes feeling ―somewhat intimidated by the 

people‖ and experiencing ―quite a bit of trepidation‖ (Dustin, Positive CI) prior to submitting his 

first written work to the group. He describes how he needed to develop a ―thick skin‖ for this 

experience that made him ―wrestle with my understanding of the course, including being aware 

when there are holes or misunderstandings on my part‖ (Dustin, Positive CI)—holes that could 
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only be filled by learning. Implicit in the strategies Isaac used as he sought understanding and in 

Dustin‘s continued participation in his leadership role is an expectation that their actions would 

lead to learning and understanding. 

Confidence in Ability to Learn 

All five teachers felt they needed to learn statistical content to teach the AP Statistics 

course, and they were not only interested in and motivated to learn the content but also confident 

in their abilities to do so. Confidence is seen by some as a component of learning (e.g., 

Broekmann, 1998; Graven, 2004) and a particularly important component for transformative 

learning (e.g., King, 2004; Merriam & Caffarella, 1999; Taylor, 2000). The process of 

transformative learning often is ―an intensely threatening emotional experience‖ (Mezirow, 2000, 

p. 6) for individuals as they react to triggers and resolve dilemmas, which suggests that learners 

need confidence in confronting difficult challenges to be successful in transforming their meaning 

perspectives (Taylor, 2000). With little statistical training, the confidence and poise to believe in 

their abilities was critical for the five teachers to learn the statistical competences they needed to 

comfortably teach the AP Statistics course.  

Prior to teaching the course, Everett, for example, attended a weeklong AP Statistics 

summer institute that was designed to familiarize participants with the content, technology, and 

types of data-based activities needed to institute the course in ways that would be consistent with 

College Board recommendations. Everett left the institute feeling confident in his abilities to learn 

the statistical content that was new to him. 

The second semester things, the hypothesis testing and all of that, chi square, 
brand new to me. First time I‘d ever seen it…I felt like between the workshop 
and just what I planned to do—reading and stuff, I thought I‘d be okay with that. 
(Everett, Context I, Lines 731-744) 
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Even though Everett acknowledges that he had to learn content to teach the course, he believed 

that his attendance at the institute, background reading, and working through textbook examples 

and problems would yield the needed learning.  

Even though each teacher either explicitly stated their confidence for learning statistical 

content or implied confidence through their actions, all five teachers say that they still have 

statistical content to learn. For example, Blake describes his knowledge of design as a 2 on a 

scale from 1 to 10. Hudson acknowledges that he continues to learn as he prepares to conduct 

professional development workshops and as he conducts the workshops. He notes that ―it‘s just 

that a teacher‘s question or idea might catch me off balance sometime during a session and I 

might think hmmm. Nifty question. Wasn‘t what I was thinking‖ (Hudson, Context II, Lines 990-

993). He suggests that his consideration of alternatives shared by teacher-participants broadens 

his perspective of statistical ideas, thus broadening his corresponding meaning schemes 

associated with the ideas. Even though these five teachers exhibit evidence of robust 

understandings of variation, they exhibit confidence in describing how they question their 

understandings of statistics in general and most often their understandings in the area of design. 

Their myriad learning experiences and multiple occasions when their experiences triggered 

learning that resulted in greater depth of understanding in what they thought they already knew 

may contribute to their confidence in stating what still needs to be learned, a condition that has 

been argued as ―a primary condition for ongoing learning in a profession like mathematics 

teaching‖ (Graven, 2004, p. 181). 

Reflection on Content 

Teachers‘ interests, motivations, and confidence may contribute to their serious and 

conscious consideration, or reflection, of statistical ideas at the core of their dilemmas. Each of 
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the five teachers provides evidence of reflection in his accounts of statistical learning. Some of 

them openly attribute their learning to reflection, whereas others imply the role of reflection in 

their learning. Blake, for example, talks about ―resynthesizing‖ his knowledge. When asked how 

he resynthesizes his knowledge, he indicates, ―I think it‘s just a reflective piece‖ (Blake, Context 

I, Line 581). Blake is reflective in describing his progression of thoughts and how his learning 

advances from reflection—what he describes as a constructive process of ―refining [his] 

thoughts‖ (Blake, Context II, Line 709) about a statistical concept. Much of his reflective process 

centers on asking himself questions of how and why that then lead him to consider additional 

concepts. He describes the process as one that involves ―cycling my way back‖ (Blake, Context 

II, Line 777), in which his resolution to one ―conflict‖ triggers another conflict and creates a 

series of trigger-incremental dilemma-resolution cycles. Blake‘s description of ―cycling his way 

back‖ seems to capture the idea of the recursive nature of learning (Kilpatrick, 1985). 

In one example, Blake describes his progression of thoughts in his developing conception 

of randomization. Much of his process centers on asking himself a series of questions related to 

randomization that lead him to consider blocking and the role of variation in both randomization 

and blocking. 

Well why do we randomize, you know? There was always the, the, um, the 
catchphrase well we randomize to reduce or eliminate bias. Okay. And so you 
have that catchphrase in your head, and uh, well, but why? And pretty soon I‘m 
pinned down on why... how is it dealing with bias…the bigger problem is that we 
may not know about this extraneous variable…if we don‘t randomize, it may 
assist itself over one of the treatment groups more than the other… But why do 
you have to randomize, can‘t—isn‘t there other processes that make sure it 
doesn‘t hit them. Well maybe, maybe not. But we at least know that 
randomization does. Or, you know, and if it doesn‘t, we know…what are the 
chances… so just kind of pulling those types of pieces together, uh, but can we 
do better than randomization?…If we know about a variable, we can isolate it or 
block for it…maybe that‘s why we say when we block we reduce variability 
because we don‘t have to worry about the variability of the thing being randomly 
bounced around the two, the treatment groups. So these are—so all these 
thoughts…each time you think it, it builds on itself. It‘s like another building 
block in the process. (Blake, Context II, Lines 793-834) 
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Blake suggests that this progression of thoughts about randomization took place over ―the last 

two or three years‖ (Blake, Context II, Line 792). In this long passage, he describes how he 

progresses beyond the mantra that randomization reduces the chance for bias by considering how 

and why the reduction occurs. He reveals his insight that randomization in theory divides the 

effects of an extraneous variable equally into treatment groups and allows for the measurement of 

chance variability. As he continues to reflect on the effects of randomization and considers 

alternative strategies, he transitions into discovering how and why blocking reduces variation 

through isolating the effects of a particular variable. Seemingly through his reflections and 

questioning of assumptions related to randomization, Blake enhances his understanding of 

randomization, blocking, and variation.  

Blake‘s example provides evidence not only of reflection but also of critical reflection. 

Critical reflection is one of the main elements of transformative learning articulated by Mezirow 

(1989, 2000) and also validated by others (e.g., Cuddapah, 2005; Taylor, 1998). In general, 

critical reflection involves an examination of presuppositions for which current problem-solving 

processes do not provide resolution to the problem at hand (Merriam & Caffarella, 1999). In the 

example from Blake, we see evidence that he examines his assumptions and beliefs about a 

number of concepts, including randomization and blocking—assumptions for which his current 

knowledge did not provide sufficient resolution to his questions of why randomization reduces the 

probability of creating biased treatment groups or why blocking reduces variation. Blake reflects 

on more than content or process (Mezirow, 1991)—the content of experimental design and the 

process of designing experiments. Blake reflects on the premises that underlie content and 

process by questioning his previously unexamined assumptions and beliefs (Cranton, 2006; 

Mezirow, 1985) about why randomization reduces the chance for bias and why blocking reduces 

variation. He engages in critical reflection on these concepts. 
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Although Blake‘s journeys towards deepened understandings take considerable time to 

effect change as he introduces new conflicts and works towards resolution, not all significant 

learning takes years for deepened understandings to develop. Dustin, for example, describes how 

he went about consolidating aspects of his statistical knowledge in preparation to teach AP 

Statistics. He felt that he ―had all the pieces‖ of statistics without the bigger ―picture‖ (Dustin, 

Context II, Lines 938-954). To construct connections among the pieces of his statistical 

knowledge, Dustin indicates that he ―spent a lot of time that summer [preparing to teach AP 

Statistics for the first time] just thinking about how does all of this fit together‖ (Dustin, Context 

II, Lines 938-954). His ―thinking‖ is his serious and conscious consideration of what he knew 

about statistics and his comparison of concepts and topics to find the connections—his reflections 

on these topics that resulted in learning through meaning schemes, learning new meaning 

schemes, and learning by transforming meaning schemes. He notes that authors‘ presentations of 

topics were ―piecemeal. A little bit here, a little bit there, but no real connection. And if there was 

a connection, no one ever bothered to, like tell you what it was…you just discovered these things 

on your own‖ (Dustin, Context II, Lines 948-952). Dustin indicates that the connections among 

statistical topics were not made apparent by the authors of the references he consulted, which 

necessitated that he ―discover‖ the connections for himself. He describes the different actions that 

he took in his quests towards uncovering connections in the area of design, noting that he 

consulted a variety of statistics textbooks and spent ―a lot of time that first summer thinking about 

what they were trying to tell me‖ (Dustin, Context I, Lines 678-679). He indicates that he 

reflected on the content of his reading to synthesize different authors‘ interpretations of the 

content as part of his process of consolidation. 

As with Blake, Dustin provides evidence of critical reflection during the course of 

describing his preparation to teach AP Statistics. In his initial considerations of design, Dustin 

read sections from a variety of books and reflected on the content presented in those books to 
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develop a unified view of authors‘ descriptions of the concepts. He describes how over time he 

began to reflect on the process of design. Specifically, he describes how he moved from viewing 

the process as setting up a design to then analyze results to a process that centers on the question 

to be answered and how the design is determined by the question and the analysis to be 

performed. He also began reflecting on the premises behind the various design types, questioning 

both why we block and why blocking reduces variation, for example. 

Everett, Hudson, and Isaac provide similar evidence to support the centrality of reflection 

to their learning of statistics and their engagement in critical reflection. The role of reflection in 

their learning is consonant with empirical and theoretical literature that places reflection at the 

center of learning (e.g., Kilpatrick, 1985; Wheatley, 1992), including work focused on teacher 

learning (e.g., Clarke & Hollingsworth, 2002; Lohman & Woolf, 2001).  

Commitment to Students and Teaching 

The examples used to illustrate teachers‘ reflections provide more than just evidence of 

reflection; the time and thought these teachers put into their statistical activities reveals some of 

their commitment to their learning and to their students. These five teachers provide additional 

evidence of their commitment to their teaching and, in particular, to their students. 

Like other teachers (e.g., Crawford, 2005), these five teachers seemingly reveal their 

commitment to their students and to teaching through their attendance in ongoing professional 

development, their reading of current professional literature, and their service on leadership 

committees and in conducting professional development. Their reasons for undertaking these 

experiences are primarily pedagogical, but they often learn content through their pedagogical 

consideration. Their commitment also drives them to plan carefully for their classes. Leikin and 

Zazkis (2007) suggest that through predicting students‘ difficulties, teachers have the opportunity 
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to confront their own uncertainties and questions, potentially triggering incremental dilemmas. 

Through his consideration of how to teach statistical content in ways that would ―make it 

understandable‖ for his students (Dustin, Context II, Lines 947-948), Dustin was alerted to many 

questions about statistics that he himself had to confront. Unlike what appears to be the case in 

some studies of teacher learning (e.g., Hoekstra, Beijaard, Brekelmans, & Korthagen, 2007), 

these five teachers allow themselves to make mistakes not only in their planning but also in their 

teaching. They view their mistakes as learning opportunities. Isaac, for example, describes an 

understanding he has with his students that if a question arises that he, albeit temporarily, cannot 

answer, ―I always reserve the right to say I don‘t know. Let me see if I can kind of look it up or 

figure it out and I‘ll get back to you‖ (Isaac, Context I, Lines 1216-1218). From his commitment 

to his students, he makes sure that he does research and respond to their questions. 

An aspect of commitment to students that arose across discussions with multiple teachers 

in this study was a commitment to learning focused on preparing students for the AP Statistics 

examination. Rarely, if ever, did the subject of preparing students for the exam arise during 

conversations with the five teachers identified with robust understandings of variation. The 

current political climate is fraught with high-stakes testing and demands of teacher accountability 

(e.g., Shepherd, 2000), and among teachers‘ reactions to these demands is at least the perception 

that teachers may ―teach to the test‖ (Schorr, Firestone, & Monfils, 2003, p. 376). Although state 

assessments are typically the object of these speculations, AP examinations are another form of 

high-stakes test in that college credit is awarded dependent upon students‘ performance on an 

examination. Although some teachers may react to the pressure by studying rubrics and looking 

for patterns to learn how to better prepare students for the exam, their descriptions of learning 

activities differ from those offered by Blake, Dustin, Everett, Hudson, and Isaac. The focus of 

others may center on scoring, for example, rather than the underlying understandings that 

motivate the scoring decisions. In contrast, the five teachers identified with robust understandings 
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react to similar dilemmas by initiating dialogue with others or gathering resources to read about 

concepts and statistically explore why the rubrics were developed in a given manner. Arguably, 

their focus is on learning content, and their commitment is to their students‘ success in learning 

the content more so than to their students‘ success on the AP exam. 

Knowledge Base 

Two major tenets of constructivism are that knowledge is actively constructed by the 

learner and that learning is a process of adaptation based on current ways of knowing (e.g., von 

Glasersfeld, 1990). This view of learning can help to explain why teachers may leave a 

professional development experience such as the AP Reading with different learning outcomes 

than other teachers; each teacher enters with different meaning schemes and perspectives that 

they constructed from their own experiences (e.g., Merriam & Caffarella, 1999). The five 

teachers who exhibited robust understandings all describe settings in which they developed 

deeper insights into statistical concepts—insights that they admittedly may not have formed had 

those same experiences occurred earlier in their careers.  

Prior Knowledge 

Each teacher describes settings in which he developed insights into statistical concepts 

based on sufficient familiarity with statistical content to extend his knowledge base. As an 

example, consider Hudson‘s positive critical incident. During his attendance at a professional 

presentation, he participated in simulations designed to develop the idea of chance variability in 

an experimental setting. As powerful as the experience was for him, he indicates, ―timing was 

important. I may not have been ready to understand that talk had he [the speaker] spoken about it 
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four or five years earlier‖ (Hudson, Context I, Lines 1012-1014). At the time of this presentation, 

Hudson was considering the difference in implications of randomization for sampling versus 

experimental design. The simulations helped him to visualize the meaning of ―just by chance‖ for 

differences seen in two randomly assigned treatment groups, thus helping him to learn through 

his meaning scheme for random assignment.  

In his positive critical incident, Everett describes an experience that was ―a pivotal 

moment in my understanding of topics beyond AP Statistics‖ (Everett, Positive CI). He describes 

a desire to have had that experience earlier in his career, but similar to Hudson, he notes, ―if it 

was much earlier, I don‘t think I would have had the perspective to appreciate it‖ (Everett, 

Positive CI). At the time of this particular presentation, Everett had only recently begun to teach 

AP Statistics, and his statistical knowledge was limited to topics at the introductory level. He 

attributes the positive effects of this experience to a skilled teacher who ―met me where I was at 

and then was able to take me to the next spot‖ (Everett, Context I, Lines 179-182). At this same 

institute, there were other presentations of content beyond AP Statistics that did not have the 

same learning effect for Everett. Everett attributes the low level of effectiveness in these sessions 

to instructors that assumed more prior knowledge than what he or others in the audience had, 

including Dustin. The experiences described by Everett and Hudson, as well as experiences 

described by the other three teachers, support the importance of instructors formatively assessing 

students‘ understanding in order to allow students to build from their foundational knowledge 

(e.g., Pegg, 2003).  

Overarching View of or Framework for Statistics 

An important characteristic shared by the five teachers is what they describe as a desire to 

see the ―big picture‖ of statistics. Each of the teachers credits either the organization of content in 
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the AP Statistics course description (The College Board, 1996) or his efforts in planning to teach 

AP Statistics with his development of a ―big picture‖ view. Although a certain amount of 

statistical knowledge may be prerequisite to developing this view, none of the teachers express 

such a belief and instead suggest that instruction focused on facilitating students‘ construction of 

an overarching view benefits their students. As an example of developing an overarching view, 

consider the experiences of Isaac. Even though he taught statistics before the advent of AP 

Statistics, Isaac credits his activities related to the course with helping him to develop a 

broadened ―perspective‖ of statistics. He suggests that he now sees statistics as an entity 

comprised of four interrelated parts—the four areas of data analysis, design, probability, and 

inference identified in the AP course description—that provided ―a kind of a…framework, uh, 

where, um, my existing knowledge and then new knowledge, um, uh, as it came, it sort of found a 

home‖ (Isaac, Context II, Lines 179-181). He credits this idea of a framework for his knowledge 

with helping him to identify ―what I thought I knew. And fill in a lot of holes, uh, in my 

knowledge‖ (Isaac, Context II, Lines 177-178). Through his consideration and solving of 

problems that required attention to all four areas, Isaac suggests that he began to make 

connections among the areas.  

Like Isaac, Dustin describes how he had all of the pieces of statistics prior to his summer 

of learning, ―but there was no picture. There was no magic eye, um, until the course showed up‖ 

(Dustin, Context II, Lines 941-942). For Dustin, it was the area of design that helped him to make 

connections and ultimately helped to transform his meaning perspective for statistics. ―For me, 

the question is why not start with design? It seems a natural thing. How would you get data? You 

know, what are the ways we get data? And then, you move on to okay, now we have some data‖ 

(Dustin, Context II, Lines 516-520). By viewing the course from the perspective of design first, 

Dustin saw what he labels as the ―big picture,‖ which seems to equate with the process of 

statistical problem solving articulated by the authors of the GAISE report (Franklin et al., 2007). 
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After he started teaching AP Statistics, Hudson also started to think about design first and the 

positioning of the four areas in the problem-solving process. He credits his reading of the GAISE 

report with solidifying his view.  

I realized that this model was very useful in almost every situation where you 
encountered statistics. What‘s the question? How‘s the data going to be 
produced? Or if it‘s already been produced, was the data produced in a way that‘s 
going to help us answer that question? What do you do with the data once you‘ve 
got it? What interpretations and conclusions can be drawn and do you need 
probability or simulation to help you do that, or any kind of inference, uh, tool. 
(Hudson, Context I, Lines 1120-1128) 

Hudson describes what he also calls the ―big picture‖ of statistics in terms of the problem-solving 

process articulated in the report. Although he had been developing a similar integrated view prior 

to encountering the report, he states appreciation for the simplicity of the articulated process and 

the integration of the four AP course components throughout the process and recognizes it as 

something that ―applies to almost everything I use with my students‖ (Hudson, Context I, Lines 

1144-1145). Hudson also describes how the report‘s focus on variation profoundly impacted the 

way in which he viewed variation. The report helped him to recognize the centrality of variation 

in statistics by prompting him to consider the different types of variation encountered throughout 

the problem solving process. As he says, ―that focus on variation sort of caught me‖ (Hudson, 

Context II, Lines 430-431). 

Summary of Personal Factors 

Although definitive conclusions cannot be established to determine if the personal factors 

of interest, motivation, commitment, reflection, confidence, and knowledge base have a causal 

relationship with the construction of robust understandings, there is definitive evidence that each 

of the five teachers with robust understandings of variation exhibited similarities with respect to 

these personal factors. All five teachers expressed an interest in statistics prior to teaching 
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statistics and exhibited motivation, confidence, and commitment for constructing their current 

statistical understandings. They are reflective in describing their experiences and attribute 

importance to the role of reflection in their learning. They also provide evidence of critical 

reflection, which from the perspective of transformation theory is the main mechanism for 

transforming meaning perspectives (e.g., Cranton, 2006; Mezirow, 1991).  

Environmental Influences Related to Learning 

In addition to personal factors that may have some effect on a teacher‘s learning, there 

are environmental factors that may be more or less conducive to their learning. Each of the 

teachers cites the importance of a ―comfortable‖ learning environment in which he can feel free 

to ask questions about content as questions arise. They attribute a sense of community to 

secondary teachers and statisticians who are active in the AP Statistics program and describe the 

benefits they attribute to membership in this community, including rational discourse. They also 

acknowledge the support they receive from their respective districts in terms of the resources, 

time, and opportunities their districts commit to their professional development.  

Comfortable Learning Environment 

The teachers in this study identify feelings of safety and comfort as prerequisite for them 

to feel free in asking questions about content. Blake, for example, describes the electronic 

discussion group for AP Statistics as a ―very comfortable place‖ where he and others can ask 

questions that knowledgeable statisticians and secondary teachers will answer (Blake, Context I, 

Line 773). He notes that at times people disagree about answers, but they always do so ―in a very, 

very nice way‖ (Blake, Context I, Line 776) so that he and others feel comfortable in posting their 
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questions. He trusts that his questions will be answered in a professionally informative way. The 

establishment of these types of trusting relationships in which ―individuals can have questioning 

discussions wherein information can be shared openly‖ (Taylor, 2000, p. 307) is essential for 

rational discourse. 

Rational Discourse 

Teacher‘s feelings of community and perception of a safe and supportive environment 

allow teachers opportunities to engage in rational discourse. All five teachers attribute much of 

their statistics learning to discourse-related activities that include collaboration and interactions 

with other teachers, interactions with more knowledgeable others, and considerations of 

alternative points of view. 

Collaboration and Interactions With Teachers 

Some of the most beneficial learning experiences described by these teachers involve 

collaboration with or conversations with other statistics teachers. Everett, for example, associates 

opportunities to interact in pursuing ideas with other teachers with his most pivotal learning 

experiences. 

 The most obvious connection between all of them is that, it— those 
opportunities, or those events, allowed the opportunity for teachers to just talk 
with other teachers casually and develop, um, ideas. Pursue ideas. (Everett, 
Context I, Lines 18-23) 

The interactions to which Everett refers and those identified by the other four teachers include 

those that occur via the electronic discussion group for AP Statistics, in informal conversations 

with colleagues, and while collaborating on projects. 
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Prior to the existence of AP Statistics and during the first years of its existence, teachers‘ 

interactions with other teachers were limited. During their early years in teaching statistics, Blake, 

Dustin, Everett, and Isaac each were the sole statistics teachers in their respective schools. Each 

expresses his gratitude for finding colleagues from other schools with whom he could discuss 

statistics. Similarly, Hudson describes the importance of having the input of a colleague from his 

school as he prepared to teach AP Statistics. Isaac, for example, describes a benefit from 

attending his first statistics institute as ―feeling that if I ran into some kind of a problem, there 

was someone I could call‖ (Isaac, Context I, Lines 685-686). He suggests that his learning of 

exploratory data analysis stemmed from ―a great deal of conversation, question asking, uh, rather 

than what we would think of as a class‖ (Isaac, Context I, Lines 575-577) at this institute. Isaac 

appears to have taken some consolation from learning alongside others with similar interests who 

were simultaneously questioning the relative merits of exploring data and how to stimulate 

statistical learning from such activity—an important aspect of their rational discourse. Teachers‘ 

conversations focused on content often stimulated incremental dilemmas, as did their 

conversations focused on designing activities. Dustin describes his interactions with a colleague 

from a nearby district and how their conversations transitioned from classroom activities to the 

content intended to be learned from engagement with the activities. 

Along the way it‘s like so what‘s your understanding of this topic? Um, because I 
keep thinking it‘s this. And, you know, it‘s like, and she would say oh, yeah, 
yeah, yeah. You can‘t do it that way. Or, no I think it‘s really this, and then we 
would go find a textbook and try to figure out what‘s going on. (Dustin, Context 
I, Lines 742-747) 

Through their willingness to openly confront their potential misconceptions, Dustin and this 

teacher established a safe and trusting relationship in their developing community during what 

Dustin describes as their ―baptism by fire‖ (Dustin, Context I, Line 795) in preparing to teach AP 

Statistics. Mezirow (2000) suggests that this type of trusting relationship allows open and frank 

discussions—rational discourse—to occur, thus allowing the opportunity for this fundamental 
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component of transformative learning (Cuddapah, 2005; Merriam & Caffarella, 1999). Dustin‘s 

description of these early experiences as ―baptism by fire‖ suggests the emotionally-charged 

atmosphere he and others experienced—atmospheres in which trusting relationships are essential 

for learning (Taylor, 2000). 

Interactions With Statisticians and More Knowledgeable Others 

Like teachers in other studies (e.g., Park Rogers et al., 2007; Putnam & Borko, 2000), all 

five teachers describe educative benefits from interactions within their network of teachers. They 

seem to place even more value in their interactions with more knowledgeable others, particularly 

practicing statisticians. Through their involvement in the AP Statistics program, all five teachers 

have had opportunities to interact one-to-one with statisticians and to engage in rational 

discourse. Each teacher has either worked with a statistician on designing or implementing 

professional development sessions, authoring statistics materials, designing activities, or writing 

AP assessment items, and each describes those experiences as wonderful learning opportunities. 

Everett indicates that the statisticians are ―not shy about saying well that‘s not really how it is, but 

they‘ll also be happy to explain it‖ (Everett, Context I, Lines 636-639). He describes it as ―more 

of a teammate kind of feeling‖ (Everett, Context I, Lines 105-106) than one would have in typical 

student-teacher classroom interactions. Isaac concurs in noting, ―she [the statistician] would say I 

don‘t think this, this isn‘t really quite right, what you, what you‘re saying here. And she‘d have a 

little explanation‖ (Isaac, Context I, Lines 1501-1504). Statisticians‘ and knowledgeable others‘ 

explanations are important for the valuable information they share, and importance attributed to 

the type of safe and supportive environment established by these individuals is underscored in 

much of the research literature framed by transformation theory (e.g., Caswell, 2007; 

Kitchenham, 2006). 
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All five teachers engaged in rational discourse with statistics teachers and statisticians to 

learn statistics and to gain insights into their own assumptions and beliefs related to variation and 

statistics through the experiences and insights of others. Dustin, for example, describes a time 

when a statistician told him that one should never block on gender in medical experiments—

doctors need to know if men and women react differently to medication. Although blocking by 

gender may reduce variability and enable isolation of the effects of the medication, in practice, 

knowledge of a potential interaction effect is of greater importance. It is precisely this type of 

practical wisdom that these teachers seek to enhance their meaning schemes of statistical 

concepts. Dustin notes how in designing activities or assessments, statisticians notice details that 

―you would say oh, I hadn‘t even thought of that. You know, you think you have the right idea. 

You would have like a kernel would be, would be the right idea‖ (Dustin, Context I, Lines 965-

967). Isaac describes his interactions with statisticians in a particular capacity as one of his most 

valuable learning experiences. He indicates that ―listening to the statisticians discuss the, you 

know, various issues, um, uh, what certain, you know, various questions were about and why they 

were the way they were‖ (Isaac, Context II, Lines 8-20) provided insights into the premises 

behind statistical concepts. 

Consideration of Alternative Views 

Listening to and considering alternative perspectives, particularly through discourse with 

others, may motivate a teacher to critically question previously unexamined assumptions and 

beliefs about teaching and learning. Blake, for example, describes how he does not blindly accept 

statements from knowledgeable statisticians but how he reflects on what is said and tries to make 

sense from the other person‘s view by ―obsessively think[ing] about that until I have my own 

resolution‖ (Blake, Context II, Lines 700-701). 
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Some of my incomplete thoughts about design, uh, were challenged by people 
saying things along the way. And then I had to adjust it, and these people were 
credible enough that I didn‘t dismiss what they said. And so now I had to justify 
what they were saying, and as I justified what they were saying, it took me to a 
higher level of understanding. And so there was this constant process of, of I 
guess refining my thoughts, and sometimes finding out, uh, uh, you know, I had 
changed my thoughts. (Blake, Context II, Lines702-710)  

He describes how he asks himself a series of premise-based why questions, such as why does 

blocking reduce variation? When he reaches a point past which he cannot proceed, he consults a 

statistician with whom he has conducted numerous workshops or posts his question to the 

electronic discussion group. The combination of his critical reflection on premises and rational 

discourse with more knowledgeable others allows Blake to resolve his incremental dilemmas, 

although resolution may take months or years to achieve.  

Blake and the other teachers describe the AP Reading and the AP electronic discussion 

group as two venues in which they are given the opportunity to consider a variety of opinions on 

statistical issues. Blake, for example, describes the rubric briefing at the AP Reading as beneficial 

in terms of ―listening to that presentation and that training‖ (Blake, Context I, Lines 1511-1581). 

As part of this process, he considers ―how they [rubric developers] saw things‖ and ―hearing what 

people say about that‖ (Blake, Context II, Lines 838-866). He also describe encounters with 

different views from reading ―arguments‖ posted to the electronic discussion group, with the 

arguments sometimes centering on statistical issues that may never have occurred to him. Blake‘s 

comments suggest that he engages in premise reflection to transform his meaning schemes related 

to different concepts. 

In addition to considering alternative perspectives through rational discourse, teachers 

become aware of multiple perspectives by reading textbooks and supplemental materials authored 

by different people. Everett considers different perspectives presented in written form to be 

analogous to having multiple instructors teach concepts, each in slightly different form.  
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One of the things that‘s been most interesting for my teaching is teaching out of 
different books…getting different perspectives, and so you kind of get a sense 
that, you know, if they only have room for one example in their textbook on a 
particular topic, you get the sense that that‘s the way it is. And that‘s the way that 
all examples will be, and you don‘t know that this thing can be applied in so 
many different ways or taught differently or, and so you have a real limited 
perspective. (Everett, Context I, Lines 1094-1103) 

When textbook authors present concepts in slightly different ways, the reader may experience an 

incremental dilemma, and eventual resolution of that dilemma results in a richer concept image 

that reconciles different views.  

Reading different textbook presentations of concepts may trigger critical assessment of 

assumptions related to the concepts and eventually result in transformed meaning schemes. As an 

example of critically assessing assumptions, consider Dustin‘s steps to resolve a dilemma 

triggered from textbooks using seemingly different terms for the same or related concepts. By 

consulting different textbooks, Dustin encountered the notions of confounding, lurking, and 

extraneous variables. To reconcile the apparent differences and resolve his incremental dilemma, 

Dustin compared similarities and differences among authors‘ descriptions. 

I‘d sit there with three or four books open, and I‘d read, like say we‘re doing 
random variables or design. I‘d read all the chapters on design in the books, and 
then try to figure out, okay, where the points of commonality were, where they 
were different, and does that different word really matter all that much?…it was 
just people had different words that they use. I mean do you use confounding, 
lurking…but the better term is probably extraneous variables…And so 
extraneous simply says hey, there‘s all this stuff out here that, you know, you‘re 
not dealing with. You just randomize it…And, you know, after a while I 
realized…they‘re really talking about the same thing here. (Dustin, Context II, 
Lines 285-328) 

Dustin suggests that by reading and rereading explanations in different textbooks and outlining 

commonalities in the concepts being described, he eventually transformed his divergent images of 

lurking, confounding, and extraneous variables into a unified conception of variables different 

from the independent variable(s) of interest to the study and whose contributions to variability in 

the dependent variable(s) are controlled through randomization. In resolving his incremental 
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dilemmas, Dustin tried to assume the views of the authors and engaged in rational discourse, 

albeit with himself, to resolve his dilemma. 

Each of the five teachers explicitly sought literature to gain further insights into the area 

of design. In the process, they claim that they developed insights into not only design but also 

connections of various concepts to design. For example, Hudson read sections from a design book 

and deepened his understanding of the relationship between design and variation. 

What I never connected in a way that [the author] did was how the different 
designs account for, uh, the sources of variation. How completely randomized 
design deals with things differently than a block design in terms of variation and 
how you‘re trying to, um, allocate those sources of variation. So for me, that 
was—he talked about it in a really simple experimental setting with…hamsters. 
There were only about 8 of them… as I read it and then reread it, I thought hmm. 
I‘m not sure I really knew that. (Hudson, Context II, Lines 379-466) 

Hudson suggests that the author‘s presentation of different designs and use of simple examples to 

highlight connections between design and variation coupled with his reading, consideration of 

examples, and reflection clarified the connections. Although Hudson attributes deepened 

understandings to this reading, he claims further enlightenment upon reading the GAISE report 

(Franklin et al., 2007). 

It sort of struck me as I was reading through that the authors really thought that 
different types of variation were really what was important…I had never, in any 
of my other experiences before these readings, felt that that was the central theme 
of the course. I‘ve heard people say statistics is the study of variation, but that 
hadn‘t been my experience. (Hudson, Context II, Lines 471-491) 

For Hudson, the statistics framework and views of variation expressed by authors of the GAISE 

report was different from what he encountered in his previous experiences yet contained enough 

similarities that he could make connections to his understandings. The simplicity of the 

framework, supporting examples for the framework, multiple readings of the report, and 

reflections on all of the preceding enabled Hudson to construct a more unified view of statistics. 

He notes, ―I thought how simple…we‘ve always talked in AP about there being four components 
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to the course, but they were never particularly articulated together in this way. And now it‘s been 

put together‖ (Hudson, Context I, Lines 1133-1177).  

Community 

Related to the development of a safe and supportive environment is the notion of 

community that may develop from or foster such an environment. The five teachers identify 

membership in communities as important for their learning. In their roles as learners and teachers 

of statistics, they are members of a minimum of two communities: the AP Statistics community 

and the community of practice that includes the community they build with their students. Taking 

consolation from recognizing similar learning experiences in others is an element of 

transformative learning identified by Mezirow (1991) and a consolation expressed by other 

teachers. Blake, for example, expresses comfort in seeing questions asked by others on the 

electronic discussion group. He indicates that ―it‘s nice to know that other people have questions‖ 

(Blake, Context I, Line 767). 

Each of the teachers describes the secondary teachers and statisticians with whom they 

interact as part of a community. Blake describes the environment created by educators in AP 

Statistics as an ―open community‖ (Blake, Context II, Line 857), and he contrasts it with the 

―math community‖ (Blake Context II, Line 860). In the AP Statistics community, he suggests that 

―nobody is concerned about not knowing something‖—secondary teachers and statisticians ask 

questions freely (Blake, Context II, Lines 858-859) and support each other by professionally 

sharing answers. In contrast, he suggests that in what he refers to as the math community, which 

presumably consists of the mathematics teachers with whom he interacts, ―you almost have to 

hide your sins, and hide your ignorance‖ (Blake, Context II, Lines 861-862). Part of the perceived 

difference might be based in course requirements for secondary certification. There is an 
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assumption that mathematics teachers know well the mathematics that they teach, as Isaac 

suggests, but the same is not true for statistics. Isaac posits that [secondary] mathematics 

teachers‘ mathematical conversations center on pedagogy more so than content, whereas the 

reverse is true for statistical conversations. 

When you go and start teaching, well everyone around you pretty much, um, 
knows the math you do...And so there‘s not as much discussion of mathematics 
and perhaps more discussion of well how do you teach this concept or whatever. 
But in the, in the statistical meetings…at least some part of that is...I don‘t know 
how to do this. Does anybody know how to do this? And so, uh, being a member 
of that community means actually helping each other, uh, learn the mathematics 
as opposed to, um, um, something where, well we all know for sure algebra…and 
we don‘t talk about it very much. (Isaac, Context II, Lines 1253-1271) 

Perhaps due in part to what these five teachers conclude from their experiences and from the 

professional development they conduct with secondary teachers are their beliefs that most 

secondary teachers in the AP Statistics community view their background in statistics as 

insufficient in contrast with their perceptions of their background in mathematics. They feel a 

strong bond with others who struggle to learn the content along with them. Each of the five 

teachers sees himself as a member of this AP Statistics community.  

As part of their community of practice (Imants & van Veen, 2008), teachers build (or not) 

a community with their students and colleagues. In that community, they sometimes serve the 

role of the content expert, whereas at other times they serve the role of a learner. Isaac describes 

how his learning becomes enhanced through his students‘ questions. ―I‘d make connections as I 

learned more, and then as I, as I taught it more and the kids questions would lead me to, 

scratching my head, then I‘d put more and more things together‖ (Isaac, Context I, Lines 1240-

1246). Like Isaac‘s perception of his students‘ roles in triggering dilemmas, Leikin and Zazkis 

(2007) indicate that unexpected and unforeseen events that occur during the course of interacting 

with students are sources for learning. They note, however, that ―it is the teacher‘s curiosity and 

deep mathematical knowledge that [lead] to develop[ing] new connections‖ (p. 124). 
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Resources 

The five teachers allude to the support they receive from their school systems in 

encouraging them to attend and to conduct professional development. Everett, for example, 

indicates that his school provides him with the release time he needs to take advantage of the 

learning opportunities afforded to him through his involvement in the AP Statistics program. In 

speaking about the regional professional development sessions he leads, he indicates, ―it‘s been, 

you know, valuable for me, and so—and I‘ve been able to convince my administrators…it‘s all 

right for them to pay for a sub for me to go do a workshop because I gain from it also‖ (Everett, 

Context I, Lines 1526-1530). Clement and Vandenberghe (2000) note that the ―presence of 

learning opportunities is a necessary, yet not sufficient condition for professional development‖ 

(p. 87). Everett and the other four teachers implicitly and explicitly acknowledge the support they 

receive from their school systems; they also detail their efforts in capitalizing on professional 

development opportunities for their statistical learning. 

Characteristics of Learning Experiences 

The five teachers who exhibited robust understanding of variation attribute their learning 

of variation to a variety of factors. They describe their perceptions of the role of statistical theory 

in their learning and contrast their theoretical experiences with the understandings they believe 

were constructed from engagement in active and data-based experiences with statistical 

applications. From their varied experiences, they identify key problems from the solutions or 

discussion of which they attribute insights into statistical ideas. They also describe learning 

benefits related to their advanced leadership roles.  
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Role of Theory 

Prior to teaching statistics, each teacher completed at least one undergraduate or graduate 

course in statistics or probability and statistics. As the teachers describe their experiences, the 

focus of their early college courses was mostly theory and procedures. Blake, for example, 

indicates that in his mathematical statistics course, ―I was exposed to the math of probability 

functions, distributions, etc., but I had no idea where it was going or why‖ (Blake, Negative CI). 

By math, he means ―theoretically-driven,‖ with ―everything… proven‖ (Blake, Context I, Lines 

105-106). Isaac describes a focus of his introductory course as ―how to survive with doing things 

by hand‖ (Isaac, Context I, Lines 90-100). His course centered on theory and calculations. These 

teachers report experiences around how to do the procedures or proofs, what they were doing, and 

what their results were supposed to tell them without knowing why the processes worked or why 

someone was motivated to pursue theoretical results, particularly in connection with application. 

In Mezirow‘s (1991, 2000) terminology, their learning focused on content and process, which 

mostly limited them to creating or enhancing meaning schemes, not transforming their meaning 

schemes or perspectives. The courses as teachers recalled them did not support transformative 

learning, which occurs through a process that begins with critical reflection on premises—asking 

and reflecting on answers to questions of why (Mezirow, 1991).  

In looking back on their early experiences, the teachers suggest that their knowledge base 

contained little conceptual understanding. One explanation for their perceived lack of 

understanding from their college courses lies with the teachers. Dustin, for example, ―claim[s] 

some of the responsibility‖ (Dustin, Negative CI) for his negative impressions of his learning. He 

indicates that time constraints related to pre-student teaching field experiences meant that he ―had 

less time that [sic] I needed and probably less patience that I could muster to really devote the 

time and energy necessary to do this class justice‖ (Dustin, Negative CI). Isaac also seems to 
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accept responsibility for his learning, indicating, ―without suggesting any fault, I really didn‘t 

learn any statistics there‖ (Isaac, Context I, Lines 59-62). Isaac suggests that his use of 

―calculation formulas just to do basic stuff‖ (Isaac, Context I, Lines 73) and his proof writing 

placed his focus on logic and manipulation but not application. He indicates that at the end of the 

course, ―I didn‘t really have an idea what such a thing [inference and the formula for t] might be 

for‖ (Isaac, Context I, Lines 80-81). 

Even though these teachers suggest that their courses did not adequately prepare them to 

teach AP Statistics, they may not have recognized the limitations they now bemoan while they 

were completing their courses. The coursework did not trigger dilemmas they needed to resolve. 

As Everett indicates, ―looking back at my college classes, I don‘t think that they were very useful, 

but I didn‘t really know that at the time. Because I didn‘t know what else was there that I was 

missing‖ (Everett, Context I, Lines 826-829). Everett‘s recollections of his yearlong probability 

and statistics sequence center on theory and procedure. He describes how he remembers standard 

deviation from one of these two courses. 

When we calculated standard deviation, we also used…the sum of the x‘s 
squared, or, you know, that business, minus something or plus something. Um, 
which to me, gives no understanding of what is being measured. Um, and so I 
would probably still say that, for instance, my understanding of standard 
deviation was slim. (Everett, Context I, Lines 384-396) 

Everett seems to be describing a variation of the standard deviation formula derived from the 

―difference of the second moment about the origin and the square of the mean‖ (Hogg & Tanis, 

2001, p. 12) formula for calculating variance, 
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formula he finds to be more valuable, 

2

1

( )
n

i

i

X X

n
 





, is consonant with his current view 

of standard deviation ―as kind of the average distance from the average‖ (Everett, Context II, 

Lines 40-41) by making the focus on deviations, iX X , and average, 

2

1

( )
n

i

i

X X

n



, 

transparent. Everett indicates that it was only after a few years of teaching statistics that he made 

sense of this interpretation of standard deviation.  

Even though none of the teachers identified early courses as their most valuable learning 

experiences, they do not entirely discount their experiences. Isaac, for example, indicates that he 

may not ―look back on [it] and say oh, this was helpful in my later [statistical experiences]‖ 

(Isaac, Context I, Line 98-99), yet he describes his courses as providing him with necessary 

foundational ―tools.‖ He was able to ―get an idea of…descriptive statistics. I did get an idea of 

what a hypothesis test was, and a kind of an idea, although I look back and think not really well 

developed, of what a confidence interval was‖ (Isaac, Context I, Lines 103-106). His course 

experiences provided him with the opportunity to construct a foundational base from which he 

could build more conceptual and robust understandings, with one exception. The one area in 

which all of the teachers feel that their backgrounds were insufficient in providing even 

foundational ―tools‖ is design.  

Role of Data and Activity 

In their positive critical incident descriptions and during their conversations about their 

learning, each of the five teachers identifies activities that stimulated what they perceive to be 

significant learning experiences. A common feature among their learning experiences is their 
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engagement with activities. Dustin, for example, describes collaboratively designing and 

conducting an experiment. 

What you got to consider are some of the well what if this, what if that, you 
know, what kinds of things affect the variability? How might this be a better 
experiment that would give you more, um, more precise results…How can we, 
um, are there things we can control?...and eliminate some of the variation that 
exists here. You know, and again, if you‘re just reading a book, you don‘t 
necessarily get that kind of interaction…when you sit down with a group of three 
or four or even two to say okay, let‘s talk about, and you actually play with it a 
while, and then you start to say oh, these kinds of questions need to be answered. 
(Dustin, Context II, lines 193-211)  

Dustin suggests that by actually ―playing‖ with the experimental treatments and groups and 

working with other teachers to design an experiment, more questions and ideas about variables 

that contribute variability to results and ways to control variability can be generated than by 

reading about a similar experiment in a book. Similarly, Dustin suggests that listening to different 

groups describe their designs provided further stimulation from considering the sources of 

variation they identified and the ways in which they controlled for variation from those sources. 

Teachers also found that conducting sampling or experimental simulations was extremely 

beneficial for them to develop insights into statistical concepts for learning through their meaning 

schemes of the concepts. Blake, for instance, describes a simulation that expanded his views of 

variation and the meaning of p-value. He describes how prior to engaging in the simulation, he 

treated inference procedurally. 

Sort of a stimulus-response mechanism. I know the p-value was too low. I know 
what to do… I know how to calculate conditional probability. I knew what the 
standard deviation and variance was. I could recognize the formula, and so forth. 
And…all the statistics that I had learned…dealt with a problem where here‘s an 
event that we observed. Run it into this probability model…generate a p-value to 
get me a decision. (Blake, Context II, Lines 113-123) 

Blake describes the p-value as a calculated result from a formula consisting of known values, 

with a decision following from the magnitude of the value.  
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In contrast to his procedural description of how to find a p-value, Blake describes how 

the simulation helped him to ―internalize‖ the meaning of the p-value. 

I guess it really hadn‘t hit home that that probability model was based on an 
assumption…and the p-value was based on the measured variability that‘s, you 
know, it‘s expected… the concept of sampling distribution, if you were to repeat 
this process over and over and over again under the assumed conditions, um, 
you‘re going to see varying results…And so does our result fit into this, uh, 
sampling distribution or not? Let‘s make a decision...the idea of sampling 
distribution became the, uh, became the thing that came to life for me. Uh, 
because of these simulations…before it was just knowing it, and I knew what to 
do with it, but I, I didn‘t see how it fit into our universe, and, and so forth. So, uh, 
so more internalized. (Blake, Context II, Lines 125-159) 

By using a simulation to test a proportion, Blake indicates that the assumption behind the null 

hypothesis was made explicit—in the case of his example, the population was constructed to have 

a ratio of success in alignment with ―assum[ing] the null hypothesis‖ (Blake, Context II, Line 72). 

With multiple workshop participants using graphing calculators to simulate the collection of 

samples and plotting results on the ―dotplot [that] was being created on the board‖ (Blake, 

Context II, Lines 90-91), Blake was able to see the development of an empirical sampling 

distribution and develop a sense for what type of deviation from expectation represented a 

probable or improbable outcome for a sample. For Blake, he believes that participating in this 

simulation brought a deeper understanding of sampling distribution and the effects of variation on 

drawing conclusions from a single sample result in comparison with a theoretical sampling 

distribution. The visualizations stimulated premise-based reflections behind why the inferential 

process worked.  

As Blake‘s example suggests, there are times when teachers learn by exploring statistical 

ideas with data and technology. A conceptual focus of the simulation described by Blake was 

sampling distribution—a concept for which developing an understanding seems elusive for 

individuals in other studies (e.g., Heid, Perkinson, Peters, & Fratto, 2005). One of the major 

barriers to understanding seems to be the complexity of the concept. In the case of sampling 
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distributions in particular, Everett stresses the importance of physically acting out a simulation 

before turning to technology, believing that going straight to the technology equates with learning 

from a formula if one has not ―really figured it out or experienced it‖ (Everett, Context I, Lines 

988-1009) at least vicariously. Hudson also states a belief in ―the importance of using physical 

simulation first before moving to any sort of computer‖ to better enable making ―the connection 

between the tools and what they represented‖ (Hudson, Context I, Lines 912-928). He indicates 

that for him, he needed both to develop deeper understanding of ―just by chance,‖ noting that ―I 

think it‘s harder—it was harder for me to link to the computer simulation if I hadn‘t had the 

physical distribution first‖ (Hudson, Context I, Lines 925-927). Both teachers seem to suggest 

that physically enacting the collection of one or more samples allows connections between the 

physical action and the computer‘s mimicking of the action to become more transparent and 

believable, thus helping to concretize the abstract notions under exploration. 

After describing their experiences in learning statistics, the teachers speculated how 

different circumstances may have better facilitated their learning of statistics. In general, they 

suggest that a first experience with an introductory course such as AP Statistics would have 

provided the familiarity with concepts and applications they needed to make sense of the theory. 

Everett indicates that his mathematical statistics courses were not ―very valuable to me because I 

didn‘t have an experience like AP Statistics that dealt with data and gave me the big picture [of 

statistics] first that I could fit all those other things into‖ (Everett, Context I, Lines 400-411). 

Everett does not suggest that he would eliminate theory but instead suggests that a course such as 

AP Statistics may have given him a framework for statistical thinking to which he could then 

connect theoretical ideas. Hudson echoes Everett in describing what he would change about his 

experiences. 

I would have taken a, um, a, a non-calculus based introductory stats course first 
that painted a better big picture view of the, uh, reasons we‘re doing all of this. I 
would have still followed up with the calculus-based one, but I really would have 
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benefitted, I think, from having a Stat 101 early, um, myself. (Hudson, Context 
II, Lines 1242-1247) 

Hudson attributes benefit to a two-course sequence similar to the two-course sequence of a data 

production and analysis course with a survey course of probability and statistics recommended in 

the Mathematical Education of Teachers (CBMS, 2001). Hudson and Everett seem to suggest 

that following a data analysis course with a theoretical treatment of content might be more 

effective in enabling preservice teachers to identify connections between the practical and 

theoretical aspects of statistics and provide a basis for premise-focused reflection. 

In general, these five teachers recommend designing instruction and activities that offer 

students opportunities to make explicit connections between theory and practice. Everett, for 

example, describes a lecture he attended that helped him to understand how blocking reduces 

variation. He describes how the presenter started with something with which he was 

―comfortable,‖ a ―two sample situation first, really easy numbers to work with‖ (Everett, Context 

I, Lines 198-199). The presenter then moved from the t-test to creating a vector of the data 

represented as a matrix and partitions of the observed data into mean, treatment, and error 

vectors. The presenter operated on the vectors that represented ―sources of variation…different 

components‖ (Everett, Context II, Lines 21-22) and compared the approach to the more familiar 

t-test before continuing with more complex examples, including data from a randomized block 

design. Everett notes that this approach allowed him to put ―all those sources of variability 

together and pulled together a lot of different pieces of understanding that I had had up to that 

point, but hadn‘t really had a comprehensive understanding‖ (Everett, Context II, 24-28). The 

instructor described the mathematical theory that supported using vectors and partitioning vectors 

to examine the effects of different sources of variation and connected the theory to the 

application. 
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As suggested by the representative examples of Dustin, Blake, and Everett, each of the 

five teachers describes benefit from concept-focused activity and from experiencing as active 

learners the statistical content they teach—characteristics of ―high quality‖ professional 

development (Cohen & Hill, 1998, 2000, 2001; Darling-Hammond & Ball, 1998; Smith, 

Desimone, & Ueno, 2005) recommended by statistics educators (Heaton & Mickelson, 2002) and 

generally valued by teachers (Park-Rogers et al., 2007). Their suggestions for preservice teachers‘ 

courses in statistics center on data-based, exploratory activities. Their suggestions for preservice 

teachers support researchers‘ suggestions that teachers should have opportunities to learn 

statistics in the same manner in which they are expected to teach statistics (Heaton & Mickelson, 

2002; Peck, Kader, & Franklin, 2008) and opportunities to connect their applications to the theory 

that underlies the content.  

Key Examples and Problems Targeting Key Ideas 

In addition to participating in statistical activities, teachers described learning benefits 

from working on problems that draw attention to fundamental statistical concepts and principles 

and experiencing presentations of key examples. Hudson describes conversation surrounding a 

particular AP question that asked students to describe an advantage of using a single type of 

shrimp to determine the effects of different nutrients and salinity on the growth of shrimp. 

Hudson recorded his response to the problem before attending the briefing on the question‘s 

rubric at the AP Reading.  

And as I was listening to her [the presenter] explain more about the motivation 
for the question, I realized that the answer I would have given, about the, uh, 
benefit, uh, of using just one type of shrimp…wasn‘t what she was really focused 
on, which was that using one type of shrimp would remove one potential source 
of variation, so it would be easier to isolate the effects of the, uh, the treatments 
from differences, uh, that you might see as a result of different shrimp species or 
types of shrimp. And so it was about variation, but in looking at my attempted 
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response, my practice response before I went to the Reading, I didn‘t focus on 
variation…In this case my failure to notice the primary issue being variation was, 
uh, was concerning to me. (Hudson, Context II, Lines 59-86) 

Hudson identifies ―the fact that I misidentified the key issue‖ (Hudson, Context II, Lines 86-87) 

as triggering an incremental dilemma that he needed to resolve. The statistician who designed the 

problem offered an evening session to discuss the issues presented in the briefing for this 

particular problem. Hudson describes how her use of a key example in that session—one focused 

on testing deodorant brands for effectiveness that ―grabbed me better than the tiger shrimp 

scenario‖ (Hudson, Context II, Lines 118-119)—enabled him to see ―how the different varia— 

the different variations, chance variation, variation due to, um, gender differences, variation due 

to individual differences potentially were interfering with your understanding‖ (Hudson, Context 

II, Lines 108-111) and how the total variation could be reduced by focusing on just men and 

removing variation from gender differences. He suggests that the deodorant example provided a 

context that ―I know a lot about. Deodorant I‘m much more familiar with on a personal level‖ 

whereas ―tiger shrimp is not something I know about‖ (Hudson, Context II, Lines 123-123). The 

familiar context made it possible for him to imagine how focusing on men could produce less 

variable results than an experiment examining the effects of the deodorant on both men and 

women. 

Exploring New Roles 

Additional transformative elements observed in the actions of these teachers are 

experimenting with new roles and building a sense of competence and self-confidence in those 

roles. When faced with experiences that could lead to transformation, each of the five teachers 

embraced the opportunities presented to them and took the necessary risks that might seem 

daunting and inhibit others from achieving transformation (King, 2004). They viewed the triggers 
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they encountered in their new roles as learning opportunities and reacted to the triggers by 

following a plan of action that incorporated characteristics of prior learning experiences such as 

those already described. Each of these teachers has become increasingly more involved in the AP 

Statistics program by conducting professional development, assuming positions as AP readers 

and positions in increasingly higher-levels of leadership, and authoring statistics publications.  

Conducting Professional Development 

Since they began teaching statistics to secondary students, Blake, Dustin, Everett, 

Hudson, and Isaac have expanded their teaching repertoires to include teaching secondary 

teachers. Each leads numerous workshop sessions and summer institutes focused on both content 

and pedagogy in statistics education. Although they may be the more knowledgeable others to the 

teachers who attend their sessions, they recount their own statistical learning from planning for 

and conducting professional development for inservice teachers. Hudson, for example, indicates 

that planning is an educative activity for him. 

Because I have to think through the why. Um, why am I picking this activity? 
When we implement it, what are the points I‘m going to emphasize? Why am I 
picking this activity rather than another one that‘s similar? Uh, what do I want 
the teachers to get out of it? So I think, I‘m probably learning as much, anyway, 
in the development as I am in the delivery. (Hudson, Context II, Lines 982-988) 

Hudson suggests that he learns as much statistics in thinking through premise-based pedagogical 

questions as he learns from teaching the sessions. In conducting the sessions, he indicates that 

teachers‘ questions about content are most educative for him, particularly because of the 

alternative views the teachers present. He notes that ―the why and the how questions from 

teachers…start making you think about alternative viewpoints‖ (Hudson, Context II, Lines 1010-

1011). The learning benefits that teachers describe from their experiences in teacher education 
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align with the benefits they describe from planning and enacting lessons for their secondary 

students. 

Assuming Leadership Positions and Authoring Statistics Publications 

Beyond conducting professional development and as part of their ongoing involvement in 

AP Statistics, each of these teachers has pursued or been asked to assume leadership roles in AP 

Statistics. Their explorations of new roles as part of the process of transformational learning are 

similar to explorations seen from teachers in other studies (e.g., Caswell, 2007; Whitney, 2008), 

including roles in leadership (Caswell, 2007). Similar types of involvement have been identified 

in conjunction with substantial contributions towards ―effective‖ teaching (Poulson & Avramidis, 

2003). Each of the teachers expressed trepidation before agreeing to assume new leadership roles 

in AP Statistics, including those that they themselves pursued. As already discussed, however, 

they ultimately found their interactions with more knowledgeable others in these capacities to be 

extremely beneficial for their learning. They emerged from their experiences with greater 

confidence, which may have contributed to their desire to author statistical publications. 

Four of the five teachers have authored publications, including commercial curriculum 

materials, AP Statistics-specific materials, journal articles, and teacher preparation materials. In 

the process of writing, these teachers continued to experience triggers. Isaac, for example 

indicates that he ―was immediately struck by how completely unprepared I was to do anything 

like that‖ (Isaac, Context I, Line 1428). Even though each of the four authors had been teaching 

statistics and conducting professional development in statistics for years, they found that the 

process of writing required even greater understanding of content. As Everett describes the 

phenomenon, he compares authoring with teaching. 
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It forced me to go out and figure all those little details out and make sure I 
understood it, and was able to – and of course, you know, I‘ve said earlier that 
having to teach something really forces you to try to understand it well. When 
you have to write something, you only get—it‘s even more so because you only 
get one chance at it. (Everett, Context I, Lines 1456-1462) 

Everett suggests that unlike teaching, there are no (immediate) opportunities to respond to 

questions when explanations are shared with unknown numbers of consumers.  

Additionally, unlike teaching for the most part, writing for publication typically is read 

and critiqued by potentially more knowledgeable others before publication. Each of the four 

teachers describes the learning benefit of feedback that typically comes from statisticians as well 

as secondary teachers. As noted earlier, the primary benefit of their feedback did not come from 

the identification of a mistake but rather from the explanations given for the reasons behind why 

there was an issue in what had been written. In several cases, the more knowledgeable others 

were coauthors. Collaborations with others was found to be a factor that influences teacher 

transformation in a study conducted with teachers in attendance at a summer writing institute 

(Caswell, 2007), as was the type of active and ongoing involvement displayed by these teachers. 

The dedicated interest they show to their own development is similar to the type of interest 

identified as supporting and accelerating teachers‘ process of change (Polettini, 2000). In the case 

of these teachers, their interests in their own intellectual development may have contributed to 

their changed understandings, namely their construction of robust understandings of variation. 

Summary of Teachers‘ Transformations 

In describing their learning experiences, the five teachers with robust understandings of 

variation articulated a variety of characteristics that are indicative of transformative learning 

(Mezirow, 1991, 2000). They provided evidence that their meaning perspectives for statistics 

transformed during the time they taught statistics, which also had implications regarding changes 
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to their meaning schemes for variation. Prior to teaching statistics, each teacher had developed a 

view of statistics based on their experiences as statistics learners. Everett indicates that before he 

started teaching statistics, if someone had asked him to describe what statistics was, he would 

have said, ―statistics are like things like batting average and…my experiences from sports and 

things like that…I probably would have drifted into probability a little bit, not really knowing 

much of a distinction‖ (Everett, Context II, Lines 1015-1020). He explains that he once thought 

of statistics as ―sort of a thing that you do‖ (Everett, Context II, Line 1044), which is consistent 

with a view of statistics as a collection of procedures used to calculate statistical values and 

probabilities. In contrast, he currently describes statistics as ―a decision-making tool,‖ ―a 

process,…a way to answer questions by designing studies and collecting data and then analyzing 

the results‖ (Everett, Context II, Lines 1036-1043), a description which seems to indicate a 

process different from procedural calculations and one that is consistent with the statistical 

problem-solving process outlined by the authors of GAISE (Franklin et al., 2007). Everett‘s 

description of statistics transforms from statistics as a procedurally-focused science of calculation 

to a problem-solving process that he describes as ―the art and science of, um, making decisions 

with data‖ (Everett, Context II, Lines 1041-1042). Like Everett, the other four teachers describe 

probability-laden initial views of statistics that over time and through reflection on experiences 

such as those described in this chapter transformed into what they would term a ―big picture‖ 

view of statistics as a problem-solving process. 

All five teachers experienced a number of incremental dilemmas that prompted 

reflection, including critical reflection, on content, process, or premises. During the course of 

resolving their dilemmas, they often sought input from colleagues and more knowledgeable 

others through engaging in rational discourse. This consultation typically occurred as part of a 

plan of action enacted to construct the knowledge and skills needed to resolve their dilemmas. As 

they began to feel greater confidence in their abilities, they experimented with new roles that 
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often corresponded with leadership positions. These positions often triggered further dilemmas 

that needed resolution. All five teachers currently profess satisfaction with their knowledge of AP 

Statistics content and are now pursuing knowledge of advanced content that seemingly aligns 

with their transformed meaning perspectives of statistics.  

Along with their transformed views of statistics, in general, the five teachers gained 

additional awareness of the importance of variation to statistics and throughout the statistical 

problem-solving process. As part of their meaning perspective transformations for statistics, some 

of the quintet transformed their meaning schemes for variation, whereas others broadened their 

meaning schemes. For Dustin, variation changed from something with which he needed to deal to 

a concept central to every aspect of statistics from design to analysis. Hudson describes his initial 

surprise at reading the work of statisticians who continually placed variation as the primary focus 

of design and statistics. He was particularly surprised to see the connection between variation and 

randomization—that taking a random sample produces a representative sample but also allows for 

the introduction of ―a probability model that you can use to quantify things‖ (Hudson, Context II, 

Line 419). Changes in Dustin‘s and Hudson‘s views of variation were particularly profound. 

Perhaps more typical of teachers‘ change in views, Isaac suggests that he recognized the 

centrality of variation to statistics early in his learning and thus exhibited learning through his 

meaning scheme for variation rather than transformative learning. Nonetheless, each teacher 

experienced changes in their meaning schemes for variation in conjunction with their processes of 

transforming their meaning perspectives for statistics. 

Nature of Teachers‘ Transformations 

Perhaps the most striking feature of the five teachers‘ transformative learning experiences 

is that a majority of the experiences that facilitated their transformations are ones that are 
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accessible to most teachers. Why, then, did these experiences stimulate transformative learning 

for these five teachers? Stated differently, how and why did the five teachers recognize and 

embrace opportunities to resolve the triggers they encountered during their learning experiences?  

All five teachers exhibiting robust understandings of variation attribute their development 

of foundational views of variation to their early statistics experiences. More importantly for them, 

they suggest that their interests in statistics as a field were stimulated from their early 

experiences. It is this interest that may have prompted these teachers to teach statistics. A brief 

perusal of the reasons the other eleven teachers began teaching statistics reveals that they were 

prompted to teach statistics from largely nonstatistical or external stimuli, such as suggestions 

from department chairs or administrators (e.g., Faith, Ivy), their desires to teach upper-level 

students (e.g., Eden, Jenna), their impressions that statistics content is valuable content that 

students should know (e.g., Carl, Cheyenne, Dana), or other logistical reasons (e.g., Frank, 

Gavin). Although other teachers (e.g., Georgia, Haley) also expressed an interest in statistics as a 

motivating factor for teaching statistics, their interests seem to differ from those of the five 

teachers. Their interests focus on the structure of the subject as they experienced it rather than on 

the more general field of statistics and its applications. Even though there may have been other 

factors that influenced Blake‘s, Dustin‘s, Everett‘s, Hudson‘s, and Isaac‘s decisions to teach 

statistics, the overriding rationale they articulate is an interest in the subject. Their early 

experiences may have triggered overarching touchstone dilemmas for them—ones that remained 

latent at times but that provoked them to teach statistics and provided internal stimuli to motivate 

them to learn statistics. Their innate interest in the subject may have provided them with extra 

motivation to not only face but embrace learning opportunities inherent to the triggers they 

encounter. 

Blake, Dustin, and Isaac each taught statistics before the advent of AP Statistics. Each 

expresses motivation to learn and commitment to students and teaching, yet in hindsight, it is 
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clear that none of them constructed robust understandings of variation solely from their 

preparations for teaching and teaching these introductory courses. Part of an explanation for why 

their understandings did not develop to the point of robustness may lie in the fact that design—

one of the most important aspects of statistical work and an area that can be used to frame all 

statistical applications—was not included in the statistical content they learned or taught 

previously. Each of the five teachers describes struggling to discover how the area of design 

connected to other areas that also were part of the course. The AP Statistics course description 

provided a sort of framework in that it separated content into four relatively distinct areas of 

exploratory data analysis, design, probability, and inferential statistics, from which they 

attempted to piece together the areas to form a ―big picture‖ of the course content and of the 

larger field of statistics. Their desires to have overarching views of the subject matter they taught 

along with their confidence in their own abilities to learn and their commitments to their students 

and teaching may explain the stimuli that supported their motivations for learning. It seems they 

want their students not only to succeed on the AP Statistics examination but are looking for ways 

to help their students succeed in understanding statistical concepts in ways in which students can 

see connections among the concepts and procedures they learn in the course. The absence of 

design, however, may not fully explain deficiencies in teachers‘ views of variation in other areas 

such as inferential statistics, for example. It may be that design provided a missing piece of the 

statistics puzzle for them—a piece that when added to the puzzle revealed smaller holes in 

knowledge that could not be seen before the missing piece was put in place. Their desire to see 

the ―big picture‖ may have provided the motivation they needed to react to new content as a 

learning opportunity more so than an obligation. 

Unlike the other four teachers, long before the advent of AP Statistics, Isaac faced a 

dilemma that caused him to rethink his views of statistics. Isaac‘s experiences at a four-week 

leadership institute in statistics parallel his and the other four teachers‘ experiences with AP 
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Statistics in several important ways. In particular, the main focus of the institute, exploratory data 

analysis, differed considerably from Isaac‘s previous experiences with data. As part of attending 

the institute, Isaac made a commitment to conduct future professional development sessions with 

secondary teachers and to implement with his students some of the activities that were designed 

over the course of the institute. He was faced with the dilemma of teaching content for which he 

had little to no foundation, much as he and the other teachers were faced with teaching content in 

experimental design when they committed to teaching AP Statistics. The absence of any 

perceived foundational knowledge for new content may have triggered epochal dilemmas that 

caused the teachers to question their assumptions and beliefs behind statistics in general rather 

than incremental dilemmas that may have provoked development of new meaning schemes or 

transformed meaning schemes related to design or exploratory data analysis in particular without 

provoking a need to question assumptions and beliefs in statistics more generally. Alternatively, 

although each of the five teachers suggest they did not have sufficient background knowledge to 

make sense of the new content, they may have had enough prior experiences that they still were 

able to recognize some of the subtleties inherent to the content. Their background knowledge and 

experiences may have focused them on the enormity of learning and truly understanding the 

content rather than on learning superficial aspects of the content. They may have been able to 

discern true understanding of content from superficial acquaintances with content. 

Other possible explanations behind why the five teachers may not have constructed 

robust understandings prior to teaching AP Statistics include that they did not encounter 

dilemmas that required robust understandings for resolution or that potentially triggering events 

failed to trigger dilemmas in them. In considering experiences that triggered learning in their later 

experiences, there are noticeable types of experiences absent from their early experiences. In 

particular, their ruminations do not suggest that they had opportunities to experience multiple 

activity-based workshop or conference activities, simulations, or rational discourse from one-to-
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one or small-group interactions with colleagues and statisticians. Student questions also do not 

appear to have triggered any memorable statistical dilemmas. Their early coursework and 

teaching experiences apparently allowed them to construct meaning schemes for new statistical 

procedures and concepts and to enhance their existing meaning schemes in statistics, but they 

were not prompted to reflect critically on the premises for their meaning schemes and 

perspectives—the experiences did not challenge their existing views of statistics. Without 

concrete experiences or virtual contextual experiences with the content, they may not have 

formed sufficient uncritically assimilated beliefs, assumptions, or perspectives in statistics for 

triggers to produce epochal dilemmas. The question remains that if, indeed, teachers‘ early 

experiences failed to trigger dilemmas that would lead to transformation, what ultimately 

provoked their transformative experiences? Part of the answer may be evident in the 

circumstances behind Isaac‘s pre-AP transformative experience. 

Although Isaac could have responded to the leadership institute by discounting the 

information shared by the institutes‘ leaders, the leaders were renowned statisticians who 

described analyses of importance to their work. The leaders may have presented the content in 

ways that enabled Isaac to see the importance of the content, and the leaders had sufficient stature 

that Isaac could not easily discount the ideas they shared. Similarly, the designers of AP Statistics 

are statisticians who focused the course content on involving students in doing statistics. In 

general, statisticians can provide examples and applications from their own work of doing 

statistics, which may stimulate incremental dilemmas that focus teachers on some of the subtler 

ideas of statistics that are important for drawing valid conclusions from data—ideas such as 

confounding or extraneous variables in design. Statisticians also can present alternative 

perspectives for underlying rationale behind statistical processes and concepts and thus trigger 

learning in the communicative domain as teachers attempt to understand the meaning behind the 

perspectives, or premises, presented by statisticians.  
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Isaac‘s leadership institute and the other four teachers‘ attendance at professional 

development sessions provided them with opportunities engage in rational discourse with leaders 

and other teachers to make sense of statistical content. All five teachers were proactive in their 

education and attended professional development to learn about the content and pedagogy 

recommended for introductory statistics courses. Opportunities for rational discourse were 

important because they could recognize some of their own content struggles in others, and 

rational discourse allowed them to explore new roles as statisticians, relationships with 

statisticians, and actions in doing statistics by conducting experiments and analyzing context-

based data, for example—each characteristic of transformative learning. Their engagement in 

rational discourse, particularly with statisticians and more knowledgeable others, may provoke 

questioning of their beliefs and assumptions related to statistics in ways that may not be triggered 

from interactions with students and peers. In their early professional development experiences 

with statistics, each of the five teachers met at least one secondary teacher or statistician with 

whom they developed lasting relationships—relationships that through rational discourse 

constantly presented triggers of incremental dilemmas as they questioned their underlying beliefs, 

assumptions, and perspectives to make sense of the meaning communicated by others. 

In addition to attending and continuing to attend professional development that focuses 

on content and not just activities, the teachers interact with others in a number of ways, each of 

which they find to be valuable for their learning. They each regularly read teachers‘ and 

statisticians‘ postings to the AP electronic discussion group and pay particular attention to 

responses posted by known and knowledgeable statisticians who not only offer ―correct‖ 

responses but who provide explanations and reasons, or premises, that underlie the content and 

processes. They became readers and tables leaders, where they were able to personally interact 

with other secondary statistics teachers and statisticians. They gained what they describe as 

valuable insights into important aspects of statistics based on the rationale behind scoring 
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decisions and insights into subtleties in content and language by examining students‘ closely 

worded responses that were awarded different scores. Through these activities, they developed a 

network of teachers with whom they felt part of a comfortable community in which there is no 

hierarchy among members. They describe how in their interactions with other teachers and 

statisticians, they feel like teammates who share common goals of understanding. Similar to 

benefit gained by reading multiple textbook explanations, teachers‘ interactions with colleagues 

and more knowledgeable others present them with alternative perspectives and offer additional 

considerations for their premise-focused reflections on the content. They found similar benefits in 

their interactions with others in their leadership roles and in their authoring of statistics 

publications. These five teachers embrace each of these opportunities as learning opportunities; 

they embrace their experiences with triggers and look forward to resolving the dilemmas they 

encounter. 

At the beginning of this section, I asked two questions that I attempted to answer: Why, 

then, did these experiences stimulate transformative learning for these five teachers? Stated 

differently, how and why did the five teachers recognize and embrace opportunities to resolve the 

triggers they encountered during their learning experiences? I provided some possibilities for why 

triggers and experiences may have differently affected the teachers in this study, including their 

interests in the field of statistics, their desires to have an overarching framework for content for 

themselves and their students, their sufficient foundational knowledge upon which to build deeper 

understandings, and their embracing of opportunities to engage in rational discourse and potential 

learning experiences. In most cases, the extent to which they embrace learning opportunities may 

distinguish them from other teachers; each of the five teachers who exhibited evidence of robust 

understandings invested considerable time, energy, and effort in their journeys to robustness. 

Typical of the way they embrace learning opportunities, they see value in learning statistical 
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content beyond the introductory level and are interested in resolving premise-based dilemmas 

they have—dilemmas that now extend beyond the content in AP Statistics. 



    

 

Chapter 8 
 

Implications, Limitations, and Future Directions 

This study set out to investigate secondary teacher–leaders‘ conceptions of statistical 

variation and for those teachers who exhibit robust understandings of variation, the activities and 

actions that contributed to their current understandings of variation as reflected in their 

perceptions and recollections of experiences. Data analysis revealed three distinct types of 

conceptions of statistical variation: Expected but Explainable and Controllable (EEC), Noise in 

Signal and Noise (NSN), and Expectation and Deviation from Expectation (EDE). Characteristics 

of these conception types form an image of how advanced knowers view the important concept of 

statistical variation—an image that complements previous research work detailing young 

learners‘ conceptions of variation. Analysis of teachers‘ reasoning about variation also produced 

an empirically derived framework for robust understandings of variation. The framework consists 

of two cycles of levels of reasoning in the formal mode associated with SOLO (Biggs & Collis, 

1982, 1991). Robust understandings of variation are indicated from integrated reasoning about 

variation across three perspectives—design, data-centric, and modeling—in the second cycle of 

levels. This framework encompasses both the outcomes of this study and previous research 

results detailing students‘ sophisticated reasoning about different facets of variation while 

remaining consistent with statisticians‘ and statistics educators‘ expositions about what it means 

to understand statistical variation. Additionally, this study adds to research literature that 

investigates students‘ progressions in learning to reason informally about variation by detailing 

personal and environmental factors that reportedly influence advanced knowers‘ journeys towards 

robust understandings of variation, including elements of reasoning with formal measures of 

variation and reasoning about variation in relation to formal statistical procedures and methods.  
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This study represents a first step in a larger research program focused on teacher 

education in statistics. More generally, the program centers on contributing to the research base in 

statistics education by providing answers to a coherent set of related questions, including the 

following four questions. How do interactions with more knowledgeable others, particularly in 

terms of how they support critical reflection and rational discourse, affect how teachers (and 

students) construct robust understandings of statistical concepts? What professional development 

factors or experiences trigger dilemmas and facilitate resolution of dilemmas in ways that 

contribute to the development of teachers‘ robust conceptions and understandings of statistical 

concepts? What strategies and tools are useful in investigating how teachers develop statistical 

and pedagogical knowledge needed for teaching statistical concepts? What characterizes 

prospective and inservice teacher education courses and programs that facilitate teachers‘ 

development of robust statistical conceptions and pedagogical strategies for successfully teaching 

statistics? In succeeding sections, each of these questions is examined individually, with 

discussion focusing on questions for future research and implications from this study for 

investigating answers to those questions. Limitations of this study appear as part of the 

discussion.  

How do interactions with more knowledgeable others, particularly in terms of how they 

support critical reflection and rational discourse, affect how teachers (and students) 

construct robust understandings of statistical concepts? 

Viewing teachers‘ perceptions of beneficial learning experiences through the lens of 

transformation theory offers insights into mechanisms behind teachers‘ learning about variation, 

which arguably parallels teachers‘ learning in statistics more generally. Central to teachers‘ 

transformative experiences was engagement in critical reflection (e.g., Caswell, 2007; Mezirow, 

1985, 1990; Saavedra, 1996). Characteristics of critical reflection seem to differ from 
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characteristics of reflection described by some researchers. Many mathematics education 

researchers extol the importance of reflection for learning (e.g., Goodell, 2000; Roddick, Becker, 

& Pence, 2000), but some descriptions of reflective practice focus on reflections related to 

content (e.g., ―what I learned this week‖ [Goodell, 2000, p. 50]) or process (e.g., ―how I learned 

it‖ [Goodell, 2000, p. 50]) without considering reflections on premises underlying content or 

processes (e.g., ―why did I learn from this process?‖). Because reflection on premises may result 

in transformative learning and critical reflection was a factor in teachers‘ constructions of robust 

understandings of variation, results from this study suggest that reflection on premises, indicative 

of critical reflection, is an important consideration for investigations of adult learning.  

The five teachers‘ individual reflections on content, processes, and premises were 

enhanced through engagement in rational discourse with others, particularly with individuals who 

have more advanced knowledge of statistics content. For example, interactions with statisticians 

provide opportunities to assume perspectives for how statistics is used in practice, which may 

cause teachers to question their assumptions and beliefs about statistics content. Many preservice 

and inservice mathematics teachers have a long history of deterministic mathematical experiences 

(e.g., Cobb & Moore, 1997; Meletiou-Movrotheris & Stylianou, 2003); attempting to understand 

the perspectives offered by more knowledgeable others such as statisticians might possibly lead 

to probabilistic considerations like the occurrence of ―chance‖ events. Involvement of statisticians 

in teacher preparation is relatively new (Franklin & Mewborn, 2006; Peck, Kader, & Franklin, 

2008) but seemingly offers great promise for teacher education in statistics. The quintet of 

teachers who exhibited robust understandings of variation described the importance of 

considering alternative perspectives gleaned from reading multiple textbooks and rational 

discourse with statisticians and more knowledgeable others. The learning benefits attributed to 

these types of interactions with practitioners and more knowledgeable others merit further 

consideration from statistics education research.  
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Although it may not be practical for statisticians to co-teach statistics content courses 

with mathematics educators, it seems that other methods could provide teachers with 

opportunities to consider alternative perspectives and engage in rational discourse, such as the use 

of cases. Cases have been used in teacher education to present real problems, issues, and 

challenges in teaching (e.g., Lin, 2002; McGraw, Lynch, Koc, Budak, & Brown, 2007) and 

seemingly could be used to engage teachers in rational discourse that focuses on the content, 

processes, and premises of the statistics content at the heart of the case.  

What professional development factors or experiences trigger dilemmas and facilitate 

resolution of dilemmas in ways that contribute to the development of teachers‘ robust 

conceptions and understandings of statistical concepts?  

Important factors of learning reported by the five teachers who exhibited robust 

understandings of variation relate to important components of professional development 

identified by researchers (e.g., Weissglass, 1994) and valued by teachers (e.g., Rogers et al., 

2007). Learning dilemmas for the teachers in this study stemmed from activities characteristic of 

―high quality‖ professional development, including activities focused on content (e.g., Cohen & 

Hill, 1998, 2000, 2001; Darling-Hammond & Ball, 1998; Goos, Dole, & Makar, 2007; Smith, 

Desimone, & Ueno, 2005), instructional tasks (e.g., Ball & Cohen, 1999), and examinations of 

student work (e.g., Darling-Hammond & Ball, 1998). An important question that arises from 

teachers‘ descriptions of professional development activities is: What factors trigger the 

dilemmas for which these activities facilitate resolution? For the teachers in this study, 

incremental dilemmas were triggered when teachers engaged in learning activities such as using 

physical manipulatives in combination with technology to concretize complicated statistical 

concepts through simulation. Other incremental dilemmas were triggered from considerations of 

key examples or problems that seemed to be particularly effective for stimulating thought.  
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This study begins the process of identifying characteristics of experiences that 

successfully triggered dilemmas resolved through content learning. It seems important for 

statistics education researchers and curriculum developers to identify additional triggers for 

learning in order to design activities that facilitate learning in resolution to the dilemmas triggered 

by the activities. Additional questions that are important for teacher learning in statistics include 

questions regarding characteristics of triggers that may not have been recalled by the teachers in 

this study, characteristics of triggers for different populations of teachers, and characteristics of 

triggers for learning different statistics content.  

Questions also remain about whether factors or experiences that contribute to the 

development of robust understandings of variation differ according to individuals‘ conceptions of 

variation. Results described in detail in Chapter 5 point to three distinct types of conceptions of 

variation, but because teachers‘ conceptions were not uncovered until after data collection was 

completed, questions asked during teachers‘ context interviews did not target development of 

these conceptions. If research finds that important factors for learning differ by conception types, 

then it would make sense to investigate whether conception types align with correspondingly 

different views for other statistical concepts and how those different views might affect teachers‘ 

learning.  

Although this study examined learning experiences for the five teachers who exhibited 

robust understandings of variation, additional data for the variation-related learning experiences 

of the remaining eleven teachers was intentionally collected even though it was not needed to 

address the questions that guided this study. Analysis of the larger body of data offers potential 

insights into differences in perceptions of learning between those who develop robust 

understandings of variation and those who do not. Subsequent analysis can offer a possible 

starting point for identification of characteristics that facilitate or inhibit teachers‘ resolution of 

dilemmas for developing robust understandings of variation.  
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What strategies and tools are useful in investigating how teachers develop statistical and 

pedagogical knowledge needed for teaching statistical concepts? 

This study describes a framework for what it means to have robust understandings of 

variation and investigates teachers‘ perceptions of experiences that contributed to their 

development of robust understandings of variation. In so doing, this study informs research 

focused on developing teachers‘ statistical content knowledge. Further research is needed to 

uncover what knowledge is sufficient for teaching statistics to secondary students, what 

pedagogical strategies and instruction enable teachers to construct that knowledge, and how 

teachers can draw on that knowledge to help their students develop similar knowledge to 

eventually achieve educators‘ visions of a statistically literate society. These large goals require a 

collection of powerful strategies and tools to investigate the nature and development of teacher 

knowledge. 

This study offers insights into the benefits of retrospective study for investigating the 

answers to the question of what pedagogical strategies and instruction enable teachers to 

construct that knowledge. Although this study relied on teachers‘ memories to gain insights into 

factors influential in their learning of statistical variation, particular instruments such as event 

history calendars (e.g., Martyn & Belli, 2002) and critical incidents descriptions (e.g., Butterfield, 

Borgen, Amundson, & Maglio, 2005) were used to stimulate teachers‘ recollection. Several 

teachers suggested that completing their calendars and checking their undergraduate and graduate 

transcripts and professional development materials reminded them about some of their early 

learning experiences that they had forgotten. Although there were some experiences that teachers 

were not able to describe in great detail, giving an incomplete picture of their learning 

experiences, the details that teachers were able to provide about their positive and negative 

learning experiences and the consistency of their stories over the duration of the study suggests 

that they have detailed recollections of events and experiences that made a difference—positive 
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or negative—in their learning. Because the instruments used to stimulate recall seem to have had 

positive benefit for eliciting details of teachers‘ experiences, event history calendars and critical 

incidents descriptions offer promise for studies to obtain detailed background information about 

teachers‘ prior experiences with learning content and pedagogy. 

What characterizes prospective and inservice teacher education courses and programs that 

facilitate teachers‘ development of robust statistical conceptions and pedagogical strategies 
for successfully teaching statistics? 

A typical consideration in the content preparation of teachers is the nature of the course 

work required. Although more than 5 of the 16 teachers in this study may have constructed robust 

understandings of variation that were not fully evoked from the content interview tasks and 

questions used in this study, there were teachers who exhibited faulty reasoning with respect to 

variation—teachers who had completed one or more statistics courses at the time of their 

interviews. Considering the backgrounds of all 16 teachers, this study raises questions about the 

merits of encountering theoretical probability and statistics courses in one‘s first introduction to 

statistics. Each of the five teachers who exhibited robust understandings attributes little credit to 

his theoretical coursework for his current understandings. By the same token, these five teachers 

now seek understanding of the theory that underlies the concepts and procedures they teach in 

their statistics classes. They suggest that a data-based exploratory course that includes design and 

consideration of the artistic aspects of statistics may have prepared them better for understanding 

the scientific theory that underlies the content. They still attribute importance to theoretical 

courses but only if the theory builds from application. Their suggestions seem to align with the 

two-course sequence recommended for preservice teachers by the Conference Board of the 

Mathematical Sciences (2001). While it seems unrealistic to think that years of positive 
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experiences can be captured in one or two courses, this study does provide insights into what kind 

of course experiences may be useful for prospective teachers. 

The five teachers with robust understandings of variation stress the importance of 

focusing statistics instruction on the ―big picture‖ of statistics, which seems to equate with 

focusing on the statistical problem-solving process articulated by the authors of the GAISE report 

(Franklin, et al., 2007) in its entirety and considering connections among the statistical concepts 

and procedures inherent in the process. These teachers suggest that an introductory course should 

begin with the area of design and use design to motivate the need for exploratory data analysis 

and inferential techniques. They also suggest infusing design issues throughout the course.  

This study found that teachers with all three types of conceptions view the main purpose 

of design to be controlling variation. The rationale behind their attributions differs among 

conception types, but what is clear is their views suggest that the main instructional focus in 

design should be on controlling variability. Teachers exhibiting different types of conceptions 

articulate different purposes for exploring data, but all describe exploring data to consider 

relationships among data and variables and all use summary values to help in describing the 

relationships. For those teachers with EEC, NSN, and EDE conceptions, exploratory data analysis 

is a means to an end of making inferences from data. Teachers‘ movement from exploratory 

towards confirmatory analysis follows the flow of the statistical problem-solving process—a 

process that places variation at the center of attention. These descriptions for how teachers with 

different conception types approach data suggests that instruction can capitalize on teachers‘ 

views of variation by providing data exploration opportunities that are just that—explorations.  

Suggested explorations include creating displays of data that highlight relationships 

among data and variables and use summary values, including measures of variation, that best 

describe relationships seen in data. To account for different purposes for exploration, data from 
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both familiar and unfamiliar contexts can be explored using data for multiple variables to uncover 

the relationships among variables.  

This study provides support and means for connecting exploratory data analysis and 

inference to design and introducing students to statistics via issues of design. It adds to the 

statistics education research literature by suggesting that a combined focus on design and 

variation may benefit students‘ learning more than a focus on either design or variation in the 

absence of the other. 

Concluding Thoughts 

Investigating teachers‘ conceptions of statistical variation and for those secondary AP 

Statistics leaders who exhibit robust understandings of variation, investigating the activities and 

actions that contributed to their current understandings of variation as reflected in their 

perceptions and recollections of experiences is just one part of a larger research program. This 

dissertation study provides an image of how advanced knowers view the multifaceted concept of 

variation and offers insights into how a subset of teachers believe they constructed their 

conceptions and robust understandings of variation. Through the theory and methods used to 

answer its two research questions, this study provides a firm theoretical and methodological base 

for future studies. Results from this study provide the basis for formulating hypotheses about 

teacher learning for prospective secondary mathematics teachers and formulating hypotheses of 

secondary teachers‘ learning for statistics in general. In short, this study provides background 

information needed in research to address important questions that remain for teacher education 

in the content area of statistics. By motivating and investigating the four questions highlighted in 

the preceding discussion to build on the results of this dissertation study and the larger body of 

existing work in which this research resides, this study and the larger research program can 
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contribute to the scholarship and practice of teaching within statistics education and teacher 

education.
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Appendix A 

 

Initial Questionnaire 

Please complete the following questionnaire as soon as possible, save the file, and return the file as an attachment to sap233@psu.edu. 
 

Name:  

 
Gender:      
 
Age:  

 
Current City and State of Residence:  

 
Years Teaching:  

 
Years Teaching Statistics:  

                                                               
Please check the category that applies to you. 
 
Years as AP Statistics reader:     1  2  3  4  5  6 

               
Years as AP Statistics table leader:   0  1  2  3  4  5  6 

 
Please list the year of completion for all degrees that you have. 
 

Undergraduate Mathematics 
Education 

Mathematics Statistics Other (please specify)  

Major      

Minor      

 Male  Female 
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Graduate Mathematics 
Education 

Mathematics Statistics Other (please specify) Degree Type 
(e.g., MA, MS, Ph.D.) 

Major      

Minor      
 

Please check those items that apply to you. 
 

Teaching Certification:  Subject Area(s) - Specify                                  

  Grade Level(s) - Specify                                   

  State(s) - Specify                                               
    
Other Certification:  Subject Area(s) - Specify                                  

  Grade Level(s) - Specify                                   

  State(s) - Specify                                               
    
Professional Development:  Attended non-AP professional development in statistics                          

       Approximate number of experiences:    

    
  Attended AP Statistics professional development                                     

      Approximate number of experiences:    

    
  Conducted non-AP professional development in statistics                       

         Approximate number of experiences:    

    
  Conducted AP Statistics professional development                                  

      Approximate number of experiences:    

    
Other Statistical Experiences:  Served as statistical consultant, non-AP - Specify  

    
  Publication(s) related to statistics (authored) - Specify                             

    
  Provide a brief description of other statistical experiences, including 

publications read                                                                     
 

    
Please specify the type of graphing calculator or statistical software 
with which you are most comfortable 

 



    

 

Appendix B 
 

Sample Event History Calendar 

Year 1981 1982 1983 1984 1985 1986 1987 1988 1989 

F
o
rm

al
 a

n
d

 I
n

fo
rm

al
 L

ea
rn

in
g

 E
x

p
er

ie
n

ce
s 

1 Undergrad 
education 
related to 
statistics 

                    X X               

     Intro prob/stat 
course 

   

2 Graduate 
education 
related to 
statistics 

                                  X X 

        Math-stat course 

3 Non-AP PD 
related to 
statistics 

                                    

         

4 PD 
attendance 
related to  AP 
Statistics 

                                    

         

F
o

rm
al

 a
n

d
 I

n
fo

rm
al

 T
ea

ch
in

g
 E

x
p
er

ie
n
ce

s 

5 Teaching 
mathematics 

                          X X X X X X X X X X 

      Twin Valley HS Twin Valley HS Twin Valley HS 

6 Teaching 
non-AP 
Statistics 

                                    

         

7 Teaching 
AP Statistics 

                                    

         

8 Conducting 
non-AP PD 
related to 
statistics 

                                    

         

9 Conducting 
AP PD related 
to statistics 
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A
P

 R
o

le
s 

10 AP Reader 
 

                                    

         

11 AP Table 
leader 
 

                                    

         

M
is

ce
ll

an
eo

u
s 

12 Other 
(Specify) 
 

                                    

         

13 Other 
(Specify) 
 

                                    

         

14 Other 
(Specify) 
 

                                    

         

Year 1981 1982 1983 1984 1985 1986 1987 1988 1989 

 

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 

L
an

d
m

ar
k

 A
P

 S
ta

ti
st

ic
s/

S
ta

ti
st

ic
s 

E
x
p
er

ie
n

ce
s 

        First AP Statistics 
Exam  

Free Response: 
Butterfly Problem 

        AP Reading at The 
College of New 
Jersey 

AP Reading at 
University of 
Nebraska at Lincoln 

        Workshop Statistics 
(Rossman, 1997) 
published 

Yates, Moore,& 
McCabe (1999) 
book published 

        REA (1997) Test-
prep book 
published 

Barron‘s Test-prep 
book (Sternstein, 
1998) published 

       TI-83 Graphing 
calculator released 

  

F
o

rm
al

 a
n
d
 I

n
fo

rm
al

 L
ea

rn
in

g
 E

x
p
er

ie
n
ce

s 

1 Undergrad 
education 
related to 
statistics 

                                    

         

2 Graduate 
education 
related to 
statistics 

                                    

         

3 Non-AP PD 
related to 
statistics 

                                    

         

4 PD 
attendance 

                     X     X          
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related to  AP 
Statistics 

     AP Statistics 
Planning Conf 

AP institute week-
long institute 

  

F
o

rm
al

 a
n

d
 I

n
fo

rm
al

 T
ea

ch
in

g
 

E
x

p
er

ie
n

ce
s 

5 Teaching 
mathematics 

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 

Twin Valley HS Twin Valley HS Twin Valley HS Twin Valley HS Twin Valley HS Twin Valley HS Twin Valley HS Twin Valley HS Twin Valley HS 

6 Teaching 
non-AP 
Statistics 

                      X X X X X X X X X X X X X X 

         

7 Teaching 
AP Statistics 

                          X X X X X X X X X X 

         

8 Conducting 
non-AP PD 
related to 
statistics 

                                    

         

9 Conducting 
AP PD related 
to statistics 

                                    

         

A
P

 R
o

le
s 

10 AP Reader 
 

                             X    X   

         

11 AP Table 
leader 
 

                                    

         

M
is

ce
ll

an
eo

u
s 

12 Other 
(Specify) 
 

                                    

         

13 Other 
(Specify) 
 

                                    

         

14 Other 
(Specify) 
 

                                    

         

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 

 

Year 1999 2000 2001 2002 2003 2004 2005 2006 2007 

L
an

d
m

ar
k

 A
P

 

S
ta

ti
st

ic
s/

S
ta

ti
st

ic
s 

 Free Response:  
Dental/Apple 
Problem 

Free Response:   
Drug A versus 
Drug B 

Free Response:  
Blocking by Trees 

Free Response:  
Einstein versus 
Newton 

Free Response:  
Type I, Type II 
Errors:  Law Firm 
Class Action Suit 

Free Response:  
Pharmaceutical 
company, one-
sided confidence 
interval 

Free Response:  
Children in 
Daycare Centers, 
Comparison of 
Means 

Free Response:  
Thermostats, Chi-
squared 
distribution, 
sampling dist 

 

 AP Reading at 
University of 
Nebraska at 
Lincoln 

AP Reading at 
University of 
Nebraska at 
Lincoln 

AP Reading at 
University of 
Nebraska at 
Lincoln 

AP Reading at 
University of 
Nebraska at 
Lincoln 

AP Reading at 
University of 
Nebraska at 
Lincoln 

AP Reading at 
University of 
Nebraska at 
Lincoln 

AP Reading at 
University of 
Nebraska at 
Lincoln 

AP Reading at 
University of 
Nebraska at 
Lincoln 

AP Reading in 
Louisville, 
Kentucky 
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  Peck, Olsen, & 
Devore ( 2001) 
book published 

Workshop Statistics 
with Fathom (Ross, 
Chance, & Lock, 
2001) published 

Yates, Moore, & 
Starnes (2003) 
book published 

 Bock, Velleman, & 
DeVeaux (2004) 
book published 

Peck, Olsen, 
Devore (2005) 
Edition 2 released 

Bock, Velleman, & 
DeVeaux (2006) 
Edition 2 released 

 

  Bohan (2000) Test-
prep book 
published 

       

 TI-83 Plus 
graphing calculator 
released 

 TI-83 Plus Silver 
Edition graphing 
calculator released 

  TI-84 Graphing 
calculator released 

   

 Fathom software 
released (Finzer, 
1999) 

     Fathom Version 2 
released (Finzer, 
2006) 

  

F
o
rm

al
 a

n
d

 I
n

fo
rm

al
 L

ea
rn

in
g

 E
x

p
er

ie
n

ce
s 

1 Undergrad 
education 
related to 
statistics 

                                    

         

2 Graduate 
education 
related to 
statistics 

                                    

         

3 Non-AP PD 
related to 
statistics 

  X        X                          

Attend NCSSM 
Statistics 
Leadership Institute 

 Attend NCSSM 
Statistics 
Leadership Institute 

      

4 PD 
attendance 
related to  AP 
Statistics 

                                    

         

F
o

rm
al

 a
n
d
 I

n
fo

rm
al

 T
ea

ch
in

g
 E

x
p
er

ie
n
ce

s 

5 Teaching 
mathematics 

X X X X X X X X X X X X X X X X X X                   

Twin Valley HS Twin Valley HS Twin Valley HS Twin Valley HS Twin Valley HS     

6 Teaching 
non-AP 
Statistics 

X X X X X X X X X X X X X X X X X X                   

         

7 Teaching 
AP Statistics 

X X X X X X X X X X X X X X X X                     

         

8 Conducting 
non-AP PD 
related to 
statistics 

          X    X                      

  Governor‘s School 
– Data Driven 
Decision Making 

Governor‘s School 
– Data Driven 
Decision Making 

     

9 Conducting 
AP PD related 

    X   X X       X X                    
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to statistics  AP Beginner 
Workshop (1) 
Conduct 1-day AP 
stats workshop at 
BCIU (1) 

AP Experienced 
Workshop 

AP Math Specialty 
Conference 

AP Math Specialty 
Conference 

    

A
P

 R
o

le
s 

10 AP Reader 
 

 X    X    X    X                       

         

11 AP Table 
leader 
 

                 X    X     X          

         

M
is

ce
ll

an
eo

u
s 

12 Other 
(Specify) 
 

    X          X    X                  

 PCTM: Conduct 
Session – AP 
Statistics (1) 
 

 Co-author of AP 
Statistics Web 
Guide 

Co-author of AP 
Test-prep book as 
supplement to 
Bock, Velleman, 
DeVeaux (2004) 
text 

 Co-author of 2nd 
Edition AP Test-
prep book as 
supplement to 
Bock, Velleman, 
DeVeaux (2006) 
text 

  

13 Other 
(Specify) 
 

              X                      

   JSM:  Panel 
Member to discuss 
AP Statistics 

     

14 Other 
(Specify) 
 

                                    

         

Year 1999 2000 2001 2002 2003 2004 2005 2006 2007 
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Sample Experience Description Table 

Year Item Where possible, provide a brief description of the experience and the people, places, and feelings associated with the experience. 
Also briefly describe the salient characteristics of the experience 

1986 1 The course was an undergraduate introductory course taken in my junior year. The other students in the class were mostly 
undergraduate secondary education majors with whom I took a majority of my classes. The instructor taught the course as skill-
driven, with calculations to be completed by hand. There was little focus on the meaning of the calculated values or on 
applications. The course did not make me want to take any more courses in statistics. 

 2  

 3  

 4  

 5  

 6  

 7  

 8  

 9  

 10  

 11  

 12  

 13  

1986 14  



    

 

Appendix C 
 

Event History Calendar 

The Event History Calendar (EHC) provides a chronological table to record and view your experiences with learning and teaching statistics. 
You will be completing an EHC to detail your experiences in learning and teaching statistics. While the table looks rather daunting at first, 
my friends assure me that after reading the directions and filling out information for one or two years, completing the calendar can be 
accomplished rather quickly. 
 

In the table, columns represent time periods, with each year from 1972 to 2007 divided into four seasons (Winter, Spring, Summer, and Fall). 
Rows represent particular experiences with statistics and are grouped into three categories of learning statistics, teaching statistics, and 
grading AP Statistics exams. Additional space is provided to record experiences with statistics that are not listed in the table.  
 

Landmark experiences related to statistics are included in the table and shown in lavender font to help you in your recall of experiences. As 
you complete the EHC, please feel free to contact me via email ([e-mail address]) or phone ([phone number]) if you have any questions.  
 

An example calendar is appended to this document. The easiest way to see the sample calendar is to use the link that appears at the end of the 
directions. 
 

How to enter an event 

 Begin with your first experience with statistics, which might be your first undergraduate course or an experience prior to when you started 
your undergraduate program.  

 If your first experience is an undergraduate course, scroll down in the document until you see the year in which you were enrolled in the 
course. For example, if you were enrolled in an undergraduate statistics course for the fall semester of 1980, you would scroll down to 
1980.  

o Type an ―X‖ in the boxes that correspond with the seasons during which you were enrolled in the course. For example, if you 
were enrolled in an undergraduate statistics course for the fall semester of 1980, you would type an ―X‖ in the 
third and fourth boxes for item 1 in the column for 1980.  

o You should also provide a brief description of the experience, such as ―Intro Stats Course,‖ by typing the 
description in the second row of the block, as shown to the right.  
 

  X X 
Intro Stats Course 

X X 
Intro Stats Course* 
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o If you feel the experience was pivotal to your development in learning statistics or as a statistician or as a statistics educator, 
mark the experience with a ―*‖ in the description, as shown to the right. 

 If you had experiences with statistics before you enrolled in your undergraduate program, then you should begin the calendar with the year 
of your first experience. For example, if you were in enrolled in a high school statistics course during the 1989-1990 school year, you 
would scroll down to 1989. 

o Type an ―X‖ in the boxes that correspond with the seasons during which you had the experience. For example, if you were 
enrolled in a high school statistics course during the 1989-1990 school year, you would type an ―X‖ in the third and fourth 
boxes for the first ―Other‖ category, item 12, in the column for 1989. You would also enter an ―X‖ in the first and second 
boxes for item 12 in the column for 1990.  

o You should also provide a brief description of the experience, such as ―Intro Stats Course,‖ by 
typing the description in the second row of the blocks, as shown to the right.  

o If you feel the experience was pivotal to your development in learning statistics or as a 
statistician or as a statistics educator, mark the experience with a ―*‖ in the description, as shown 
to the right. 

 

The descriptions 

 After you record the timing and nature of your experience, you will need to record a short description of the experience. This description 
will be entered in a table different from the EHC but linked to the EHC. Directions are given in the next session. 

 If possible, you should include information about the people, places, and feelings associated with the experience.  

 Note those events that were particularly positive, such as events when you learned something new or realized something about your 
understanding of statistical concepts. 

 Also note those events that were particularly negative, such as events where you realized you did not have the knowledge of statistics to 
engage in productive dialogue about statistics.  
 

How to enter a description 

 To move to the table for recording your description, you will control-click on a link within the EHC if you have a PC or click on the link if 
you have a Macintosh. If you control-click (or click) on the year of the experience in the EHC, for example control-click (click) on ―1980,‖ 
a table for entering descriptions for the items of experiences from 1980 will show on your screen, as shown below. 

 You should enter a description of your experience in the third column of the row that corresponds with the item number for the experience. 
Continuing with the previous example, a description for an undergraduate introductory course taken in 1980 would be entered in the third 
column of the first item for 1980, as shown below.  

 Similarly, if your experience was entered in the ―Other‖ category for item 12, you should control-click on the year of the experience to be 
linked to the table if you have a PC or click on the year of the experienced to be linked to the table if you have a Macintosh.  

  X  X X  X   

Intro Stats Course Intro Stats Course 

  X  X X  X   

Intro Stats Course* Intro Stats Course* 
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 When you are finished entering a description of the experience, you can control-click (click) on the year of the experience in the description 
table to return to the EHC. 
 

Year Item Where possible, provide a brief description of the experience and the people, places, and feelings associated with the 
experience. Also briefly describe the salient characteristics of the experience 

1980 1 The course was an undergraduate introductory course taken in my junior year. The other students in the class were 
mostly undergraduate secondary education majors with whom I took a majority of my classes. The instructor taught 
the course as skill-driven, with calculations to be completed by hand. There was little focus on the meaning of the 
calculated values or on applications. The course did not make me want to take any more courses in statistics. 

 

Completing the process 

 Please continue by entering other experiences, represented by different item numbers, which may have occurred during the year of your 
first experience in statistics. 

 For each subsequent year, please continue entering events until the present time.  
 

What to do about multiple experiences 

 If you have more than one experience that applies to a category in any given year, then indicate each time period that applies to the 
collection of experiences. 

 List each experience, and the number of experiences if a particular experience was repeated in the same year, in the second block.  

 For example, if you conducted three AP workshops between summer and fall in 1980, you would type an ―X‖ in the third and fourth boxes 
for item 9 in the column for 1980.  

 You would also provide a brief description of the workshops, such as ―AP Beginner Workshop‖ and ―AP Experienced 
Workshop,‖ by typing the description in the second row of the block.  

 Of the three workshops, if two were for experienced AP teachers and one was for beginning AP teachers, the number of 
each type of experience can be recorded in parentheses next to the name of the experience, as shown to the right. 
 

Experiences to record in ―other‖ 

 Statistics-related professional presentations, like NCTM sessions 

 Publications (statistics or statistics-related) 

 Statistics-related informal experiences 

o Conversations with colleagues 
o Reading statistics books  
o Reading professional journals 

 

  X X 

AP Beginner 
Workshop (1) 
AP Experienced 
Workshop (2) 
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 Pedagogical professional development that had an impact on statistics teaching 

 Any other experience that contributed to growth or learning in statistics or statistics teaching 
 

If you would like to see an example of an EHC, a sample calendar is also appended to this calendar. If you have a PC, control-click on the 
word ―sample‖ to see the sample. If you have a Macintosh, click on the word ―sample‖ to see the sample. When you are finished looking at 
the sample, you can scroll to the end of the document and control-click on the word ―here‖ to return to the directions. 
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 Year 1972 1973 1974 1975 1976 1977 1978 1979 1980 

F
o

rm
al

 a
n

d
 I

n
fo

rm
al

 L
ea

rn
in

g
 E

x
p

er
ie

n
ce

s 

1 Undergrad 
education 
related to 
statistics 

                                    

         

2 Graduate 
education 
related to 
statistics 

                                    

         

3 Non-AP 
professional 
development 
related to 
statistics 

                                    

         

4 Professional 
development 
attendance 
related to  AP 
Statistics 

                                    

         

F
o
rm

al
 a

n
d
 I

n
fo

rm
al

 T
ea

ch
in

g
 E

x
p

er
ie

n
ce

s 

5 Teaching 
mathematics 

                                    

         

6 Teaching 
non-AP 
Statistics 

                                    

         

7 Teaching AP 
Statistics 

                                    

         

8 Conducting 
non-AP 
professional 
development 
related to 
statistics 

                                    

         

9 Conducting 
AP professional 
development 
related to 
statistics 

                                    

         

A
P

 R
o
le

s 

10 AP Reader 
 

                                    

         

11 AP Table 
leader 

                                    

         

M
is

ce
ll

an
eo

u
s 

12 Other 
(Specify) 

                                    

         

13 Other 
(Specify) 

                                    

         

14 Other 
(Specify) 

                                    

         

Year 1972 1973 1974 1975 1976 1977 1978 1979 1980 
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Year 1981 1982 1983 1984 1985 1986 1987 1988 1989 

F
o

rm
al

 a
n

d
 I

n
fo

rm
al

 L
ea

rn
in

g
 E

x
p

er
ie

n
ce

s 

1 Undergrad 
education 
related to 
statistics 

                                    

         

2 Graduate 
education 
related to 
statistics 

                                    

         

3 Non-AP 
professional 
development 
related to 
statistics 

                                    

         

4 Professional 
development 
attendance 
related to  AP 
Statistics 

                                    

         

F
o
rm

al
 a

n
d
 I

n
fo

rm
al

 T
ea

ch
in

g
 E

x
p

er
ie

n
ce

s 

5 Teaching 
mathematics 

                                    

         

6 Teaching 
non-AP 
Statistics 

                                    

         

7 Teaching AP 
Statistics 

                                    

         

8 Conducting 
non-AP 
professional 
development 
related to 
statistics 

                                    

         

9 Conducting 
AP professional 
development 
related to 
statistics 

                                    

         

A
P

 R
o
le

s 

10 AP Reader 
 

                                    

         

11 AP Table 
leader 

                                    

         

M
i

sc
el

la
n

eo
u

s 

12 Other 
(Specify) 

                                    

         

13 Other 
(Specify) 

                                    

         

14 Other 
(Specify) 

                                    

         

Year 1981 1982 1983 1984 1985 1986 1987 1988 1989 
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Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 

L
an

d
m

ar
k

 A
P

 S
ta

ti
st

ic
s/

S
ta

ti
st

ic
s 

E
x

p
er

ie
n

ce
s 

        First AP Statistics 
Exam  

Free Response: 
Butterfly Problem 

        AP Reading at The 
College of new 
Jersey 

AP Reading at 
University of 
Nebraska at Lincoln 

        Workshop Statistics 
(Rossman, 1997) 
published 

Yates, Moore, & 
McCabe (1999) 
book published 

        REA (1997) Test-
prep book 
published 

Barron‘s Test-prep 
book (Sternstein, 
1998) published 

       TI-83 Graphing 
calculator released 

  

F
o
rm

al
 a

n
d

 I
n

fo
rm

al
 L

ea
rn

in
g

 E
x

p
er

ie
n

ce
s 

1 Undergrad 
education related 
to statistics 

                                    

         

2 Graduate 
education related 
to statistics 

                                    

         

3 Non-AP 
professional 
development 
related to 
statistics 

                                    

         

4 Professional 
development 
attendance 
related to  AP 
Statistics 

                                    

         

F
o

rm
al

 a
n

d
 I

n
fo

rm
al

 T
ea

ch
in

g
 E

x
p
er

ie
n
ce

s 

5 Teaching 
mathematics 

                                    

         

6 Teaching non-
AP Statistics 

                                    

         

7 Teaching AP 
Statistics 

                                    

         

8 Conducting 
non-AP 
professional 
development 
related to 
statistics 

                                    

         

9 Conducting 
AP professional 
development 
related to 
statistics 

                                    

         

A
P

 

R
o

le
s 

10 AP Reader 
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11 AP Table 
leader 

                                    

         

M
is

ce
ll

an
eo

u
s 

12 Other 
(Specify) 

                                    

         

13 Other 
(Specify) 

                                    

         

14 Other 
(Specify) 

                                    

         

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 

 

Year 1999 2000 2001 2002 2003 2004 2005 2006 2007 

L
an

d
m

ar
k
 A

P
 S

ta
ti

st
ic

s/
S

ta
ti

st
ic

s 
E

x
p

er
ie

n
ce

s 

 Free Response:  
Dental/Apple 
Problem 

Free Response:   
Drug A versus 
Drug B 

Free Response:  
Blocking by Trees 

Free Response:  
Einstein versus 
Newton 

Free Response:  
Type I, Type II 
Errors:  Law Firm 
Class Action Suit 

Free Response:  
Pharmaceutical 
company, one-
sided confidence 
interval 

Free Response:  
Children in 
Daycare Centers, 
Comparison of 
Means 

Free Response:  
Thermostats, Chi-
squared 
distribution, 
sampling dist 

 

 AP Reading at 
University of 
Nebraska at 
Lincoln 

AP Reading at 
University of 
Nebraska at 
Lincoln 

AP Reading at 
University of 
Nebraska at 
Lincoln 

AP Reading at 
University of 
Nebraska at 
Lincoln 

AP Reading at 
University of 
Nebraska at 
Lincoln 

AP Reading at 
University of 
Nebraska at 
Lincoln 

AP Reading at 
University of 
Nebraska at 
Lincoln 

AP Reading at 
University of 
Nebraska at 
Lincoln 

AP Reading in 
Louisville, 
Kentucky 

  Peck, Olsen, & 
Devore (2001) 
book published 

Workshop Statistics 
with Fathom  
(Ross, Chance, & 
Lock, 2001) 
published 

Yates, Moore, & 
Starnes (2003) 
book published 

 Bock, Velleman, & 
DeVeaux (2004) 
published 

Peck, Olsen, & 
Devore (2005) 
Edition 2 released 

Bock, Velleman, & 
DeVeaux (2006) 
Edition 2 released 

 

  Bohan (2000) Test-
prep book 
published 

       

 TI-83 Plus 
graphing calculator 
released 

 TI-83 Plus Silver 
Edition graphing 
calculator released 

  TI-84 Graphing 
calculator released 

   

 Fathom software 
released (Finzer, 
1999) 

     Fathom Version 2 
released (Finzer, 
2006) 

  

F
o

rm
al

 a
n

d
 I

n
fo

rm
al

 L
ea

rn
in

g
 

E
x

p
er

ie
n

ce
s 

1 Undergrad 
education related 
to statistics 

                                    

         

2 Graduate 
education related 
to statistics 

                                    

         

3 Non-AP 
professional 
development 
related to 
statistics 
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4 Professional 
development 
attendance 
related to  AP 
Statistics 

                                    

         

F
o

rm
al

 a
n

d
 I

n
fo

rm
al

 T
ea

ch
in

g
 E

x
p

e
ri

en
ce

s 

5 Teaching 
mathematics 

                                    

         

6 Teaching non-
AP Statistics 

                                    

         

7 Teaching AP 
Statistics 

                                    

         

8 Conducting 
non-AP 
professional 
development 
related to 
statistics 

                                    

         

9 Conducting 
AP professional 
development 
related to 
statistics 

                                    

         

A
P

 R
o

le
s 

10 AP Reader 
 

                                    

         

11 AP Table 
leader 

                                    

         

M
is

ce
ll

an
eo

u
s 

12 Other 
(Specify) 

                                    

         

13 Other 
(Specify) 

                                    

         

14 Other 
(Specify) 

                                    

         

Year 1999 2000 2001 2002 2003 2004 2005 2006 2007 
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  EHC Description of Experiences  

 

Year Item Where possible, provide a brief description of the experience and the people, places, and feelings associated with the 
experience. Also briefly describe the salient characteristics of the experience 

1972 1  

 2  

 3  

 4  

 5  

 6  

 7  

 8  

 9  

 10  

 11  

 12  

 13  

1972 14  

 

1  
Undergrad 
education 
related to 
statistics 

2  
Graduate 
education 
related to 
statistics 

3 
Non-AP 
professional 
development 
related to 

4  
Professional 
development 

5  
Teaching 
mathematics 

6 
Teaching 
non-AP 
Statistics 

7  
Teaching 
AP 
Statistics 

8  
Conducting 
non-AP 
professional 
development 
related to 
statistics 

9  
Conducting 
AP 
professional 
development 
related to 
statistics 

10  
AP Reader 

 

11  
AP Table 
leader 

 

12-14 
Other 



    

 

Appendix D 
 

Critical Incident Description 

Think about your experiences learning statistics, and in particular learning about variation. From 
your experiences, identify one particularly positive experience and one particularly negative 
experience related to your informal or formal study of variation. Please provide written responses 
to the information requested below. In general, your response to each experience should be 
approximately one single-spaced page long. You may be asked to expand upon your responses 
when we meet to discuss your experiences. 

 

Describe one positive experience related to your informal or formal study of variation – an 
experience that you recall as being particularly good or that you feel resulted in significant 
learning on your part. Elaborate on this experience and the timing of the experience. To the extent 
possible, please address all of the questions listed below in your written response. 

 

Describe one negative experience related to your informal or formal study of variation – an 
experience that you recall as being particularly bad or that you feel affected your perception of 
your understanding or knowledge of variation in a negative way. Elaborate on this experience and 
the timing of the experience. To the extent possible, please address all of the questions listed 
below in your written response. 

 

List of Questions for each Incident 
 

Details of the experience: 

 When, where, and for how long did the experience occur?*  

 What events or circumstances precipitated the experience or caused the experience to occur in 
the way in which it did? 

 What other people or circumstances played an influential role in the experience?  

 How did the experience end?   

Reflections on the experience: 

 As you reflect on the experience, why do you believe you viewed the events surrounding this 
experience positively or negatively?  

 What emotions did you recall feeling during the experience?* 

 In response to the experience, what actions did you take? 

 What do you believe you learned from the experience? 

Effects of the experience: 

 How has the experience affected your understanding of variation? 

 How has the experience affected your statistics teaching? 

Beyond the experience: 

 If you could change past events surrounding the experience, what would you change and why? 

 If you were to encounter the experience under identical circumstances to those surrounding the 
original experience, what effect do you believe the experience would have on you today? 
 

* These questions overlap with some of the information requested in the Event History Calendar. If you already 
provided the information in your Event History Calendar, you don‘t need to duplicate your responses to these 
questions. 



    

 

Appendix E 
 

Abbreviated Context I Interview Schedule 

Note: In general, whatever the participant responds, probe for details about the experience, 
particularly with respect to variation or experiences indicative of transformational 
learning related to statistics. 
 
Before we talk about what you included in your calendar, I would like to know if you 

remembered any additional experiences you had with statistics that should be recorded on 

the calendar? 

o Could you tell me when the event occurred? 

o Over what time period did the event take place? 

o Please provide a brief description of the event, and the people, places, and 

feelings associated with the event. 

o Please describe any particularly salient characteristics of the experience. 

 

General Questions for Each Experience Type Listed in EHC 

Think about the statistics courses you took (or other type of experience). Were there any in 

which you feel you learned a great deal about statistics or variation or in which you grew a 

great deal as a statistician or a statistics educator? 

o Which of the statistics courses you took was the course where you learned the 

most about statistics or variation or where you grew the most as a statistician or 

a statistics educator? 

o What did you learn in the course? 

In general, if the participant mentions variation, probe for details about what they 
learned about variation. If the person describes an event that may have triggered a 
disorienting dilemma, probe for details of the experience in light of potential indicators 
for transformation, including  

 a description of the disorienting dilemma,  

 self-examination, 

 critical assessment of assumptions, 

 recognition that others have had similar experiences,  

 exploring new roles through rational discourse with others, 

 planning a course of action,  

 constructing the knowledge and skills needed to enact the plan,  

 experimenting with new roles,  

 building a sense of competence, and 

 reintegrating into life based on new roles. 
o Three major areas of statistics are exploratory data analysis, study design, and 

inferential statistics. Which, if any, of these were part of this course? 

- What do you remember learning about the role of variation in 

[exploratory data analysis, planning a study, inferential statistics]? 
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- How is what you learned in that course different from or similar to how 

you now see variation in [exploratory data analysis, planning a study, 

inferential statistics]? 

o As you reflect on your experiences in the course, what, if any, experiences seem 

particularly important to your development of knowledge about statistics and 

variation or important to your development as a statistician or as a statistics 

teacher? 

- Why do you believe [paraphrase experiences] influenced your 

development of knowledge about statistics and variation or as a 

statistician or as a statistics teacher? 

- What development resulted from [paraphrase experiences]? 

o What do you remember feeling about [paraphrase experience or characteristic]? 

o What conversations did you have about [paraphrase experience or 

characteristic]? 

- In relation to the experience, what was the role of the person you had 

this conversation with? 

o What did you do in response to [paraphrase experience or characteristic]? 

o As a result of [paraphrase experience or characteristic], how, if at all, did you 

see a change in how you thought about variation? 

o In how you thought about statistics in general? 

o In how you view yourself as a statistician or statistics teacher? 

How, if at all, does your knowledge of statistics now differ from your knowledge of statistics 

when you [had this experience]? 

o How does the way you now see variation differ from or agree with the way you 

saw variation when you [had this experience]? 
Teaching question: How does the way you now teach variation differ from the way you 

taught variation when you first started teaching statistics? 

o How is your knowledge of pedagogy and use of pedagogical strategies affected 

by your knowledge of statistics? 

Professional development question: How did you learn about this program, and what factors 

influenced your decision to attend this session [program]? 

 

Questions Related to Critical Incidents 

If any of the requested questions were not addressed in the critical incident description, ask the 
participant to answer the unanswered questions from this list: 
Details of the experience: 

 When, where, and for how long did the experience occur?*  

 What events or circumstances precipitated the experience or caused the experience to 

occur in the way in which it did? 

 What other people or circumstances played an influential role in the experience?  

 How did the experience end?  

 

Reflections on the experience: 

 As you reflect on the experience, why do you believe you viewed the events surrounding 

this experience positively or negatively?  

 What emotions did you recall feeling during the experience?* 

 In response to the experience, what actions did you take? 
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 What do you believe you learned from the experience? 

 

Effects of the experience: 

 How has the experience affected your understanding of variation? 

 How has the experience affected your statistics teaching? 

 

Beyond the experience: 

 If you could change past events surrounding the experience, what would you change 

and why? 

 If you were to encounter identical circumstances to those surrounding the experience, 

what affect do you believe the experience would have on you today? 

 

Additional Questions: 

After the incident occurred, what conversations did you have about the incident? 

o In relation to the experience, what was the role of the person you had this 

conversation with? 

o How, if at all, did those conversations impact your understanding of the 

incident? 

o Using the title of the person‘s position or the person‘s relationship to you, from 
whom, if anyone, did you seek input that you believed might differ from your 

perspective of the incident? 

- What perspective did they offer for the incident? 

Describe how often you think about or thought about this incident. 

o  About how often, and when did you reflect on the incident?\ 

o  Describe the form of your reflection, e.g., thinking, writing, or talking. 

- How, if at all, did your reflection on the incident change your 

interpretation or understanding of the incident or strengthen your initial 

interpretation or understanding of the incident? 

 Why do you believe your interpretation or understanding of the 

incident changed? 

What, if any, relationship do you see between the critical incident you documented in your 

critical incident document and the other experiences you had surrounding this incident? 

[Point to events on the EHC that surround the incident.] 



    

 

Appendix F 
 

Abbreviated Context II Interview Schedule 

Note: In general, whatever the participant responds, probe for details about the experience, 
particularly with respect to variation or experiences indicative of transformational 
learning. 
 

For today‘s session, I would like to explore some of the experiences we discussed last time. 

Since our last conversation and subsequent to your reflections on that conversation, what, if 

any, other thoughts, events, or experiences related to your learning of statistics do you feel 

should be added to your Event History Calendar? 

o Could you tell me when the [event or experience] occurred? 

o Over what time period did the [event or experience] take place? 

o Could you provide a brief description of the [event or experience] and the 

people, places, and feelings associated with the [event or experience]? 

o Please describe any particularly salient characteristics of the experience. 

We are now going to talk in depth about some of the events you identified as pivotal on your 

calendar. Some of the questions that I ask may seem to be repetitive, but I want to be sure 

that we have touched upon important characteristics of some of your experiences. 

 

Of all of your experiences with learning and teaching statistics, which two or three 

experience do you believe precipitated the greatest change in your understanding of 

variation or resulted in the greatest change in your understanding of variation? 

o Did you view the [name] experience as pivotal at the time of the experience, and 

if so, how? 

o How do you currently view the experience? 

o What features of this experience do you believe were essential for your learning? 

- Why do you believe [name feature] was particularly effective for you? 

- Do you believe [name features] might have a common effect among 

statistics teachers, and if so, why? 

What features of this experience do you believe were largely ineffective for your learning? 

o Why do you believe [name feature] was particularly ineffective for you? 

o Do you believe [name features] might have a common effect among statistics 

teachers, and if so, why? 

In response to the experience, what actions did you take? 

o Why do you believe you [describe the action]? 

o How did [describe the action] affect your learning? 

o How did [describe the action] affect your teaching? 

 

In our last session, you indicated that [insert name of professional development/class/ 

teaching experience] was an experience that was particularly educative for you. In 

particular, you mentioned that you believed [name experience or characteristic] was 

instrumental in your learning about variation. Did you view the experience as pivotal at the 
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time of the experience, and if so, how? Repeat the preceding series of questions for this 
experience. 

 

Over the course of the past few months, you‘ve spent a considerable amount of time 
reflecting on your teaching and learning in statistics. We‘ve talked about each of these 
experiences individually, but as you‘ve been reflecting on your experiences, did you feel 
there were any patterns in your experiences? If so, what are they? 

 

Can you describe how you believe this collective group of experiences might have 

contributed to your development of an understanding of variation? 

o Why do you believe these collective experiences were particularly effective for 

you? 

o Which grouping(s) of these experiences do you believe would have a similar 

learning effect on other statistics teachers, and why? 

 

In your educational experiences, what hindrances to your development of an understanding 

of variation do you believe existed? 

o Why do you believe these characteristics were a hindrance for you? 

o What personal characteristics do you believe a person would need to have in 

order for these characteristics to not be a hindrance? 

 

If you could change something in your learning experiences with statistics and with 

variation in particular, what would you change and why? 

 

How, if at all, did your knowledge of variation change as a result of this collective group of 

experiences? 

  

How, if at all, did you see a change in how you thought about variation? 

o Why do you believe that to be the case? 

 

How, if at all, did you see a change in how you thought about statistics in general? 

o Why do you believe that to be the case? 

 

How, if at all, did you see a change in how you view yourself as a statistician or statistics 

teacher? 

o Why do you believe that to be the case? 

 

What else you would like to add about your experiences that would help me to understand 

your learning experiences related to variation?
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