
University of Wollongong University of Wollongong

Research Online Research Online

University of Wollongong Thesis Collection
2017+

University of Wollongong Thesis Collections

2018

Developing analytics models for software project management Developing analytics models for software project management

Morakot Choetkiertikul
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses1

University of Wollongong University of Wollongong

Copyright Warning Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University

does not authorise you to copy, communicate or otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court

may impose penalties and award damages in relation to offences and infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the

conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily

represent the views of the University of Wollongong. represent the views of the University of Wollongong.

Recommended Citation Recommended Citation

Choetkiertikul, Morakot, Developing analytics models for software project management, Doctor of

Philosophy thesis, School of Computing and Information Technology, University of Wollongong, 2018.

https://ro.uow.edu.au/theses1/346

Research Online is the open access institutional repository for the University of Wollongong. For further information

contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/theses1
https://ro.uow.edu.au/theses1
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses1?utm_source=ro.uow.edu.au%2Ftheses1%2F346&utm_medium=PDF&utm_campaign=PDFCoverPages

Developing analytics models
for software project management

Morakot Choetkiertikul B.Sc.(ICT), M.Sc.(CS)

This thesis is presented as part of the requirements for the conferral of the degree:

Doctor of Philosophy

Supervisor:

Dr. Hoa Khanh Dam

Co-supervisor:

Prof. Aditya Ghose

The University of Wollongong

School of Computing and Information Technology

September 9, 2018

This work c© copyright by Morakot Choetkiertikul B.Sc.(ICT), M.Sc.(CS), 2018. All Rights

Reserved.

No part of this work may be reproduced, stored in a retrieval system, transmitted, in any form or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the

author or the University of Wollongong.

Declaration

I, Morakot Choetkiertikul B.Sc.(ICT), M.Sc.(CS), declare that this thesis submitted in par-

tial fulfilment of the requirements for the conferral of the degree Doctor of Philosophy,

from the University of Wollongong, is wholly my own work unless otherwise referenced

or acknowledged. This document has not been submitted for qualifications at any other

academic institution.

Morakot Choetkiertikul B.Sc.(ICT), M.Sc.(CS)

September 9, 2018

Abstract

Schedule and cost overruns constitute a major problem in software projects and have been

a source of concern for the software engineering community for a long time. Managing

software projects to meet time and cost constraints is highly challenging, due to the dy-

namic nature of software development. Software project management covers a range of

complex activities such as project planning, progress monitoring, and risk management.

These tasks require project managers the capability to make correct estimations and fore-

see future significant events in their projects. However, there has been little work on

providing automated support for software project management activities.

Modern software projects mostly follow the iterative development process where

software products are incrementally developed and evolved in a series of iterations. Each

iteration requires the completion and resolution of a number of issues such as bugs, im-

provement or new feature requests. Since modern software projects require continuous

deliveries in every iteration of software development, it is essential to monitor the execu-

tion of iterations and the resolution/completion of issues, and make reliable predictions.

There is thus a strong need to provide the project managers, software engineers, and other

stakeholders with predictive support at the level of iterations and issues.

This thesis aims to leverage a large amount of data from software projects to gener-

ate actionable insights that are valuable for different software project management activi-

ties at the level of iterations and issues. Using cutting-edge machine learning technology

(including deep learning), we develop a novel suite of data analytics techniques and mod-

els for predicting delivery capability of ongoing iterations, predicting issue delays, and es-

timating the effort for resolving issues. An extensive empirical evaluation using data from

over ten large well-known software projects (e.g., Apache, Duraspace, Java.net, JBoss,

JIRA, Moodle, and Mulesoft) demonstrates the high effectiveness of our approach.

iv

Acknowledgments

First of all, I would like to express my deepest appreciation to my supervisor, Hoa Khanh

Dam, for his patient guidance, encouragement, and excellent opportunities to complete

my Ph.D. thesis. At many stages in the course of this research, I encountered many

difficult problems and challenges. He has never turned his back on me but patiently

guided me through the most difficult times. He always believes in my ability and keeps

pushing me forward with his strong determination to achieve our goals. I have learned not

only scientific knowledge from him, but also how to be a good scientist. It would never

be possible for me to complete this thesis without his incredible support.

I am also very grateful to Prof. Aditya Ghose, my co–supervisor, for his constant

support and encouragements. He always gives constructive suggestions which lead to the

accomplishment of this thesis. I also would like to thank Dr. Truyen Tran and Trang

Pham at Deakin University, Australia for providing the excellent guidance and sharing

their expertise which helped me in the first steps of machine learning and deep learning

in the development of this research work.

Special thanks go to Prof. Tim Menzies at North Carolina State University, and

Prof. John Grundy at Monash University for their valuable colloborations.

This work would not have been possible without the financial support from the

Faculty of Information and Communication Technology (ICT), Mahidol University, Thai-

land. I especially thank to Assoc. Prof. Dr. Jarernsri L. Mitrpanont, Dean of Faculty of

Information and Communication Technology, who has been supportive of my academic

and career goals, and who always guides me to pursue those goals.

I would like to thank my colleagues and friends in the Decision Systems Lab

(DSL) for their friendly companionship and for providing a nice and friendly working

environment. Especially, my labmate: Alexis Harper, Yingzhi Gou, and Josh Brown who

usually organized the game and movie nights which helped me overcome some depressing

v

vi

moments from rejections. I also thank the administrative and technical support staff at

UOW, who helped me in various stages of my research.

I am truly grateful to my parents: Manit and Chuleeporn Choetkiertikul. Without

the support of my family, this thesis would not have been possible. I thank them so

much for their continuous and unconditional support. They always give me a courage and

strong determination to overcome any difficult challenges in my life and keep pushing me

forward to pursue my dream.

At last, I wish to thank many other people whose names are not mentioned here

but this does not mean that I have forgotten their help.

Publications

Earlier versions of the work in this thesis were published as listed below:

• Predicting delivery capability in iterative software development.

Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Aditya Ghose, and John

Grundy. IEEE Transactions on Software Engineering (IEEE TSE), 2017, DOI:

10.1109/TSE.2017.2693989, IEEE. [Chapter 3]

• Characterization and prediction of issue-related risks in software projects.

Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, and Aditya Ghose. In

Proceedings of the 12th Working Conference on Mining Software Reposito-

ries (MSR), co-located with the International Conference on Software Engineering

(ICSE), 2015, pages 280 – 291, IEEE. [Chapter 4]

Received the ACM SIGSOFT Distinguished Paper Award

• Predicting the delay of issues with due dates in software projects.

Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, and Aditya Ghose.

Empirical Software Engineering journal (EMSE), Volume 22, Issue 3, pages

1223-1263, 2017, Springer. [Chapter 4]

• Predicting delays in software projects using networked classification.

Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, and Aditya Ghose. In Pro-

ceedings of the 30th IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE), 2015, pages 353 - 364, IEEE. [Chapter 5]

• A deep learning model for estimating story points.

Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Trang Pham, Aditya Ghose,

and Tim Menzies. IEEE Transactions on Software Engineering (IEEE TSE),

2018, DOI: 10.1109/TSE.2018.2792473, IEEE. [Chapter 6]

vii

viii

The following publications are not directly related to the work that is presented in

this thesis. They were produced in parallel to the research performed in this thesis.

• Poster: Predicting components for issue reports using deep learning with informa-

tion retrieval.

Morakot Choetkiertikul, Hoa Khanh Dam, Trang Pham, Truyen Tran, and Aditya

Ghose. In Proceedings of the 40th International Conference on Software Engi-

neering (ICSE), 2018.

• A CMMI-based automated risk assessment framework.

Morakot Choetkiertikul, Hoa Khanh Dam,Aditya Ghose, and Thanwadee T. Sunet-

nanta. In Proceedings of the International Workshop on Quantitative Approaches

to Software Quality, co-located with the Asia-Pacific Software Engineering Con-

ference (APSEC), 2014, volume 2, pages 63 - 68, IEEE.

• Threshold-based risk identification in software projects.

Morakot Choetkiertikul, Hoa Khanh Dam, and Aditya Ghose. In Proceedings of the

24th Australasian Software Engineering Conference (ASWEC), 2015, pages 81

- 85, ACM.

• Who will answer my question on Stack Overflow?

Morakot Choetkiertikul, Daniel Avery, Hoa Khanh Dam, Truyen Tran, and Aditya

Ghose. In Proceedings of the 24th Australasian Software Engineering Confer-

ence (ASWEC), 2015, pages 155 - 164, IEEE.

• Predicting issues to be resolved for the next release.

Shien Wee Ng, Hoa Khanh Dam, Morakot Choetkiertikul, and Aditya Ghose. In

Proceedings of the Sixth Australasian Symposium on Service Research and In-

novation (ASSRI), 2017.

Contents

Abstract iv

List of Figures xiii

List of Tables xvi

1 Introduction 1

1.1 Research questions . 2

1.2 Research outcomes and main contributions 4

1.3 Thesis organization . 6

2 Background 8

2.1 Machine learning . 8

2.1.1 Supervised vs unsupervised learning 9

2.1.2 Classification vs regression . 10

2.1.3 Learning algorithms . 11

2.1.4 Deep learning . 15

2.1.5 Long Short Term Memory . 17

2.1.6 Predictive performance measures 19

2.2 Issue-driven software project management 21

2.2.1 Characteristics of an issue . 22

2.2.2 Lifecycle of an issue . 24

2.2.3 Characteristics of an iteration . 25

2.3 Software engineering analytics . 28

2.3.1 Applications of software engineering analytics 29

2.4 Chapter summary . 33

3 Delivery capability prediction 34

3.1 Approach . 36

3.2 Feature extraction and aggregation . 40

3.2.1 Features of an iteration . 41

ix

CONTENTS x

3.2.2 Features of an issue . 43

3.2.3 Feature aggregation . 48

3.3 Predictive model . 51

3.3.1 Random Forests . 52

3.3.2 Stochastic Gradient Boosting Machines 52

3.3.3 Deep Neural Networks with Dropouts 53

3.4 Dataset . 54

3.4.1 Data collecting and preprocessing 54

3.5 Evaluation . 57

3.5.1 Experimental setting . 59

3.5.2 Performance measures . 59

3.5.3 Results . 63

3.5.4 Implications and lessons learned 74

3.5.5 Threats to validity . 77

3.6 Related work . 78

3.7 Chapter summary . 79

4 Delay prediction 81

4.1 Approach . 83

4.2 Features of an issue . 85

4.3 Feature selection . 93

4.3.1 Using p-value from logistic regression model 94

4.3.2 ℓ1-penalized logistic regression model 95

4.4 Predictive model . 96

4.4.1 Predicting the likelihood of a risk occurring 96

4.4.2 Risk exposure prediction . 98

4.5 Dataset . 99

4.5.1 Data collecting . 99

4.5.2 Data preprocessing . 103

4.6 Evaluation . 104

4.6.1 Experimental setting . 106

4.6.2 Applying feature selection . 108

4.6.3 Performance measures . 113

4.6.4 Results . 115

4.6.5 Implications . 123

4.6.6 Threats to validity . 126

4.7 Related work . 127

CONTENTS xi

4.8 Chapter summary . 128

5 Delay prediction using networked classification 130

5.1 Approach . 133

5.2 Issue network construction . 135

5.3 Predictive model . 139

5.3.1 Local (non-relational) classifier 139

5.3.2 Relational classifier . 139

5.3.3 Collective inference . 141

5.4 Dataset . 142

5.5 Evaluation . 144

5.5.1 Experimental setting . 145

5.5.2 Performance measures . 145

5.5.3 Results . 147

5.5.4 Threats to validity . 151

5.6 Related work . 151

5.7 Chapter summary . 152

6 Story point estimation 154

6.1 Story point estimation . 155

6.2 Deep-SE . 157

6.2.1 Word embedding . 159

6.2.2 Document representation using LSTM 159

6.2.3 Deep representation using Recurrent Highway Network 160

6.2.4 Regression . 162

6.3 Model training . 162

6.3.1 Pre-training . 162

6.3.2 Training Deep-SE . 163

6.4 Dataset . 164

6.4.1 Data collecting . 164

6.4.2 Data preprocessing . 166

6.5 Evaluation . 167

6.5.1 Experimental setting . 170

6.5.2 Performance measures . 170

6.5.3 Hyper-parameter settings for training a Deep-SE model 172

6.5.4 Pre-training . 173

6.5.5 The correlation between the story points and the development time 174

CONTENTS xii

6.5.6 Results . 175

6.5.7 Training/testing time . 188

6.5.8 Threats to validity . 188

6.5.9 Implications . 190

6.6 Related work . 192

6.7 Chapter summary . 193

7 Conclusions and future work 195

7.1 Thesis contributions . 196

7.2 Future work . 198

Bibliography 200

A The distribution of the Absolute Error achieved by Deep-SE 225

A.1 RQ1. Sanity Check . 226

A.2 RQ2. Benefits of deep representation . 227

A.3 RQ3. Benefits of LSTM document representation 228

A.4 RQ4. Cross-project estimation . 229

A.5 RQ6. Compare Deep-SE against the existing approach 230

List of Figures

1.1 An overview of the research framework 5

2.1 Example of a decision tree . 12

2.2 Artificial Neural Networks (aNN) . 13

2.3 A single node in Artificial Neural Networks 14

2.4 Deep neural network . 16

2.5 Convolutional Neural Network (CNN) 17

2.6 An LSTM network . 18

2.7 The internal structure of an LSTM unit 19

2.8 Example of an issue in JIRA software 23

2.9 Example of an issue’s change log . 24

2.10 Example of an issue workflow . 26

2.11 The Scrum Agile methodology . 27

2.12 Example of a sprint in JIRA software . 27

3.1 An example of an iteration (at the beginning) 36

3.2 An example of a closed iteration report 37

3.3 An overview of our approach . 39

3.4 An example of an on-going iteration report 41

3.5 Example of an iteration report in JSON format of the iteration named

“Twitter Aurora Q2’15 Sprint 3” in the Apache project 44

3.6 Example of a change log of an issue in JSON format of issue AURORA-1267 45

3.7 An example of an issue report of issue AURORA-716 in the Apache project 45

3.8 Example of a DAG of issues in the iteration “Usergrid 20” in the Apache

project . 50

3.9 Evaluation results on the three aggregated features and the features of

iterations . 63

3.10 Evaluation results on all the combinations of the aggregated features of

issues . 65

3.11 Evaluation results on different regression models with SA+BoWs 68

xiii

LIST OF FIGURES xiv

3.12 Evaluation result of the GBMs with the best aggregated features in each

project and the three baseline benchmarks 69

3.13 Evaluation results on varying prediction time 71

3.14 Evaluation results on predicting the outcomes of iterations in terms of

precision, recall, F-measure, and AUC from each project 72

3.15 Matthews Correlation Coefficient (MCC) results from each project 73

3.16 Macro-averaged Mean Absolute Error (MMAE) results 73

4.1 An example of an issue assigned with a due date 84

4.2 An overview of our approach . 85

4.3 The distribution of the discussion time in each project 87

4.4 The distribution of the reporter reputation in each project 91

4.5 The distribution of the developer’s workload in each project 92

4.6 The distribution of the percentage of delayed issues that a developer in-

volved with in each project . 93

4.7 Example of an issue JSON file AURORA-1563 101

4.8 Example of an issue’s change log in JSON format of issue AURORA-1563 102

4.9 Example of an issue JSON file AURORA-1563 103

4.10 Sliding windows . 107

4.11 Evaluation results for different projects 116

4.12 Evaluation results for different feature selection approaches 118

4.13 Evaluation results for different prediction times 119

4.14 Evaluation results for different numbers of topics 120

4.15 MMAE and MMCE (the lower the better) 121

4.16 Number of issues in each window (6-month window) 121

4.17 Evaluation results using the 6-month sliding window setting 122

4.18 Evaluation results using the 2-year sliding window setting 123

5.1 An example of task dependencies in the JBoss project 131

5.2 An overview of our approach . 133

5.3 Example of an issue report with issue links 136

5.4 Example of explicit issue relationships in JBoss 137

5.5 Example of implicit issue relationships in JBoss 138

5.6 Example of issue links in an issue JSON file 143

5.7 Evaluation results on different sets of relationships 150

5.8 Evaluation results on different sizes of training data 150

6.1 An example of an issue with estimated story points 156

LIST OF FIGURES xv

6.2 Deep learning model for Story point Estimation (Deep-SE) 158

6.3 An example of how a vector representation is obtained for issue reports . . 160

6.4 Story point estimation performance with different parameter. 173

6.5 Top-500 word clusters used in the Apache’s issue reports 174

A.1 The distribution of the Absolute Error achieved by Deep-SE, mean and

median method in each project . 226

A.2 The distribution of the Absolute Error achieved by Deep-SE, LSTM+RF,

LSTM+SVM, LSTM+ATLM, and LSTM+LR in each project 227

A.3 The distribution of the Absolute Error achieved by LSTM+RF, BoW+RF,

and Doc2vec+RF in each project . 228

A.4 The distribution of the Absolute Error achieved by Deep-SE and ABE0 in

cross-project estimation . 229

A.5 The distribution of the Absolute Error achieved by Deep-SE and the Porru’s

approach on the Porru’s dataset . 230

List of Tables

2.1 Example of a supervised learning problem 10

3.1 Features of an iteration . 42

3.2 Features of an issue . 46

3.3 Statistical aggregated features for an issue’s feature k 49

3.4 Features of a DAG of issues in an iteration 51

3.5 Project description . 55

3.6 Descriptive statistics of the iterations of the projects in our datasets 56

3.7 Descriptive statistics of the difference between the actual delivered veloc-

ity against the target velocity in each project 59

3.8 Comparison of the predictive models between with and without the ag-

gregated features using Wilcoxon test and A12 effect size (in brackets) . . 64

3.9 Comparison of the three randomized ensemble methods against the tradi-

tional SVR using Wilcoxon test and A12 effect size (in brackets) 67

3.10 Comparison of GBMs against RF and Deep nets. using Wilcoxon test and

A12 effect size (in brackets) . 67

3.11 Comparison on the predictive performance of our approach against the

baseline benchmarks using Wilcoxon test and A12 effect size (in brackets) 68

3.12 The descriptive statistics of the difference between actual delivered veloc-

ity against the target velocity from the different prediction time 70

3.13 Number of iterations in each class in each project 72

3.14 Top–10 most important features with their normalized weight 75

4.1 Collected issues . 102

4.2 Descriptive statistics of the delay time of the projects in our datasets . . . 105

4.3 Experimental setting . 108

4.4 P-value from logistic regression model, trained on the issues in the train-

ing set from the eight projects and “All together” 109

xvi

LIST OF TABLES xvii

4.5 Indication of collinearity in terms of Variance-Decomposition Proportions

(VDP) from Belsley collinearity diagnostics, apply on the risk factors se-

lected from using p-values . 111

4.6 Descriptive ℓ1-penalized logistic regression model for risk probability,

trained on the issues in the training set from the eight projects and “All

together” . 112

4.7 Evaluation results for different classifiers in each project 117

4.8 Weight obtained from ℓ1-penalized logistic regression model using the

different number of topics . 120

4.9 Top-10 most important risk factors with their normalized weight in each

project . 124

5.1 Local features of an issue . 134

5.2 Datasets and networks’ statistics . 144

5.3 Experimental setting . 146

5.4 Evaluation results of traditional classification, wvRN+RL, and stacked

learning . 147

5.5 Evaluation results of relational classifier with collective inference and

without collective . 149

6.1 Descriptive statistics of our story point dataset 165

6.2 The coefficient and p-value of the Spearman’s rank and Pearson rank cor-

relation on the story points against the development time 175

6.3 Evaluation results of Deep-SE, the Mean and Median method (the best

results are highlighted in bold). MAE and MdAE - the lower the better,

SA - the higher the better. 176

6.4 Comparison on the effort estimation benchmarks using Wilcoxon test and

ÂXY effect size (in brackets) . 178

6.5 Evaluation results of Deep-SE, LSTM+RF, LSTM+SVM, LSTM+ATLM,

and LSTM+LR (the best results are highlighted in bold). MAE and MdAE

- the lower the better, SA - the higher the better. 179

6.6 Comparison between the Recurrent Highway Net against Random Forests,

Support Vector Machine, Automatically Transformed Linear Model, and

Linear Regression using Wilcoxon test and Â12 effect size (in brackets) . . 180

6.7 Evaluation results of LSTM+RF, BoW+RF, and Doc2vec+RF (the best

results are highlighted in bold). MAE and MdAE - the lower the better,

SA - the higher the better. 181

LIST OF TABLES xviii

6.8 Comparison of Random Forest with LSTM, Random Forests with BoW,

and Random Forests with Doc2vec using Wilcoxon test and ÂXY effect

size (in brackets) . 182

6.9 Mean Absolute Error (MAE) on cross-project estimation and comparison

of Deep-SE and ABE0 using Wilcoxon test and ÂXY effect size (in brackets)183

6.10 Evaluation results on the adjusted story points (the best results are high-

lighted in bold). MAE and MdAE - the lower the better, SA - the higher

the better. 185

6.11 Mean Absolute Error (MAE) and comparison of Deep-SE and the Porru’s

approach using Wilcoxon test and ÂXY effect size (in brackets) 187

6.12 The pre-training, training, and testing time at 50 embedding dimensions

of our Deep-SE model . 188

Chapter 1

Introduction

LATE delivery and cost overruns have been a common problem in software projects

for many years. A recent study by McKinsey and the University of Oxford in 2012

of 5,400 large scale IT projects found that on average 66% of IT projects were over budget

and 33% went over the scheduled time [1]. Managing software projects to meet the ex-

pected cost and time constraints is highly challenging, due to the inherent dynamic nature

of software development (e.g. constants changes to software requirements). Current sup-

port for software project managers is however limited, especially at the fine-grained levels

of iterations and tasks. This thesis proposes a novel suite of data analytics techniques and

models to better support project managers, team leaders, and other decision makers in

software development. We harvest valuable insights buried under the huge amount of

software development data to build prediction models for delays, delivery capability, and

effort estimation.

Today’s software development is trending toward agility and continuous deliv-

ery. Even large software systems, e.g. Microsoft Windows [2], are moving from major

releases to a stream of continuous updates. This is a shift from a model where all func-

tionalities are shipped together in a single delivery to a model involving a series of in-

cremental, continuous deliveries of a small number of functionalities. Modern software

development projects are mostly based on the incremental and iterative process where a

software is designed, developed, and tested in repeated cycles (i.e. the so-called “itera-

tions”) [3]. The iterative development allows software developers to gain benefits from

what were learned during the development of earlier parts or versions of the software. An

iteration is usually limited to a certain short time length. At the end of an iteration, deliv-

erable software packages which may contain new features and/or bug fixes are expected

to be delivered [4].

1

CHAPTER 1. INTRODUCTION 2

Project management is still critical to the success of today’s software projects re-

gardless of which development process is employed. It typically involves many complex

activities ranging from planning, estimating to progress monitoring of iterations and re-

leases, and dealing with risks. These require project managers the capability to make

correct estimation and foresee if their team can deliver on time, within budget and with

all planned features. There has been a large body of work on building various prediction

models to support software development. For example, existing effort estimation models

(e.g. [5], [6], [7], and [8]) was built to predict the effort required for developing a whole

software. Other existing empirical work has however considered how prediction was done

at the project level (e.g. software project risk prediction [9]–[12]).

A substantial amount of work has also been proposed in many other aspects of

software engineering (e.g. bug localization [13]–[17], defect prediction [18], [19], soft-

ware vulnerability prediction [20], and bug severity prediction [21]–[23]). However, there

has been very little work on providing automated support in software project management

activities. It would be valuable for project managers and decision makers to be provided

with insightful and actionable information at the level of iterations and tasks (rather than

just only at the project level). For example, being able to predict that an iteration is at

risk of not delivering what has been planned allows project managers the opportunity

adapt a current plan earlier, e.g. moving some features from the current iteration to the

next one.

This thesis aims to fill this gap. The overall objective of this research is provid-

ing decision makers in modern software projects with actionable insights by leveraging a

huge amount of data from software projects. We specifically focus on data generated from

fixing bugs, and implementing new features and improvements which usually recorded as

issues in an issue tracking system (e.g. JIRA softwarea). We leverage state-of-the-art ma-

chine learning techniques (including deep learning) to develop a suite of analytics models

which makes use of both structured data and unstructured data (e.g. textual description

of an issue). Our predictive models are capable of offering accurate predictions at the

fine-grained levels of iterations and issues.

1.1 Research questions

Iterative software development has become widely practiced in industry. Since modern

software projects require fast, incremental delivery for every iteration of software devel-

ahttps://www.atlassian.com/software/jira

https://www.atlassian.com/software/jira

CHAPTER 1. INTRODUCTION 3

opment, it is essential to monitor the execution of an iteration and foresee whether teams

can deliver quality products as the iteration progresses. Hence, our focus here is on pre-

dicting the delivery capability of each iteration at a time. The first research question we

would like to address is:

• Research question 1: How to leverage a history of project iterations and their asso-

ciated issues to provide automated support for project managers and other decision

makers in predicting delivery of an ongoing iteration?

In practice, to facilitate project planning and maintaining the progression of a

project, an issue (also referred as a project task) usually have a certain deadline. A

deadline can be imposed on an issue by either explicitly assigning a due date to it, or

implicitly assigning it to a release and having it inherit the release’s deadline. It is im-

portant for project managers to ensure as many issues be completed in time against their

respective due date as possible to avoid adverse implications (e.g. delayed issue effects) to

the overall progress of a project. Our second research question thus focuses on providing

this kind of support.

• Research question 2a: How to analyze the historical data associated with a soft-

ware project to predict whether a current issue is at risk of being delayed?

An issue may have relationships with other issues. For example, an issue needs

to be resolved before the resolution of another issue can be started. Those relationships

usually determine the order in which issues should be resolved. This information provides

valuable information for predicting delays. For example, if an issue blocks another issue

and the former is delayed, then the latter is also at risk of getting delayed. This example

demonstrates a common delay propagation phenomenon in software projects. Thus, the

third research question we would like to address is:

• Research question 2b: How to leverage not only features specific to individual

issues (i.e. local data) – as address in Research question 2a – but also their rela-

tionships (i.e. networked data) to improve the predictive performance of the delay

prediction model?

To ensure software projects complete in time and within budget, effort estimation

is a critical part of project planning [24]–[26]. Incorrect estimates may have adverse im-

pact on the project outcomes (e.g. project delays) [24], [27]–[29]. Although there has

been substantial research in software analytics for effort estimation in traditional software

projects, little work has been done for estimation in agile projects, especially estimat-

ing the effort required for completing user stories or issues. Story points are the most

CHAPTER 1. INTRODUCTION 4

common unit of measure used for estimating the effort involved in completing a user

story or resolving an issue. Currently, most agile teams heavily rely on experts’ sub-

jective assessment (e.g. planning poker, analogy, and expert judgment) to arrive at an

estimate. This may lead to inaccuracy and more importantly inconsistencies between es-

timates [30]. Hence, our last research question aims to facilitate effort estimation at the

issue level:

• Research question 3: How to develop a highly accurate estimation model which is

able to recommend a story-point estimate of an issue using the team’s past estima-

tion?

1.2 Research outcomes and main contributions

Our general framework makes use of historical data that is stored in issue tracking systems

such as JIRA softwareb (see Figure 1.1). We have collected iteration and issue reports

from over ten well-known large open source repositories (e.g. Apache, Appcelerator,

DuraSpace, Atlassian, Moodle, MongoDB, and JBoss). We have analyzed the collected

data and studied their characteristics (e.g. structure) to answer each research question.

We have then performed data pre-processing (e.g. data cleansing and data labeling) to

build these datasets for our studies. The next step involves developing predictive models

which focuses on feature engineering and model building. Feature engineering involves

exploring, analyzing, and extracting the datasets to create a set of features. Machine

learning techniques are employed in order to build a predictive model. The features are

then used for training the model. Finally, an extensive evaluation is performed to measure

the performance of the predictive models. In the evaluation, we compare the predictive

performance of our models against alternative methods in order to demonstrate the effec-

tiveness of the approach over the existing models and techniques.

This thesis makes several contributions to state of the art as follows. Firstly, we

propose a novel, data-driven approach to providing automated support for project man-

agers and other decision makers in predicting delivery capability for an ongoing itera-

tion. Our approach leverages a history of project iterations and associated issues, and

in particular, we have extracted characteristics of previous iterations and their associated

issues in the form of features. In addition, our approach characterizes an iteration using

a novel combination of techniques including feature aggregation statistics, automatic fea-

ture learning using the Bag-of-Words approach, and graph-based complexity measures.

bhttps://www.atlassian.com/software/jira

https://www.atlassian.com/software/jira

CHAPTER 1. INTRODUCTION 5

Historical

issues

Data analysis and

pre-processing

Predictive model

developing

Predictive model

training

Evaluation

Developing dataset Model development

Figure 1.1: An overview of the research framework

We have then employed the state-of-the-art randomized ensemble methods (e.g. Random

Forests) to build the predictive models. An extensive evaluation of the technique on five

large open source projects (Apache, JBoss, JIRA, MongoDB, and Spring) demonstrates

that our predictive models outperform three common baseline methods in Normalized

Mean Absolute Error and are highly accurate in predicting the outcome of an ongoing it-

eration (Research question 1).

Secondly, we have developed highly accurate models which are capable of predict-

ing whether an issue is at risk of being delayed against its deadline. We have extracted the

comprehensive set of features characterized delayed issues (e.g. discussion time, elapsed

time from when the issue is created until prediction time, elapsed time from prediction

time until the deadline, percentage of delayed issues that a developer involved with, and

developer’s workload) from 8 open source projects (Apache, Duraspace, Java.net, JBoss,

JIRA, Moodle, Mulesoft, and WSO2). We have employed feature selection techniques to

derive a set of features with good discriminative power to build predictive models. Our

predictive models can predict both the impact of the delay and the likelihood of the delay

occurrence. The evaluation results demonstrate the strong effectiveness of our predictive

models in predicting if an ongoing issue has a delay risk (Research question 2a).

Thirdly, the model we discussed earlier relies only on individual issues to make

delay predictions. The dependencies among issues however exist and provide a good

source of information for predicting delay. Thus, another contribution of this thesis is the

enhancement of the delay prediction model by leveraging both the features of individual

issues and their relationships (e.g. issue links). We have extracted various relationships

between issues to build an issue network. Issue relationships can be explicit (those that

are explicitly specified in the issue reports) or implicit (those that need to be inferred from

other issue information). Explicit relations usually determine the order of issues, while

implicit relations reflect other aspects such as issues assigned to the same developer, issues

affecting the same software component or similar issues. We have developed the delay

CHAPTER 1. INTRODUCTION 6

prediction models that make use of those issue relations. Our evaluation results show a

significant improvement over traditional approaches which make the prediction based on

each issue independently (Research question 2b).

Fourthly, we have developed a highly accurate predictive models for estimating

story points based on a novel combination of two powerful deep learning architectures:

long short-term memory (LSTM) and recurrent highway network (RHN). LSTM allows

us to model the long-term context in the textual description of an issue, while RHN pro-

vides us with a deep representation of that model. Our prediction system is end-to-end

trainable from raw input data (i.e. textual description of issues) to prediction outcomes

without any manual feature engineering. Our model learns from the team’s previous esti-

mations to recommend a story point of a new issue. An extensive evaluation demonstrates

that our approach consistently outperforms common baselines in effort estimation and al-

ternative techniques (Research question 3).

Finally, we have developed a number of comprehensive datasets for our studies.

The datasets consist of the delivery capability of iterations, the delay of issues, and story

point estimation. Some of these datasets are the first dataset of its kind (e.g. the de-

livery capability dataset and issue delay dataset). In total, our datasets consist of over

200,000 issue reports and over 3,000 iteration reports. We have made our datasets pub-

licly availablec, which we believe a significant contribution to the software engineering

research community.

1.3 Thesis organization

This section provides a brief overview of the thesis and the general structure in each

chapter. The remainder of this thesis is structured as follow:

• Chapter 2 provides background material and existing work related to this thesis.

This chapter outlines the landscape of our research in software engineering ana-

lytics. It includes the background on machine learning and deep learning. This

chapter also presents the characteristics of issue driven project management and is-

sue’s life-cycle, and also an overview of software analytics and its applications in

software engineering.

• Chapter 3 describes the predictive model for predicting delivery capability in itera-

tion software development in detail. This chapter presents our novel feature aggre-

chttps://github.com/SEAnalytics/datasets

https://github.com/SEAnalytics/datasets

CHAPTER 1. INTRODUCTION 7

gation techniques to build the predictive model. This chapter is structured according

to the steps in the framework discussed in Section 1.2. We first discuss the chal-

lenges and the problems we are going to tackle. It also elaborates the needs of the

automated prediction model and emphasizes the main contributions of the chapter.

We present the proposed approach and how to build the predictive models. We then

discuss about the dataset used in this study that includes the data pre-processing

step and the statistical information the dataset, before we elaborate how we run the

extensive evaluations and report the results. Chapter 4 – 6 also follow the same

structure.

• Chapter 4 presents our issue-level delay prediction model. This chapter provides

a description of our approach to mine historical data, extracts features of an issue,

and build the predictive model.

• Chapter 5 describes how we leverage the relationships of issues to enhance the delay

prediction model. It also includes how we extract explicit and implicit relationships

to construct an issue network and how we adopt the network classification model to

learn those networked data.

• Chapter 6 presents our story point estimation model using deep learning techniques.

It explains how we combine LSTM and RHN to build the prediction model and

discusses how the model is trained using textual descriptions of a huge amount of

issues.

• Chapter 7 summarizes this thesis’s contributions and discusses future work.

Chapter 2

Background

THE main purpose of this chapter is to briefly provide the landscape of software

analytics and give an overview of our research context. The first part of this chapter

provides some background on machine learning techniques in Section 2.1 including the

description of the techniques that we use in our research (e.g. deep learning). The second

part of this chapter (Section 2.2) gives an overview of issue-driven project management

including the characteristics of an issue and iteration. In addition, we explain the process

of issue resolution and how issues are used in iterative development. The final section

of this chapter (Section 2.3) briefly describes software analytics and its application in

software engineering.

2.1 Machine learning

In this section, we briefly present the machine learning background that is necessary to

this thesis. We briefly describe two important machine learning techniques: supervised

and unsupervised learning in Section 2.1.1. We then focus on two classes of supervised

learning: classification and regression problems in Section 2.1.2. We also briefly describe

the common and well-known machine learning algorithms that have been widely used in

software engineering (Section 2.1.3). We introduce the basic concepts of deep learning

and the well-known deep learning architectures in Section 2.1.4.

Machine learning aims to enable computers to learn new behavior (e.g. classi-

fication) based on empirical data [31]. The goal of machine learning field is to design

algorithms that allow the computer to solve a problem based on learning from human

experience (e.g. historical data), rather than rely on human instructions. This learning

8

CHAPTER 2. BACKGROUND 9

process occurs through a learning algorithm. The different learning algorithms are de-

signed to be as general purpose as possible. It can thus be applied to a broad class of

learning problems. Machine learning has been utilized in many domains such as Internet

security [32], [33], image recognition [34], [35], and on-line marketing [36], [37].

2.1.1 Supervised vs unsupervised learning

Machine learning algorithms can be classified into two major groups: supervised learn-

ing and unsupervised learning [38]. The supervised learning algorithms learn from many

data points (also called instances and examples) contained in a dataset. Each data point is

described by a number of input variables and an output variable. The input variables are

also known as features that represent characteristics of a data point. The output variable

(e.g. label) is the predicting target (e.g. category). In the learning process, the learning

model infers a function based on a learning algorithm that can map input variables to an

output variable. The supervised learning model that is supplied with labeled data points

can then classify unlabeled data points based on their features. Unsupervised learning, in

contrast, requires only a set of input variables without a target label. The unsupervised

learning algorithms are able to find the structure or relationships between different input

variables. There are two major unsupervised learning algorithms: clustering the data into

groups based on similarity measures (e.g. k-means clustering) and reducing dimension-

ality to compress the data (e.g. Principal Component Analysis). Since we have mostly

employed supervised learning algorithms to build prediction models, our discussion fo-

cuses on supervised learning.

To illustrate how supervised learning work, we examine the problem of decid-

ing whether we should go hiking based on three features: weather condition, number of

people, and trail difficulty (see Table 2.1). The features can be a categorical value (e.g.

weather condition) or a numerical value (e.g. the number of people). Row 1 to 7 are

labeled data points because these are the past decisions (also called ground-truth), while

row 8 to 10 are unlabeled data points as these are our future hiking events. We would

like to build a model that can support our decision making based on the past experienced

(i.e. historical data). In supervised learning, the model approximates the relationship f

between the three features X and the corresponding label y, defined as:

y = f (X)

CHAPTER 2. BACKGROUND 10

Table 2.1: Example of a supervised learning problem

No. weather condition number of people trail difficulty go hiking?

1 good 3 hard yes

2 good 1 hard no

3 bad 4 easy yes

4 good 4 easy yes

5 bad 3 hard no

6 good 3 hard yes

7 bad 3 easy no

8 good 2 easy ?

9 bad 1 hard ?

10 good 3 hard ?

One possibility for making the recommendation is to create a rule-based model to

identify the relationships between the three features and the target output. For example,

if the weather condition is good, the answer is go. However, from the past decisions, the

data shows that we should not go hiking alone in a hard trail, even the weather condition

is good (e.g. the second row). We thus need a number of rules to capture all possible

combinations. Maintaining the consistency among those rules is difficult. The supervised

learning solves this problem by identifying patterns in the data (i.e. features and labels)

through a learning algorithm to derive f . The model f can predict y as long as the fea-

tures X are available. Basically, to build a predictive model, labeled data points are used

in training and testing of the model since the ground truths (i.e. known-label data) are

required in order to measure the predictive performance. A dataset is usually separated

into two mutually exclusive sets of data: training set and test set. The training set is used

for learning (i.e. derive f). The trained model is then evaluated on the test set.

2.1.2 Classification vs regression

The supervised learning’s goal is to predict y as accurately as possible, given a set of

features X . The supervised learning problems can further be grouped into two tasks:

regression and classification tasks [38]. A problem falls into the classification task when

the output y is a categorical value (i.e. class label). In other words, the classification aims

to assign a set of features X to a predefined class based on a trained classification model.

For example, our example on deciding for hiking problem falls into the classification task

because the output has two classes: yes/no (i.e. binary classification). We can also have

CHAPTER 2. BACKGROUND 11

multi-class classification task where the output has more than 2 classes (e.g. go hiking,

do not go hiking, and postpone).

On the other hand, the regression task is when the output variable is a continuous

numerical value. For example, we can change our problem in the example from classifi-

cation to regression by changing the output from yes/no to the continuous score ranged

from 0 to 10 representing the satisfaction level for the hike where the higher score, the

more satisfaction. Most supervised learning algorithms (e.g. Decision Trees, Random

Forests, Neural Network) can be employed in both classification and regression tasks. In

the next section, we provide a brief discussion on common supervised learning algorithms

that have been used in this thesis.

2.1.3 Learning algorithms

We briefly describe the common supervised learning algorithms as follows:

Decision Tree

Decision Tree is a supervised learning algorithm that can be represented as a tree graph

model consisted of decision nodes and leaf nodes represented the target output (e.g. cat-

egory). A decision node is a rule that is derived based on a feature that can split most

data into their actual category [39]. The classification of an unknown data is achieved

by passing it through the tree starting at the top and moving down until a leaf node is

reached. The value at that leaf node gives the predicted output for the data. At each node,

the branch is selected based on the value of the corresponding feature (see Figure 2.1).

The significant benefit of decision tree classifier is that it offers an explainable model.

Thus, most of the work that focuses on interpretable models (e.g.,[40], [41]) selected this

technique. C4.5 is a well-known decision tree algorithm which can perform tree pruning

to reduce the classification error [39].

Random Forests (RF)

Random Forests (RF) is a significant improvement of the decision tree approach by gen-

erating many classification trees, each of which is built on a random resampling of the

data, with a random subset of variables at each node split. A prediction are then made

by voting from many decision trees [42]. Random Forests comprises many weak models

CHAPTER 2. BACKGROUND 12

weather condition

number of people no

yes trail difficulty

yes no

!= good= good

> 1.0

= hard!= hard

= 1.0

Figure 2.1: Example of a decision tree

(i.e. decision tree) that only learn a small portion of the data. This technique is also called

an ensemble method. Previous research, [43] ,[44] has shown that RF is one of the best

for a wide range of problems.

Gradient Boosting Machines (GBMs)

Gradient Boosting Machines (GBMs) are an ensemble method that combines multiple

weak learners in an additive manner [45], [46]. At each iteration, a weak learner is trained

to approximate the functional gradient of the loss function. A weight is then selected for

the weak learner in the ensemble. Unlike Random Forests, a weak learner can be any

function approximator (e.g. SVM and regression tree).

Support Vector Machines (SVM)

Support Vector Machines (SVMs) are successful in statistical learning theory. SVM rep-

resents data as points in space and uses a kernel (e.g. linear kernel, polynomial kernel,

radial kernel) to learn the hyperplane that can separate the data points. The learned hy-

perplane is used to predict an output of the new (unknown) point. Originally, an SVM

has been designed for binary classification (i.e. two classes) [47]. Multi-class SVM is an

extension of SVMs that aims to extend binary classifiers to support multiclass by building

binary classifiers between every pair of classes. The instance is classified to the highest

score class [47].

cS b

CHAPTER 2. BACKGROUND 13

Inputs

Input layer Hidden layer Output layer

Outputs

Figure 2.2: Artificial Neural Networks (aNN)

Naive Bayes (NB)

Naive Bayes (NB) is a probabilistic-based classifier. The NB algorithm builds a proba-

bilistic model based on the Bayes’s rule by learning the condition probabilities of each in-

put feature given a possible value taken by the output [48]. Bayes’s rule is defined as:

P(A | B) =
P(B | A)P(A)

P(B)

where P(A | B) is the probability of observing A given that B occurs, and P(B | A) is the

probability of observing B given A, and P(A) and P(B) is the individual probabilities of

A and B [49]. The model bases on the assumption that features, when the outcome is

known, are conditionally independent. Despite of this naive assumption, NB has been

found to be effective as a classifier [48], [50]. NB offers a natural way to estimate the

probability distributions. Thus, a study (e.g. [50], [51]) that aims to measure the degree

of uncertainty usually employ NB to build models.

NBTree

NBtree is a hybrid algorithm which combines Naive Bayes classifier and C4.5 Decision

Tree classifier together [52]. The decision tree consists of the root, the splitting, and the

leave node. The root node denotes the starting point of the classification. The splitting

is condition to separate data into two clusters. The leave nodes give the final results of

the classification. At the leave nodes, NBTree uses the information on the frequency of

classified instances to estimate probability using Naive Bayes.

CHAPTER 2. BACKGROUND 14

Inputs Outputs

Figure 2.3: A single node in Artificial Neural Networks

Artificial Neural Networks (aNN)

Artificial Neural Networks (aNN) [53] is a model of feedforward recognition mimicking

biological neurons and synapses. It provides nonlinear function approximation that maps

an input vector into an output. aNN consists of neurons (nodes) arranged in layers. A

node has connections between nodes from adjacent layers (see Figure 2.2). All these

connections have weights associated with them. The input nodes at the input layer provide

the data to the network. There is no computation at the input node. The information

transformation is performed at the hidden node in the hidden layer. The output node in

the output layer responses for transform information from the hidden nodes to give the

output.

A hidden node and output node receive inputs from other nodes and computes an

output. Each input has an associated weight (w). In the information transformation, the

node applies an activation function f to the weighted sum of its inputs. Figure 2.3 shows

an example of a single neuron node where the node takes inputs x1, x2, and x3 and has

weights w1, w2, and w3 associated with those inputs. Note that b is a bias that is a trainable

constant value.

The activation function f performs a mathematical operation on the weighted sum

x. Several activation functions have been proposed [54]. The following activation func-

tions are commonly used in practices.

• Sigmoid (sigma): an output is between 0 and 1.

σ(x) =
1

(1+ exp(−x))

CHAPTER 2. BACKGROUND 15

• tanh (tanh): an output is between -1 and 1.

tanh(x) = 2σ(2x)−1

• Rectified Linear Unit (ReLU): This activation function replaces negative values

with zero.

ReLU(x) = max(0,x)

In training, the total error at the output layer is calculated. The error is then prop-

agated back through the network (i.e. back propagation) [53]. All weights in the network

are adjusted to reduce the error at the output layer. aNN is widely used in pattern recog-

nition because of their flexibility as an universal function approximator and powerful

generalization. In software engineering, there has been work applying aNNs, e.g., [55]

,[56] ,[57], which yields good results.

Deep Neural Networks with Dropouts (Deep Nets)

Deep Neural Networks with Dropouts (Deep Nets) is traditional artificial neural networks

with multiple hidden layers. Recent advances include dropout [58], a simple yet powerful

technique that allows hidden units and features to be randomly removed for each data

point at each parameter update step which allows many networks are trained simultane-

ously. This creates an implicit ensemble of exponentially many networks without explicit

storing of these networks. This is highly desirable because ensemble methods have been

known to improve prediction generalizability.

2.1.4 Deep learning

Deep learning is a type of machine learning in which the term deep refers to a number of

layers in the network. Deep learning can have hundreds of layers, while traditional neural

networks contain only three layers: an input layer, one hidden layer, and an output layer

[59]. The basic deep learning architecture can be represented as a deep neural network

that combines multiple non-linear processing layers (see Figure 2.4). Deep learning ar-

chitectures can consist of an input layer, multiple hidden layers, and an output layer. The

layers are interconnected via nodes, or neurons, with each hidden layer using the output

of the previous layer as its input. The model still focuses on learning a function f to map

input X to output y. This learning process occurs through the back propagation technique

CHAPTER 2. BACKGROUND 16

...

...

...

...
Inputs

Input layer Hidden layers Output layer

Outputs

Figure 2.4: Deep neural network

where the parameters of the networks are adjusted to minimized loss on the training data

[60].

Several deep learning architectures have been proposed to handle different prob-

lems. We can broadly categorize most of them into three major classes [61]:

1. Deep networks for unsupervised learning aim to capture correlation and pattern

of data when no information about target class (i.e. label) is available. There are

several deep learning architectures that fall into this class such as restricted Boltz-

mann machine (RBM), deep belief networks (DBN), deep Boltzmann machines

(DBM), and recurrent neural networks (RNN). For example, DBN is the deep net-

works that stack multiple layers of RBM. Each RBM layer learns a feature repre-

sentation processed from previous RBM layers. The output at the final layer is the

feature representation of the data processed from multi RBM layers. In training,

since it is unsupervised learning, the model aims to minimize loss on decoding the

derived feature representation back to the original input. These deep networks are

mostly adapted in speech recognition and natural language processing where deep

and dynamic structure representation of data can be extracted [61].

2. Deep networks for supervised learning intend to provide high discriminative

power for supervised learning problems (i.e. target labels are available). The con-

volutional neural network (CNN) and the supervised learning version of RNN are

well-known supervised deep learning architectures. Note that the previous mech-

anism of RNN was classified to unsupervised learning, but it has limited success

[53]. CNN consists of convolutional layers and a pooling layers that are stacked up

to form a deep model. While the convolutional layer shares many parameters, the

pooling layer subsamples the output of the convolutional layer and reduces the data

rate from the previous convolutional layer (see Figure 2.5) [62]. CNN performs

.

CHAPTER 2. BACKGROUND 17

Input layer 1st Convolutional layers

P
o

o
lin

g
 la

y
e

rs

2nd Convolutional layers

Figure 2.5: Convolutional Neural Network (CNN)

best and is commonly used in computer vision and image recognition [63]. RNN

recently can be also used as a discriminative model (i.e. supervised learning) where

the target output (i.e. label) associates to the input data sequence (e.g. predicting a

next word in a sentence) [64]. RNN uses the internal memory cell (i.e. many train-

able parameters) to process sequences of inputs. This technique allows RNN to

learn unsegmented and connected data such as text, speech, handwriting. In our re-

search, we have adapted the well-known variation of RNN called Long Short-Term

Memory (LSTM) which we provide the discussion in the next section.

3. Hybrid deep networks combine (1) and (2) to perform a task. This deep learning

architecture makes use of the two classes of deep networks: unsupervised learning

and supervised learning. While, the former is excellent in capturing patterns and

structures from data, the latter effectively performs a discrimination task. For exam-

ple, the work in [65] improves the speech recognition and language translation by

combining the two deep networks. The first unsupervised learning networks learn

features from raw speech signal. The supervised learning networks then determine

a word string that corresponds to the speech in different languages.

2.1.5 Long Short Term Memory

Long Short-Term Memory (LSTM) [66], [67] is a special variant of RNN [64]. While a

feedforward neural network maps an input vector into an output vector, an LSTM network

uses a loop in a network that allows information to persist and it can map a sequence into

a sequence (see Figure 2.6).

Let w1, ...,wn be the input sequence (e.g. words in a sentence) and y1, ...,yn be the

sequence of corresponding labels (e.g. the next words). At time step t, an LSTM unit

CHAPTER 2. BACKGROUND 18

LSTM

wk

hk

c
LSTM

w1

h1

h1

c1
LSTM

w2

h2

h2

c2
LSTM

w3

h3

h3

c3
LSTM

w4

h4

… LSTM

wk

hk

Figure 2.6: An LSTM network

reads the input wt , the previous hidden state ht−1, and the previous memory ct−1 in order

to compute the hidden state ht . The hidden state is used to produce an output at each step

t. For example, the output of predicting the next word k in a sentence would be a vector

of probabilities across our vocabulary, i.e. so f tmax(Vkht) where Vk is a row in the output

parameter matrix Wout .

The most important element of LSTM is a short-term memory cell – a vector

that stores accumulated information over time (see Figure 2.7). The information stored

in the memory is refreshed at each time step through partially forgetting old, irrelevant

information and accepting fresh new input. An LSTM unit uses the forget gate f t to

control how much information from the memory of previous context (i.e. ct−1) should

be removed from the memory cell. The forget gate looks at the the previous output state

ht−1 and the current word wt , and outputs a number between 0 and 1. A value of 1

indicates that all the past memory is preserved, while a value of 0 means “completely

forget everything”. The next step is updating the memory with new information obtained

from the current word wt . The input gate it is used to control which new information will

be stored in the memory. Information stored in the memory cell will be used to produce

an output ht . The output gate ot looks at the current code token wt and the previous hidden

state ht−1, and determines which parts of the memory should be output.

The reading of the new input, writing of the output, and the forgetting (i.e. all

those gates) are all learnable. As an recurrent network, LSTM network shares the same

parameters across all steps since the same task is performed at each step, just with differ-

ent inputs. Thus, comparing to traditional feedforward networks, using an LSTM network

significantly reduces the total number of parameters which we need to learn. An LSTM

model is trained using many input sequences with known actual output sequences. Learn-

ing is done by minimizing the error between the actual output and the predicted output

by adjusting the model parameters. Learning involves computing the gradient of L(θ)

during the backpropagation phase, and parameters are updated using a stochastic gradient

descent. It means that parameters are updated after seeing only a small random subset of

CHAPTER 2. BACKGROUND 19

c
t

ć
t

*

tanh

*c
t-1

it

𝔀t

𝒉t-1

tanh

* ot

𝔀t

𝒉t-1

𝒉t

𝔀t 𝒉t-1

ft

𝔀t

𝒉t-1

C
t+1

Figure 2.7: The internal structure of an LSTM unit

sequences. LSTM has demonstrated ground-breaking results in many applications such

as language models [68], speech recognition [69] and video analysis [70].

2.1.6 Predictive performance measures

After training, the prediction model is evaluated on a test set. There are a number of

performance measures (e.g. Precision, Recall, and Absolute Error) for assessing the pre-

dictive performance. In this section, we briefly discuss some common predictive perfor-

mance measures used in our studies.

Classification metrics

A classification model predicts class labels for a given input data. The confusion ma-

trix is commonly used to store the correct and incorrect decisions made by a classifier.

For example, in our hiking problem, if an input is classified as “yes” when it was truly

“yes”, the classification is a true positive (tp). If the input is classified as “yes” when

actually it was “no”, then the classification is a false positive (fp). If the input is clas-

sified as “no” when it was in fact “yes”, then the classification is a false negative (fn).

Finally, if the input is classified as “no” and it was in fact “no”, then the classification is

true negative (tn). In binary classification, “yes/no” outputs are commonly referred as

positive/negative samples (i.e. positive and negative classes).

CHAPTER 2. BACKGROUND 20

The values stored in the confusion matrix are then used to compute the widely-

used Precision, Recall, and F-measure to evaluate the performance of the predictive mod-

els:

• Precision (Prec): The ratio of correctly predicted samples over all the samples pre-

dicted as positive class. It is calculated as:

pr =
t p

t p+ f p

• Recall (Re): The ratio of correctly predicted positive samples over all of the actually

positive samples. It is calculated as:

re =
t p

t p+ f n

• F-measure: Measures the weighted harmonic mean of the precision and recall. It is

calculated as:

F −measure =
2∗ pr ∗ re

pr+ re

• Area Under the ROC Curve (AUC) is used to evaluate the degree of discrimination

achieved by the model. The value of AUC is ranged from 0 to 1 and random pre-

diction has AUC of 0.5. The advantage of AUC is that it is insensitive to decision

threshold like precision and recall. The higher AUC indicates a better predictor.

Regression metrics

Since an output from a regression model is a continuous number, regression metrics aim to

measure error between predicted target values and correct target values (i.e. ground truth).

We briefly describe here some common performance measures for regression problems

as follows:

• Absolute Error (AE): The difference between the predicted value (ŷ) and the correct

value (y). It is calculated as:

AE = |ŷ− y|

CHAPTER 2. BACKGROUND 21

• Mean Absolute Error (MAE): The average of all absolute errors. MAE can reflect

the magnitude of the error. It is calculated as:

MAE =
1

N

N

∑
i=1

|ŷi − yi|

• Root Mean Squared Error (RMSE): The standard deviation of the differences be-

tween predicted values and correct values. RMSE assumes that the error follows a

normal distribution. It is calculated as:

RMSE =

√

1

N

N

∑
i=1

(ŷi − yi)
2

• Mean of Magnitude of Relative Error (MRE): The average of magnitude of the

relative error. It is calculated as:

MRE =
1

N

N

∑
i=1

|ŷi − yi|/yi

where N is the number of samples in test set, ŷi is the predicted value, and yi is the

correct value, for sample i.

2.2 Issue-driven software project management

In the previous section, we provided the background of machine learning, discussed the

common machine learning algorithms that have been used our research, and provided the

basic concepts and the well-known architectures of deep learning. In this section, we

give an overview of issue-driven project management. It includes the basic information

of an issue recorded in an issue tracking system in Section 2.2.1. In Section 2.2.2, we

then discuss the issue’s life cycle where it involves the process of issue resolution. We

also briefly discuss how the issue tracking system supports the managing of an iteration

in Section 2.2.3.

The issue-driven approach aims to promote good practices in project management.

The common recommendations in project management guidance (e.g. [71]–[74]) mostly

state that the progress of a project should be visible to all team members and they should

CHAPTER 2. BACKGROUND 22

know what tasks that they are working on and what to do next. Currently, software devel-

opment teams usually use an issue tracking system (e.g. JIRA softwarea) that can provide

a central place for team members to manage issues in which a task can be specified by an

issue. For example, a task of implementing a new feature would involve with issues in

the new feature request type. An issue tracking system records all actions performed on

an issue (e.g. team’s discussion is recorded in a form of comments). The team members

can track and review their progress on a single issue. Hence, these mechanisms increase

accountability of the projects as recommended in the guidance.

2.2.1 Characteristics of an issue

An Issue can be broadly referred to new feature request, bug report, development task, or

enhancement [75] where a type of an issue can be specified as one of the issue’s attributes.

Issues can be created by stakeholders who involve in a project (e.g. users, developers,

code reviewer, or tester). Currently, there are several software tools called issue tracking

system that support software teams in managing issues (e.g. monitoring issue’s status,

assigning issues to a developer, and assigning issues to a planned release). For example,

JIRA software and Bugzillab are an issue tracking systems from Atlassian and Mozilla,

respectively. These systems are applied in several applications, e.g., bugs/change requests

tracking, help desk/customer service, project management, task tracking, requirement

management, and workflow/process management. It can link issue reports with other

tools that support different development activities such as linking issues with commits in

GitHubc for source code version controlling, and grouping issues for a release with Bam-

bood for integration and release management. Large open source projects (e.g. Apache,

JBoss, and Moodle) have a large number of issues reported every day. For example, on

average, around 70 issue were reports created every day in the Eclipse project [76]. In

addition, a recent study [77] shows that an average of 168 new issues are reported per day

in the Mozilla’s projects.

Issues recorded in those systems mostly have the same primitive attributes to de-

scribe the characteristics of each issue. It has a unique identifier for issue referencing.

Those importantly common issue’s attributes are a project, type, summary and descrip-

tion, priority, status, assignee, fix/affect version, due date, and resolution. Note that we

ahttps://www.atlassian.com/software/jira
bhttps://www.bugzilla.org/
chttps://github.com/
dhttps://www.atlassian.com/software/bamboo

https://www.atlassian.com/software/jira
https://www.bugzilla.org/
https://github.com/
https://www.atlassian.com/software/bamboo

CHAPTER 2. BACKGROUND 23

Figure 2.8: Example of an issue in JIRA software

focus on the characteristics of a JIRA issue since our studies perform on the issues from

their platform.

The issue’s type describes a type of an issue. For example, the Bug type describes

that an issue is a problem that causes software malfunction or the Epic type is a large

user story that can be broken down into a number of user stories which can involves

in multiple iterations in the iterative software development (e.g. Agile) and versions.

The summary and description is a brief (one-line) summary and a detailed description

of an issue, respectively. The priority indicates the importance of an issue compared

to other issues (e.g. highest, high, medium, low, or lowest). The status indicates the

current state of an issue in issue’s life cycle (see Section 2.2.2). The assignee is a person

(e.g. developer) who an issue is currently assigned to. The fix/affect versions are two

attributes indicated project versions in which an issue will be fixed and project versions

in which an issue has been found. The due date is the date which an issue is planned

to be resolved. The resolution is a record of an issue’s resolution. An issue could have

been completed in many ways, for example, Done means an issue has been resolved while

Duplicate indicates that this is an issue duplicated issue and the work has been tracked

in other issues. Figure 2.8 shows an example of issue ID CWD-2387e with its attributes

recorded in the JIRA’s issue tracking system. All changes occurred on issue’s attributes

are recorded in the issue change log. A team can trace back their actions and review the

progress in resolving the issue. Figure 2.9 shows an example of issue’s change log of

issue ID CWD-2387.

ehttps://jira.atlassian.com/browse/CWD-2387

https://jira.atlassian.com/browse/CWD-2387

CHAPTER 2. BACKGROUND 24

� Crowd / CWD-2387

� Crowd doesn't have a README.txt file
Activity

All Comments Work Log History Activity

Rupert Shuttleworth [Atlassian] created issue - 04/Apr/2011 5:17 AM

& Joseph Walton made changes - 08/Apr/2013 2:00 AM

Field Original Value
Link

& Joseph Walton made changes - 02/May/2013 5: 11 AM
Story Points

& Joseph Walton made changes - 02/May/2013 5: 11 AM

Sprint

I.Joseph Walton made changes - 02/May/2013 5:12 AM
Status Open [1]

I.Joseph Walton made changes - 02/May/2013 5:12 AM
Status In Progress (3]

New Value
This issue relates to CWD J24!i [CWD J24!i]

0.5

Sprint 21 [493]

In Progress [3]

Technical Review (10028]

Figure 2.9: Example of an issue’s change log

2.2.2 Lifecycle of an issue

An issue lifecycle describes the process of issue resolution. When an issue has been cre-

ated, it must be passed through the process of triaging corresponding to the defined issue

lifecycle (e.g. workflow), for example, identifying the priority, identifying the related

projects or components, and assigning an issue to developers [78], [79]. This workflow

can be varied from projects to projects. Typically, workflows represent software devel-

opment process within an organization and a team project. The issue lifecycle is a set of

states and transitions (i.e. the state attribute) that an issue goes through during the issue

resolution process. Different issue types can have different issue lifecycles.

For example, Figure 2.10 shows the issue lifecycle from the Moodlef project (E-

learning platform). They collect the issues in their JIRA software repositoryg. There are

ten possible states of issues (e.g. Open/Reopened, Development in progress, or Waiting

for review) involved different roles in project teams (e.g. Developers, Integration review-

ers, and Testers). When a new issue has been created, the developer team performs the

issue triaging process that involves the new issue investigation to confirm whether the

fhttps://moodle.com/
ghttps://tracker.moodle.org/

https://moodle.com/
https://tracker.moodle.org/

CHAPTER 2. BACKGROUND 25

issue report is correctly recorded. All the important issue’s attributes are then identified.

The issue’s state is set to Development in progress when the assigned developer starts

working on the issue. After the assigned developer finishes his/her work (e.g. coding),

the issue is then passed to the integration reviewers for the code-level review. The state of

the issue is then changed to Waiting for review and Review in progress when the reviewer

starts the reviewing process. If the new code (e.g. bug fixing, new function) pass the re-

view, the code is then integrated into their version control system (GitHub repository) for

further testing. The issue’s state is changed to Testing in progress when the tester starts

the testing process. In testing, if the testers find problems, the integrated code must be

removed from the repository, and the issue is pushed back to the developer for further

work. The final state is Closed which represents that the issue has been resolved. How

the issue is closed is then specified in the Resolution attribute (e.g. fixed, duplicated, and

can not replicate).

2.2.3 Characteristics of an iteration

Incremental and iterative development are essential parts of many popular software devel-

opment methodologies such as (Rational) Unified Process, Extreme Programming, Scrum

and other agile software development methods [3] where software products are developed

in sequences of fixed-length iterations. Typically, it is one or two-week length. This pro-

cess helps teams respond to the unpredictable changes of developing software through

incremental and iterative work. Figure 2.11 shows an overview of Scrum Agile methodol-

ogy. Scrum is one of the Agile software development frameworks. In Scrum, an iteration

is called sprint. In each sprint, a team works on the highest priority user stories selected

from the product backlog which is a prioritized list of requirements.

Several issue tracking systems also support the iterative development (e.g., Scrum

and Kanban). These tools allow teams to manage issues following the practices of Agile

development. The prioritized issues can be considered as the product backlog. The team

can then create sprints from the list of prioritized issues (e.g. backlog). Figure 2.12

shows an example of Sprint 4h in JIRA Scrum dashboard of the Source Tree project

recorded in the JIRA software. The sprint 4 consists of 8 issues which are separated into

3 states: To Do, In Progress, and Done, following the practices in the progress monitoring

of Scrum. These three states correspond to the states of an issue in its life cycle. The

issues in To Do are those that their state is opened. When the state of issues are changed

to Development in progress, those issues are moved from To Do to In Progress in the

hhttps://jira.atlassian.com/secure/RapidBoard.jspa?rapidView=1301

https://jira.atlassian.com/secure/RapidBoard.jspa?rapidView=1301

CHAPTER 2. BACKGROUND 26

Figure 2.10: Example of an issue workflow. This figure is adopted from https://

docs.moodle.org/dev/Process

Developers

(Continous)

Component leads

(Continuous)

Integration reviewers

(Monday and Tuesday)

Testers

(Wednesday)

Production maintainers

(Thursday)

equest peer revie

Restart review

Emergency revert

Start review Stop review

Fail review

Fixed

Duplicate
Won't fix
Not a bug

Incomplete
Cannot reproduce

https://docs.moodle.org/dev/Process
https://docs.moodle.org/dev/Process

CHAPTER 2. BACKGROUND 27

2 weeks

Sprint

Incremental software

release
IterationSprint backlogProduct backlog

(Features)

Daily

meeting

Figure 2.11: The Scrum Agile methodology

� Jira Dashboards Projects Issues More Create Secirch 0. � CT).... .!.

SourceTree Scrum

Sprint 4
To Do

a SRCTREEDEV-123
.J, the Analytics feed can give

times in the future.

t+iffiitJitd
Windows 2

a SRCTREEDEV-124
.J, the Analytics feed can give

times in the future.

t+iffiitJii4i
Mac •

a SRCTREE-3048
� Trying to create a new

remote repo will cause
Sourcetree to get stuck

Atlassian Account

General •

© 0 days remaining)'Tiplete Spnrt Board..,.]

In Progress

0 SRCTREEDEV-216
� Provide support for

Bitbucket cloud projects

Bitbucket Cloud Projects

Mac

Done

r D
�

4

m
�

m
�

m
�

SRCTREE:OE:V 212
Migrate Heartbeat/MAU
feed to GAS

t+MNill
Windows

SRCTREE9EV 198
Create native GAS REST
API client

t+MNii4i
Windows

SRCTREE9EV 2Q2
Refactor and abstract out
s3 Analytics pipeline code

t+MNh4i
Windows

SRCTREE9EV 199
Existing delimited local
Analytics files need to be
read and converted to

'4MNh4i
Windows

2

2

2

Figure 2.12: Example of a sprint in JIRA software

CHAPTER 2. BACKGROUND 28

dashboard. The Done state thus contains the issues having closed as issue’s state. At the

end of the sprint, the report recorded the completed, in-completed, and removed issues

is generated. The Scrum team can thus keep track their productivity from past sprints to

maintain the consistency of their delivery capability.

2.3 Software engineering analytics

In this section, we present a broad background on software engineering analytics and its

applications related to several software engineering tasks. Note that for the work that is

directly relevant to our research questions, we discuss them in the related work section in

each chapter.

Software engineering has been known as the systematic methods of the activities

for the development of software [29]. Typically, the activities involved in software devel-

opment can be divided into several sub-disciplines, e.g., requirement elicitation, software

design, software construction, and software maintenance. Software engineering also in-

cludes software project management which aims to assure that the development and main-

tenance of software are systematic, disciplined, and quantified. The technical-related ac-

tivities (e.g. coding, testing) focus on developing quality software products, while the

project management activities (e.g. planning, monitoring) focuses on controlling of a

project direction [80].

Nowadays, software engineering becomes data-rich activities [81]. A huge amount

and many types of software development data from real-world settings are publicly avail-

able. For example, more than 800,000 bug reports have been recorded in the Mozilla

Firefox’s bug repository, 324,000 projects have been hosted by Soruceforge.net, and more

than 11.2 million projects have been hosted by GitHub [81]. The PROMISE repository

[82] has provided the effort estimation data from over 100 projects. Those open source

projects provide not only the technical-related data (e.g. source code and bug report), but

also provide non technical-related data. For example, the Moodlei project has published

their current software release plan and the reports of previous releases that include 25

major releases and over 50 minor releases.

The well-known definition of software engineering analytics was defined in 2012

by R. Buse and T. Zimmermann as “applying analytic approaches on software data for

managers and software engineers with the aim of empowering software development in-

ihttps://moodle.com/

https://moodle.com/

CHAPTER 2. BACKGROUND 29

dividuals and teams to gain and share insight from their data to make better decisions ”

[83]. This approach leverages historical data generated from software engineering activ-

ities by applying techniques in statistics, data mining, pattern recognition, and machine

learning which also called data-driven software engineering [81], [84]–[88]. The goal is

to support software practitioners (e.g. project managers, risk mitigation planners, team

leaders, and developers) in extracting important, insightful, and actionable information

for completing various tasks in software engineering [83].

Machine learning techniques have been adapted in many aspects (e.g. building

a predictive model) to improve performance and increase the productivity of software

practitioners. The applying of machine learning involves the formulation of a problem

to make it conforms with machine learning algorithms [31]. For example, Darwish et al.

[89] have formulated the problem of selecting requirement elicitation techniques into a

supervised learning problem. They have employed Artificial Neural Network (aNN) to

build a recommendation model that can recommend suitable elicitation techniques. The

model learns from the past selections and a set of features representing past requirement

elicitation scenarios (e.g. elicitor, number of users, project complexity). To give a rec-

ommendation, the model recommends a set of techniques from 14 elicitation techniques

(e.g. interviews, questionnaires, observation) based on the current requirement elicitation

scenario. Grieco et al. [90] have also formulated the security problem as the supervised

learning problem. The model learns from past vulnerability (e.g. exploitable) and features

extracted from source code. The developer can input their new source code to the model

to predict the vulnerability.

2.3.1 Applications of software engineering analytics

Software engineering analytics covers a broad spectrum of software development pro-

cess. In this section, we discuss the applications of this approach. We however note that

this does not intend to be a comprehensive list of existing work in software engineering

analytics, since it involves with different areas related to software development (e.g. min-

ing software repositories, software process management, and software recommendation

system). We thus emphasize on providing a wide range of its applications.

Predicting and Identifying Bugs

Identifying bugs from a million lines of source code remains a challenge for most soft-

ware projects. Applying data analytics to predict and identify bugs can increase devel-

CHAPTER 2. BACKGROUND 30

oper’s productivity. These techniques help developers and testers focus on those risky

code. Lam et al. [15] recently proposed an automated bug localization approach using

the combination between deep learning and information retrieval (e.g. measuring textual

similarity) techniques. Their model overcomes the problem lexical mismatch between the

same texts in bug reports and technical terms in source code. Bug prediction or bug local-

ization approaches mostly aim for leveraging data from bug tracking systems and source

code version control systems (e.g. [13], [14], [17], [19], [91], [92]). Generally, those

approaches consider the relationships between words appeared in bug reports and code

tokens appeared in source code. Dam et al. [93] presented a deep tree-based model that

can take the Abstract Syntax Tree (AST) representation of source code into account. By

taking AST as an input, the model learns not only the code syntax but also the different

levels of semantics in source code.

Estimating effort

Effort estimation is the process related to estimating the effort necessary to complete a

software task or a whole software project (e.g. the total hours of a developer to complete

a task) [94]. High accurate effort estimation is one of the key success factors for software

project [24], [27]–[29], [72], [94]. Several data analytic techniques have been adopted

to build effort estimation models, for example, Kanmani et al. [95] employed Neural

Network to build an estimation model for Object-Oriented systems using Class point data,

while Kanmani [96] employed Fuzzy logic on the same data. Panda et al. [97] also used

Neural Network applied on Agile development data (e.g. total number of story points,

velocity of projects) to predict effort at the project level. Sentas et al. [98], [99] proposed

regression-based methods for the confidence interval estimation. Kocaguneli et al. [8]

explored the benefits of ensemble effort estimation techniques applied on process data to

predict overall project effort.

In the community of software effort estimation research, a number of publicly

available datasets (e.g. China, Desharnais, Finnish, Maxwell, and Miyazaki datasets in

the PROMISE repository [82]) have become valuable assets for many research projects in

software effort estimation in the recent years. Those datasets are suitable for estimating ef-

fort at the project level (i.e. estimating effort for developing a complete software system).

For example, the recent work from Sarro et al. [7] applied multi-objective evolution-

ary approaches to five real-world datasets from the PROMISE repository namely China,

Desharnais, Finnish, Miyazaki, and Maxwell involving 724 different software projects

in total.

CHAPTER 2. BACKGROUND 31

Managing risks

Software risk management consists two main tasks: risk assessment and risk control

[100]. Risk assessment focuses on identifying and prioritizing risks, while risk control

involves risk resolution planning and monitoring. The central of risk management is a

capability to forecast those uncertainty situations whether it will take place [100]. Nu-

merous data analytics approaches have been proposed to promote risk management tasks.

Pika et al. [101] presented the event log data analysis approach for process delay pre-

diction. They apply statistical techniques (e.g. identifying outliers) on the historical log

to make the prediction. Neumann [56] proposed a risk analysis model using Neural Net-

work. The model aims to support the risk prioritization (e.g. high impact or low impact)

by analyzing the correlation between software metrics (e.g. McCabe’s measurement) and

source code (e.g. number of characters, number of comments, and lines of code). Xu et

al. [10] applied genetic algorithm and decision tree to identify the best set of features for

identifying risks of software projects. Chang [102] mined software repositories to acquire

risks form past software projects. They collected the data at each milestone review, for

example, review date, number of uncompleted tasks, number of requirement changes, and

identified risks. They then employed association rule mining techniques to identify the

processes that affect cost and schedule of projects.

Supporting bug triaging

In bug triaging process, making a correct assignment of all bug’s attributes is non-trivial

(e.g. components, priority, and severity). To support the process of bug triaging, a num-

ber of recommendation systems using data analytics has been proposed. For example,

Kochhar et al. [103] proposed an automated bug classification techniques based on a sim-

ilarity between bug’s attributes. The work in [104]–[106] also proposes the techniques to

classify bugs into software components based on the information from bug’s descriptions

and its related source code. In addition, textual description of the bugs has been leveraged

for severity/priority predicting (e.g. [22], [23], [79], [107], [108]). Assigning a bug to

a suitable developer who can fix it is also important in bug triaging. Xuan et al. [109],

Robbes et al. [110], Anvik et al. [78], and Xia et al. [92] leveraged the historical data in

bug tracking systems, especially, the past developer assignments to recommend a devel-

oper who has a potential to fix a new bug. A fixed bug can be reopened if it does not fixed

properly. Providing sufficient and correct information can prevent the bug from reopening

[111]. However, there are many reasons that cause reopened bugs (e.g. a bug fixed in the

CHAPTER 2. BACKGROUND 32

previous version can re-appears in the current version). The work in [111]–[113] lever-

ages the data from bug reports (e.g. textual description and comment) to predict whether

a bug will be reopened.

Program comprehension

Program comprehension focuses on studying the process involving in software mainte-

nance. It aims to support software practitioners (e.g. developer) in understanding of

existing software systems [114]. Software engineering analytics has been used to sup-

port team members in understanding software systems. Software systems are usually

described by a number of documents (e.g. software design document). However, the

documents for large software systems are often out of date and do not conform to the ac-

tual implemented systems [115]. It is a challenge for a new member to understand large

software systems.

A recent study [116] presents an approach to leverage historical data in project

repositories such as emails and bug reports to help in understanding software systems.

The approach aims to identify relationships among data recorded in different repositories.

For example, a developer can see the related discussions on the code being viewed in the

code editor. Hassan et al. [117] mined the historical changes recorded in source con-

trol systems to build the static dependency graph of a software system. The constructed

dependency graph can assist developers in understanding the architecture of large soft-

ware systems.

Understanding development teams

Large software development teams usually communicate through different channels e.g.

e-mails, social networks, and instant messaging. The discussions recoded in those systems

are valuable data since those cover many important informations (e.g. code review, project

plan, and project policy) [115]. To make use of those data, Bird et al. [118] proposed a

statistical analysis approach to improve the communication and coordination among team

members. Their approach mines the correlation among team members from the email

data to construct social networks representing team’s communication patterns. Rigby et

al. [119] applied the sentiment analysis technique on the mailing list discussions to study

the attitude changing of a development team before and after software release.

CHAPTER 2. BACKGROUND 33

Other applications

There are many threads of research applying data analytics to support different aspects

involved in software projects. For example, in the requirement gathering, Harman et

al. [120] and Mojica et al. [121] proposes techniques to extract new requirements from

user’s reviews recorded the App store. In software production line management, Sayyad

et al. [122] and Palma et al. [123] make use of the software configuration data from

past software versions to recommend a suitable configuration for the next version. Hindle

[124] analyzes operating system logs to predict power consumption of a software.

2.4 Chapter summary

In this chapter, we have given an overview of machine learning by briefly describing its

concepts, discussing the difference between supervised and unsupervised learning and the

difference between classification and regression. We have also explained the well-known

machine learning algorithms that have been used in our research: Decision Tree (C4.5),

Random Forests (RF), Gradient Boosting Machines (GBMs), Support Vector Machines

(SVM), Naive Bayes (NB), NBTree, Artificial Neural Networks (aNN), Deep Neural Net-

works with Dropouts (Deep Nets). We have also given a background of deep learning

including the description of three architecture types: deep networks for unsupervised and

supervised learning and hybrid deep networks. We have then focused on Long Short-

Term Memory (LSTM). The second part of this chapter provided a brief description of

issue-driven project management which includes the description of an issue, its lifecycle,

and an iteration. The final part of the chapter started with the introduction of software en-

gineering analytics. We have also discussed how machine learning techniques have been

adopted in software analytics. Finally, we have discussed the number of applications of

software analytics in software engineering. In the next chapter, we begin describing our

work starting with the delivery capability prediction.

Chapter 3

Delivery capability prediction

MODERN software development is mostly based on an incremental and iterative ap-

proach in which software is developed through repeated cycles (iterative) and in

smaller parts at a time (incremental), allowing software developers to benefit from what

was learned during development of earlier portions or versions of the software. Incremen-

tal and iterative development are essential parts of many popular software development

methodologies such as (Rational) Unified Process, Extreme Programming, Scrum and

other agile software development methods [3]. This is achieved by moving from a model

where all software packages are delivered together (in a single delivery) to a model in-

volving a series of incremental deliveries, and working in small iterations. Uncertainties,

however, exist in software projects due to their inherent dynamic nature (e.g. constant

changes to software requirements) regardless of which development process is employed.

Therefore, an effective planning, progress monitoring, and predicting are still critical for

iterative software development, especially given the need for rapid delivery [125]. Our

focus here is on predicting the delivery capability of a single iteration at a time, rather

than the whole software lifecyle as in traditional waterfall-like software development pro-

cesses.

Existing work on building prediction models to support software development

mostly focuses on the prediction at a whole software project, not a single iteration at a

time (e.g. [5]–[8]), while providing with insightful and actionable information at the level

of iterations would be valuable for project managers and decision makers. Our work in

this chapter aims to fill this gap. We focus on predicting delivery capability as to whether

the target amount of work will be delivered at the end of an iteration. Our proposal, with

its ability to learn from prior iterations to predict the performance of future iterations,

represents an important advance in our ability to effectively use the incremental model of

34

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 35

software development. To do so, we have developed a dataset of 3,834 iterations in five

large open source projects, namely Apache, JBoss, JIRA, MongoDB, and Spring. Each

iteration requires the completion of a number of work items (commonly referred to as

issues), thus 56,687 issues were collected from those iterations.

To build a feature vector representing an iteration, we extracted fifteen attributes

associated with an iteration (e.g. its duration, the number of participants, etc.). In addition,

an iteration is also characterized by its issues, thus we also extracted twelve attributes

associated with an issue (e.g. type, priority, number of comments, etc.) and a graph

describing the dependency between these issues (e.g. one issue blocks another issue).

The complexity descriptors of the dependency graph (e.g. number of nodes, edges, fan

in and fan out) form a group of features for an iteration. The attributes of the set of

issues in an iteration are also combined, using either statistic aggregation or bag-of-words

method, to form another group of features for an iteration. Statistical aggregation looks

for simple set statistics for each issue attribute such as max, mean or standard deviation

(e.g. the maximum number of comments in all issues in a iteration). On the other hand,

the bag-of-words technique clusters all the issues in a given project, then finds the closest

prototype (known as “word”) for each issue in an iteration to build a feature vector. The

bag-of-words method therefore obviates the need for manual feature engineering. Our

novel approach of employing multiple layers of features and automatic feature learning is

similar to the notion of increasingly popular deep learning methods.

Those features allow us to develop accurate models that can predict delivery capa-

bility of an iteration (i.e. how much work was actually completed in an iteration against

the target). Our predictive models are built based on three different state-of-the-art ran-

domized ensemble methods: Random Forests, Stochastic Gradient Boosting Machines,

and Deep Neural Networks with Dropouts. An extensive evaluation was performed across

five projects (with over three-thousand iterations), and our evaluation results demonstrate

that our approach outperforms three common baselines and performs well across all case

studies.

The remainder of this chapter is organized as follows. Section 3.1 presents an

overview of our approach. Section 3.2 presents a comprehensive set of features and de-

scribes how these features are aggregated. Section 3.3 presents the predictive models we

have developed. We explain how we collect the data for our empirical study in Section

3.4. Section 3.5 reports on the experimental evaluation of our approach. Related work is

discussed in Section 3.6 before we summarize the chapter in Section 3.7.

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 36

3.1 Approach

In iterative, agile software development, a project has a number of iterations (which are

referred to as sprints in Scrum [126]). An iteration is usually a short (usually 2–4 weeks)

period in which the development team designs, implements, tests and delivers a distinct

product increment, e.g. a working milestone version or a working release. Each iteration

requires the resolution/completion of a number of issues. For example, iteration Mesos-

sphere Sprint 35a in the Apache project (see Figure 3.1) requires the completion of four

issues: MESOS-5401, MESOS-5453, MESOS-5445, and MESOS-2043. At the beginning

of the iteration (i.e. May 14, 2016), all of these issues were placed in the Todo list (or

also referred to as the iteration or sprint backlog). The iteration was scheduled to finish

on May 30, 2016.

Figure 3.1: An example of an iteration (at the beginning)

Planning is done before an iteration starts and focuses on determining its starting

time, completion time and the issues to be resolved in this iteration. Agile approaches

recommend that an iteration be time-boxed (i.e. have a fixed duration) [125]. During an

iteration, issues can be added and removed from the iteration. At the end of an iteration, a

ahttps://issues.apache.org/jira/secure/RapidBoard.jspa?rapidView=62&view=

reporting&chart=sprintRetrospective&sprint=236

https://issues.apache.org/jira/secure/RapidBoard.jspa?rapidView=62&view=reporting&chart=sprintRetrospective&sprint=236
https://issues.apache.org/jira/secure/RapidBoard.jspa?rapidView=62&view=reporting&chart=sprintRetrospective&sprint=236

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 37

Figure 3.2: An example of a closed iteration report

number of issues are completed and there may also be a number of issues assigned to the

iteration that remain incomplete/unresolved. These incomplete/unresolved issues may be

assigned to future iterations.

Let tpred refer to the time at which a prediction is being made (e.g. the third day

of a 17-day iteration). Given time tpred during an iteration, we would like to predict

the amount of work delivered at the end of an iteration (i.e. the number of issues

resolved), relative to the amount of work which the team has originally committed

to. More specifically, let Committed be the set of issues that the team commits to achieve

in the current iteration before time tpred . Let Delivered be the set of issues actually

delivered at the end of the iteration, and NonDelivered be the set of issues that the team

committed to delivering but failed to deliver in this iteration. Note that NonDelivered

includes issues from the Committed set but are removed from the iteration after prediction

time tpred and/or issues that are not completed when the iteration ends.

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 38

We illustrate and motivate this using the example in Figure 3.1. At the beginning,

a team planned to deliver 4 issues which are MESOS-5401, MESOS-5453, MESOS-5445,

and MESOS-2043 from iteration Mesossphere Sprint 35 which is a 17–day iteration. As-

sume that, on the second day, the team added 2 new issues to the iteration: MESOS-2201

and MESOS-3443. Let assume that three days after the iteration started we would like

to make a prediction; i.e. tpred at day 3. The number of issues in Committed is then

6 issues (MESOS-5401, MESOS-5453, MESOS-5445, MESOS-2043, MESOS-2201, and

MESOS-3443) at the time tpred when the prediction is made. After the third day, issue

MESOS-2043 has been removed from the iteration, and at the end of the iteration, a team

completed only 3 issues which are MESOS-2201, MESOS-3443, and MESOS-5453, while

the remaining issues (MESOS-5401 and MESOS-5445) were not resolved. Thus, the is-

sues in Delivered are MESOS-2201, MESOS-3443, and MESOS-5453 and the issues

in NonDelivered are MESOS-5401 and MESOS-5445 which were not completed and

MESOS-2043 which was removed from the iteration (see Figure 3.2). We note that an

issue’s status (e.g. resolved or accepted) also corresponds to the associated iteration’s

report, e.g. MESOS-2201 was resolved and was placed in the completed list while issue

MESOS-5445 was in the reviewing process.

Predicting which issues would belong to the Delivered sets is difficult, and in

some cases is impossible, e.g. some new issues in the Delivered set could be added after

prediction time tpred . Hence, we propose to quantify the amount of work done in an

iteration and use this as the basis for our prediction. This approach reflects common

practice in agile software development. For example, several agile methods (e.g. Scrum)

suggest the use of story points to represent the effort, complexity, uncertainty, and risks

involving resolving an issue [125]. Specifically, a story point is assigned to each issue in

an iteration. The amount of work done in an iteration is then represented as a velocity,

which is the total story points completed in the iteration. Velocity reflects how much work

a team gets done in an iteration.

Definition 1 (Velocity) Velocity of a set of issues I is the sum story points of all the issues

in I:

velocity(I) = ∑
i∈I

sp(i)

where sp(i) is the story point assigned to issue i.

For example, as can be seen from Figure 3.2, there are six issues that were com-

mitted to be delivered from iteration Mesossphere Sprint 35 in the Apache project at the

prediction time tpred (e.g. issue MESOS-2201 has 3 story points). Thus, the committed

velocity is 19, i.e. velocity(Committed) = 19. However, there are only three issues had

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 39

been resolved in iteration Mesossphere Sprint 35. Thus, the velocity delivered from this

iteration is 7, i.e. velocity(Delivered) = 7 (two issues have the story points of 2 and one

of them has the story point of 3).

We thus would like to predict the delivery capability in an iteration. Our approach

is able to predict, given the current state of the project at time tpred , what is the difference

between the actual delivered velocity against the committed (target) velocity, defined as

velocity(Difference):

velocity(Difference) = velocity(Delivered)− velocity(Committed)

For example, the difference between the actual delivered velocity against the committed

velocity of iteration Mesossphere Sprint 35 was -12, i.e. velocity(Difference) = −12,

because velocity(Delivered) was 7 and velocity(Committed) at tpred was 19. This itera-

tion delivered below the target, i.e. velocity(Committed)> velocity (Delivered). Note

that velocity(Difference) = 0 does not necessarily imply that an iteration has delivered

on all its commitments (in terms of the specific issues that were to be resolved) but instead

it assesses the quantum of work performed.

Archive of

past iterations

and issues

Learning phase Execution phase

Issues + DAG

Past iterations Extracting

features of iterations

Extracting

features of issues

Extracting

features of DAGs

Feature aggregation
Building

Classifiers

Trained

classifiers

Ongoing iterations
Extracting

features of iterations,

issues, and DAG

Predicted

Velocity

Figure 3.3: An overview of our approach

Our approach consists of two phases: the learning phase and the execution phase

(see Figure 3.3). The learning phase involves using historical iterations to build a predic-

tive model (using machine learning techniques), which is then used to predict outcomes,

i.e. velocity(Difference), of new and ongoing iterations in the execution phase. To

apply machine learning techniques, we need to engineer features for the iteration. An

iteration has a number of attributes (e.g. its duration, the participants, etc.) and a set of

issues whose dependencies are described as a dependency graph. Each issue has its own

attributes and derived features (e.g. from its textual description). Our approach separates

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 40

the iteration-level features into three components: (i) iteration attributes, (ii) complexity

descriptors of the dependency graph (e.g. the number of nodes, edges, fan-in, fan-out,

etc.), and (iii) aggregated features from the set of issues that belong to the iteration. A

more sophisticated approach would involve embedding all available information into an

Euclidean space, but we leave this for future work.

Formally, issue-level features are vectors located in the same Euclidean space (i.e.

the issue space). The aggregation is then a map of a set points in the issue space onto a

point in the iteration space. The main challenge here is to handle sets which are unordered

and variable in size (e.g. the number of issues is different from iteration to iteration).

We propose two methods: statistical aggregation and bag-of-words (BoW). Statistical

aggregation looks for simple set statistics for each dimension of the points in the set, such

as maximum, mean or standard deviation. For example, the minimum, maximum, mean,

and standard deviation of the number of comments of all issues in an iteration are part of

the new features derived for the iteration. This statistical aggregation technique relies on

manual feature engineering. On the other hand, the bag-of-words method automatically

clusters all the points in the issue-space and finds the closest prototype (known as “word”)

for each new point to form a new set of features (known as bag-of-words, similarly to a

typical representation of a document) representing an iteration. This technique provides a

powerful, automatic way of learning features for an iteration from the set of issues in the

layer below it (similar to the notions of deep learning).

For prediction models, we employ three state-of-the-art randomized ensemble

methods: Random Forests, Stochastic Gradient Boosting Machines, and Deep Neural

Networks (DNNs) with Dropouts to build the predictive models. Our approach is able

to make a prediction regarding the delivery capability in an iteration (i.e. the difference

between the actual delivered velocity against the committed/target velocity). Next we

describe our approach in more detail.

3.2 Feature extraction and aggregation

In this section, we describe our feature extraction from iteration and issue reports. Since

an iteration has a set of issues to be resolved, we extract not only features of an iteration,

but also features of an issue and the issue graph (i.e. dependency of issues) in an itera-

tion. Most modern issue tracking systems (e.g. JIRA-Agileb) support an iterative, agile

development which enables teams to use agile practices for their development to plan,

bhttps://www.atlassian.com/software/jira/agile

https://www.atlassian.com/software/jira/agile

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 41

Figure 3.4: An example of an on-going iteration report

collaborate, monitor and organize iterations and issues. Dependencies between issues are

also explicitly recorded (i.e. issue links) in the issues reports which both iterative and

issue reports can be easily extracted from there. We then employ a number of distinct

techniques (feature aggregation using statistics, Bag-of-Words, and graph measures) to

characterize an iteration using both features of an iteration and features of a number of

issues associated to an iteration. These details will be discussed in this section.

3.2.1 Features of an iteration

Table 3.1 summarizes a range of features that are used to characterize an iteration in our

study. The features cover three important areas of an iteration: the elapsed time (e.g.

the planned duration), the amount of work, and the team. Prediction time (i.e. tpred)

is used as a reference point to compute a number of features reflecting the amount of

work. These include the set of issues assigned to an iteration when it begins (i.e. start

time), and the set of issues added or removed from the iteration between the start time

and prediction time. In addition, we also leverage a number of features reflecting the

current progress of the team up until prediction time: the set of issues which have been

completed, the set of work-in-progress issues (i.e. issues that have been acted upon but

not yet completed), and the set of issues on which the team has not started working yet

(i.e. to-do issues). Agile practices also suggest using this approach for monitoring the

progress of an iteration [126].

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 42

Table 3.1: Features of an iteration

Feature Description

Iteration duration The number of days from the start date to planned comple-

tion date

No. of issues at start time The number of issues assigned to an iteration at the begin-

ning

Velocity at start time The sum of story points of issues assigned to an iteration at

the beginning

No. of issues added The number of issues added during an iteration (between

start time and prediction time)

Added velocity The sum of story points of issues added during an iteration

(between start time and prediction time)

No. of issues removed The number of issues removed during an iteration (between

start time and prediction time)

Removed velocity The sum of story points of issues removed during an iteration

(between start time and prediction time)

No. of to-do issues The number of to-do issues in an iteration by prediction time

To-do velocity The sum of story points of to-do issues by prediction time

No. of in-progress issues The number of in-progress issues in an iteration by predic-

tion time

In-progress velocity The sum of story points of in-progress issues by prediction

time

No. of done issues The number of done issues in an iteration by prediction time

Done velocity The sum of story points of done issues by prediction time

Scrum master The number of Scrum masters

Scrum team members The number of team members working on an iteration

Definition 2 (Prediction time) A prediction time refers to the time that a prediction is

made. We use it as a reference point when extracting the values of the features. A predic-

tion time can be any time from the start time to finish time of data points (i.e. iteration

or issue). The value of the features of each iteration and each issue in a dataset must be

extracted at the same prediction time.

Figure 3.4 shows an example of an on-going iteration report (recorded in JIRA-

Agile) of Mesosphere Sprint 34c in the Apache project. This iteration started from April

27, 2016 to May 11, 2016. This iteration has two issues in the Todo state (MESOS-5272

and MESOS-5222), three issues in the In-progress state – those are all in the reviewing

process (MESOS-3739, MESOS-4781, and MESOS-4938), and one issue has been re-

solved (MESOS-5312). These issues have story points assigned to them. For each of

those sets of issues, we compute the set cardinality and velocity, and use each of them

chttps://issues.apache.org/jira/secure/RapidBoard.jspa?rapidView=62

https://issues.apache.org/jira/secure/RapidBoard.jspa?rapidView=62

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 43

as a feature. From our investigation, among the under-achieved iterations across all case

studies, i.e. velocity(Difference) < 0, 30% of them have new issues added after pass-

ing 80% of their planned duration (e.g. after 8th day of a ten-day iterations), while those

iterations deliver zero-issue. Specifically, teams added more velocity(Committed) while

velocity(Delivered) was still zero. This reflects that adding and removing issues af-

fects the deliverable capability of an on-going iteration. This can be a good indicator to

determine the outcome of an iteration.

These features were extracted by examining the list of complete/incomplete issues

of an iteration and the change log of an issue, e.g. which iteration an issue was added

or removed on which date, and its status (e.g. an issue is in the set of work-in-progress

issues or in the set of to-do issues) at prediction time. Figure 3.5 shows an example of

an iteration report for the iteration named Twitter Aurora Q2’ 15 Sprint 3 in the Apache

project. The report provides a list of completed issues (e.g. AURORA-274) and uncom-

pleted issues (e.g. AURORA-698), a list of added and removed issues during an itera-

tion (e.g. AURORA-1267), and iteration details (e.g. state, start date, and planned end

date). We can also identify when those issues were added or removed from the iteration

by examining their change logs. Figure 3.6 shows an example of a change log of issue

AURORA-1267 which records that this issue has been added to Twitter Aurora Q2’ 15

Sprint 3 on May 16, 2015 while this iteration was started one day earlier (i.e. May 15,

2015).

There are a number of features reflecting the team involved in an iteration. These

include the number of team leads (e.g. Scrum masters) and the size of the team. Note

that the team structure information is not explicitly recorded in most issue tracking sys-

tems. We thus conjecture that the number of team members is the number of developers

assigned to issues in an iteration. The number of Scrum masters is the number of autho-

rized developers who can manage issues (e.g. add, remove) in an iteration. Future work

could look at other characteristics of a team including the expertise and reputation of each

team member and the team structure.

3.2.2 Features of an issue

The issues assigned to an iteration also play an important part in characterizing the itera-

tion. Figure 3.7 shows an example of an issue report of issue AURORA-716 in the Apache

project which the details of an issue are provided such as type, priority, description, and

comments including a story points and an assigned iteration. Hence, we also extract a

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 44

{"contents":{

"completedIssues":[

{"id": 12702203,

"key": "AURORA-274"},

{"id": 12724064,

"key": "AURORA-556"},

{"id": 12769421,

"key": "AURORA-1047"},...],

"incompletedIssues":[

{"id": 12740639,

"key": "AURORA-698"},...],

"puntedIssues": [], ...

"issueKeysAddedDuringSprint": {

"AURORA-1267": true,

"AURORA-1321": true,...}},

"sprint": {

"id": 127,

"sequence": 127,

"name": "Twitter Aurora Q2’15 Sprint 3",

"state": "CLOSED",

"startDate": "12/May/15 6:59 AM",

"endDate": "26/May/15 4:00 AM",...}}

Figure 3.5: Example of an iteration report in JSON format of the iteration named “Twit-

ter Aurora Q2’15 Sprint 3” in the Apache project

broad range of features representing an issue (see Table 3.2). The features cover different

aspects of an issue including primitive attributes of an issue, issue dependency, changing

of issue attributes, and textual features of an issue’s description. Some of the features of an

issue (e.g. number of issue links) were also adopted from our previous work [127].

It is important to note that we used the time when a prediction is made (predic-

tion time tpred) as the reference point when extracting the values of all the features. By

processing an issue’s change log during both training and testing phases we collected the

value which a feature had just before the prediction time. For example, if the final num-

ber of comments on an issue is 10, and there were no comments at the time when the

prediction was made, then the value of this feature is 0. The underlying principle here is

that: when making a prediction, we try to use only information available just before the

prediction time. The purpose of doing this is to prevent using “future” data when mak-

ing a prediction – a phenomenon commonly referred in machine learning as information

leakage [128].

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 45

{"key": "AURORA-1267",

"changelog": { "histories": [...

{"id": "14758778",

"created": "2015-05-16T00:31:55.018+0000",

"items": [{

"field": "Sprint",

"fieldtype": "custom",

"from": null,

"fromString": null,

"to": "127",

"toString":"Twitter Aurora Q2’15 Sprint 3"}

]},...]}}

Figure 3.6: Example of a change log of an issue in JSON format of issue AURORA-1267

Figure 3.7: An example of an issue report of issue AURORA-716 in the Apache project

Primitive attributes of an issue

These features are extracted directly from the issue’s attributes, which include type, pri-

ority, number of comments, number of affect versions, and number of fix versions. Each

issue will be assigned a type (e.g task, bug, new feature, improvement, and story) and a

priority (e.g. minor, major, and critical). These indicate the nature of the task associated

with resolving the issue (e.g. new feature implementation or bug fixing) and the order

in which an issue should be attended with respect to other issues (e.g. a team should

concerns critical priority issues more than issues with major and minor priority). These

attributes might affect the delivery of an iteration. For example, in the Apache project

approximately 10% of the under-achieved iterations have at least one critical priority is-

sue.

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 46

Table 3.2: Features of an issue

Feature Description

Type Issue type

Priority Issue priority

No. of comments The number of comments

No. of affect versions The number of versions for which an issue has been found

No. of fix versions The number of versions for which an issue was or will be

fixed

Issue links The number of dependencies of an issues

No. of blocking issues The number of issues that block this issue for being resolved

No. of blocked issues The number of issues that are blocked by this issue

Changing of fix versions The number of times in which a fix version was changed

Changing of priority The number of times an issue’s priority was changed

Changing of description The number of times in which an issue description was

changed

Complexity of description The read ability index (Gunning Fog [129]) indicates the

complexity level of a description which is encoded to easy

and hard

Previous studies (e.g. [130]) have found that the number of comments on an issue

indicates the degree of team collaboration, and thus may affect its resolving time. The

“affect version” attribute of an issue specifies versions in which an issue (e.g. bug) has

been found, while the “fix version” attribute indicates the release version(s) for which the

issue was (or will be) fixed. One issue can be found in many versions. An issue with a

high number of affect versions and fix versions needs more attention (e.g. an intensive

reviewing process) to ensure that the issue is actually resolved in each affect version and

does not cause new problems for each fix version. For example, in Apache, we found

that 80% of the over-achieved iterations have issues assigned to only one fix version.

We also found that 75.68% of the issues were assigned at least one affect version and

fix version.

Dependency of an issue

We extract the dependency between the issues in a term of the number of issue links.

Issue linking allows teams to create an association between issues (e.g. an issue resolution

may depend on another issue). Figure 3.7 also shows an example of issue links of issue

AURORA-716 in the Apache project for which it has been blocked by issue AURORA-

MESOS-2215. There are several relationship types for issue links (e.g. relate to, depend

on). In our approach we consider all types of issue links and use the number of those

links as features. Moreover, blocker is one of the issue linking types that indicates the

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 47

complexity of resolving issue since these blocker issues block other issues from being

completed (i.e. all blocker issues need to be fixed beforehand). As such they directly

affects the progress and time allocated to solve other issues [131]–[133]. The blocker

relationship is thus treated separately as two features: number of issues that are blocked

by this issue and number of issues that block this issue. We found that there are more

than 30% of issues have at least one relationship. We also note that when counting the

number of links between issues, we count each link type separately. For example, if there

are three different types of links between issues A and B, the number of links counted

would be 3.

Changing of issue attributes

Previous research, e.g., [133], [134], has shown that changing of an issue’s attribute (e.g.

priority) may increase the issue resolving time and decrease the deliverable capability

which it could be a cause of delays in software project. In our study, there are three

features reflecting changing of issue’s attributes which are: the number of times an issue

priority was reassigned, the number of times in which a fix version was changed, and the

number of times in which an issue description was changed. The changing of an issue’s

priority may indicate the shifting of its complexity. In addition, the changing of the fix

version(s) reflects some changes in the release planning for which it affects directly the

planning of on-going iterations. In particular, changing the description of an issue could

indicate that the issue is not stable and could also create misunderstanding. These may

consequently have an impact on the issue resolution time.

Textual features of an issue’s description

An issue’s description text can provide good features since it explains the nature of an

issue. A good description helps the participant of an issue understand its nature and

complexity. We have a employed readability measure to derive textual features from the

textual description of an issue. We used Gunning Fox [129] to measure the complexity

level of the description in terms of a readability score (i.e. the lower score, the easier to

read). Previous studies (e.g. [135]) have found that issues with high readability scores

were resolved more quickly. We acknowledge that there are more advanced techniques

with which to derive features from textual data (e.g. word2vec), use of which we leave

for our future work.

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 48

3.2.3 Feature aggregation

As previously stated, to characterize an iteration, we extracted both the features of an

iteration and the features of issues assigned to it (i.e. one iteration associates with a num-

ber of issues). Feature aggregation derives a new set of features from the issues (i.e. a

number of issues) for an iteration by aggregating those features of the issues assigned to

the iteration. We discuss here two distinct feature aggregation techniques (i.e. statistical

aggregation and Bag-of-Words) we use to characterize an iteration using features of the

issues assigned to it. The complexity descriptors of a graph describing the dependencies

among those issues also form a set of features representing the iteration. These aggrega-

tion approaches aim to capture the characteristics of issues associated to an iteration in

different aspects which each of them could reflects the situation of an iteration. The fea-

tures of an iteration and its aggregated features of the issues are then fed into a classifier

to build a predictive model that we discuss in Section 3.3.

Statistical aggregation

Statistical aggregation aggregates the features of issues using a number of statistical mea-

sures (e.g. max, min, and mean) which aims to capture the statistical characteristics of

the issues assigned to an iteration. For each feature k in the set of features of an issue (see

Table 3.2), we have a set of values Vk = {xk
1,x

k
2, ...,x

k
n} for this feature where xk

i (i ∈ [1..n])

is the value of feature k of issue xi in an iteration, and n is the number of issues assigned to

this iteration. Applying different statistics over this set Vk (e.g. min, max, mean, median,

standard deviation, variance, and frequency) gives different aggregated features. Table

3.3 shows eight basic statistics that we used for our study. Note that the categorical fea-

tures (e.g. type and priority) are aggregated by summing over the occurrences of each

category. For example, minimum, maximum, mean, and standard deviation of number of

comments, and frequency of each type (e.g. number of issues in an iteration that are “bug”

type) are the features among the aggregated features that characterize an iteration.

Feature aggregation using Bag-of-Words

The above-mentioned approach require us to manually engineer and apply a range of

statistics over the set of issues in an iteration in order to derive new features characterizing

the iteration. Our work also leverages a new feature learning approach known as Bag-

of-Words, which has been widely used in computer vision for image classification (e.g.

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 49

Table 3.3: Statistical aggregated features for an issue’s feature k

Function Description

min The minimum value in Vk

max The maximum value in Vk

mean The average value across Vk

median The median value in Vk

std The standard deviation of Vk

var The variance of Vk (measures how

far a set of numbers is spread out)

range The difference between the lowest

and highest values in Vk

frequency The summation of the frequency of

each categorical value

[136]), to obviate the need for manual feature engineering. Here, new features for a

project’s iteration can be automatically learned from all issues in the project. We employ

unsupervised K-means clustering to learn features for an iteration. Specifically, we apply

K-means clustering to all the issues extracted from a given project, which gives us k issue

clusters whose centers are in {C1,C2, ...,Ck}. The index of the closest center to each issue

in an iteration forms a word in a bag-of-words representing the iteration. The occurrence

count of a word is the number of issues closest to the center associated with the word.

For example, assume that an iteration has three issues X, Y and Z, and the closest cluster

center to X is C1 while the closest center to Y and Z is C2. The bag-of-words representing

this iteration is a vector of occurrence counts of the cluster centers, which in this case is

1 for C1, 2 for C2 and 0 for the remaining clusters’ centers. Note that in our study we

derived 100 issue clusters (k = 100) using kmeansd package from Matlab. Future work

would involve evaluation using a different number of issue clusters.

This technique provides a powerful abstraction over a large number of issues in

a project. The intuition here is that the number of issues could be large (hundreds of

thousands to millions) but the number of issue types (i.e. the issue clusters) can be small.

Hence, an iteration can be characterized by the types of the issues assigned to it. This

approach offers an efficient and effective way to learn new features for an iteration from

the set of issues assigned to it. It can also be used in combination with the statistical

aggregation approach to provide an in-depth set of features for an iteration.

dhttp://au.mathworks.com/help/stats/kmeans.html

http://au.mathworks.com/help/stats/kmeans.html

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 50

Graph descriptors

Dependencies often exist between issues in an iteration. These dependency of issues are

explicitly recorded in the form of issue links (e.g. relate to, depend on, and blocking).

Blocking is a common type of dependency that is recorded in issue tracking systems. For

example, blocking issues are those that prevent other issues from being resolved. Such

dependencies form a directed acyclic graph (DAG) which depicts how the work on resolv-

ing issues in an iteration should be scheduled (similar to the popular activity precedence

network in project management). Figure 3.8 shows an example of a DAG constructed

from nine issues assigned to the iteration Usergrid 20e in the Apache project. However

note that we consider only the relationships among issues in the same iteration.

start end

Usergrid 20 (129)

USERGRID-608

USERGRID-627

USERGRID-628

USERGRID-633

USERGRID-634

USERGRID-662

USERGRID-664

USERGRID-688 USERGRID-704

blocks

Figure 3.8: Example of a DAG of issues in the iteration “Usergrid 20” in the Apache

project

The descriptors of complexity of such a DAG of issues provide us with a rich set

of features characterizing an iteration. These include basic graph measures such as the

number of nodes in a graph, the number of edges, the total number of incoming edges,

and so on (see [137] for a comprehensive list). Table 3.4 lists a set of graph-based features

that we currently use. For example, from Figure 3.8, among the aggregated features using

graph-based feature aggregation for the iteration Usergrid 20, the number of nodes equals

9 and the number of edges equals 7. We acknowledge that the dependencies between

issues in an iteration may not exist (e.g. no issue link between issues in an iteration)

however the aggregated features from this approach can be combined with the features

from our other techniques to characterize an iteration in terms of dependencies between

ehttps://issues.apache.org/jira/secure/RapidBoard.jspa?rapidView=23&view=

reporting&chart=sprintRetrospective&sprint=129

https://issues.apache.org/jira/secure/RapidBoard.jspa?rapidView=23&view=reporting&chart=sprintRetrospective&sprint=129
https://issues.apache.org/jira/secure/RapidBoard.jspa?rapidView=23&view=reporting&chart=sprintRetrospective&sprint=129

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 51

Table 3.4: Features of a DAG of issues in an iteration

Graph measure Description

number of nodes The number of issues in DAG

number of edges The number of links between issues in DAG

sum of fan in The total number of incoming links of issues in DAG

sum of fan out The total number of outgoing links of issues in DAG

max of fan in The maximum number of incoming links of issues in DAG

max of fan out The maximum number of outgoing links of issues in DAG

mean of fan in The average of numbers of incoming links across all issues in

DAG

mean of fan out The average of numbers of outgoing links across all issues in

DAG

mode of fan in The number of incoming links that appear most often in DAG

mode of fan out The number of outgoing links that appear most often in DAG

avg. node degree The degree distribution of nodes and edges of DAG

issues assigned to it. Future work would involve exploring some other measures such as

graph assortativity coefficient [138].

3.3 Predictive model

Our predictive models can predict the difference between the actual delivered velocity

against the committed (target) velocity for an iteration, i.e. velocity(Difference). To

do so, we employ regression methods (supervised learning) where the outputs reflect the

deliverable capability in an iteration e.g., the predicting of velocity(Difference) will

be equal to 12. The extracted features of the historical iterations (i.e. training set) are

used to build the predictive models. Specifically, a feature vector of an iteration and an

aggregated feature vector of issues assigned to the iteration are concatenated and fed into

a regressor.

We apply the currently most successful class of machine learning methods, namely

randomized ensemble methods [139]–[141]. Ensemble methods refer to the use of many

regressors to make their prediction [141]. Randomized methods create regressors by ran-

domizing data, features, or internal model components [142]. Randomizations are pow-

erful regularization techniques which reduce prediction variance, prevent overfitting, are

robust against noisy data, and improve the overall predictive accuracy [143], [144].

We use the following high performing regressors that have frequently won recent

data science competitions (e.g. Kagglef): Random Forests (RFs) [145], Stochastic Gra-

fhttps://www.kaggle.com

https://www.kaggle.com

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 52

dient Boosting Machines (GBMs) [46], [146] and Deep Neural Networks with Dropouts

(DNNs) [58]. All of them are ensemble methods that use a divide-and-conquer approach

to improve performance. The key principle behind ensemble methods is that a group of

“weak learners” (e.g. classification and regression decision trees) can together form a

“strong learner”.

3.3.1 Random Forests

Random forests (RFs) [145] uses decision trees as weak learners and typically works as

follows. First, a subset of the full dataset is randomly sampled (i.e. 200 out of 1,000

iterations) to train a decision tree. At each node of the decision tree, we normally search

for the best feature across all the features (predictor variables) to split the training data.

Instead of doing so, at each node of a decision tree, RFs randomly selects a subset of

candidate predictors and then find the best splitting predictor for the node. For example,

if there are 200 features, we might select a random set of 20 in each node, and then split

using the best feature among the 20 available, instead of the best among the full 200

features. Hence, RFs introduces randomness not just into the training samples but also

into the actual trees growing.

This process is repeated: a different random sample of data is selected to train a

second decision tree. The predictions made by this second tree is typically different from

those of the first tree. RFs continues generating more trees, each of which is built on a

slightly different sample and producing slightly different predictions each time. We could

continue this process indefinitely, but in practice 100 to 500 trees are usually generated.

To make predictions for a new data, RFs combines all separate predictions made by each

of the generated decision tree typically by averaging the outputs across all trees.

3.3.2 Stochastic Gradient Boosting Machines

RFs grows independent decision trees (which thus can be done in parallel) and simply

takes the average of the predictions produced by those trees as the final prediction. On

the other hand, gradient boosting machines (GBMs) [46], [146] generates trees and adds

them to the ensemble in a sequential manner. The first tree is generated in the same

way as done in RFs. The key difference here is the generation of the second tree which

aims at minimizing the prediction errors produced by the first tree (thus the trees are not

independent to each other as in RFs). Both the first and second trees are added to the

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 53

ensemble but different weights are assigned to each of them. This process is repeated

multiple times: at each step, a new tree is trained with respect to the error of the whole

ensemble learnt so far and is then added to the ensemble. The final ensemble is used as a

model for predicting the outcome of new inputs.

Unlike RFs, a weak learner in GBMs can be not just only regression trees but also

any other regression learning algorithms such as neural networks or linear regression.

In our implementation, regression trees are used as weak learners and 100 trees were

generated.

3.3.3 Deep Neural Networks with Dropouts

Neural networks have long been used in many prediction tasks where the input data has

many variables and noises. The neural network is organized in a series of layers: the

bottom layer accepting the input, which is projected to a hidden layer, which in turn

projects to an output layer. Each layer consists of a number of computation units, each

of which is connected to other units in the next layer. Deep neural networks (DNNs) are

traditional artificial neural networks with multiple hidden layers, which make them very

expressive models that are capable of learning highly complicated relationships between

their inputs and outputs. Limited training data may however cause overfitting problem,

where many complicated relationships exist in the training data but does not occur in the

real test data.

Building an ensemble of many differently trained neural networks would alleviate

the overfitting problem (as seen in RFs and GBMs). To achieve the best performance, each

individual neural network in the ensemble should be different from each other in terms of

either the architecture or the data used for training. Dropout [58] is a simple but scalable

technique which, given a main network, builds an ensemble from many variants of this

network. These variant networks are generated by temporarily removing one random unit

(and its incoming and outgoing connections) at a time from the main network. Hence, a

neural network with n units can be used to generate an ensemble of 2n networks. After

being trained, those 2n networks can be combined into a single neural network to make

predictions for the new inputs.

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 54

3.4 Dataset

In this section, we describe how data were collected for our study and experiments.

3.4.1 Data collecting and preprocessing

We collected the data of past iterations (also referred to as sprints in those projects) and

issues from five large open source projects which follow the agile Scrum methodology:

Apache, JBoss, JIRA, MongoDB, and Spring. The project descriptions and their agile

adoptions have been reported in Table 3.5. All five projects use JIRA-Agile for their

development which is a well-known issue and project tracking tool that supports agile

practices. We use the Representational State Transfer (REST) API provided by JIRA to

query and collect iteration and issue reports in JavaScript Object Notation (JSON) format.

Note that the JIRA Agile plug-in supports both the Scrum and Kanban practices, but we

collected only the iterations following the Scrum practice. From the JIRA API, we were

also able to obtain issues’ change log and the list of complete/incomplete issues of each

iteration.

We initially collected 4,301 iterations from the five projects and 65,144 issues

involved with those iterations from February 28, 2012 to June 24, 2015. The former date

is the date when the first iteration (among all the case studies) was created and the later is

the date when we finished collecting the data. Hence, this window ensures that we did not

miss any data up to the time of our collection. The data was preprocessed by removing

duplicate and demonstration iterations as well as future and ongoing iterations. We also

removed iterations that have zero resolved issues where those iterations are ignored by

teams (e.g. no activity recorded in the issue report, all issues have been removed).

In total, we performed our study on 3,834 iterations from the five projects, which

consist of 56,687 issues. Table 3.6 shows the number of iterations and issues in our

datasets and summarizes the characteristics of the five projects in terms of the iteration

length, number of issues per iteration, number of team members per iteration in terms

of the minimum, maximum, mean, median, and standard deviations (STD). The iteration

length across the five projects tends to be in the range of 2 to 4 weeks. All projects have

almost the same team size, while the number of issues per iteration varies. For example,

the mean number of issues per iteration in MongoDB is 15 issues, while it is only 5.5

issues in JIRA.

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 55

Table 3.5: Project description

Project Brief description Agile adoption Year of adoption

Apache A web server originally

designed for Unix environ-

ments. There are more than

fifty sub-projects under the

Apache community umbrella

(i.e. Aurora, Apache Helix,

and Slider).

Almost 50% of the issues in

the sub-projects that are ap-

plied the Scrum method (e.g.

Aurora) have been assigned

to at least one iteration.

2006

JBoss An application server pro-

gram which supports a gen-

eral enterprise software de-

velopment framework.

JBoss community has de-

scribed their iterative devel-

opment process in the devel-

oper guide.+ There are more

than ten sub-projects that are

applied agile methods.

2004*

JIRA A project and issue track-

ing system including the agile

plug-in that provides tools to

manage iterations following

agile approaches (e.g. Scrum,

Kanban) provided by Atlas-

sian.

Recently, Atlassian reported

their success in applying ag-

ile methods to improve their

development process.x

N/A

MongoDB A cross platform document-

oriented database (NoSQL

database) provided by Mon-

goDB corporation and is pub-

lished as free and open-

source software.

More than 70% of the issues

in the main sub-projects (e.g.

Core MongoDB, MongoDB

tool) have been assigned to at

least one iteration

2009

Spring An application development

framework that contains

several sub-projects in their

repository i.e. Spring XD and

Spring Data JSP.

Almost 70% of the issues

in the core sub-projects (e.g.

Spring XD) have been as-

signed to at least one itera-

tion.

N/A

+:http://docs.jboss.org/process-guide/en/html/,

*: identified from the developer guided published date,
x:http://www.businessinsider.com.au/atlassian

-2016-software-developer-survey-results-2016-3

http://docs.jboss.org/process-guide/en/html/
http://www.businessinsider.com.au/atlassian
-2016-software-developer-survey-results-2016-3

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 56

T
a
b

le
3
.6

:
D

es
cr

ip
ti

v
e

st
at

is
ti

cs
o
f

th
e

it
er

at
io

n
s

o
f

th
e

p
ro

je
ct

s
in

o
u
r

d
at

as
et

s

P
ro

je
ct

#
it

er
at

io
n

s
#

is
su

es
#

d
ay

s/
it

er
at

io
n

#
is

su
es

/i
te

ra
ti

o
n

#
te

am
m

em
b

er
s

/i
te

ra
ti

o
n

m
in

/m
ax

m
ea

n
m

ed
ia

n
S

D
m

in
/m

ax
m

ea
n

m
ed

ia
n

S
D

m
in

/m
ax

m
ea

n
m

ed
ia

n
S

D

A
p

ac
h

e
3

4
8

5
,8

2
6

3
/2

1
1

2
.0

2
1

4
1

0
.1

2
3

/1
2

8
1

5
.3

9
7

8
.2

4
3

/2
1

4
.6

4
3

.4

JB
o

ss
3

7
2

4
,9

8
4

3
/4

9
1

2
.5

2
1

3
7

.4
4

/1
2

2
7

.1
4

5
8

.5
4

2
/2

0
2

.6
2

3
.1

1

JI
R

A
1

,8
7

3
1

0
,8

5
2

4
/6

0
1

0
.5

9
6

.0
3

3
/8

8
5

.5
5

6
.2

2
/1

2
3

.7
1

2
2

.0
7

M
o

n
g

o
D

B
7

6
5

1
7

,5
2

8
3

/4
3

2
0

1
8

3
6

3
/1

8
0

1
5

9
2

1
.4

2
/3

0
4

.1
2

3
5

.0
2

S
p

ri
n

g
4

7
6

1
7

,4
9

7
3

/4
9

1
4

.2
8

1
4

7
.2

1
3

/1
6

1
2

0
.7

1
1

7
2

0
.1

1
3

/1
5

5
.4

4
4

.3
7

T
o

ta
l

3
,8

3
4

5
6

,6
8

7

#
it

er
at

io
n

s:
n

u
m

b
er

o
f

it
er

at
io

n
s,

#
is

su
es

:
n

u
m

b
er

o
f

is
su

es
,

#
d

ay
s/

it
er

at
io

n
:

n
u

m
b

er
o

f
d

ay
s

p
er

it
er

at
io

n
,

#
is

su
es

/i
te

ra
ti

o
n

:
n

u
m

b
er

o
f

is
su

es
p

er
it

er
at

io
n

,
#

te
am

m
em

b
er

s/
it

er
at

io
n

:
n

u
m

b
er

o
f

te
am

m
em

b
er

s
p

er
it

er
at

io
n

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 57

3.5 Evaluation

This section discusses an extensive evaluation that we have carried out of our approach.

We describe the experimental setting, discuss the performance measures, and report our

results. Our empirical evaluation aims to answer the following research questions:

RQ1 Do the feature aggregation approaches improve the predictive performance?

We build predictive models using the three feature aggregation approaches and

compare them against a predictive model using only the information extracted di-

rectly from the attributes of an iteration (i.e. features of an iteration). This is to

evaluate whether the aggregated features of issues offer significant improvement.

We also investigate which combinations of the feature aggregation approaches are

the best performer (e.g. combining the aggregated features from statistical feature

aggregation and Bag-of-words aggregation approach).

RQ2 Do randomized ensemble methods improve the predictive performance compared

to a traditional regression model?

We employ Support Vector Machine (SVM) as a representative for traditional re-

gression models. SVM is the most important (deterministic) classifier in the year

2000s [147]. Its predictive power has been challenged, only recently, by random-

ized and ensemble techniques (e.g, see the recent comparative study proposed by

Fernández-Delgado et al [148]). SVM has been widely used in software analytics,

such as defect prediction, effort estimation, and bug localization. Its regression ver-

sion, Support Vector Regression (SVR), is also known for being highly effective for

regression problems. Thus, we employ SVR to build predictive models to evaluate

whether our randomized ensemble methods perform better than the traditional re-

gression model. We also find the best randomized ensemble method in predicting

the difference between actual achieved and target velocity in an iteration.

RQ3 Are the purposed randomized ensemble method and the feature aggregation suitable

for predicting the difference between the actual delivered velocity against the target

velocity of an iteration?

This is our sanity check as it requires us to compare our purposed prediction model

with three common baseline benchmarks used in the context of effort estimation:

Random Guessing, Mean Effort, and Median Effort. Random guessing performs

random sampling (with equal probability) over the set of iterations with known

difference (between target and actual achieved velocity), chooses randomly one it-

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 58

eration from the sample, and uses the target vs. actual difference velocity of that

iteration as the prediction of the new iteration. Random guessing does not use any

information associated with the new iteration. Thus any useful prediction model

should outperform random guessing. Mean and Median Effort predictions are com-

monly used as baseline benchmarks for effort estimation. They use the mean or

median target vs. actual difference of the past iterations to predict the difference of

the new iterations.

RQ4 Does the time of making a prediction (tpred) affect the predictive performance?

We want to evaluate the predictive performance from the different prediction times

(tpred) to confirm our hypothesis that the later we predict, the more accuracy we

gain. Specifically, we evaluate the predictive performance from four different pre-

diction times: at the beginning of an iteration, and when it progresses to 30%, 50%,

and 80% of its planned duration. We acknowledge that making a prediction as late

as at 80% of an iteration duration may not be particularly useful in practice. How-

ever, for the sake of completeness we cover this prediction time to sufficiently test

our hypothesis. Note that our experiments in RQ1-RQ3 were done at the prediction

time when an iteration has progressed to 30% of its planned duration (e.g. make a

prediction at the third day of a 10-day iteration).

RQ5 Can the output from the predictive model (i.e. the difference between the actual

delivered velocity against the target velocity) be used for classifying the outcomes

of an iteration (e.g. an under-achieved iteration)?

Rather than the difference between the actual achieved and the target velocity, the

outcomes of iterations can also be classified into three classes: below the target

– under achieved, i.e. velocity(Committed) > velocity(Delivered), or above the

target – over achieved, i.e. velocity(Committed) < velocity (Delivered), or the

same as the target – achieved, i.e. velocity(Committed) = velocity (Delivered).

We want to evaluate whether the output from the predictive models (i.e. the dif-

ference velocity) can be used to classify the outcome of an iteration in terms of

the three classes: negative outputs, i.e. velocity(Difference) < 0 , are in the

under-achieved class, positive outputs, i.e. velocity(Difference) > 0, are in the

over-achieved class, and zero, i.e. velocity(Difference) = 0, is in the achieved

class. This method can also accommodate a tolerance margin e.g. outputs from -1

to 1 are considered in the achieved class. A finer-grained taxonomy (e.g. differ-

ent levels of over achieved or under achieved) for classifying iterations can also be

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 59

Table 3.7: Descriptive statistics of the difference between the actual delivered velocity

against the target velocity in each project

Project
velocity(Difference)

min max mean median mode SD IQR

Apache -81 49 -9.05 -5 0 17.16 15.00

JBoss -96 30 -6.03 -1 0 14.83 4.00

JIRA -83 117 -2.82 0 0 11.37 3.00

MongoDB -67 50 -0.99 0 0 11.54 5.00

Spring -135 320 23.77 8.50 4 51.66 32.00

accommodated to reflect the degree of difference between the target and the actual

delivered velocity.

3.5.1 Experimental setting

All iterations and issues collected in each of the five case studies were used in our eval-

uations. As discussed in Section 3.1, we would like to predict the difference between

the actual delivered velocity against the target velocity. For example, if the output of our

model is -5, it predicts that the team will deliver 5 story points below the target. Table

4.3 shows the statistical descriptions of the difference between the actual delivered against

the target velocity of the five projects in terms of the minimum, maximum, mean, median,

mode, standard deviations (SD), and interquartile range (IQR).

We used ten-fold cross validation in which all iterations were sorted based on

their start date. After that, an iteration ith in every ten iterations is included in fold ith.

With larger data sets, we could choose the sliding window setting, which mimics a real

deployment scenario, to ensure that prediction on a current iteration is made by using

knowledge from the past iterations. We leave for future work since we believe that our

findings in the current experimental setting still hold [149]. The time when the prediction

is made may affect its accuracy and usefulness. The later we predict, the more accurate

our prediction gets (since more information has become available) but the less useful it is

(since the outcome may become obvious or it is too late to change the outcome). We later

address the varying of the prediction time in RQ4.

3.5.2 Performance measures

There are a range of measures used in evaluating the accuracy of a predictive model in

teams of effort estimation. Most of them are based on the Absolute Error, (i.e. |ActualDi f f−

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 60

EstimatedDi f f |) where AcutalDi f f is the real velocity(Difference) and EstimatedDi f f

is the predicted velocity(Difference) given by a predictive model. Mean of Magnitude

of Relative Error (MRE) and Prediction at level l [150], i.e. Pred(l), have also been used

in effort estimation. However, a number of studies [151]–[154] have found that those

measures bias towards underestimation and are not stable when comparing the models.

Thus, the Mean Absolute Error (MAE) has recently been recommended to compare the

performance of effort estimation models [7]. However, different projects have different

velocity(Difference) ranges (see Table 4.3). Thus, we needed to normalize the MAE

(by dividing it with the interquartile range) to allow for comparisons of the MAE across

the studied project. Similarly to the work in [155], we refer to this measure as Normalized

Mean Absolute Error (NMAE).

To compare the performance of two predictive models, we also applied statis-

tical significance testing on the absolute errors predicted by the two models using the

Wilcoxon Signed Rank Test [156] and employed the Vargha and Delaney’s Â12 statistic

[157] to measure whether the effect size is interesting. Later in RQ5, we used a number

of traditional metrics: precision, recall, F-measure, Area Under the ROC Curve (AUC)

to measure the performance in classifying the outcome of an iteration. We also used an-

other metric called Macro-averaged Mean Absolute Error (MMAE) [158] to assess the

distance between actual and predicted classes since the classes is ordinal, we can order

them, e.g. over achieved is better than achieved. The traditional class-based measures

(Precision/Recall) do not take into account the ordering between classes, and Matthews

Correlation Coefficient (MCC) [159], which performs well on imbalanced data.

Normalized Mean Absolute Error (NMAE)

The Normalized Mean Absolute Error (NMAE) [155] is defined as:

NMAE =
1
N ∑

N
i=1 |ActualDi f fi −EstimatedDi f fi|

IQR

where N is the number of iterations used for evaluating the performance (i.e.

test set), ActualDi f fi is the actual velocity(Difference), EstimatedDi f fi is the pre-

dicted velocity(Difference) for the iteration i, and IQR is the distance between the

velocity(Difference) at 75th and 25th percentile (i.e. 75th percentile−25th percentile).

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 61

Statistical comparison

We assess the velocity(Difference) produced by the predictive models using NMAE. To

compare the performance of two predictive models, we tested the statistical significance

of the absolute errors achieved with the two models using the Wilcoxon Signed Rank

Test [156]. The Wilcoxon test is a safe test since it makes no assumptions about under-

lying data distributions. The null hypothesis here is: “the absolute errors provided by a

predictive model are significantly less that those provided by another predictive model”.

We set the confidence limit at 0.05 (i.e. p < 0.05). In addition, we also employed a

non-parametric effect size measure, the Vargha and Delaney’s Â12 statistic [157] to assess

whether the effect size is interesting. The Â12 measure is chosen since it is agnostic to the

underlying distribution of the data, and is suitable for assessing randomized algorithms in

software engineering generally [160] and effort estimation in particular [7]. Specifically,

given a performance measure (e.g. the Absolute Error from each prediction in our case),

the Â12 measures the probability that predictive model M achieves better results (with re-

spect to the performance measure) than predictive model N using the following formula:

Â12 = (r1/m− (m+1)/2)/n where r1 is the rank sum of observations where M achieving

better than N, and m and n are respectively the number of observations in the samples de-

rived from M and N. If the performance of the two models are equivalent, then Â12 = 0.5.

If M perform better than N, then Â12 > 0.5 and vice versa. All the measures we have used

here are commonly used in evaluating effort estimation models [7], [160].

Precision/Recall/F-measures/AUC

A confusion matrix is used to store the correct and incorrect classifications for each in-

dividual class made by a predictive model. For example, the confusion matrix for class

under achieved in predicting the target velocity against the actual velocity delivered is

constructed as follows. If an iteration is classified as under achieved when it truly de-

livered below than the target, the classification is a true positive (tp). If the iteration is

classified as under achieved when it is actually over achieved or achieved, then the clas-

sification is a false positive (fp). If the iteration is classified as not under achieved when it

in fact deliver below than the target, then the classification is a false negative (fn). Finally,

if the iteration is classified as not under achieved and it in fact is did not deliver below

the target, then the classification is true negative (tn). The values of each individual class

classification stored in the confusion matrix are used to compute the widely used Preci-

sion, Recall, and F-measure [161]. In addition, we used another measure, Area Under the

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 62

ROC Curve (AUC), to evaluate the degree of discrimination achieved by the model. We

have described these performance measures in details in Section 2.1.6 of Chapter 2.

Matthews correlation coefficient (MCC)

To compare the performance between two cases, using only F-measure can mislead the

interpretation (e.g. very high precision but very poor recall), especially in cases of class

imbalance. We thus also used Matthews correlation coefficient (MCC) [162]. MCC takes

into account all true and false positives and negatives values (tp, tn, fp, and fn) and sum-

marizes into a single value. It is also generally known as a balanced measure which can

be used even if the classes are very different sizes [163]. MCC is defined as:

MCC =
t p× tn− f p× f n

√

(t p+ f p)× (t p+ f n)× (tn+ f p)× (tn+ f n)

MCC has a range of -1 to 1 where -1 indicates a completely wrong classifier while

1 indicates a completely correct classifier, and 0 is expected for a prediction that no better

than random.

Macro-averaged Mean Absolute Error (MMAE)

Since the classes in each prediction task could be considered as ordinal, we can or-

der them, e.g. over achieved is better than achieved, and achieved is better than under

achieved. However, the traditional class-based measures (e.g. Precision and Recall) do

not take into account the ordering between classes. Hence, we also used another metric

called Macro-averaged Mean Absolute Error (MMAE) [158] to assess the distance be-

tween actual and predicted classes. MMAE is suitable for ordered classes and insensitive

to class imbalance. For example, as we discussed that the ordering of our classes is based

on the performance of an outcome.

Let yi be the true class and ŷi be the predicted class of iteration i in the task. Let

nk be the number of true cases with class k where k ∈ {1,2,3} – there are 3 classes in our

classification – i.e., nk = ∑
n
i=1 δ

[

yi = k
]

and n = n1+n2+n3. The Macro-averaged Mean

Absolute Error is computed as follows.

MMAE =
1

3

3

∑
k=1

1

nk

n

∑
i=1

∣

∣ŷi − k
∣

∣δ
[

yi = k
]

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 63

For example, if the actual class is over achieved (k = 1), and the predicted class

is under achieved (k = 3), then an error of 2 has occurred. Here, we assume that the

predicted class is the one with the highest probability, but we acknowledge that other

strategies can be used in practice. We however note that the ordering of the classes can

be changed based on the project settings. For example, the achieved class may be more

preferred than the over achieved class since over-achieving is not suggested over staying

within budget.

3.5.3 Results

We report here our evaluation results in answering our research questions RQs 1—5.

Benefits of the feature aggregations of issues (RQ1)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SA BoWs GA None

N
M
A
E

Figure 3.9: Evaluation results on the three aggregated features and the features of iter-

ations (None). X is a mean of NMAE averaging across all projects and all regression

models (the lower the better).

We compared the predictive performance (using NMAE) achieved for the three

feature aggregation approaches: statistical aggregation (SA), Bag-of-Words (BoWs), and

graph-based aggregation (GA) against the predictive model using only the features of

an iteration (None). Figure 3.9 shows the NMAE achieved for each of the aggregated

features, averaging across all the projects and all the regression models. The analysis

of NMAE suggests that the predictive performance achieved from using the feature

aggregation approaches (i.e. SA, BoWs, and GA) consistently outperforms the pre-

dictive model using only the features of iterations (i.e. None). The predictive models

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 64

Table 3.8: Comparison of the predictive models between with and without the aggre-

gated features using Wilcoxon test and A12 effect size (in brackets)

Project With agg. vs Without agg.

Apache SA <0.001 [0.61]

BoWs <0.001 [0.60]

GA <0.001 [0.56]

JBoss SA <0.001 [0.59]

BoWs <0.001 [0.60]

GA <0.001 [0.54]

JIRA SA <0.001 [0.62]

BoWs <0.001 [0.56]

GA <0.001 [0.52]

MongoDB SA <0.001 [0.61]

BoWs <0.001 [0.60]

GA <0.001 [0.53]

Spring SA <0.001 [0.60]

BoWs <0.001 [0.61]

GA <0.001 [0.54]

using statistical aggregation, Bag-of-Words, and graph-based aggregation achieve an ac-

curacy of 0.371, 0.372, and 0.446 NMAE respectively, while the predictive models using

only the features of iterations achieve only 0.581 NMAE.

Table 3.8 shows the results of the Wilcoxon test (together with the corresponding

A12 effect size) to measure the statistical significance and effect size (in brackets) of the

improved accuracy achieved by the aggregated features over the features of iterations.

In all cases, the predictive models using the feature aggregation approaches significantly

outperform the predictive models using only the features of iterations (p < 0.001) with

effect size greater than 0.5.

We also performed a range of experiments to explore the best combination of ag-

gregated features. There are four possible combinations: SA+GA, BoWs+GA, SA+BoWs,

and the combination of all of them (All). For example, SA+GA combines a feature vector

of an iteration, a feature vector of issues obtained from statistical aggregation (SA), and

a feature vector of issues obtained from graph-based aggregation (GA). As can be seen

in Figure 3.10, in most cases the combination of two or more feature aggregation ap-

proaches produced better performance than a single aggregation approach. However, the

best performer varies between projects. For example, SA+GA outperforms the others

in JBoss – it achieves 0.555 NMAE while the others achieve 0.558 - 0.598 NMAE (av-

eraging across all regression models), while SA+BoWs is the best performer in JIRA – it

achieves 0.265 NMAE while the others achieve 0.285 - 0.366 NMAE (averaging across all

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 65

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

SA*

BoWs

GA

SA+GA

BoWs+GA

SA+BoWs

All

SA

BoWs

GA

SA+GA*

BoWs+GA

SA+BoWs

All

SA

BoWs

GA

SA+GA

BoWs+GA

SA+BoWs*

All

SA

BoWs

GA

SA+GA

BoWs+GA

SA+BoWs*

All

SA

BoWs

GA

SA+GA

BoWs+GA

SA+BoWs

All*

A
p
a
ch
e

JB
o
ss

JI
R
A

M
o
n
g
o
D
B

S
p
ri
n
g

NMAE

F
ig

u
re

3
.1

0
:

E
v
al

u
at

io
n

re
su

lt
s

o
n

al
l

th
e

co
m

b
in

at
io

n
s

o
f

th
e

ag
g
re

g
at

ed
fe

at
u
re

s
o
f

is
su

es
.

In
ea

ch
p
ro

je
ct

,
th

e
b
es

t
p
er

fo
rm

er
is

m
ar

k
ed

w
it

h
*
.

X
is

a
m

ea
n

o
f

N
M

A
E

av
er

ag
in

g
ac

ro
ss

al
l

re
g
re

ss
io

n
m

o
d
el

s
(t

h
e

lo
w

er
th

e
b
et

te
r)

.

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 66

regression models). These results suggest that the three approaches are distinct and com-

plementary to each other: the statistical aggregation covers the details, the Bag-of-Words

technique addresses the abstraction, while the graph-based approach reflects the network

nature of issues in an iteration as also shown in our previous work [132]. We rely not just

on features coming directly from the attributes of an object (i.e. an iteration), like most

of existing software analytics approaches, but also the features from the parts composing

the object (i.e. the issues). The latter features are powerful since they are automatically

learned and aggregated, and capture the graphical structure of the object.

Answer to RQ1: Feature aggregation offers significant improvement in predictive per-

formance.

Benefits of the randomized ensemble methods (RQ2)

To answer RQ2, we focus on the predictive performance achieved from different regres-

sion models. For a fair comparison we used only one combination of aggregated features

that performs best in most cases, SA+BoWs, as reported in RQ1. Figure 3.11 shows

the NMAE achieved by the three randomized ensemble methods: Random Forests (RF),

Deep Neural Networks with Dropouts (Deep Net.), and Stochastic Gradient Boosting Ma-

chines (GBMs), and the traditional Support Vector Regression (SVR), averaging across

all projects.

Overall, all the three ensemble methods that we have employed performed

well, producing much better predictive performance than the traditional SVR. They

achieve 0.392 NMAE averaging across the three ensemble methods, while SVR achieves

0.621 NMAE. The results for the Wilcoxon test to compare the ensemble methods against

the tradition regression model is shown in Table 3.9. The improvement of the ensemble

methods over the traditional regression model is significant (p < 0.001) with the effect

size greater than 0.5 all cases. The best performer is Stochastic Gradient Boosting

Machines (GBMs). GBMs achieved 0.369 NMAE averaging across all projects as con-

firmed by the results of the Wilcoxon test with the corresponding A12 effect size in Table

3.10: GBMs perfomed significantly better than RF and Deep Nets. (p < 0.001) with

effect size greater than 0.5 in all cases.

Answer to RQ2: Randomized ensemble methods significantly outperform traditional

methods like SVR in predicting delivery capability.

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 67

Table 3.9: Comparison of the three randomized ensemble methods against the traditional

SVR using Wilcoxon test and A12 effect size (in brackets)

Project Method vs SVR

Apache RF <0.001 [0.61]

Deep Nets. <0.001 [0.61]

GBMs <0.001 [0.67]

JBoss RF <0.001 [0.58]

Deep Nets. <0.001 [0.59]

GBMs <0.001 [0.66]

JIRA RF <0.001 [0.63]

Deep Nets. <0.001 [0.63]

GBMs <0.001 [0.71]

MongoDB RF <0.001 [0.66]

Deep Nets. <0.001 [0.70]

GBMs <0.001 [0.82]

Spring RF <0.001 [0.64]

Deep Nets. <0.001 [0.66]

GBMs <0.001 [0.73]

Table 3.10: Comparison of GBMs against RF and Deep nets. using Wilcoxon test and

A12 effect size (in brackets)

Project Method vs RF Deep Nets.

Apache GBMs <0.001 [0.62] <0.001 [0.60]

JBoss GBMs <0.001 [0.60] <0.001 [0.60]

JIRA GBMs <0.001 [0.59] <0.001 [0.62]

MongoDB GBMs <0.001 [0.75] <0.001 [0.71]

Spring GBMs <0.001 [0.67] <0.001 [0.65]

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 68

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RF Deep Nets. GBMs* SVR

SA+BoWs

N
M

A
E

Figure 3.11: Evaluation results on different regression models with SA+BoWs. The

best performer is marked with *. X is a mean of NMAE averaging across all projects

(the lower the better).

Table 3.11: Comparison on the predictive performance of our approach against the base-

line benchmarks using Wilcoxon test and A
12 effect size (in brackets)

Project Model vs Random Mean Median

Apache GBMs (SA) <0.001 [0.82] <0.001 [0.81] <0.001 [0.77]

JBoss GBMs (SA+GA) <0.001 [0.86] <0.001 [0.86] <0.001 [0.66]

JIRA GBMs (SA+BoWs) <0.001 [0.88] <0.001 [0.86] <0.001 [0.67]

MongoDB GBMs (SA+BoWs) <0.001 [0.86] <0.001 [0.85] <0.001 [0.80]

Spring GBMs (All) <0.001 [0.83] <0.001 [0.83] <0.001 [0.79]

Sanity check (RQ3)

To answer RQ3, we employed the best randomized ensemble method: GBMs (identi-

fied by RQ2), and the best combination of the aggregated features in each project: SA

for Apache, SA+GA for JBoss, SA+BoWs for JIRA and MongoDB, and the combined

of all (All) for Spring (identified by RQ1). Figure 3.12 shows the predictive perfor-

mance achieved from GBMs with the best aggregated features and the three baseline

methods: Random, Mean, and Median in each project. Our analysis of this evaluation

result suggests that the predictive performance obtained with our approach is better

than those achieved by using Random, Mean, and Median in all projects. Averag-

ing across all the project, our approach (GBMs with the best aggregated features in each

project) achieves an accuracy of 0.349 NMAE, while the base of the baselines achieve

only 0.702 NMAE. The NMAE produced by our model is higher for JBoss than that

for other projects. JBoss is also the project that the baseline methods (Random, Mean

and Median) struggled with the most. There are a few reasons which explain this phe-

nomenon. Firstly, JBoss has the smallest number of issues among the five studied projects.

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 69

0.0

0.5

1.0

1.5

2.0

2.5

G
B

M
s

(S
A

)

R
a

n
d

o
m

M
e

a
n

M
e

d
ia

n

G
B

M
s

(S
A

+
G

A
)

R
a

n
d

o
m

M
e

a
n

M
e

d
ia

n

G
B

M
s

(S
A

+
B

o
W

s)

R
a

n
d

o
m

M
e

a
n

M
e

d
ia

n

G
B

M
s

(S
A

+
B

o
W

s)

R
a

n
d

o
m

M
e

a
n

M
e

d
ia

n

G
B

M
s

(A
ll

)

R
a

n
d

o
m

M
e

a
n

M
e

d
ia

n

Apache JBoss JIRA MongoDB Spring

N
M

A
E

Figure 3.12: Evaluation result of the GBMs with the best aggregated features in each

project and the three baseline benchmarks

Small training data may affect the predictive power of a model. Secondly, JBoss has the

largest range of story points assigned to issues – it has a standard deviation of 3.27, com-

paring to 1.71–2.34 standard deviation in the other projects. The high standard deviation

indicates that the issue story points in JBoss are spread out over a large range of values.

This could make all the models struggle since issue story points directly affect the velocity

of an iteration.

Table 3.11 shows the results of the Wilcoxon test (together with the correspond-

ing A12 effect size) to measure the statistical significance and effect size (in brackets) of

the improved accuracy achieved by our approach over the baselines: Random Guessing,

Mean, and Median. In all cases, our approach significantly outperforms the baselines

(p < 0.001) with (large) effect sizes greater than 0.65.

Answer to RQ3: our approach significantly outperforms the baselines, thus passing the

sanity check required by RQ3.

The impact of prediction time (RQ4)

We also varied the prediction time (at the beginning of the iteration, and when it pro-

gresses to 30%, 50% and 80% of its planned duration) to observe its impact on predictive

performance. Note that the extracted features also correspond to the prediction time (e.g.

the number of comments of an issue when an iteration progresses to 80% may greater than

that at the beginning of the iteration). Moreover, the difference between the target velocity

and actual delivered velocity could be dynamic at different prediction times.

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 70

Table 3.12: The descriptive statistics of the difference between actual delivered velocity

against the target velocity from the different prediction time

Project
Prediction

Time(%)

velocity(Difference)

min max mean median STD

Apache 0 -81 57 -7.25 -4 17.56

30 -81 49 -9.05 -5 17.16

50 -81 40 -10.00 -5 16.97

80 -81 30 -10.86 -6 16.69

JBoss 0 -89 30 -5.12 -1 14.78

30 -96 30 -6.03 -1 14.83

50 -96 30 -6.20 -2 15.05

80 -106 10 -6.35 -2 13.97

JIRA 0 -74 147 -1.61 0 12.19

30 -83 117 -2.82 0 11.37

50 -83 96 -3.28 0 11.09

80 -86 72 -4.07 0 10.68

MongoDB 0 -67 88 1.61 0 12.78

30 -67 50 -0.99 0 11.54

50 -67 48 -2.27 -1 11.16

80 -85 44 -3.65 -1 11.29

Spring 0 -131 332 34.72 15 63.57

30 -135 320 23.77 8.5 51.66

50 -135 316 18.79 4 47.92

80 -147 312 11.07 1 42.13

For example, the actual delivered velocity of the iteration named Mesosphere

Sprint 13 in the Apache project is 72, i.e. velocity(Delivered) = 72. At the beginning of

this iteration, team planned to deliver 15 velocity, i.e. velocity(Committed) = 15. The dif-

ference between actual delivered velocity and target velocity of this iteration when the pre-

diction is done at the beginning of the iteration (0%) is 57, i.e. velocity(Difference) =

57. When this iteration progressed to 80% of its planned duration, 33 velocity were

added and planned to deliver in this iteration, i.e. velocity(Committed) = 48. Thus,

velocity(Difference) of this iteration when the prediction is done at 80% of the planned

duration is 24. Table 3.12 shows the statistical description of velocity(Difference) in

the different prediction time. The decreasing of STD of the different velocity in the later

prediction time in all cases shows that teams may adjust the target velocity of ongoing

iterations corresponding to the remaining time of iterations rather than extend the dura-

tion.

We again used the best performer (i.e. GBMs with SA+BoWs) in most cases

to perform this experiment. Figure 3.13 shows NMAE achieved in predicting velocity

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 71

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0% 30% 50% 80%

GBMs (SA+BoWs)

N
M

A
E

Figure 3.13: Evaluation results on varying prediction time. X is a mean of NMAE

averaging across all projects (the lower the better).

(Difference) from the four different prediction times (i.e. at the beginning of the iter-

ation, and when it progresses to 30%, 50%, and 80% of its planned duration) obtained

from running GBMs using the combination of statistical aggregation and Bag-of-Words

aggregation approaches averaging across all projects. We observe that the predictive

performance achieved from the predictions made at a later time in an iteration is

better than those that the predictions made at the beginning of the iterations (0%)

– the prediction at 30%, 50%, and 80% of the iteration’s duration achieves an average of

0.348 NMAE while the prediction at the beginning of the iteration achieves 0.390 NMAE,

averaging across all projects. This confirms our earlier hypothesis that the latter we pre-

dict, the more accuracy we could gain since more information has become available. That

phenomenon is however not consistently seen with the predictive performance of the pre-

diction made at 50% of the iteration’s duration being slightly lower than those that made

at 30% of the iteration’s duration. The prediction made at 80% of the iteration’s duration

does however achieve the highest predictive performance – it achieves 0.318 NMAE, av-

eraging across all projects. For the sake of completeness, our experiments covered a range

of prediction times from 0% to 80% to sufficiently test a hypothesis that the latter we pre-

dict, the more accuracy we could gain. We however acknowledge that making a prediction

at 80% might be less useful in practice since the outcomes have become obvious and/or it

might be too late to change the outcomes.

We investigated further to see when predictions could be made while not losing

too much predictive power. To do so, we analyzed the improvement of the predictive

performance between different prediction time intervals. We found that when we delayed

making a prediction by 30%, we gained only 7-12% improvement in predictive perfor-

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 72

Table 3.13: Number of iterations in each class in each project

Project
Percentile Class

33th 66th Over Achieved Under

Apache -11 0 105 135 108

JBoss -4 0 47 233 92

JIRA -3 0 218 1211 444

MongoDB -2 0 244 273 248

Spring 0 20 162 162 152

mance. In fact, there was not much difference in terms of predictive power when making

a prediction at the 30% or 50% marks. This result suggests that it is reasonably safe to

make a prediction early, even at the beginning of an iteration.

Answer to RQ4: The time when a prediction is made affects the predictive perfor-

mance, but only small improvement is gained when we delay making the prediction.

Classifying the outcomes of an iteration (RQ5)

0.5

0.6

0.7

0.8

0.9

1.0

Apache JBoss JIRA MongoDB Spring

Precision Recall F-measure AUC

Figure 3.14: Evaluation results on predicting the outcomes of iterations in terms of

precision, recall, F-measure, and AUC from each project (the higher the better)

We defined a tolerance margin to classify the outcomes of an iteration based on

the statistical characteristics of each project. To maintain a relative balance between the

classes, we used the 33th and the 66th percentile of velocity(Difference) as the tolerance

margin: an iteration having velocity(Difference) below the 33th percentile falls into

under-achieved class, an iteration having velocity(Difference) above the 66th percentile

falls into over-achieved class, otherwise an iteration falls into achieved class. Table 3.13

shows the number of iterations in each class according to the 33th and the 66th percentile

from each project. For example, in the Apache project, an iteration falls into under-

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 73

achieved class if velocity(Difference) is below -11, and falls into over-achieved class if

velocity(Difference) is over 0.

0.5

0.6

0.7

0.8

0.9

1.0

Apache JBoss JIRA MongoDB Spring

M
C
C

Figure 3.15: Matthews Correlation Coefficient (MCC) results from each project (the

higher the better)

0.0

0.1

0.2

0.3

0.4

Apache JBoss JIRA MongoDB Spring

M
M
A
E

Figure 3.16: Macro-averaged Mean Absolute Error (MMAE) results (the lower the bet-

ter)

In this experiment we also used GBMs with SA+BoWs and applied these margins

to the predicted value of velocity(Difference). For example, in the Apache project,

an iteration is predicted as under-achieved if the predicted value is below -11 (i.e. the

33th percentile). Figure 3.14 shows the precision, recall, F-measure, and AUC achieved

for each of five open source projects. These evaluation results demonstrate the effec-

tiveness of our predictive models in predicting the outcomes of iterations across the

five projects, achieving on average 0.79 precision, 0.82 recall, and 0.79 F-measure. The

degree of discrimination achieved by our predictive models is also high, as reflected in

the AUC results – the average of AUC across all projects is 0.86. The AUC quantifies

the overall ability of the discrimination between classes. Our model performed best for

the Spring project, achieving the highest precision (0.87), recall (0.85), F-measure (0.86),

and AUC (0.90). The result from using MCC as a measure (Figure 3.15) also corresponds

to the other measures. As can be seen from Figure 3.15, our approach achieved over 0.5

-

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 74

MCC in all cases – our approach achieves 0.71, averaging across all projects. MMAE is

used to assess the performance of our models in terms of predicting ordered outcomes.

As can be seen from Figure 3.16, our approach achieved 0.20 MMAE, averaging across

all projects.

Answer to RQ5: Our predictive model is also highly accurate in classifying the out-

comes of an iteration.

Important features

Table 3.14 reports the top-10 most important features and their weight obtained from

running Random Forests with the combination of all aggregated features of issues. The

weights here reflect the discriminating power of a feature since they are derived from the

number of times the feature is selected (based on information gain) to split in a decision

tree [164]. The weights are normalized in such a way that the most important feature has

a weight of 1 and the least important feature has a weight of 0. We observe that iteration

features and statistical aggregation features are dominant in the top-10 list. In many

projects (e.g. Apache, JBoss, and MongoDB) iteration features such as the number of

to-do issues, to-do velocity, and velocity at start time, are good predictors for foreseeing

how an iteration will achieve against the target. It also corresponds to our results for

finding the best combinations of aggregated features in RQ1. For example, in the JIRA

and MongoDB projects, there are several aggregated features from statistical aggregation

(SA) and Bag-of-Words aggregation (BoWs) that have high discriminating power since

SA+BoWs performs best in those projects.

In addition, the changing of the other issue attributes (e.g. fix versions, descrip-

tion) are also in the top-10 in several projects (e.g. Apache and JBoss). In Spring, the

graph-based aggregated features (e.g. sum of fan in/out) are good predictors. In the JBoss

project, the features related to comments and number of team members are important

for predicting the difference between the actual delivered velocity and the target velocity

which may suggests that team collaboration is an important factor.

3.5.4 Implications and lessons learned

Results from our evaluations on five large open source projects suggest that our approach

is highly reliable in predicting delivery capability at the iteration level. It allows project

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 75

Table 3.14: Top–10 most important features with their normalized weight

Apache JBoss JIRA

To-do velocity 1.00 To-do velocity 1.00 To-do velocity 1.00

Velocity at start time 0.93 Velocity at start time 0.65 Cluster 5 (BoWs) 0.61

No. of issues at start time 0.53 No. of to-do issues 0.45 Cluster 53 (BoWs) 0.37

No. of to-do issues 0.50 No. of issues at start time 0.37 Cluster 93 (BoWs) 0.35

Type (Epic) 0.32 Priority (Critical) 0.27 Type (Story) 0.28

Changing of desc. (var) 0.23 Changing of fix versions (max) 0.19 Velocity at start time 0.26

Changing of desc. (mean) 0.20 Type (Feature Request) 0.16 Type (Major) 0.25

In-progress velocity 0.19 No. of comments (std) 0.15 Type (Improvement) 0.24

Type (Story) 0.19 No. of team mem. 0.14 No. of comments (std) 0.22

No. of team mem. 0.18 No. of fix versions (var) 0.14 Cluster 27 (BoWs) 0.20

MongoDB Spring

Velocity at start time 1.00 Type (Major) 1.00

In-progress velocity 0.95 Done velocity 0.85

To-do velocity 0.94 In-progress velocity 0.82

No. of in-progress issues 0.71 No. of edges 0.76

Added velocity 0.67 Sum of fan in 0.75

No. of issues at start time 0.47 Sum of fan out 0.74

Cluster 43 (BoWs) 0.46 No. of comments (std) 0.68

Priority (Hard) 0.38 Cluster 56 (BoWs) 0.59

Cluster 21 (BoWs) 0.36 Mean of fan in 0.58

Done velocity 0.35 Added velocity 0.53

managers and other decision makers to quickly foresee, at any given time during an on-

going iteration, if their team is at risk of not meeting the target deliverable set for this

iteration. Predicting delivery capability early allows the team to deploy mitigation mea-

sures such as appropriate changes affecting the values of the top-5 predictors presented

the previous section. Effective project management should also identify situations where

an unexpected future event might present an opportunity to be exploited. Our approach

supports iterative software development by forecasting whether the team is likely to de-

liver more than what has been planned for in an iteration. Knowing these opportunities

early allows the team to plan for accommodating extra high-priority issues into the current

iteration.

Story points are used to compute velocity, a measured use for the team’s delivery

capability per iteration. In practice, story points are however developed by a specific team

based on the team’s cumulative knowledge and biases, and thus may not be useful outside

the team (e.g. in comparing performance across teams). Hence, the trained models are

specific to teams and projects.

Our evaluation also demonstrates the high performance of the three ensemble

methods used in building our prediction models. This suggests that ensemble methods

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 76

such as Random Forests or Gradient Boosting Machines can be highly recommended for

building software analytics models. Deep learning neural networks are only effective

where there are significantly large amounts of data for training, which might not be the

case for a range of software engineering problems.

One of the key novelties in our approach is deriving new features for an iteration

from aggregating the features of its issues and their dependencies. These features can be

derived by using a range of statistics over the issues’ features or automatically learned

using the bag-of-word approach. Our experimental results demonstrate the effectiveness

of this approach and that they are complementary to each other. These results suggest that

these feature aggregations techniques can be useful in other software analytics settings

where features are located in different layers (similarly to iterations and issues).

In addition, there is well-established knowledge in machine learning that model

accuracy depends critically on informative and comprehensive features extracted from

data. It is also known that features are more useful when there are less redundancies. In

our data, there are two main separate structures: the attributes associated within each issue

and the dependency structure between issues. Our three feature sets are obtained through

(a) aggregation of issue attributes, hence capturing the salient characteristics within a

sprint, (b) building Bag-of-Words – which is essentially the well-known vector quantiza-

tion technique – by finding distinct exemplars via k-means, hence reducing redundancies,

and (b) exploiting graph characteristics, hence adding complementary information. Our

experiments demonstrate that combining those three feature sets yields the best perfor-

mance, thus confirming the prior knowledge. The increase in performance cannot be

explained just by the increase in model complexity. This is because a more complex

model will definitely fit the training data better, but it is more likely to hurt performance

on test data due to the classic problem known as overfitting. If our goal is to derive a

highly accurate model, then model complexity should not be a problem, as long as the

model generalises better than simpler alternatives.

A major contribution of our work is demonstrating the utility of randomized meth-

ods to avoid the need for feature selection and reduction. While we acknowledge that a

small set of independent features would be easy to understand, realistic problems are

often complex enough to warrant a comprehensive feature set. The use of feature ag-

gregation techniques has given us an extensive set of features to characterize a software

development iteration. Although feature selection could be employed to filter out “weak”

predictors, feature selection can be unstable: each selection method, running on different

data samples, can produce a different subset of features. In modern machine learning

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 77

techniques, feature correlation is no longer a crucial issue [139]. Randomized methods

such as those used in this chapter need neither feature selection nor dimensionality re-

duction. This is because at each training step, only a small random subset of features is

used – this also breaks the correlation between any feature pair since correlated features

are much less likely to be in the same subset [165]–[167]. In addition, when making a

prediction, a combination of many classifiers are used, each of which works on a smaller

feature set.

3.5.5 Threats to validity

There are a number of threats to the validity of our study, which we discuss below.

Threats to construct validity: Construct validity concerns whether independent

and dependent variables from which the hypothesized theory is constructed are relevant.

We mitigated these threats by using real world data from iterations and issues recorded in

several large open source projects. We collected iterations, all issues associated to these

iterations, and all the relevant historical information available to ensure. The ground-truth

(i.e. the difference between the actual delivered velocity and the target velocity) is based

on the story points assigned to issues. Those story points were estimated by teams, and

thus may contain human biases. However, story points are currently the best practices for

measuring the delivery capability of a team, and are widely used in the industry. Hence,

using story points makes our approach relevant to current industry practices.

Threats to conclusion validity: We tried to minimize threats to conclusion va-

lidity by carefully selecting unbiased error measures and applied a number of statistical

tests to verify our assumptions [157] and following recent best practices in evaluating

and comparing predictive models regarding effort estimation [157], [168]. In terms of

predicting the three outcomes of an iteration (i.e. classification), our performance mea-

sures were also carefully designed against reporting bias towards majority classes. For

example, while the F-measure is a balance between recall (often low for minority class)

and precision (often high for minority class), we also employed the MCC performance

measure which is insensitive to class imbalance. We used the MMAE performance mea-

sure for ordered classes. We however acknowledge that other techniques could also be

used such as doing statistical undersampling, or artificially creating more samples for the

undersampled class.

Threats to internal validity: Our great concern for threats to internal validity

is data preprocessing. We found that around 30% of the issues across the five projects

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 78

have not been assigned a story point (missing data). We filled those missing values using

the mean of story points in each project. Our future work will investigate the use of

other imputation techniques to handle such missing data. We also removed outliers (i.e.

the difference velocity) and iterations involved with zero issue. We carefully processed

the issue’s change log to extract the features regard to a prediction time to prevent the

leaking [128]. In addition, we also tried to avoid instability from applying additional

data preprocessing algorithms (e.g. feature engineering) [43] by employing the ensemble

randomized methods which overcome these problems (e.g. feature correlation, feature

selection) [139].

Threats to external validity: We have considered almost 4,000 iterations and

60,000 issues from five large open source projects, which differ significantly in size, com-

plexity, team of developers, and the size of community. All iteration and issue reports are

real data that were generated during from the software development in open source set-

tings. We however acknowledge that our data set may not be representative of all kinds of

software projects, especially in commercial settings (although open source projects and

commercial projects are similar in many aspects). Further investigation to confirm our

findings for other open source and for closed source projects is needed.

3.6 Related work

Today’s agile, dynamic and change-driven projects require different approaches to plan-

ning and estimating [125]. A number of studies have been dedicated to effort estimation

in agile software development. Estimation techniques that rely on experts’ subjective as-

sessment are commonly used in practice, but they tend to suffer from the underestimation

problem [30], [169]. Some recent approaches leverage machine learning techniques to

support effort estimation for agile projects. The work in [170] developed an effort predic-

tion model for iterative software development setting using regression models and neural

networks. Differing from traditional effort estimation models (e.g. COCOMO [171],

[172]), this model is built after each iteration (rather than at the end of a project) to esti-

mate effort for the next iteration. The work in [173], [174] built a Bayesian network model

for effort prediction in software projects which adhere to the agile Extreme Programming

method. Their model however relies on several parameters (e.g. process effectiveness and

process improvement) that require learning and extensive fine tuning.

Bayesian networks are also used [175] to model dependencies between different

factors (e.g. sprint progress and sprint planning quality influence product quality) in a

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 79

Scrum-based software development project in order to detect problems in the project. Our

work predicts not only the committed velocity against the actual achieved velocity but also

the delivered against non-delivered velocity. More importantly, we use a comprehensive

aggregation of features at both the iteration and issue levels, which represents the novelty

of our work.

Several approaches have also been proposed to predict the resolving time of a

bug or issue (e.g. [130], [176]–[179]). Those work however mainly focus on waterfall

software development processes. This work, in contrast, aims to predict the quantum

of achieved works at the level of iterations (and can be extended to releases as well) in

agile software development. Here, we leverage feature/representation learning techniques

which were not used in those previous work.

Graph-based characterization, one of the techniques we employed here, has also

been used for building predictive models in software engineering. The study in [180]

shows the impact of dependency network measures on post-release failures. The work

in [138] built graphs representing source code, module and developer collaboration and

used a number of metrics from those graphs to construct predictors for bug severity, fre-

quently changed software parts and failure-prone releases. Similarly, Zimmermann and

Nagappan [181] built dependency graphs for source code and used a number of graph-

based measures to predict defects. Those approaches mostly work at the level of source

code rather than at the software task and iteration level as in our work. Our recent work

[132] proposed an approach to construct a network of software issues and used networked

classification for predicting which issues are a delay risk. Those approaches however did

not specifically look at the iterative and agile software development settings as done here

in our work.

Our work is also related to the work on predicting and mining bug reports, for

example, blocking bug prediction (e.g. [133]), re-opened bug prediction (e.g. [111],

[113]), severity/priority prediction (e.g. [22], [23]), delays in the integration of a resolved

issue to a release (e.g. [76]), bug triaging (e.g. [77], [182], [183]), duplicate bug detection

([184]–[189]), and defect prediction (e.g. [190], [191]).

3.7 Chapter summary

Iterative software development methodologies have quickly gained popularity and gradu-

ally become the mainstream approach for most software development. In this chapter, we

CHAPTER 3. DELIVERY CAPABILITY PREDICTION 80

have proposed a novel approach to delivery-related risk prediction in iterative develop-

ment settings. Our approach is able to predict how much work gets done in the iteration.

Our approach exploits both features at the iteration level and at the issue level. We also

used a combination of three distinct techniques (statistical feature aggregation, bag-of-

words feature learning, and graph-based measures) to derive a comprehensive set of fea-

tures that best characterize an iteration. Our prediction models also leverage state-of-the-

art machine learning randomized ensemble methods, which produce a strong predictive

performance. An extensive evaluation of the technique on five large open source projects

demonstrates that our predictive models outperform three common baseline methods in

Normalized Mean Absolute Error and are highly accurate in predicting the outcome of

an ongoing iteration. In the next chapter, we focus on the prediction at the issue level.

We propose an approach to predict the delay of issues with due dates in Chapters 4

and 5.

Chapter 4

Delay prediction

ISSUE-TRACKING systems (e.g. JIRA) have increasingly been used in many software

projects. An issue could represent a software bug, a new requirement or a user story, or

even a project task. A deadline can be imposed on an issue by either explicitly assigning

a due date to it, or implicitly assigning it to a release and having it inherit the release’s

deadline. This chapter presents a novel approach to providing automated support for

project managers and other decision makers in predicting whether an issue is at risk of

being delayed against its deadline. A set of features characterizing delayed issues are

extracted and are selected to build predictive models to predict if the resolution of an issue

will be at risk of being delayed. In addition, our predictive models are able to predict both

the extend of the delay (e.g. impact) and the likelihood of the delay occurrence.

Delays constitute a major problem in software projects [192]. The studies in [1],

[192], [193] have shown that ineffective risk management is one of the main reasons for

the high rate of overrun software projects. An important aspect of risk management is the

ability to predict, at any given stage in a project, which tasks (among hundreds to thou-

sands tasks) are at risk of being delayed. Foreseeing such risks allows project managers to

take prudent measures to assess and manage the risks, and consequently reduce the chance

of their project being delayed. Making a reliable prediction of delays is therefore an im-

portant capability for project managers, especially when facing with the inherent dynamic

nature of software projects (e.g. constant changes to software requirements). Current

practices in software risk management however rely mostly on high-level, generic guid-

ance (e.g. Boehm’s “top 10 list of software risk items” [100] or SEI’s risk management

framework [194]) or highly subjective expert judgements.

81

CHAPTER 4. DELAY PREDICTION 82

Project managers need to ensure that issues are resolved in time against their

respective due date. However, in practice project will never execute exactly as it was

planned due to various reasons. One of the main challenges in project management is

therefore predicting which tasks have a risk of being delayed, giving the current situation

of a project, in order to come up with measures to reduce or mitigate such a risk. Hence,

this approach aims to provide automated support for project managers and other decision

makers in predicting whether an task is at risk of being delayed against its deadline. Mak-

ing a reliable prediction of delays could allow them to come up with concrete measures

to manage those issues.

We propose to analyze the historical data associated with a project (i.e. past issue

reports and development/milestone/release plans) to predict whether a current issue is at

risk of being delayed. Our approach mines the historical data associated with a project

to extract past instances of delayed issues and cause factors. For example, a software

developer being overloaded with the issues assigned to her, which may lead to that she

may not complete some of those tasks in time. This knowledge allows us to extract a set

of features characterizing delayed issues, which are then used to predict if an ongoing

issue has a delay risk.

This chapter presents two main contributions:

• Characterization of the issues that constitute a risk of delay. We extracted a

comprehensive set of 19 features (discussion time, elapsed time from when the issue

is created until prediction time, elapsed time from prediction time until the dead-

line, issue’s type, number of repetition tasks, percentage of delayed issues that a de-

veloper involved with, developer’s workload, issue’s priority, changing of priority,

number of comments, number of fix versions, changing of fix versions, number of

affect versions, number of issue link, number of blocked issues, number of blocking

issues, topics of an issue’s description, changing of description, and reporter rep-

utation) from more than 60,000 issues collected from eight open source projects:

Apache, Duraspace, Java.net, JBoss, JIRA, Moodle, Mulesoft, and WSO2. In ad-

dition, we performed two feature selection approaches – i.e. ℓ1-penalized logistic

regression model and using p-value from logistic regression model to select risk

factors (i.e. features) with good discriminative power for each project.

• Predictive models to predict which issues are a delay risk.

We developed accurate models that can predict whether an issue is at risk of being

delayed. Our predictive models are able to predict both the impact (i.e. the degree

of the delay) and the likelihood of a risk occurring. For example, given an issue X ,

CHAPTER 4. DELAY PREDICTION 83

our models are able to predict that there are (e.g.) 20% chance of X not posing a

risk (e.g. causing no delay), (e.g.) 10% of being a minor risk (e.g. causing minor

delay), (e.g.) 30% of being a medium risk (e.g. medium delay), and (e.g.) 40%

a major risk (e.g. major delay). The performance of our predictive models were

evaluated on eight different open source projects to ensure that they can be gener-

alized. We achieved 79% precision, 61% recall, 68% F-measure, 83% Area Under

the ROC Curve, and low error rates: 0.66 for Macro-averaged Mean Cost-Error and

0.72 for Macro-averaged Mean Absolute Error.

The remainder of this chapter is organized as follows. In Section 4.1 provides

a conceptual framework of our approach. Section 4.2 presents a comprehensive set of

features that are potentially associated with delayed issues. Section 4.3 describes how

those features are selected to develop our predictive models (discussed in Section 4.4).

We explain how we collect the data for our empirical study and evaluation in Section 4.5.

Section 4.6 reports the experimental evaluations of our approach. Related work of this

approach is discussed in Section 4.7 before we conclude in Section 4.8.

4.1 Approach

Typically, a (software) project requires a number of activities or tasks be completed. Each

task usually has an estimated due date (e.g. deadline, project milestone). Currently,

there are several project management supporting tools (e.g. JIRA softwarea). Those

tools allow teams to collaborate among team members, plan their tasks, monitor their

working progress, and to manage those tasks including define a due date (i.e. deadline)

of a task. These supporting tools record a task in a form of an issue. Each issue usually

has a planned due date, which can be set by either explicitly assigning a due date to it, or

implicitly assigning it to a release and having it inherit the release’s deadline. We refer to

issues that were completed after their planned due date as delayed issues – as opposed to

non-delayed issues which were resolved in time.

Figure 4.1 shows an example of an issue in the Apache project (recorded in JIRA

software) which was assigned August, 19 2014 as due date. This issue is a delayed issue

since it was resolved in August, 29 2014 – 10-day after its due date. The number of days

that an issue are delayed also reflects the impact (e.g. severity) to software project, e.g.

ahttps://www.atlassian.com/software/jira

https://www.atlassian.com/software/jira

CHAPTER 4. DELAY PREDICTION 84

Figure 4.1: An example of an issue assigned with a due date

major impact, minor impact. For example, a longer delay, the higher impact to a project.

We consider delay as a risk and its impact is classified into a risk class.

Definition 3 (Risk class) A risk class C presents an impact of delayed and non-delayed

issues. A project can have more than one risk classes. For example, C1 represents non-

delay class, C2 represents minor-delay class, C3 represents medium-delay class, and C4

represents major-delay class.

A risk class is assigned to an issue based on the number of delay days. For ex-

ample, the minor-delay class C2 is assigned to issues that were delayed between 1 to 5

day(s), the medium-delay class C3 is for 6 to 10 days delayed issues, and delayed-issues

that were delayed more than 10 days are assigned to the major-delay class C4, while non-

delay issues have C1 as their class.

The basic process of our approach is described in Figure 4.2. The process has

two main phases: the learning phase and the execution phase. In the learning phase, let

Strain be a set of historical issues that were resolved (i.e. issues having their resolved date

recorded) and Stest be a set of ongoing issues that have not been resolved (i.e. no resolved

CHAPTER 4. DELAY PREDICTION 85

Historical	

issues

Identifying		delay	

status	of	issues

Labelled

issues

Extracting

features

Selecting

features

Training

classifier

Trained	

classifier

Learning	phase

New	issues

Extracting

features

Execution	phase

Predicted	delay

status	of	issues

Figure 4.2: An overview of our approach

date recorded issues). The issues in Strain can be classified into one of the risk classes

(e.g. C1, C2, C3, and C4) based on their delay status by comparing between their resolved

date against their due date (i.e. data labelling). To characterized an issue, we extract a set

of features from issues in Strain which can be considered as risk factors that could cause a

delay. We then apply a feature selection technique to select a subset of features that pro-

vide a good predictive performance. For example, there are 5 features [f1, f2, f3, f4, f5]

extracted from an issue. After applying a feature selection, only three features [f1, f2, f3]

have been selected to build a predictive model since f4 and f5 are highly correlated fea-

tures (e.g. these two features convey similar information). Our predictive model learns

the characteristics of issues in Strain to classify an issue into a risk class. Our approach

leverages classification techniques in machine learning (e.g. Random Forests) to build

predictive models. The selected features are then extracted from the issues in Stest and fed

into the trained classifier to make predictions in the execution phase.

4.2 Features of an issue

One of our objectives is to characterize risk factors that lead to a delayed issue. These

factors form risk indicators (i.e. features) which are then used to predict if an issue will

be delayed. In our model, our feature extraction process takes a prediction time (i.e.

when a prediction is made) into account. We used the time when a prediction is made

(prediction time) as the reference point when extracting the values of the features. During

both training (i.e. learning) and testing (i.e. execution) phases, by processing an issue’s

change log, we collected the value which a feature had just before the prediction time. For

example, if the final number of comments on an issue is 10, but there were no comments

~ - [o 0] -~ :---------- 0° -~
I
I

I

l : l

~-~-~ 8<>(9

CHAPTER 4. DELAY PREDICTION 86

at the time when the prediction was made, then the value of this feature is 0. The details

of issue’s change log processing is provided in Section 4.5.

The underlying principle here is that, when making a prediction, we try to use

as much information available at prediction time as possible. The historical information

before the prediction time is used for training our predictive model, while the historical

information after the prediction time is used for testing our model. Hence, our model

is forward-looking analysis (predictive analytics), not retrospective analysis. The time

when the prediction is made also has implications to its accuracy and usefulness. The

later we predict, the more accuracy we could gain (since more information has become

available) but the less useful it is (since the outcome may become obvious or it is too

late to change the outcome). For example, if we assume prediction would be made after

an issue has been discussed and assigned to a developer, then the features extracted and

selected are historically relevant with respect to this prediction time. Doing this is to

prevent information leakage in prediction [128]. We also explore when it is a good time

to start predicting by examining three different prediction times.

We initially extracted a broad range of features related to an issue causing a delay,

and then used feature selection techniques (see Section 4.3) to remove weak and redun-

dant features. The following is the description of 19 features. We note that we studied on

more than 60,000 issues collected from eight open source projects: Apache, Duraspace,

Java.net, JBoss, JIRA, Moodle, Mulesoft, and WSO2 which we also provide statistical

analysis results based on those collected issues to justify the extracted features. The de-

tails of data collection and extraction is provided in Section 4.5.

• Discussion time

A software project can be viewed as a network of activities. Each activity is

recorded as an issue whose details can be described and tracked in an issue tracking

system. Hence, the time taken to complete a task (i.e. resolve an issue) contributes to the

overall schedule of the project. More specifically, issues that take a significant, unusual

amount of time to resolve may lead to delays. Discussion time is the period that a team

spends on finding solutions to solve an issue. For example, the delayed issue MDL-38314

in version 2.5 of the Moodle project had 92 days in discussion. Figure 4.3 shows the

distribution of the discussion time in each project. Teams tend to spend between 10 to 90

days for the discussion time.

• Type

CHAPTER 4. DELAY PREDICTION 87

Apache Duraspace Java.net JBoss JIRA Moodle Mulesoft WSO2

Project

0

100

200

300

400

500

D
a
y
s

Figure 4.3: The distribution of the discussion time in each project

Each issue will be assigned a type (e.g. Task, Bug, New feature, Improvement,

and Function Test) which indicates the nature of the task associated with resolving the

issue (e.g. fixing a bug or implementing a new feature). Hence, we also consider issue

type as a risk indicator. We note that some projects define some of their own issue types.

For example, while there is no “Document” type for issues in the Moodle project, this

type exists in the issues of JBoss and Duraspace. Thus, we considered only eight com-

mon types (Bug, Function Test, Improvement, New Feature, Story, Task, Sub-Task, and

Suggestion) which 98.53% of issues have been assigned these types. Note that other types

were set as Null.

• Number of times that an issue is reopened

Previous research, e.g., [111], [195], [113], [112], has shown that task repetitions

(i.e. repetitions in the life-cycle of an issue) are considered as a degrading factor of

the overall quality of software development projects. It often leads to additional and

unnecessary rework that contributes to delays. An issue is reopened because of several

reasons, e.g. if the problem has not actually been properly resolved, the issue needs to

be reopened; or closed issues must be reopened since there are some errors found in the

deployment phase after the issues were closed. We found that there are more than 20% of

issues have been reopened. Especially, in the Apache project, 3,020 issues (48.02%) out

of 6,289 were reopened at least one time.

• Priority

CHAPTER 4. DELAY PREDICTION 88

The issue’s priority presents the order in which an issue should be attended with

respect to other issues. For example, issues with blocker priority should be more con-

cerned than issues with major or minor priority. Blocker priority is an issue that blocking

other issues to be completed. In our study, we considered five priority levels: trivial, mi-

nor, major, critical, and blocker. 97% of the issues were assigned to one of these priority

levels. We note that, in the WSO2 project, the level names are different (e.g. lowest, low,

medium, high, highest), and thus were mapped to the five priority levels used in the other

projects.

• Changing of priority

The changing of an issue’s priority may indicate the shifting of its complexity. In

previous studies, Xia et al. showed that changing of issue’s attributes (e.g. priority) could

increase the bug fixing time, and delay the delivery of the software [134]. In addition,

Valdivia et al. use the changing of priority as a feature to predict blocking bug [133]. In

our context, we are particularly interested in the number of times an issue’s priority was

changed and considered it as a potential risk indicator.

• Number of comments

Number of comments from developers during the prediction may be indicative

of the degree of teams collaboration [196]. Panjer reported that a number of comments

has an impact on the bug resolving time: bugs with two to six comments tend to be

resolved faster than bugs with less than two comments and bugs with greater than six

comments [130]. Note that we only consider the number of comments posted before the

prediction time.

• Number of fix versions

The “Fix Version” field on each issue indicates the release version(s) for which the

issue was (or will be) fixed. Issues with a high number of fix versions need more attention

in terms of developing, testing, and integrating. An intensive reviewing process is also

required to validate that the resolving of an issue does not cause new problems for each fix

version. We found that 84.29% of the issues were assigned at least one fix version.

• Changing of fix versions

This feature reflects the number of times the fix versions associated with an issue

have been changed (e.g. adding or remove some versions). The changing of the fix

version(s) assigned to an issue may reflect some changes in the release planning and/or

CHAPTER 4. DELAY PREDICTION 89

may be due to the nature of resolving the issue [134]. We thus consider the number of

times the fix versions have been changed as a potential risk indicator.

• Number of affect versions

The “Affect Version” field of an issue specifies versions in which it has been found.

One issue can be found in many versions. For example, the issue MDL-48942 in the

Moodle project has been found in version 2.7.5 and 2.8.2. It was planed to be fixed for

versions 2.7.6 and 2.8.4. The number of affected versions is a potential risk indicator, e.g.

more effort is needed to resolve an issue with a high number of affected versions. From

our investigation, 77.72% of the issues were assigned with affected versions.

• Number of issue links

Issue linking allows teams to create an association between issues. For example,

an issue may duplicate another, or its resolution may depend on another issue. There

are several type of issue links (e.g. relates to, duplicate, and block). Our previous work

leverages the relationships among issues to predict delayed issues [132]. We consider all

relations of issue link and use the number of those links as a risk indicator.

• Number of issues that are blocked by this issue

Blocker is one of the issue linking types. This risk factor is the number of issues

that are blocked by this issue. This type of issue dependency indicates the complexity of

resolving issues since it directly affects the progress of other issues [131]. Thus, we deal

with the blocker relationship separately.

• Number of issues that block this issue

This risk factor is the number of other issues that are blocking this issue from

being completed. The resolving of such an issue might take some time since all blocker

issues need to be fixed beforehand. Thus, the number of blocker issues indicates the time

allocated to solve an issue [133].

• Topics of an issue’s description

The description of an issue explains its nature and thus can be a good feature. To

translate an issue’s description into a feature, we have employed natural language pro-

cessing techniques to extract the “topics” from such a description. These topics are used

as a feature characterizing an issue. A topic here refers to a word distribution extracted

from the description of an issue using Latent Dirichlet Allocation (LDA) [197]. LDA is

used for finding topics by looking for independent word distributions within numerous

CHAPTER 4. DELAY PREDICTION 90

documents (i.e. the description of issues). These documents are represented as word dis-

tributions (i.e. counts of words) to LDA. LDA usually attempts to discover a set of n

topics, i.e. n word distributions that can describe the set of input documents. We used

LDA to obtain a set of n topics in the form of a topic-document matrix for each issue. For

example, the extracted topics representing the description of issue MESOS-2652 from the

Apache project is “slider, mesos, application, app, support, container, executor, process,

json, registry”, where each term (e.g. slider) represents a generalized word in a set of

issues’ description. Note that the number of extracted topics is a parameter, and in this

example was set to 10. We also performed a study on using different numbers of topics

and the results are reported in Section 4.6.

• Changing of description

The description of an issue is important to all stakeholders of the issue. Changing

the description of an issue indicates that the issue is not stable and may also create confu-

sion and misunderstanding (and is thus a delay risk). Hence, we consider the number of

times in which the issue’s description was changed as a risk factor. We found that 13% of

the issues have their description changed.

• Reporter reputation

Reporter reputation has been studied in previous work in mining bug reports, e.g.,

[111], [135], [176]. For example, Zimmermann et. al. found that bugs reported by

low reputation people are less likely to be reopened [111]. Hooimeijer et al. used bug

opener’s reputation to predict whether a new bug report will receive immediate attention

or not [135]. Bhattacharya et al. studied bug fix time prediction models using submitter’s

reputations [176]. In the context of predicting delayed issues, reporter reputation could

be one of the risk factors since issue reporters with low reputation may write poor issue

reports, which may result in a longer time to resolve the issue [195]. We use Hooimeijer’s

submitter reputation [135] as follows:

reputation(D) =
|opened(D)∩ f ixed(D)|

|opened(D)|+1

The reputation of a reporter D is measured as the ratio of the number of issues that

D has opened and fixed to the number of issues that D has opened plus one.

Figure 4.4 shows the distribution of the reporter reputation in each project. The

mean of the reporter reputation in the Apache and Moodle projects are higher than that

of the other projects (0.62-0.65), while the mean of the reporter reputation in WSO2 is

CHAPTER 4. DELAY PREDICTION 91

the lowest. This indicates that reporters were not usually assigned to resolve issues in

WSO2. In addition, Moodle has only 11.22% of issues were delayed. The JBoss project,

in contrast, has the lower report reputation and a large number of delayed issues (53.88%)

has been found.

Apache DuraspaceJava.net JBoss JIRA Moodle Mulesoft WSO2

Project

0

0.2

0.4

0.6

0.8

1

R
e
p
u
ta

ti
o
n

Figure 4.4: The distribution of the reporter reputation in each project

• Developer’s workload

Developer workload reflects the quality of resource planning, which is crucial for

project success. A lack of resource planning has implications to project failures [198], and

developer workload may have significant impact on the progress of a project [101], [199].

A developer’s workload is determined by the number of opened issues that have been

assigned to the developer at a time. A developer’s workload is (re-)computed immediately

after the developer has been assigned an issue. Figure 4.5 shows the distribution of the

developer’s workload in each project. It can be noticed that a large number of delayed

issues were found in the projects that have the high developer’s workload (i.e. Apache

and JBoss).

• Percentage of delayed issues that a developer involved with

Team members lacking specialized skills required by the project and inexperi-

enced team members are amongst the major threats to schedule overruns [200]. Incom-

petent developers tend to not complete their tasks in time [101]. Boehm [100] also listed

personnel shortfalls as one of the top-ten risks in software projects. On the other hand,

recent research has shown that the best developers often produce the most bugs, since

CHAPTER 4. DELAY PREDICTION 92

Apache DuraspaceJava.net JBoss JIRA Moodle Mulesoft WSO2

Project

0

50

100

150

200

#
 i
s
s
u

e
s

Figure 4.5: The distribution of the developer’s workload in each project

they often choose or were given the most complex tasks [201]. This phenomenon might

also hold for delayed issues: best developers may get the hardest issues and thus they take

the longest time to complete it. A developer might have a large number of delayed issues

simply because she is an expert developer who is always tasked with difficult issues.

We characterize this risk factor as the percentage of delayed issues in all of the

issues which have been assigned to a developer. This metric is computed at the time when

a developer has been assigned to solve an issue. For example, from the JBoss project,

issues JBDS-188 and JBDS-1067 were assigned to the same developer but at different

times. At that time when JBDS-188 had been assigned, the developer had 66% of delayed

issues, while at a time of assigning the developer to JBDS-1067, the developer had 48%

of delayed issues.

• Elapsed time from when the issue is created until prediction time

This factor is the number of days from when the issue is created until prediction

time. For example, issue ID DRILL-1171 in the Apache project was created on July

23, 2014. We assumed that the prediction was made at the time when the due date was

assigned to the issue, i.e. August 14, 2014. Hence, the elapsed time between creation and

prediction time is 22 days. Across all projects, the minimum, maximum, and median time

between when a deadline is assigned to an issue and its creation are respectively 0, 1703,

and 1 day with a standard deviation of 155.

• Elapsed time from prediction time until the deadline

~ ;
i -I
I

I I
I

! I !
; -

! I - I
! I

I
I : I I

--.-

1
I

I I I
T I

I I I
I I

I I I T

I T I I
I I g I

I I
I

bd bJ s I

6 ~ 8 Q

CHAPTER 4. DELAY PREDICTION 93

Apache DuraspaceJava.net JBoss JIRA Moodle Mulesoft WSO2

Project

0

20

40

60

80

100

p
e
rc

e
n
ta

g
e
 (

%
)

Figure 4.6: The distribution of the percentage of delayed issues that a developer involved

with in each project

This factor is the number of days from prediction time until the due date which

reflects the remaining time to resolve an issue before the deadline (not the actual time the

issue was resolved). For example, August 21, 2014 is the deadline (i.e. due date) of issue

ID DRILL-1171. If prediction time is on August 14, 2014, then the elapsed time from

prediction time until the deadline is 7 days. Across all projects, the minimum, maximum,

and median time between when a deadline is assigned to an issue and its resolution are

respectively 1, 2049, and 31 days with a standard deviation of 176.

4.3 Feature selection

The next step of our approach involves selecting a compact subset of features (described in

Section 4.2) that provide a good predictive performance. This process is known as feature

selection in machine learning [202]. Sparse models, those models with a small number

of features, are desirable since they are easier to interpret and acted upon by model users.

They also enable the classifiers to train faster and critical to prevent over-fitting when

training data is limited compared to the number of possible attributes. Over-fitting occurs

when a model (i.e. classifier) learns the detail and noise in the training data or having too

many features relative to the number of observations (i.e. issues). It negatively impacts

the models ability to generalize [202].

I .,--
l

I
.,---

I i

I
I I ! T
I I I

.,--
I i

I
I I !

I

I I .,--- _ i I
I

I I I I
I

I I I I
I I I I

I I I
I

~
I

$
I

I g ~ g I I

_L _L

CHAPTER 4. DELAY PREDICTION 94

In this section, we explore two distinct feature selection techniques: using p-value

from logistic regression model and ℓ1-penalized logistic regression model.

4.3.1 Using p-value from logistic regression model

Logistic regression model [203] can be used to predict binary outcomes (e.g. delayed and

non-delayed classes). The model estimates the probability of an event occurring (e.g. will

this issue be delayed?) under the presence of feature x as follows:

P(y = 1|x) =
1

1+ e−(β0+β1(x))

We built logistic regression models based on the features described in Section 4.2. This

technique examines the contribution of each feature to the classification outcome inde-

pendently. The coefficient β1 indicates how strong the feature contributes to the delay. Its

p-value measures the probability that the feature’s contribution is due to random chance.

A low p-value (p < 0.05) indicates that a feature is likely to associated with the out-

come. A larger p-value, in contrast, suggests that the changes of a feature’s value are

not statistically associated with the changes of the delayed class. In our study, we select

features with p < 0.05. However, assessing p-values of an individual feature ignores cor-

relations among them which can cause multi-collinearity. Collinearity refers to an exact

or approximate linear relationship between two or more features which it is difficult to

obtain reliable estimates of their individual regression coefficients – i.e. two variables are

highly correlated, they both convey essentially the same information. We thus filtered

out features which exhibit multi-collinearity using the Belsley collinearity diagnostics

[204] by selecting only one feature with the lowest p-value from those highly correlated

features. The Belsley collinearity diagnostics [204] is the technique for assessing the

strength and sources of collinearity among variables (i.e. features) in a multiple linear

regression model which is a model of the form Y = Xβ + ε . X is a matrix of regres-

sion variables, and β is vector of regression coefficients. The output of this technique is

Variance-Decomposition Proportions (VDP) which identifies groups of variates involved

in near dependencies. VDP is determined from using the condition indices of a scaled

matrix X which is the singular-value decomposition (SVD) [205] defined as a matrix S.

From the singular-value decomposition of scaled matrix X with p columns (p equals to

the number of selected features), let V be the matrix of orthonormal eigenvectors of X ′X ,

and S(1) ≥ S(2) ≥ ... ≥ S(p) be the ordered diagonal elements of the matrix S. Thus, the

VDP is the proportion of the jth term in the sum relative to the entire sum (j = 1, ..., p)

CHAPTER 4. DELAY PREDICTION 95

from the estimate of the ith multiple linear regression coefficient, βi:

V (i,1)2/S2
(1)+V (i,2)2/S2

(2)+ ...+V (i, p)2/S2
(p)

where V (i, j) denotes the (i, j)th element of V [204].

4.3.2 ℓ1-penalized logistic regression model

While feature selection using p-value has been frequently used, it tends to overestimate

the contribution of each feature in absence of other features. When all features are simul-

taneously considered, the individual contributions tend to be dampened due to correlation

between features. Thus it might be better to assess the significance of all features at the

same time. To that end, we developed a ℓ1-penalized logistic regression model [206]

for selecting features. The following is the detail of the ℓ1-penalized logistic regression

model.

Let
{

(xi,yi)
}n

i=1
be the training set, where x ∈R

p be the feature vector and y ∈±1

be the binary outcome i.e., y = 1 if delay occurs and y =−1 otherwise. Let

f (x) = w0 +
p

∑
j=1

w jx j

where w j is the feature weight (i.e. coefficient). We aim at minimizing the following

penalized log-loss with respect to the weights:

L(w) =
1

n

n

∑
i=1

log
(

1+ exp
(

−yi f (xi)
))

+λ ∑
j

∣

∣w j

∣

∣

where λ > 0 is the penalty factor. The ℓ1-penalty suppresses weak, redundant and irrele-

vant features by shrinking their weights toward zeros. It does so by creating competition

among the features to contribute to the outcome. In our experiments, the penalty factor λ

is estimated through cross-validation to maximize the Area Under the ROC Curve (AUC).

To ensure weights are compatible in scale, we normalized features to the range [0-1]. The

selected features were then used to build a predictive model which we describe in the next

section.

CHAPTER 4. DELAY PREDICTION 96

4.4 Predictive model

Our predictive models are able to predict not only if an issue will be at risk of being

delayed but also the degree of delay (in terms of the number of days overrun). To do

so, we employ multi-class classification where the risk classes reflect the degree of delay.

Since the number of delayed issues in our data set is small (compared to the number of

non-delayed issues – see Table 4.2), we choose to use three risk classes: major delayed,

medium delayed, and minor delayed (and the non-delayed class).

For each of our case study projects, the risk factors (i.e. features) that we selected

are used to train a diverse set of seven classifiers: Random Forests (RF), Neural Networks

(aNN), Decision Tree (C4.5), Naive Bayes (NB), NBTree, Deep Neural Networks with

Dropouts (Deep Nets), and Gradient Boosting Machines (GBMs). Our predictive models

are also able to provide the likelihood of a risk occurring, i.e. the chance of an issue caus-

ing no delay, minor delay, medium delay, and major delay. In the following subsection,

we will describe this important aspect of our predictive models.

4.4.1 Predicting the likelihood of a risk occurring

Our objective is not only predicting risk classes but also estimating the class probabilities.

Of the seven classifiers studied, Naive Bayes, Neural Networks, GBMs and Deep Nets

with Dropouts naturally offer class probability. However, without appropriate smooth-

ing, probability estimates from those two methods can be unreliable for small classes.

Naive Bayes, for example, often push the probability toward one or zero due to its un-

realistic assumption of conditional independence among risk factors. Neural networks

and GBMs are implemented as nonlinear multiclass logistic regression, and thus the class

probabilities are naturally produced. Decision-tree classifiers such as C4.5 and NBTree

also generate probabilities which are class frequency assigned to the leave in the training

data. However, these estimates are not accurate since leave-based probabilities tend to be

pushed towards zero and one. In general, Naive Bayes, Neural networks and decision-tree

methods require careful calibration to obtain class probabilities [207]. Random Forests,

on the hand, rely on voting of trees, thus the probabilities can be estimated by proportions

of votes for each class. With a sufficient number of trees, the estimates can be reliable.

The process of probability calibration for all classifiers are discussed as follows.

CHAPTER 4. DELAY PREDICTION 97

Estimating probability in Random Forests

Random Forests generate many classification trees from random sampling of features and

data. Thus with sufficient number of trees, the class probability can be estimated through

voting. For example, in our context, assume that there are 100 trees generated from the

data. An issue is predicted as major delayed because there are 60 trees that predict so,

while only 25, 10 and 5 trees predict minor delayed, medium delayed, and non-delayed

respectively. Thus, the voting result can be treated as the probability distribution, which

means, the probability of the issue to be major delayed is 60%, 25% for minor delayed,

10% for medium delayed, and 5% for non-delayed.

Probabilistic decision trees

The decision tree probabilities naturally come from the frequencies at the leaves. Gen-

erally, the probability using frequency-based estimate at a decision tree leaf for a class y

is:

P(y|x) =
t p

(t p+ f p)

Where t p is true-positive of class y, and f p is false-positive of class y [208].

For example, assume that y is the major delayed class. The probability of the issue

X to be major delayed is the fraction between t p and t p+ f p of the major delayed class,

where t p is the number of issues that are classified as major delayed and they are truly

major delayed, and f p is the number of issues that are classified as major delayed when

they are not major delayed.

Naive Bayes

Typically, Naive Bayes is a probability classifier model. Thus, we followed Bayes’s theo-

rem to determine a class probability. Given a class variable y (i.e., major, medium, minor,

and non delayed risk) and a dependent feature vector x1 through xn which are our features

in Section 4.2, the probability of class y is:

P(y|x1, ...,xn) =
P(y)P(x1, ...,xn|y)

P(x1, ...,xn)

CHAPTER 4. DELAY PREDICTION 98

Then, the instances are classified using Bayes’s decision rule [209].

Combining decision tree and Naive Bayes

As mentioned earlier, NBTree is a hybrid of decision tree (C4.5) and Naive Bayes. The

decision tree nodes contain univariate splits as regular decision trees, but the leaf nodes

accommodate with Naive Bayes classifiers [52]. The leaf nodes thus give the probability

estimation using Naive Bayes. For example, at one leave node in the decision tree, the

probability distribution of each class is determined using Naive Bayes on the population

that classified to that node [210].

4.4.2 Risk exposure prediction

Our predictive models are able to predict the exposure of a risk. Risk exposure is tra-

ditionally defined as the probability of a risk occurring times the loss if that risk occurs

[211]. Risk exposure supports project managers to establish risk priorities [100]. Our

predicted risk exposure R̄E is computed as follows.

For an issue i, let C1, C2, C3, and C4 be the costs associated with the issue caus-

ing no delay, minor delay, medium delay, and major delay respectively. Note that C1 is

generally 0 – no delay means no cost. The predicted risk exposure for issue i is:

R̄E i =C1P(i,Non)+C2P(i,Min)+C3P(i,Med)+C4P(i,Ma j)

where P(i,Non), P(i,Min), P(i,Med), and P(i,Ma j) are the probabilities of issue i being

classified in non-delayed, minor delayed, medium delayed and major delayed classes

respectively.

Note that all the costs, C1, C2, C3 and C4, are user defined and specific to a project.

For example, assume that C1 = 0, C2 = 1, C3 = 2, and C4 = 3, and there is 30% chance

that an issue causing no delay (i.e. P(i,Non) = 0.3), 40% chance causing minor delay

(i.e. P(i,Min) = 0.4), 15% chance causing medium delay (i.e. P(i,Med) = 0.15), and

15% major delay (i.e. P(i,Ma j) = 0.15), then the predicted risk exposure R̄E i of the

issue is 1.

CHAPTER 4. DELAY PREDICTION 99

4.5 Dataset

In this section, we describe how data were collected for our study and experiments.

4.5.1 Data collecting

We collected data (past issues) from eight open source projects: Apache, Duraspace,

Java.net, JBoss, JIRA, Moodle, Mulesoft, and WSO2:

• Apache is a web server originally designed for Unix environments. The Apache

web server then has been ported to Windows and other network operating sys-

tems. Currently, there are more than fifty sub-projects under Apache community

umbrella (i.e. Hadoop, Apache CouchDB, and Apache Spark). According to the

general structure of an Open-Source Software (OSS) community, the project’s con-

tributors could be both core members and peripheral members. There are more than

three hundred core members and ten-thousand peripheral members contribute to the

project [212]. Anyone with an interested in working on Apache development could

join the Apache’s issue tracking system.b There are more than three hundred core

members and ten-thousand peripheral members contributing to the project [212].

All issues in Apache were recorded in Apache’s issue tracking system.c

• The Duraspace projectd supports the web platform digital asset management that

contains several sub-projects in their repository i.e. VIVO, Islandora, Hydra Hypa-

tia, and DuraCloud. There are about two-hundred contributors including reporters,

developers, testers, and reviewers working for the Duraspace community and more

than eighteen hundred institutions use and develop their open source software in

partnership with DuraSpace. All issues in the Duraspace project were recorded in

Duraspace’s issue tracking system.e

• Java.netf is a project related to Java technology. There are more than two-hundred

sub-projects under Java.net community umbrella (i.e. Glassfish, Jersey, Java Server

Faces). Currently, this community is moderated Oracle Corporation since 2010 (the

bhttps://issues.apache.org/jira
chttps://issues.apache.org/jira
dhttp://duraspace.org
ehttps://jira.duraspace.org
fhttps://java.net/jira/

https://issues.apache.org/jira
https://issues.apache.org/jira
http://duraspace.org
https://jira.duraspace.org
https://java.net/jira/

CHAPTER 4. DELAY PREDICTION 100

acquisition of Sun Microsystems by Oracle Corporation was completed on January

27, 2010).g

• JBossh is an application server program which supports the general enterprise soft-

ware development framework. The JBoss community has been developing more

than two-hundred sub-projects (e.g. JBoss Web Server, JBoss Data Grid, JBoss De-

veloper Studio) with more than one-thousand contributors. The JBoss community

records issues in JBoss’s issue tracking system.i

• JIRAj is a project and issue tracking system provided by Atlassian. They also use

JIRA for tracking their development progress. Note that the JIRA repository in-

cludes the demonstration projects for their customers which we did not include into

our datasets.

• Moodle is an e-learning platform that allows everyone to join the community in

several roles such as user, developer, tester, and QA. The Moodle trackerk is Moo-

dle’s issue tracking system which is used to collect issues and working items, and

keep track issues status in development activities.

• The Mulesoft projectl is a software development and platform collaboration tool.

There are more than thirty sub-projects hosted by Mulesoft e.g. Mule Studio and

API Designer. Their solutions focus on several industries (e.g. financial services,

health care, education). Mulesoft uses JIRA as their issue tracker.m

• WSO2 is an open source application development software company which focuses

on providing middleware solutions for enterprises. There are more than twenty

sub-projects provided by WSO2 (e.g. API management, smart analytics) and their

development progress are recorded in the WSO2’s repository.n

Those eight projects have different sizes, number of contributors, and develop-

ment processes. The reasons behind this variety of selections are to demonstrate that our

approach is generalized for various software project’s context and achieving a compre-

hensive evaluation.

ghttps://www.oracle.com/sun/index.html
hhttps://issues.jboss.org
ihttp://www.jboss.org/
jhttps://jira.atlassian.com
khttps://tracker.moodle.org
lhttps://www.mulesoft.com/

mhttps://www.mulesoft.org/jira
nhttps://wso2.org/jira/

https://www.oracle.com/sun/index.html
https://issues.jboss.org
http://www.jboss.org/
https://jira.atlassian.com
https://tracker.moodle.org
https://www.mulesoft.com/
https://www.mulesoft.org/jira
https://wso2.org/jira/

CHAPTER 4. DELAY PREDICTION 101

All the eight projects use JIRAo, a well-known issue and project tracking software

that allows teams to plan, collaborate, monitor and organize issues. We used the Rep-

resentational State Transfer (REST) API provided by JIRA to query and collected past

issue reports in JavaScript Object Notation (JSON) format. There are three main reports

(i.e. three JSON files) which can be collected from three different APIs. Each of them

contains different information of an issue. First, a primitive attribute report provides ba-

sic elements of an issue, for example issue’s type, issue’s priority, and issue’s current

status (e.g. in-progress, fixed). Figure 4.7 shows an example of the report in JSON for-

mat of issue AURORA-1563 where due date can be identified from this report. Second,

a change log report records all changes occurred on an issue, for example changing of

issue’s description, changing of issue’s status. Figure 4.8 shows an example of a change

log report of issue AURORA-1563 which records that the status of this issue has been

changed from Reviewable to Resolved on January 27, 2016. Several features discussed in

Section 4.2 can be extracted from processing issue’s change log, for example discussion

time and changing of description. Third, a report of comments record all comments that

team members having discussions on an issue. From processing a list comments, we can

extract the number of comments at prediction time. Figure 4.9 shows an example of issue’

comments of issue AURORA-1563 where comment creation time is recored.

{"key": "AURORA-1563", ...

"fields": {

"issuetype": { "name": "Story", "subtask": false},

"project": { "name": "Aurora", ...},

"fixVersions": [{ "released": true,

"releaseDate": "2016-02-07"}],

"resolution": {"name": "Fixed"},

"priority": {"name": "Major",}

"duedate": {"2016-02-07"}

},...,}

Figure 4.7: Example of an issue JSON file AURORA-1563

Table 4.1 shows the number of collected issues. We collected 108,676 closed

issues from eight open source projects: Apache, Duraspace, Java.net, JBoss, JIRA, Moo-

dle, Mulesoft, and WSO2. For Apache, Java.net, JBoss, and Mulesoft, more than fifty-

thousand issues opened from January 01, 2004 to March 19, 2016 were collected from

their issue tracking system. For Duraspace and WSO2, the resolved or closed issues be-

tween November 9, 2006 to February 03, 2016 were collected. For Moodle, more than

ohttps://www.atlassian.com/software/jira

https://www.atlassian.com/software/jira

CHAPTER 4. DELAY PREDICTION 102

{..."key": "AURORA-1563",

"changelog": { "histories": [...

{"id": "15228187",

"created": "2016-01-27T20:18:56.902+0000",

"items": [{

"field": "status",

"fieldtype": "jira",

"from": "10006",

"fromString":"Reviewable",

"to": "5",

"toString": "Resolved"}

]},...]}}

Figure 4.8: Example of an issue’s change log in JSON format of issue AURORA-1563

twenty-thousand issues opened from January 01, 2004 to March 14, 2016 were collected

from the Moodle tracker. For Apache, the data collection went through two steps. First,

we randomly selected 10-20% issues from a small number of projects in Apache includ-

ing Hadoop Common, HBase, and IVY. We studied these issues to understand how to

extract the due date and other issue attributes, how to process and extract information

from issue change logs, how to identify customized attributes, etc. These issues form the

first part of the Apache dataset we collected. After this initial study, we performed an

exhaustive search across all Apache projects to collect all issues with the “due date” field

explicitly recorded. These issues are from 304 projects in Apache and form the remaining

part of our Apache dataset. A similar process was also applied to collecting data from

other projects.

Table 4.1: Collected issues

Project
collected

issues

issues with

due date

% of issues

with due date

Apache 10,553 6,409 60.73

Duraspace 6,509 3,768 57.89

Java.net 20,918 16,609 79.40

JBoss 10,215 4,009 39.25

JIRA 12,287 4,478 36.45

Moodle 26,642 26,030 97.70

Mulesoft 12,237 12,016 98.19

WSO2 9,315 5,346 57.39

Total 108,676 78,665 72.38

CHAPTER 4. DELAY PREDICTION 103

{"key": "AURORA-1563", ...

"comment": {"startAt": 0, "maxResults": 2, "total": 2,

"comments": [

{...

"displayName": "John Sirois",

"active": true},

"body": "https://reviews.apache.org/r/42816/",

"created": "2016-01-26T19:09:11.471+0000",

"updated": "2016-01-26T19:09:11.471+0000"},

{

"displayName": "John Sirois",

"active": true},

"body": "Deprecation removals in master @ http://git-wip-us...",

"created": "2016-01-27T20:18:56.890+0000",

"updated": "2016-01-27T20:18:56.890+0000"}]

}

Figure 4.9: Example of an issue JSON file AURORA-1563

4.5.2 Data preprocessing

In data preprocessing, we first identified delayed issues from the collected dataset and

performed data cleansing process. In order to determine if an issue was delayed or not,

we need to identify the due date assigned to the issue. We have however found that

different projects have different practices in assigning a deadline to an issue, and thus we

needed to be carefully in extracting the information. In some projects (e.g. Apache and

JBoss), the issue due dates can be extracted directly from the “due date” attribute of an

issue. Figure 4.1 shows an example of an issue in the Apache project (recorded in JIRA)

which was assigned August, 19 2014 as due date. For issues that have a due date in their

record, the delay was determined by checking the resolved date against the due date – i.e.

a delayed issue is an issue has been resolved after a due date.

In some projects (e.g. Moodle and Mulesoft), this information is recorded in the

“Fix Release Date” attribute of an issue (see https://tracker.moodle.org/browse/

MDL-12531 for an example), and thus was extracted from this attribute. In other projects

(e.g. Duraspace, Java.net, JIRA, and WSO2), the due date is not directly recorded in an

issue. For these projects, we infer the issue due date from the fix version(s) assigned to it

– which can be extracted from the “Fix Version/s” field of an issue (see https://java.

net/jira/browse/GLASSFISH-13157 for an example). Note that when an issue is open,

the “Fix Version/s” field conveys a target; and when an issue is closed, the “Fix Version/s”

field conveys the version that the issue was fixed in. Hence, we needed to process the

https://tracker.moodle.org/browse/MDL-12531
https://tracker.moodle.org/browse/MDL-12531
https://java.net/jira/browse/GLASSFISH-13157
https://java.net/jira/browse/GLASSFISH-13157

CHAPTER 4. DELAY PREDICTION 104

change log of an issue to extract the fix version assigned to the issue before our prediction

time (when we predict if the issue was delayed or not). We then extracted the due date of

the fix version (see https://java.net/jira/browse/GLASSFISH/fixforversion/

11015/ for an example), and used it as the due date for the issue. In the case when

there are multiple fix versions assigned to an issue, we chose the one with the earliest

due date. Note that we selected only the fix version that had been entered before the

issues was resolved. Issues, which did not have any target release assigned before they

were resolved, were not included in our dataset. We then identified delayed issues by

comparing a due date with actual resolved date of the issues. We collected both delayed

and non-delayed issues. For delayed issues, we also collected how many days of delay

the issues were delayed.

We found that 72.38% of those issues whose due date can be extracted. The issues

without due date were removed from our dataset. For example, in the Apache project,

there were 25 issues created on January 01, 2004, but only two of them (i.e. DIR-1 and

DIRSERVER-10) were selected since they were the only two issues having a due date.

Furthermore, we have found that some issues have very long period of delays (e.g. in

some cases over 1,000 days). Such issues could have been left behind (e.g. no activity

recorded in the issue report), and were eventually closed. Following the best practices

[213] in identifying those outlier cases in each project, we used the actual mean resolving

time of all (delayed and non-delayed) issues in the project plus its standard deviation as

a threshold for each project. Issues which were delayed longer than the threshold were

removed from our dataset. Overall, 13,918 issues identified as outliers were filtered out

across the eight projects used in our study.

In total, we performed the study on 64,747 issues from the eight projects, which

consist of 13,825 (21.35%) delayed and 50,922 (78.65%) non-delayed issues. Table 4.2

summarizes the characteristics of the eight projects on the delay time in terms of the

minimum, maximum, median, mean, median, mode, and standard deviations of days

late.

4.6 Evaluation

We empirically studied eight open source projects: Apache, Duraspace, Java.net, JBoss,

JIRA, Moodle, Mulesoft, and WSO2 to build predictive models. In this section, we de-

scribes our experimental setting, the performance measures, applying feature selection

 https://java.net/jira/browse/GLASSFISH/fixforversion/11015/
 https://java.net/jira/browse/GLASSFISH/fixforversion/11015/

CHAPTER 4. DELAY PREDICTION 105

Table 4.2: Descriptive statistics of the delay time of the projects in our datasets

Project # issues # non-delay # delay min max mean median mode std

Apache 6,289 3,683 2,606 1 1,169 132.27 21 9 218.97

Duraspace 3,676 2,706 970 1 335 64.89 31 3 73.56

Java.net 16,326 13,712 2,614 1 280 41.40 12 1 61.93

JBoss 3,526 1,626 1,900 1 410 87.57 27 1 120.76

JIRA 4,428 3,170 1,258 1 533 52.70 40 40 78.58

Moodle 17,004 15,095 1,909 1 503 70.74 39 1 94.23

Mulesoft 8,269 6,941 1,328 1 301 57.48 39 1 62.37

WSO2 5,229 3,989 1,240 1 258 43.84 18 1 55.12

Total 64,747 50,922 13,825

issues: number of issues, # non-delay: number of non-delayed issues,

delay: number of delays issues, min: minimum of days late,

max: maximum of days late, mean: mean of days late,

median: median of days late, mode: mode of days late,

std: standard deviation of days late

techniques, and the evaluation results. Our evaluation aims to answer the following re-

search questions:

RQ1 How does our approach perform on different projects?

We evaluate the predictive performance of our approach on eight projects: Apache,

Duraspace, Java.net, JBoss, JIRA, Moodle, Mulesoft, WSO2. We also combine the

issues from all projects together (called “All together”) to evaluate our approach on

a large, diverse number of issues.

RQ2 Which classification techniques perform best?

We employ seven well-known classifiers: Random Forests (RF), Neural Network

(aNN), Decision Tree (C4.5), Naive Bayes (NB), NBTree, Deep Neural Networks

with Dropouts (Deep Nets), and Gradient Boosting Machines (GBMs) to build the

predictive models and compare the evaluation results to find the best performing

classifier.

RQ3 Which feature selection techniques perform best?

We perform the experiments to compare the performance of different feature se-

lection approaches: ℓ1-penalized logistic regression model and using p-value from

logistic regression model. We also discuss the outputs from applying the two tech-

niques (e.g. the selected features) in Section 4.6.2.

RQ4 How does the prediction time affect the predictive performance?

CHAPTER 4. DELAY PREDICTION 106

We evaluate the predictive performance from the different prediction times to con-

firm our hypothesis that the later we predict, the more accuracy we gain. To do so,

we perform the experiments to compare the performance between three prediction

times: at the end of discussion time, at a time when a deadline (e.g. due date) was

assigned to an issue, and at the creation time of an issue. There is very limited

known information immediately after an issue was created. Note that our evalu-

ation results in RQ1-RQ3 were obtained from the predictions made at the end of

discussion time (see Section 4.2).

RQ5 How does the number of topics affect the predictive performance?

Applying topic modelling requires us to specify the number of extracted topics (i.e.

parameter). We want to evaluate whether the number of topics affect the predictive

performance by performing experiments to compare the performance of predictive

models using different numbers of topics (i.e. 10, 100, 200, 300, and 400 topics).

Note that we used 10 topics for the experiments in RQ1-RQ4.

RQ6 How does our approach perform in terms of predicting risk exposure?

Our predictive models are able to predict not only the impact (i.e. the risk classes),

but also the likelihood of a risk occurring (i.e. the class probabilities). To evalu-

ate the predictive performance in terms of estimating the probabilities, we employ

Macro-averaged Mean Cost-Error (MMCE) and Macro-averaged Mean Absolute

Error (MMAE) as our measurement to assess the error of the predicted probabili-

ties. The details of MMCE and MMAE are discussed in Section 4.6.3.

RQ7 How does the size of training data affect the predictive performance?

To answer this question, we perform the experiments to compare the performance

from two different sliding window settings. In the first setting, the predictive model

learn from all issues in the past. The size of the training set thus increases over time

(i.e. accumulate all past issues). The second setting, in contrast, uses only recent

issues (e.g. one year past) for training. These two settings allow us to investigate

several different size of training and test sets. The details of the sliding window

settings are discussed in Section 4.6.1.

4.6.1 Experimental setting

We evaluated our predictive model using two different experimental settings which we

try to mimic a real deployment scenario that prediction on a current issue is made using

CHAPTER 4. DELAY PREDICTION 107

knowledge from the past issues. The first setting is the traditional training/test splitting.

The second setting is based on sliding window. In the first setting, all issues collected in

each of the eight case studies (see Section 4.5.1) were divided into a training set and a test

set. The issues in training set are those that were opened before the issues in test set. This

temporal constraint ensures that our models only learn from historical data and are tested

from “future” data.

The sliding window setting is an extension to the first setting where the issue

reports are first sorted based on the time they are opened. Then, we divide the issue

reports into multiple sliding windows, and for each sliding window, we use data from

the previous sliding windows to train a model [179]. Figure 4.16 illustrates an example

of sliding window approach which the issues opened and resolved between year 2004

and 2006 have been learned to predict delayed issues in 2007, while predicting delayed

issues in 2008 are based on the knowledge from the past windows (i.e. the issues opened

and resolved between year 2004 and 2007). We also performed an experiment on the

continuous sliding window setting which the issues from the only one previous window

have been learned to predict delayed issues in the later window. For example, the issues

opened and resolved in year 2006 have been learned to predict delayed issues in year 2007,

and the issues opened and resolved in year 2007 have been learned to predict delayed

issues in year 2008.

Time

(year)
2004 2005 2006 2007 2008

Figure 4.10: Sliding windows

Table 4.3 shows the number of issues in training set and test set for each project.

During the training phase for our dataset, we use a threshold to determine which risk

classes an issue belongs to (i.e. labeling). The threshold was chosen such that it gives a

good balance between the three risk classes. The thresholds were determined based on the

distribution of delayed issues with respect to the delay time in each project. Since we were

interested in three levels of delay (minor, medium, and major) and no delay, we divided

the delayed issues in each project into three groups: under the 33th percentile (minor

delay), between the 33th percentile and the 66th percentile (medium delay), and above the

66th percentile (major delay). Note that the 33th percentile is the delay time below which

CHAPTER 4. DELAY PREDICTION 108

33% (or about one-third) of the delayed issues can be found. Since (major/medium/minor)

delayed issues are rare (only 21% of all collected issues), we had to be careful in creating

the training and test sets. Specifically, we placed 80% of the delayed issues into the

training set and the remaining 20% into the test set. In addition, we tried to maintain

a similar ratio between delayed and non-delayed issues in both test set and training set,

i.e. stratified sampling. We also combined all issues collected across the eight projects as

another dataset called “All together”.

Table 4.3: Experimental setting

Project
Training set Test set

Major Medium Minor Non Major Medium Minor Non

Apache 698 431 688 3,202 187 265 337 481

Duraspace 242 218 246 2,064 87 93 84 642

Java.net 748 538 647 10,443 130 251 300 3,569

JBoss 551 423 382 1,320 93 196 255 306

JIRA 240 379 267 2,242 142 75 155 928

Moodle 409 401 408 10,976 237 218 236 4,119

Mulesoft 365 325 344 3,802 82 106 106 3,139

WSO2 307 284 266 2,932 107 118 158 1,057

All together 3,253 2,715 2,982 34,049 958 1,204 1,473 13,184

(“All together” is an integration of issues from all the eight projects.)

4.6.2 Applying feature selection

We applied feature selection techniques on the training set of each project as well as in

all the projects together. Table 4.4 shows all the risk factors and their associated p-value

(last column – using all issues collected across the eight projects). Note that the very

small p-value is shown as “< 0.001”. In our study, we select risk factors with p < 0.05.

For example, discussion time, percentage of delayed issues that a developer involved

with, developer’s workload, number of comments, priority changing, number of fix ver-

sions, and changing of fix versions are among the risk factors we selected for the Apache

project.

The collinearity checking was applied on the selected features. Table 4.5 shows

the indication of collinearity in terms of Variance-Decomposition Proportions (VDP)

from applying Belsley collinearity diagnostics [204]. Variance-Decomposition Propor-

tions (VDP) shows the variance proportion of the risk factors. A high VDP indicates

the collinearity of at least two risk factors. In our study, we consider risk factors having

CHAPTER 4. DELAY PREDICTION 109

Table 4.4: P-value from logistic regression model, trained on the issues in the training

set from the eight projects and “All together”

Apache Duraspace Java.net JBoss JIRA Moodle Mulesoft WSO2 All

discussion <0.001 0.008 <0.001 0.608 0.003 <0.001 <0.001 <0.001 <0.001

repetition 0.086 <0.001 <0.001 <0.001 0.049 <0.001 0.928 0.408 0.008

perofdelay <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

workload <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.221 0.207 <0.001

#comment <0.001 0.002 <0.001 0.607 <0.001 <0.001 <0.001 <0.001 <0.001

#p change 0.007 <0.001 0.012 0.417 <0.001 <0.001 <0.001 <0.001 <0.001

#fixversion <0.001 0.388 0.065 <0.001 <0.001 0.040 0.042 <0.001 <0.001

#fv change <0.001 0.253 <0.001 0.019 <0.001 <0.001 <0.001 <0.001 <0.001

#issuelink <0.001 <0.001 <0.001 0.060 <0.001 <0.001 0.189 0.112 <0.001

#blocking 1 0.094 0.005 0.151 1 <0.001 1 1 0.023

#blockedby 1 0.065 0.002 0.262 1 <0.001 1 1 0.115

#affectver 0.835 0.955 0.965 <0.001 <0.001 <0.001 <0.001 0.984 <0.001

reporterrep <0.001 <0.001 <0.001 0.712 0.086 <0.001 0.107 0 <0.001

#des change 0.004 0.023 0.905 0.013 <0.001 <0.001 <0.001 0.002 <0.001

elapsedtime <0.001 <0.001 <0.001 0.027 <0.001 <0.001 <0.001 <0.001 <0.001

remaining <0.001 <0.001 <0.001 0.026 <0.001 <0.001 0.080 <0.001 0.396

topic 0.187 0.219 0.012 0.929 0.058 0.002 0.065 <0.001 0.040

t Bug <0.001 0.919 <0.001 <0.001 <0.001 <0.001 0.854 0.577 <0.001

t FuncTest 1 1 1 1 1 <0.001 1 1 0.017

t Imp 0.029 0.446 0.128 1 <0.001 0.253 0.106 0.471 <0.001

t NewFeat <0.001 0.126 <0.001 1 0.419 <0.001 0.837 0.281 <0.001

t Story 1 <0.001 0.944 0.072 0.144 0.821 0.005 1 0.509

t SubTask <0.001 0.168 0.164 <0.001 <0.001 <0.001 0.086 0.825 0.085

t Suggestion 1 1 1 1 <0.001 1 1 1 0.001

t Task 0.026 <0.001 <0.001 0.102 0.015 0.562 0.734 0.118 <0.001

p Trivial 0.003 0.017 0.793 0.709 0.001 0.262 0.106 0.009 0.012

p Minor 0.739 <0.001 0.187 0.191 0.003 0.640 0.592 0.110 <0.001

p Major 0.075 0.058 0.058 0.220 <0.001 <0.001 0.179 0.065 <0.001

p Critical 0.241 0.483 0.006 0.221 0.008 <0.001 0.178 0.006 <0.001

p Blocker 0.266 <0.001 0.327 0.948 0.140 0.001 0.159 0.054 0.001

discussion = Discussion time, repetition = Number of times that an issue is reopened, perofdelay = Per-

centage of delayed issues that a developer involved with, workload = Developer’s workload, #comment =

Number of comments, #p change = Changing of priority, #fixversion = Number of fix version, #fv change

= Changing of fix versions , #issuelink = Number of issue link, #blocking = Number of issues that are

blocked by this issue, #blockedby = Number of issues that block this issue, #affectver = Number of affect

version, reporterrep = Reporter reputation, #des change = Changing of description, elapsedtime = Number

of days from when the issue is created until prediction time, remaining = Number of days from predic-

tion time until the due date, topic = issue’s topics, t Bug = Bug type, t FuncTest = Functional Test type,

t Imp = Improvement type, t NewFeat = New Feature type, t Story = Story type, t SubTask = Sub-Task

type, t Suggestion = Suggestion type, t Task = Task type, p Trivial = Trivial level, p Minor = Minor level,

p Major = Major level, p Critical = Critical level, p Blocker = Blocker level

CHAPTER 4. DELAY PREDICTION 110

V DP > 0.5 exhibit multi-collinearity. For example, in the Apache project, number of fix

versions and two issue’s types (Bug and Implementation) have VDP exceed the threshold

(V DP > 0.5). In this case, among these high correlated risk factors, number of fix ver-

sions has the lowest p-value (2.1574e−42) is then selected, while the others are filtered

out.

Table 4.6 shows all the risk factors and their weights in each project as well as in all

the projects together (last column – using all issues collected across the seven projects)

obtained from applying ℓ1-penalized logistic regression model on the training set. The

weights have intuitive meanings – this is in fact one benefit of logistic regression over

other types of classifiers. The sign of a weight is its direction of correlation with the

chance of an issue causing a delay. For example, in Mulesoft, the weight of the devel-

oper’s workload is negative (–0.212), indicating that the developer’s workload is nega-

tively correlated with delayed issues. By contrast, the weight of the developer’s workload

in the other six projects (except the Java.net project) is positive (e.g. 3.298 in Apache),

meaning the developer’s workload being positively correlated with delayed issues. This

cross-project diversity can also be observed in other risk factors (except the discussion

time and the percentage of delayed issues that a developer involved with factors which

are positively correlated with delayed issues in all the eight projects). We also note that

the magnitude of each weight approximately indicates the degree to which a factor affects

the probability of an issue causing delays [214]. Note that the exponential of a weight is

an odds-ratio which is a measure of the association between the presence of a risk factor

and a delay. The odds-ratio represents the odds that a delay will occur given the presence

of risk factor, compared to the odds of the delay occurring in the absence of that risk

factor. An odds is the ratio of the delay probability and the non-delay probability. This

allows us to see the relative strength of the risk factors.

In our study, we select risk factors with non-zeros weight, i.e. we excluded factors

that have no (either positive or negative) correlation with delayed issues. For example,

discussion time, number of fix versions, number of issues that are blocked by this issue,

number of issues that block this issues, and number of affect versions are among the risk

factors we selected for the Duraspace project. Note that we selected different sets of risk

factors for different projects due to the project diversity.

CHAPTER 4. DELAY PREDICTION 111

Table 4.5: Indication of collinearity in terms of Variance-Decomposition Proportions

(VDP) from Belsley collinearity diagnostics, apply on the risk factors selected from using

p-values

Apache Duraspace Java.net JBoss JIRA Moodle Mulesoft WSO2 All

discussion 0.0007 0.0002 0.0006 0.0005 0.1256 0.5328 0.0180 0.0005

repetition 0.0021 0.0039 0.0039 0.0003 0.0000 0.0002

perofdelay 0.0336 0.0020 0.0009 0.1863 0.0013 0.0063 0.0001 0.0004 0.0010

workload 0.0145 0.2086 0.0255 0.0183 0.0003 0.0016 0.0002

#comment 0.0001 0.0402 0.0045 0.0069 0.0010 0.0160 0.0709 0.0011

#p change 0.0000 0.0237 0.0049 0.0083 0.0007 0.0209 0.0065 0.0038

#fixversion 0.7823 0.9433 0.0063 0.7814 0.0266 0.9449 0.1529

#fv change 0.0035 0.0152 0.0030 0.0078 0.0531 0.7983 0.4787 0.0022

#issuelink 0.0014 0.0523 0.9395 0.0000 0.0000 0.0003

#blocking 0.5021 0.0006 0.0002

#blockedby 0.8427 0.0001

#affectver 0.4759 0.0034 0.4394 0.8212 0.0006

reporterrep 0.0409 0.3237 0.0011 0.0094 0.0752 0.2125

#des change 0.0017 0.0029 0.0079 0.0022 0.0001 0.0024 0.0007 0.0006

elapsedtime 0.0052 0.0064 0.0006 0.0001 0.0025 0.1919 0.9097 0.0416 0.0012

remaining 0.0233 0.0089 0.0003 0.0000 0.0005 0.0000 0.0100

topic 0.0204 0.0068 0.6498 0.2125

t Bug 0.7129 0.0061 0.0576 0.8720 0.1850 0.3803

t FuncTest 0.0478 0.0590

t Imp 0.5078 0.6604 0.2256

t NewFeat 0.2530 0.0004 0.0054 0.1172

t Story 0.0066 0.0000

t SubTask 0.3485 0.0890 0.5711 0.0459

t Suggestion 0.0105 0.1019

t Task 0.2653 0.0034 0.0002 0.2662 0.1823

p Trivial 0.0003 0.0590 0.3478 0.0031 0.2745

p Minor 0.6322 0.6953 0.8313

p Major 0.8409 0.0009 0.9330

p Critical 0.0002 0.3836 0.0033 0.0702 0.7323

p Blocker 0.4525 0.0052 0.6405

discussion = Discussion time, repetition = Number of times that an issue is reopened, perofdelay = Per-

centage of delayed issues that a developer involved with, workload = Developer’s workload, #comment =

Number of comments, #p change = Changing of priority, #fixversion = Number of fix version, #fv change

= Changing of fix versions , #issuelink = Number of issue link, #blocking = Number of issues that are

blocked by this issue, #blockedby = Number of issues that block this issue, #affectver = Number of affect

version, reporterrep = Reporter reputation, #des change = Changing of description, elapsedtime = Number

of days from when the issue is created until prediction time, remaining = Number of days from predic-

tion time until the due date, topic = issue’s topics, t Bug = Bug type, t FuncTest = Functional Test type,

t Imp = Improvement type, t NewFeat = New Feature type, t Story = Story type, t SubTask = Sub-Task

type, t Suggestion = Suggestion type, t Task = Task type, p Trivial = Trivial level, p Minor = Minor level,

p Major = Major level, p Critical = Critical level, p Blocker = Blocker level

CHAPTER 4. DELAY PREDICTION 112

Table 4.6: Descriptive ℓ1-penalized logistic regression model for risk probability, trained

on the issues in the training set from the eight projects and “All together”

Apache Duraspace Java.net JBoss JIRA Moodle Mulesoft WSO2 All

discussion 4.897 3.404 4.806 1.090 2.960 6.998 11.990 4.185 5.596

repetition 2.038 10.293 6.230 4.716 2.395 -3.520 0.000 2.458 2.292

perofdelay 22.942 17.079 6.390 6.740 29.805 20.697 6.796 43.263 12.876

workload 3.298 2.232 -1.260 2.890 0.799 18.522 -0.212 7.404 1.455

#comment -1.017 -11.796 -5.685 0.050 -0.743 -22.192 -7.156 -6.949 -9.259

#p change 0.607 18.045 1.474 6.190 -2.274 -1.193 0.157 1.792 8.911

#fixversion -1.695 -0.133 3.671 -0.479 0.565 2.541 1.385 -2.014 0.766

#fv change -5.041 -0.381 -5.219 -0.045 -7.375 -13.764 -9.289 -6.045 -3.431

#issuelink 0.003 3.967 3.857 4.492 -1.863 2.431 0.149 0.063 3.667

#blocking 0.000 -5.261 0.254 -2.189 0.000 9.784 0.000 0.000 1.890

#blockedby 0.000 -3.274 0.806 -6.288 0.000 -0.436 0.000 0.000 0.062

#affectver 1.490 0.535 -0.008 -6.288 -4.389 -6.204 -8.862 -1.606 -2.860

reporterrep -1.092 -0.618 -0.453 0.208 -0.610 -0.486 -0.163 -1.943 -0.484

#des change -0.843 -3.025 1.192 1.412 -1.034 2.073 -0.546 0.038 -1.866

elaspedtime -2.333 -4.522 1.539 -0.634 -1.062 2.073 6.141 1.877 -1.124

remaining 0.068 -4.234 -4.733 -3.181 5.588 -3.636 -1.148 -2.424 -0.362

topic 0.055 0.036 0.208 0.136 -0.418 -0.298 -0.374 0.041 0.017

t Bug -0.624 -0.056 -0.370 -0.900 0.117 -2.257 0.000 0.000 -1.103

t FuncTest 0.000 0.000 0.000 0.000 0.000 -2.321 0.000 0.000 -0.692

t Imp -0.517 0.000 -0.138 0.000 1.763 -1.907 -0.237 0.406 -0.663

t NewFeat 0.020 0.000 0.044 0.000 -0.184 -1.432 0.000 0.134 -0.585

t Story 0.000 -0.307 -0.061 0.003 -0.301 -2.020 1.995 0.000 -1.038

t SubTask -0.358 0.086 -0.126 -0.920 -0.347 -2.328 0.223 -0.430 -0.899

t Suggestion 0.000 0.000 0.000 0.000 1.770 0.000 0.000 0.000 -1.314

t Task 0.227 0.511 0.004 -0.542 0.826 -2.001 0.129 -0.002 -0.665

p Trivial -0.409 -0.375 -0.270 -0.001 0.876 -0.564 0.658 0.000 -0.060

p Minor 0.031 0.016 -0.061 0.000 2.427 -0.085 0.039 0.786 0.250

p Major 0.076 -0.001 0.141 -0.004 1.838 -0.296 0.880 -0.097 0.309

p Critical 0.115 -0.433 -0.299 -0.477 1.812 -0.059 1.934 -0.386 -0.111

p Blocker -0.265 0.192 -0.257 -0.014 1.214 -0.057 1.949 -0.352 0.033

discussion = Discussion time, repetition = Number of times that an issue is reopened, perofdelay = Per-

centage of delayed issues that a developer involved with, workload = Developer’s workload, #comment =

Number of comments, #p change = Changing of priority, #fixversion = Number of fix version, #fv change

= Changing of fix versions , #issuelink = Number of issue link, #blocking = Number of issues that are

blocked by this issue, #blockedby = Number of issues that block this issue, #affectver = Number of affect

version, reporterrep = Reporter reputation, #des change = Changing of description, elapsedtime = Number

of days from when the issue is created until prediction time, remaining = Number of days from predic-

tion time until the due date, topic = issue’s topics, t Bug = Bug type, t FuncTest = Functional Test type,

t Imp = Improvement type, t NewFeat = New Feature type, t Story = Story type, t SubTask = Sub-Task

type, t Suggestion = Suggestion type, t Task = Task type, p Trivial = Trivial level, p Minor = Minor level,

p Major = Major level, p Critical = Critical level, p Blocker = Blocker level

CHAPTER 4. DELAY PREDICTION 113

4.6.3 Performance measures

As our risk classes are ordinal and imbalanced, standard report of precision/recall for all

classes is not fully applicable. In addition, no-delays are the default and they are not of

interest to risk management. Reporting the average of precision/recall across classes is

likely to overestimate the true performance. Furthermore, class-based measures ignore

the ordering between classes, i.e., major-risk class is more important than minor-risk.

Hence, we used a number of predictive performance measures suitable for ordinal risk

classes for evaluation described as below.

Precision/Recall/F-measures/AUC

A confusion matrix is used to evaluate the performance of our predictive models. As a

confusion matrix does not deal with a multi-class probabilistic classification, we reduce

the classified issues into two binary classes: delayed and non-delayed using the following

rule:

Ci =

{

delayed, i f P(i,Ma j)+P(i,Med)+P(i,Min)> P(i,Non)

non−delayed, otherwise

where Ci is the binary classification of issue i, and P(i,Ma j), P(i,Med), P(i,Min),

and P(i,Non) are the probabilities of issue i classified in the major delayed, medium de-

layed, minor delayed, and non-delayed class respectively. Basically, this rule determines

that an issue is considered as delayed if the sum probability of it being classified into

the major, medium, and minor delayed class is greater than the probability of it being

classified into the non-delayed class.

The confusion matrix is then used to store the correct and incorrect decisions made

by a classifier. For example, if an issue is classified as delayed when it was truly delayed,

the classification is a true positive (tp). If the issue is classified as delayed when actually

it was not delayed, then the classification is a false positive (fp). If the issue is classified

as non-delayed when it was in fact delayed, then the classification is a false negative (fn).

Finally, if the issue is classified as non-delayed and it was in fact not delayed, then the

classification is true negative (tn). We thus compute the widely-used Precision, Recall,

F-measure, and AUC for the delayed issues to evaluate the performance of the predictive

models. These measures are described in Section 2.1.6.

CHAPTER 4. DELAY PREDICTION 114

Macro-averaged Mean Cost-Error (MMCE)

The confusion matrix however does not take into account our multi-class probabilistic

classifications and the cost associated with each risk class. Hence, we propose a new

measure known as Macro-averaged Mean Cost-Error (MMCE) to assess how close our

predictive risk exposure is to the true risk exposure (the distance between them in the

sense that the smaller the better).

Let yi be the true class and ŷi be the predicted class of issue i. Let nk be the

number of true cases with class k where k ∈ {1,2,3,4} – there are 4 classes in our clas-

sification – i.e., nk = ∑
n
i=1 δ

[

yi = k
]

and n = n1 +n2 +n3 +n4. Here δ [.] is the indicator

function.

The Macro-averaged Mean Cost-Errorp is defined as below:

MMCE =
1

4

4

∑
k=1

1

nk

n

∑
i=1

|R̄E i −C|δ
[

yi = k
]

where R̄E is the predicted risk exposure computed in Section 4.4.2 and C is the actual risk

exposure. The normalization against the class size makes MMCE insensitive to the class

imbalance.

For example, an issue is predicted to be 50% in major delayed, 15% in medium

delayed, 30% in minor delayed, and 5% in non-delayed. Assume that the issue was

actually minor delayed (i.e. the true class is minor delayed) and the costs C1 (no delay),

C2 (minor delay), C3 (medium delay) and C4 (major delay) are respectively 0, 1, 2, and

3. The predicted risk exposure R̄E is 2.1 and the actual risk exposure is 1 (see Section

4.4.2 for how a risk exposure is calculated). Hence, the MMCE error between actual and

predicted risk exposure for this issue is 1.1.

Macro-averaged Mean Absolute Error (MMAE)

We also used another metric called Macro-averaged Mean Absolute Error (MMAE) [158]

to assess the distance between actual and predicted classes. MMAE is suitable for ordered

classes like those defined in this chapter. For example, if the actual class is non-delayed

(k = 1), and the predicted class is major delayed (k = 4), then an error of 3 has occurred.

Here, we assume that the predicted class is the one with the highest probability, but we

pHere we deal with only 4 classes but the formula can be easily generalized to n classes.

CHAPTER 4. DELAY PREDICTION 115

acknowledge that other strategies can be used in practice. Again the normalization against

the class size handles the class imbalance.

Macro-averaged Mean Absolute Error:

MMAE =
1

4

4

∑
k=1

1

nk

n

∑
i=1

∣

∣ŷi − k
∣

∣δ
[

yi = k
]

For example, an issue is predicted to be 30% in major delayed, 35% in medium

delayed, 25% in minor delayed, and 10% in non-delayed. Thus, the predicted class of this

issue is medium delayed (k = 3). Assume that the actual class of the issue is non-delayed

(k = 1), then the distance between actual and predicted classes of this issue is 2.

4.6.4 Results

Comparison of different projects (RQ1)

Figure 4.11 shows the precision, recall, F-measure, and AUC achieved for each of eight

open source projects and in all the projects (labeled by “All together”), averaging across

all classifiers and across all feature selection techniques. Overall, the evaluation results on

eight projects (i.e. Apache, Duraspace, Java.net, JBoss, JIRA, Moodle, Mulesoft, WSO2)

and All together achieve on average 0.79 precision, 0.61 recall, and 0.68 F-measure. We

however noted that the imbalance of delayed and non-delayed classes may impact on the

predictive performance since there are only 7.2% of issues in the major delayed class in

the test set. In particular, for projects that our predictive models struggled, there might

be some changes in the projects (e.g. additional contributors joined) between the training

time and test time, and thus patterns present at training time may not entirely repeat later

on at test time which shows the variety of open source projects nature.

The degree of discrimination achieved by our predictive models is also high, as

reflected in the AUC results. The AUC quantifies the overall ability of the discrimination

between the delayed and non-delayed classes. The average of achieved AUC across all

projects and across all classifiers is 0.83. Our model performed best in the Duraspace

project, achieving the highest precision (0.85), recall (0.72), F-measure (0.77), and AUC

(0.93).

Answer to RQ1: Overall, the evaluation results demonstrate the effectiveness of our

predictive models across the eight projects.

CHAPTER 4. DELAY PREDICTION 116

0.2

0.4

0.6

0.8

1.0

Apache Duraspace Java.net JBoss Jira Moodle Mulesoft WSO2 All	together

Precision Recall F-measure AUC

Figure 4.11: Evaluation results for different projects

Comparison of different classifiers (RQ2)

Table 4.7 shows the precision, recall, F-measure, and AUC achieved by Random Forests

(RF), Neural Network (aNN), Decision Tree (C4.5), Naive Bayes (NB), NBTree, Deep

Neural Networks with Dropouts (Deep Nets), and Gradient Boosting Machines (GBMs)

in each project (averaging across two feature selection techniques) using the training/test

set setting. As can be seen in Table 4.7, Random Forests achieve the highest F-measure

of 0.72 (averaging across all projects and across two feature selection techniques). It

also outperforms the other classifiers in terms of F-measure in four projects: Apache,

Duraspace, Java.net, and Mulesoft. In the JBoss project, Random Forests achieve the

highest precision of 0.96 (averaging across two feature selection techniques), while the

other classifiers achieve only 0.77–0.92 precision. It should be noted that all classifiers

achieve more than 0.5 AUC while Random Forests is also the best performer in this aspect

with 0.99 AUC.

Answer to RQ2: Random Forests is the best performer in precision, recall, F-measure,

and AUC (averaging across all projects).

Comparison of different feature selection approaches (RQ3)

We performed the experiments to compare the performance of different feature selection

approaches: ℓ1-penalized logistic regression model and using p-value from logistic re-

gression model. As can be seen in Figure 4.12, the ℓ1-penalized logistic regression model

produced the best performance in terms of F-measure – it achieved 0.79 precision, 0.63

recall, 0.69 F-measure, and 0.83 AUC, while the performance achieved using p-value

from logistic regression model is 0.79 precision, 0.60 recall, 0.67 F-measure, and 0.83

AUC (averaging across all projects and across all classifiers). This could be interpreted

that the feature selection technique based on the assessing of the significance of all fea-

CHAPTER 4. DELAY PREDICTION 117

Table 4.7: Evaluation results for different classifiers in each project

Proj. Classifier Prec Re F AUC Proj. Classifier Prec Re F AUC

AP RF 0.80 0.63 0.71 0.77 JI RF 0.90 0.60 0.72 0.86

aNN 0.74 0.54 0.62 0.68 aNN 0.86 0.65 0.73 0.84

C4.5 0.80 0.52 0.63 0.66 C4.5 0.72 0.67 0.69 0.89

NB 0.67 0.48 0.55 0.54 NB 0.65 0.67 0.67 0.82

NBTree 0.70 0.64 0.67 0.59 NBTree 0.82 0.62 0.69 0.91

Deep Nets 0.81 0.50 0.61 0.67 Deep Nets 0.73 0.63 0.67 0.82

GBMs 0.86 0.45 0.59 0.71 GBMs 0.92 0.52 0.67 0.85

DU RF 0.95 0.75 0.83 0.99 MO RF 0.73 0.63 0.67 0.91

aNN 0.85 0.65 0.74 0.87 aNN 0.85 0.26 0.39 0.76

C4.5 0.88 0.77 0.82 0.93 C4.5 0.73 0.49 0.58 0.76

NB 0.59 0.62 0.59 0.77 NB 0.47 0.59 0.51 0.79

NBTree 0.80 0.74 0.77 0.98 NBTree 0.84 0.40 0.54 0.88

Deep Nets 0.91 0.75 0.82 0.97 Deep Nets 0.74 0.69 0.71 0.91

GBMs 0.93 0.73 0.81 0.98 GBMs 0.72 0.33 0.45 0.85

JA RF 0.75 0.57 0.74 0.88 MU RF 0.72 0.79 0.77 0.93

aNN 0.75 0.54 0.62 0.68 aNN 0.83 0.69 0.75 0.91

C4.5 0.80 0.52 0.63 0.66 C4.5 0.73 0.65 0.66 0.90

NB 0.64 0.48 0.54 0.54 NB 0.71 0.74 0.73 0.92

NBTree 0.70 0.65 0.67 0.60 NBTree 0.70 0.72 0.71 0.92

Deep Nets 0.84 0.50 0.63 0.86 Deep Nets 0.57 0.81 0.67 0.92

GBMs 0.73 0.22 0.28 0.72 GBMs 0.66 0.69 0.67 0.85

JB RF 0.96 0.63 0.77 0.84 W2 RF 0.76 0.69 0.72 0.85

aNN 0.77 0.58 0.66 0.77 aNN 0.94 0.65 0.75 0.82

C4.5 0.88 0.76 0.81 0.85 C4.5 0.85 0.66 0.74 0.86

NB 0.82 0.64 0.71 0.78 NB 0.55 0.68 0.60 0.76

NBTree 0.90 0.72 0.79 0.89 NBTree 0.84 0.68 0.75 0.86

Deep Nets 0.87 0.67 0.76 0.81 Deep Nets 0.70 0.69 0.69 0.84

GBMs 0.92 0.60 0.72 0.85 GBMs 0.90 0.68 0.77 0.88

AP: Apache, DU: Duraspace, JA: Java.net, JB: JBoss,

JI: JIRA, MO: Moodle, MU: Mulesoft, W2:WSO2

CHAPTER 4. DELAY PREDICTION 118

tures (i.e. ℓ1-penalized logistic regression model) effectively contributes to the predictive

performance.

0.0

0.2

0.4

0.6

0.8

1.0

L1-Penalty P-value None

Precision Recall F-measure AUC

Figure 4.12: Evaluation results for different feature selection approaches

There was 34.5% of features eliminated using feature selection, averaging across

all projects and across the two feature selection techniques. We also evaluated our pre-

dictive models without using a feature selection technique (labeled by “None”) (i.e. all

extracted features are fed into classifiers). As can be seen in Figure 4.12, the ℓ1-penalized

logistic regression model also produced the better performance than the predictive mod-

els without a feature selection technique. It should however be noted that the predictive

performance obtained from not using a feature selection is comparable to the others – it

achieves 0.76 precision, 0.62 recall, 0.66 F-measure, and 0.82 AUC averaging across all

projects and across all classifiers. There are two interpretations which can be made here.

First, we could eliminate more than one-third of the extracted features without greatly

affecting the predictive performance. Second, the two state-of-the-art randomized en-

semble methods (i.e. Random Forests and Deep Neural Networks with Dropouts) have a

capability to reduce prediction variance, prevent overfitting, and be tolerant to noisy data.

Thus, they might eliminate the need for feature selection in our particular setting while

still can improve the overall predictive accuracy. Especially, Deep Neural Networks with

Dropouts is known to perform better with extensively large datasets.

Answer to RQ3: Feature selection using the ℓ1-penalized logistic regression model is

the best performer.

Comparison of different prediction times (RQ4)

As can be seen in Figure 4.13, predicting at the issue creation time produced a low per-

formance – it achieves only 0.35 precision, 0.15 recall, 0.18 F-measure, and 0.55 AUC

averaging across all projects and across all classifiers, while the predictive performance

achieved by making the prediction at a time when a due date was assigned is comparable

• • • •

CHAPTER 4. DELAY PREDICTION 119

to the latter prediction (i.e. at the end of discussion time) – it achieves 0.70 precision,

0.59 recall, 0.61 F-measure, and 0.78 AUC averaging across all projects and across all

classifiers. However, Predicting at later times may be less useful since the outcome may

become obvious or it is too late to change the outcome. This result confirms our hypoth-

esis that the time when the prediction is made has implications to its accuracy.

Answer to RQ4: The prediction time affects the predictive performance: the later we

predict, the more accuracy we could gain since more information has become available.

0.0

0.2

0.4

0.6

0.8

1.0

Discussion time Assigned due date time Creation time

Precision Recall F-measure AUC

Figure 4.13: Evaluation results for different prediction times

Comparison of different numbers of topics (RQ5)

We also performed the experiments to compare the performance of predictive models

using different numbers of topics (i.e. 10, 100, 200, 300, and 400 topics). Figure 4.14

shows the precision, recall, F-measure, and AUC achieved for the different number of

topics (averaging across the eight projects). The predictive models were trained by using

Random Forests and ℓ1-penalized logistic regression model since this combination is the

best performer in several aspects. As can be seen in Figure 4.14, varying the number

of topics do not significantly improve the performance – it achieves 0.83 precision, 0.65

recall, 0.75 F-measure, and 0.89 AUC averaging across all projects using 10 topics, while

it achieves 0.83 precision, 0.66 recall, 0.73 F-measure, and 0.86 AUC averaging across all

projects using 400 topics. Table 4.8 shows the weight of topics from ℓ1-penalized logistic

regression model. We also noticed that, in the Duraspace project, the increasing of the

number of topics causes zero discriminative power. We note that advanced techniques

to learn features from textual information (e.g. vector representation for text using deep

learning approaches) have been proposed which could be used in our future work.

Answer to RQ5: The number of topics do not significantly affect the predictive perfor-

mance.

CHAPTER 4. DELAY PREDICTION 120

0.2

0.4

0.6

0.8

1.0

10 topics 100 topics 200 topics 300 topics 400 topics

Precision Recall F-measure AUC

Figure 4.14: Evaluation results for different numbers of topics

Table 4.8: Weight obtained from ℓ1-penalized logistic regression model using the differ-

ent number of topics

Project 10 topics 100 topics 200 topics 300 topics 400 topics

Apache 0.055 0.05 0.044 -0.002 -0.397

Duraspace 0.036 -0.075 -0.025 0 0

Java.net 0.208 0.315 -0.038 0.077 0.061

JBoss 0.136 0.009 0.067 0.199 -0.046

JIRA -0.418 0.101 0.153 0.473 0.156

Moodle -0.298 0.188 0.167 0.066 -0.126

Mulesoft -0.374 0.335 -0.246 0.04 -0.149

WSO2 0.041 0.731 0.142 0.335 0.135

MMAE and MMCE as performance measures (RQ6)

MMAE and MMCE are used to assess the performance of our models in terms of predict-

ing risk exposure. Figure 4.15 shows the MMAE and MMCE achieved by the eight classi-

fiers using two feature selection techniques. The evaluation results show that MMAE and

MMCE are generally consistent with the other measures. For example, Random Forests

have the highest precision and recall, and the lowest MMAE and MMCE – it achieves

0.72 MMAE and 0.66 MMCE averaging across all projects and across the two feature

selection techniques.

Answer to RQ6: Our approach consistently performs well in predicting the risk expo-

sure of issue delays.

Sliding window approach (RQ7)

For the sliding window approach, we performed the experiments on “All together” dataset.

In the first setting, all historical issues from past windows are accumulated and learned

• • • •

[l

CHAPTER 4. DELAY PREDICTION 121

0.0

0.3

0.6

0.9

1.2

MMAE MMCE MMAE MMCE

L1-penalty P-value

Random Forests aNN C4.5 Naïve Bayes NBTree Deep Net GBMs

Figure 4.15: MMAE and MMCE (the lower the better)

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

N
u

m
b

e
r

o
f

is
su

e
s

x
1

0
0

Window
Non delay Minor Medium Major

Figure 4.16: Number of issues in each window (6-month window)

to predict delayed issues in the next window. Figure 4.16 shows the number of issues

in each class splitted into 22 windows. The time period of each window is six months.

For example, the first window contains the issues created between January 01, 2004 –

June 30, 2004, which are learned to predict the outcome of the issues created between

July 1, 2004 – December 31, 2004 (i.e. the second window). Note that the issues opened

after December, 31 2015 were included to the last window (22th window). We however

acknowledge that the numbers of issues available in the 1st to 8th window are very small.

This is known as “cold-start problem” [215] where there are not enough data available

to begin a predictions. Hence, we started doing the prediction at the 6th window – the

issues from the 1st to 5th window are learned to predict the outcome of the issues in the

6th window and so on.

Figure 4.17 shows the evaluation results from the first sliding window setting.

Random Forests and the ℓ1-penalized logistic regression model are employed because it

achieved the highest performance on the traditional setting (i.e. training/test splitting).

• • • • • • •

• • • •

CHAPTER 4. DELAY PREDICTION 122

The predictive performance from predicting the issues in the 6th window achieves 0.66

precision, 0.79 recall, 0.72 F-measure, and 0.83 AUC. As can be observed from Figure

4.17, The predictive performance in terms of F-measure then decreases after the 8th win-

dow (it achieves the high recall and the low precision). This could be due to the class

imbalance problem (i.e. lacking of delayed class in the training set) since a number of

non-delayed issues drastically increases after the 8th window. The predictive performance

measures (i.e. precision, recall, and F-measure) then converges at the 16th window and

slightly increases after the 18th window.

0

0.2

0.4

0.6

0.8

1

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Window
Precision Recall F-measure AUC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Window

MMAE MMCE

Figure 4.17: Evaluation results using the 6-month sliding window setting

In the continuous sliding window setting, we expanded the window size from 6

months to 2 years in order to increase the number of issues in each window. Hence, the

issues were divided into 6 windows (the data were available from the year 2004 to 2016).

Note that no prediction was made for the first window since the training set was not avail-

able for it. Figure 4.18 shows the evaluation results from the continuous sliding window

using Random Forests and the ℓ1-penalized logistic regression model. The predictive per-

formance achieved by the continuous sliding window shows the similar pattern to the first

setting. It achieves the high recall and the low precision. The precision then increases in

later windows. However, it can be clearly seen that the overall performance achieved by

the continuous sliding window is better than the first setting which all the historical issues

were learned in a prediction.

CHAPTER 4. DELAY PREDICTION 123

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6

Window
Precision Recall F-measure AUC

1.2

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 5 6

Window
MMAE MMCE

Figure 4.18: Evaluation results using the 2-year sliding window setting

Answer to RQ7: The evaluation results demonstrate that the predictive model trained

from the recent issues can increase the predictive performance (e.g. preventing the

overfitting problem).

4.6.5 Implications

Outcomes from the risk factor selection process (see Section 4.3) help us identify the best

factors for predicting delayed issues. Although the risk factors and the degree to which

they affect the probability of an issue causing delay are different from project to project,

we have also seen some common patterns, e.g.“the discussion time” and “the percent-

age of delayed issues that a developer is involved with” are positive factors across all the

eight projects. In terms of the discrimination power of the risk factors, the top three high-

est discrimination power factors are: the developer’s workload, the discussion time, and

the percentage of delayed issues that a developer is involved with. Especially, the devel-

oper’s workload is a strong factor having positive correlation with delayed issues in the

Apache, Moodle, and WSO2 projects. In addition, it also corresponds to p-values from

logistic regression model that developer’s workload, discussion time, and the percentage

of delayed issues that a developer is involved with are also significant (p< 0.05) for deter-

mining delayed issues in most projects (e.g. Apache, Moodle, and Java.net). Moreover,

-·- -·- -·- -·-

- -

CHAPTER 4. DELAY PREDICTION 124

Table 4.9: Top-10 most important risk factors with their normalized weight in each

project

Apache Duraspace Java.net JBoss

Feat. Imp. Feat. Imp. Feat. Imp. Feat. Imp.

workload 1 perofdelay 1 discussion 1 perofdelay 1

discussion 0.59 no blocking 0.61 workload 0.86 workload 0.95

no comment 0.56 discussion 0.49 no comment 0.63 discussion 0.70

no des change 0.32 workload 0.38 no des change 0.58 no des change 0.67

no issuelink 0.27 no comment 0.22 no priority change 0.32 perofdelay 0.33

perofdelay 0.27 no des change 0.20 no issuelink 0.22 RemainingDay 0.21

RemainingDay 0.25 no priority change 0.11 RemainingDay 0.22 no blocking 0.20

no priority change 0.22 no issuelink 0.11 no fixversion change 0.21 no priority change 0.19

reporterrep 0.14 RemainingDay 0.09 perofdelay 0.21 no fixversion change 0.18

no fixversion change 0.13 reporterrep 0.09 reporterrep 0.15 reporterrep 0.16

JIRA Moodle Mulesoft WSO2

Feat. Imp. Feat. Imp. Feat. Imp. Feat. Imp.

workload 1 perofdelay 1 perofdelay 1 perofdelay 1

perofdelay 0.64 workload 0.60 workload 0.51 workload 0.89

no comment 0.40 no issuelink 0.28 no comment 0.40 no des change 0.54

no des change 0.31 no comment 0.26 no des change 0.37 discussion 0.53

discussion 0.28 no des change 0.21 no issuelink 0.23 no issuelink 0.37

type NewFeature 0.22 no priority change 0.19 RemainingDay 0.16 no priority change 0.29

no fixversion change 0.19 RemainingDay 0.10 no priority change 0.11 RemainingDay 0.29

RemainingDay 0.14 no blocking 0.09 reporterrep 0.08 reporterrep 0.11

no priority change 0.13 discussion 0.08 no fixversion change 0.08 repetition 0.10

reporterrep 0.10 no fixversion change 0.06 no fixversion 0.08 type Bug 0.09

the changing of priority and fix version are significant (p < 0.05) risk factors in most

projects (e.g. Apache, JIRA, and WSO2). In most projects, the number of issue links is

a significant risk factors (p < 0.05), while the number of blocking and blocked issues are

not a significant factor (p > 0.05).

The issue types that have less impact on causing a delay are “Sub-Task” and

“Functional Test”, while the “Story” type shows a strong indicative of delays in the Mule-

soft project. Furthermore, the “Blocker” and “Critical” priority have a stronger impact

on causing a delay (particularly for the Mulesoft project) than the other priority levels.

By contrast, in the JIRA project the “Minor” priority has stronger indicative of delays

than the “Blocker” or “Critical” priority, which may due to the different practices among

projects in resolving issues.

We also investigated the important risk factors obtained using outcomes from our

Random Forests model. Table 4.9 reports the top-10 most important risk factors and their

weight for each project. The weights here reflect the discriminate power of a feature since

they are derived from the number of times the feature is selected (based on information

gain) to split in a decision tree [164]. The weights are normalized in such a way that the

most important feature has a weight of 1 and the least important feature has 0 weight.

We notice that the discussion time, the developer’s workload, and the percentage of de-

CHAPTER 4. DELAY PREDICTION 125

layed issues that a developer is involved with are good predictors across the eight projects

which correspond to the result obtained from applying feature selection techniques. For

example, in Mulesoft project, the discussion time is significant (p < 0.05) and has the

highest discrimination power (11.990) for determining delayed issues. In most projects

(e.g. Java.net and Moodle), the changing of issue’s attributes (i.e. priority, fix version, and

description) holds the top-5 rank which might reflect that changing of issue’s attributes

can be a good indicator for determining delayed issues. These would provide insightful

and actionable information for project managers in risk management.

Results from our feature selection and prediction models allow us to identify a

number of good factors which help decision makers determine issues at risk of being

delayed. Consistently across the eight projects we studied, the developer workload, the

discussion time, and the developer track record (in terms of the percentage of delayed

issues that a developer has been involved) are the top three factors that have the highest

discrimination power. There is a strong correlation between these factors and the delay

risk, which allows us to propose a range of actionable items. Firstly, issues with long dis-

cussion time tend to have a very high risk of being delayed. This suggests that the project

manager should carefully keep track the discussion involved in an issue, and should pos-

sibly impose a certain time limit on it. Our further investigation on those issues reveal

that the long discussion was mostly due to the complexity of the issue. Therefore, if the

discussion is still not resolved after a certain time, the team should consider, for exam-

ple, splitting an issue into a number of smaller issues (known as the divide-and-conquer

strategy), each of which is easier to deal with.

Secondly, the workload and track record of a developer assigned to resolve an issue

are the most important indicators of whether an issue is at risk of being delayed. Our result

confirms a long known phenomenon that if a developer is overloaded with many tasks,

there is a high risk that they are not able to complete all of them in time. To mitigate

such a risk, the project manager should try to maintain a balanced workload across team

members when assigning issues to them. The track record of a developer here refers to

the percentage of delayed issues in all of the issues which was assigned to a developer.

For example, if a developer was assigned to 10 issues in the past and 6 of them were

delayed, then their track record would be 60%. Our results show that issues assigned to

developers having a high percentage of delayed issues are at a high risk of being delayed.

We however note that this track record may not reflect the actual performance or skills

of a developer. In practice, the best developers are usually tasked with the most difficult

issues, and therefore they may take a longer time to resolve those issues. To mitigate this

risk, we would therefore recommend the project manager identify the developers who

CHAPTER 4. DELAY PREDICTION 126

involved with many delayed issues in the past, and consider for example assigning less

tasks to them or allocating more time for their tasks.

4.6.6 Threats to validity

Internal validity: Our data set has the class imbalance problem. The majority of issues

(over 75% of the total data) are non-delayed issues. This has implications to a classifier’s

ability to learn to identify delayed issues. We have used stratified sampling to mitigate

this problem. We also designed and used two performance measures that are insensitive to

class imbalance: the MMCE and MMAE. In addition, classifiers generally make a certain

assumptions about the data, e.g. Naive Bayes assumes that the factors are conditionally

independent (which may not be true in our context,) or the other classifiers generally as-

sume that training data is sufficiently large. We have used a range of different classifiers,

and performed feature selection to minimize this threat. Feature selection reduces the fea-

ture space, limits the chance of variations, and thus requires less data to learn patterns out

of features. Especially, our feature selection is based on maximizing the predictive perfor-

mance in held-out data, and consequently it helps deal with over-fitting and overoptimistic

estimation.

Another threat to our study is that the patterns that hold in the training data may

not reflect the situation in the test. There are a number of reasons for this such as the team

and management having changed their approach or managed the risks they perceived. We

deliberately chose the time to split training and test sets to mimic a real deployment (as

opposed to traditional settings where data is split randomly). We also minimized this

threat by employing the sliding window approach discussed in Section 4.6.1. In addition,

we have attempted to cover most important risk factors causing delays in resolving an

issue. However, we acknowledge that the set of risk factors identified in this chapter are

by no means comprehensive to encompass all aspects of software projects.

External validity: We have considered more than 60,000 issue reports from the

eight projects which differ significantly in size, complexity, development process, and the

size of community. All issue reports are real data that were generated from open source

project settings. We cannot claim that our data set would be representative of all kinds

of software projects, especially in commercial settings. The primary distinct between

open source project and commercial projects is the nature of contributors, developers and

project’s stakeholders. In open source projects, contributors are free to join and leave

the communities, resulting in high turn over rate [216]. In contrast, developers in the

CHAPTER 4. DELAY PREDICTION 127

commercial setting tend to be stable and fully commit to deliver the project’s progress.

Hence, further study of how our predictive models perform for commercial projects is

needed.

4.7 Related work

Software risk management has attracted great attention since Boehm’s seminal work, e.g.,

[100], [211], in the early nineties. Risk management consists of two main activities: risk

assessment and risk control. Our current work focuses on risk assessment, which is a

process of identifying risks, analyzing and evaluating their potential effects in order to

prioritize them [100], [217]. Risk control aims to develop, engage, and monitor risk

mitigation plans [100].

Statistical and machine learning techniques have been used in different aspects of

risk management. For example, Letier et al. proposed a statistical decision analysis ap-

proach to provide a statistical support on complex requirements and architecture [218].

Their model merges requirements and constraints from various decision options to deter-

mine cost and benefit and to reduce uncertainty in architecture decisions. Pika et al. used

statistical outlier detection techniques to analyze event logs in order to predict process

delay using a number of process risk indicators such as execution time, waiting time, and

resource involvement. Bayesian networks have also been used to model dependencies and

probabilistic relationships between causes and effects in risk analysis [101]. For example,

the work in [11] developed a Bayesian network to analyze causality constraints and elim-

inate the ambiguity between correlation and causality of risk factors. However, the input

data of this model is the questionnaire-based analysis, which may not reflect the current

situation of projects.

Another line of research that is closely related to our work is mining bug reports

for fix-time prediction, e.g., [179], [177], [130], [178], [176], blocking bug prediction,

e.g., [133], [131], re-opened bug prediction, e.g., [111], [113], [112], severity/priority

prediction, e.g., [23], [22], [79], automatic bug categorization, e.g., [219], delays in the

integration of a resolved issue to a release, e.g., [220], bug triaging, e.g., [78], [182],

[221], [77], bug report field reassignment, e.g., [134], [103], bug resolver prediction, e.g.,

[222] and duplicate bug detection [184], [185], [186], [187], [188]. Particularly, the thread

of research on predicting the fix time of a bug is mostly related to our work, and thus we

briefly discuss some of those recent work here. The work in [179] estimates the fixing

effort of a bug by finding the previous bugs that have similar description to the given bug

CHAPTER 4. DELAY PREDICTION 128

(using text similar techniques) and using the known effort of fixing those previous bugs.

The work in [130] used several primitive features of a bug (e.g. severity, component,

number of comments, etc.) to predict the lifetime of Eclipse bugs using decision trees and

other machine learning techniques. Recently, the work in [178] proposed to use Random

Forrest to predict bug’s fixing time using three features: location, reporter and description.

The work in [177] also computed prediction models (using decision trees) for predicting

bug’s fixing time. They tested the models with initial bug report data as well as those with

post-submission information and found that inclusion of post-submission bug report data

of up to one month can further improve prediction models. Since those techniques used

classifiers which do not deal with continuous response variables, they need to discretize

the fix-time into categories, e.g. within 1 month, 1 year and more than 1 year as in [178].

Hence, they are not able to predict the exact time needed to resolve an issue, and thus

are not readily applicable to predict if an issue will be delayed. Our future work would

involve investigating how to extend those techniques for delay prediction and compare

them with our approach.

4.8 Chapter summary

In this chapter, we have performed a study in eight major open source projects and ex-

tracted a comprehensive set of features (i.e. risk factors) that determine if an issue is at

risk of being delayed with respect to its due date. We have developed a sparse logistic

regression model and performed feature selection on those risk factors to choose those

with good discriminative power. In our study, we compared two different feature selec-

tion techniques: ℓ1-penalized logistic regression model and using p-value from logistic

regression model. From our evaluation, the best predictive performance can be obtained

from the assessing of the significance of all features using ℓ1-penalized logistic regression

model. In addition, the outcomes from feature selection techniques also confirmed the di-

versity of projects. Using those selected risk factors, we have developed accurate models

to predict if an issue will be at risk of being delayed, if so to what extend the delay will be

(risk impact), and the likelihood of the risk occurring. The evaluation results demonstrate

a strong predictive performance of our predictive models with 79% precision, 61% recall,

72% F-measure, and above 80% AUC. The error rate of our predictive models measured

by Macro-averaged Mean Cost-Error (MMCE) and Macro-averaged Mean Absolute Er-

ror (MMAE) are only 0.66 and 0.72, respectively. In particular, our evaluation using the

sliding window approach also shows that the more learned data, the better achieved pre-

dictive performance. Moreover, the effect from the different prediction times (i.e. at the

CHAPTER 4. DELAY PREDICTION 129

end of discussion time and at the creation time of an issue) on the predictive performance

is also confirmed by our evaluation results.

Our approach described in this chapter focuses on building predictive model based

on information extracted from individual issues. However, the dependency between issues

can also cause a delay in software project. In the next chapter, we propose an approach to

build predictive models that take relationships between issues into account.

Chapter 5

Delay prediction using networked

classification

MAKING a reliable prediction of delays is an important capability for project man-

agers, especially when facing with the inherent dynamic nature of software projects

(e.g. constant changes to software requirements). In order to address that need, a num-

ber of recent proposals have leveraged data mining and machine learning technologies

to estimate the fix time of a software bug (e.g. [130], [176]–[179]). In line with a large

body of work in data mining for software engineering, these approaches employ tradi-

tional machine learning classification techniques to perform classification on each issue

or bug independently using its attributes or features. The work we presented in the pre-

vious chapter follows such an approach that does not take into account the role of the

underlying network of inter-relationships between the tasks of resolving those bugs or

issues. This is a gap, given the preponderance of task dependencies in software projects –

approximately 57% of 11,851 tasks (i.e. issues) in the five open source projects selected

for our study were related to at least one other task. These task dependencies form the

networked data that we will seek to leverage in this work.

Networked data are seen in many different forms in our daily life, such as hyper-

linked Web pages, social networks, communication networks, biological networks and

financial transaction networks. They are used in various applications such as classify-

ing Web pages [223], scientific research papers [224], [225], protein interaction and gene

expression data [226]. We demonstrate that a similar class of networked data (i.e. net-

worked tasks) can also provide valuable information for predicting delays in software

projects. For example, if a task blocks another task and the former is delayed, then the

latter is also at risk of getting delayed. This example demonstrates a common delay prop-

130

CHAPTER 5. USING NETWORKED CLASSIFICATION 131

agation phenomenon in (software) projects, which has not been considered by previous

approaches.

JBAS-6227

JBAS-6526

Delayed	issue

Non-delayed	issue

?

? Existing	issue

JBAS-6525

JBAS-5246

JBAS-6472

JOPR-150

?

JOPR-44

?

JOPR-22

?

blocks

blocks

JBAS-6148

blocks

Figure 5.1: An example of task dependencies in the JBoss project

For example, Figure 5.1 shows nine issues (represented by their ID) extracted from

the JBossa project, only four of which (i.e. issues JBAS-6148, JBAS-5246, JBAS-6525,

and JBAS-6526) were completed on time whilst there was one delayed issue (i.e. JBAS-

6472). One of the main challenges in project management is therefore predicting which

issues have a risk of being delayed, giving the current situation of a project, in order to

come up with measures to reduce or mitigate such a risk. In this example, assume that

we are trying to predict if issues JBAS-6227, JOPR-150, JOPR-44, and JOPR-22 will be

delayed. In most cases, the issues in a project are however related to each other, and the

delay status (e.g. major delayed, minor delayed or non-delayed) of one issue may have an

influence on that of its related issue. For example, there are several “blocking” relation-

ships between the nine JBoss issues in Figure 5.1, e.g. issue JBAS-6525 blocks JBAS-

6472, indicating that the former needs to be finished before the completion of the latter.

The issue dependencies form the networked data which contain interconnected issues.

Networked data provides additional, valuable information which can be used to improve

the predictive performance of techniques solely relying local features. For example, the

local features are not sufficiently to provide accurate prediction for issue JBAS-6227 –

it was predicted as non-delayed but it is in fact a delayed issue. On the other hand, by

examining its relationships with other issues whose delay status are known – JBAS-6227

were blocked by one delayed issue and relate to 1 non-delayed issue (see Figure 5.1) –

we may be able to infer the risk of issue JBAS-6227 being delayed.

ahttp://www.jboss.org

http://www.jboss.org

CHAPTER 5. USING NETWORKED CLASSIFICATION 132

This example motivates the use of networked data to make within-network esti-

mation. Here, the data has an important characteristics: issues with known delay status

are useful in two aspects. They serves not only as training data but also as background

knowledge for the inference process. Hence, the traditional separation of data into train-

ing and test sets need to carefully take this important property into account. In addition,

networked issues support collective classification, i.e. the delay status of various related

issues can be predicted simultaneously. For example, the prediction of issue JBAS-6227

can be used to influence the estimation of issue JOPR-150, JOPR-44, and JOPR-22 as

they are linked, thus we should do both predictions at the same time.

In this chapter, we propose a novel approach to leverage issue dependencies for

predicting delays in software projects. This chapter makes two main contributions:

• A technique for constructing an issue network of software development tasks

This technique enabled us to extract various relationships between issues in soft-

ware projects to build an issue network. Issue relationships can be explicit (those

that are explicitly specified in the issue records) or implicit (those that need to be

inferred from other issue information). Explicit relations usually determine the or-

der of issues, while implicit relations reflect other aspects such as issues assigned to

the same developer, issues affecting the same software component or similar issues.

• Predictive models to predict delays using an issue network.

We developed accurate predictive models that can predict whether an issue is at risk

of getting delayed. Our predictive models have three components: local classifier,

relational classifier and collective inference. The local classifier uses non-relational

(i.e. local) features of an issue: discussion time, waiting time, type, number of repe-

tition tasks, percentage of delayed issues that a developer involved with, developer’s

workload, priority, number of comments, changing of priority, number of fix ver-

sion, number of affect version, changing of description, number of votes, number

of watches and reporter reputation. The relational classifier makes use of the issue

relations in an issue network to predict if an issue gets delayed based on the delay

information of its neighbors. Finally, collective inference allows us to make such a

prediction simultaneously for multiple related issues.

The remainder of this chapter is organized as follows. Section 5.1 discusses a con-

ceptual framework of our approach. Section 5.2 serves to describe how an issue network

is built for a software project. Section 5.3 presents our networked predictive models. We

provide the description of the dataset for our empirical study and evaluation in Section

CHAPTER 5. USING NETWORKED CLASSIFICATION 133

Learning	phase Execution	phase

Archive	of	

past	issues

Identifying		delay	

status	of	issues

Extracting	

local	features

Constructing	

issue	network

Building	

relational

classifier

Trained

relational

classifier

Building	

local	classifier

Labelled

issues

Predicted	delay

status	of	issues

Trained	

local	classifier

Collective	inference

Existing	issues

Extracting	

local	features
Issue	links

In	the	thesis

Figure 5.2: An overview of our approach

5.4. Section 5.5 reports the experimental evaluations of our approach. Related work is

discussed in Section 5.6 before we provide the conclusion in Section 5.7.

5.1 Approach

Our approach leverages classification techniques in machine learning to predict the risk-

iness of a issue being delayed. A given issue is classified into one of the classes in

{c1,c2, ...,ck} where each class ci represents the risk impact in terms of the degree of

delay, e.g. major delayed, minor delayed or non-delayed. Historical (i.e. completed) is-

sues are labeled, i.e. assigned to a class membership, based on examining the difference

between their actual completion date and due date. For example, in our studies issues

completed by their due date are labeled as “non-delayed”, whilst issues finished more

than 60 days after their due date are labeled as “major delayed”.

The basic process of our approach is described in Figure 5.2. The process has two

main phases: the learning phase and the execution phase. The learning phase involves

using historical data from past issues to train classifiers, which are then used for classify

new issues in the execution phase. Our approach extracts data associated with software

tasks to build an issue network which is defined as below.

Definition 4 (Issue network) An issue network is a directed graph G = (V, E) where:

• each vertex v ∈ V representing an issue in the form of 〈ID,c,attrs〉 where ID is a

unique identifier of the issue, c is the risk class, i.e. label (e.g. non-delayed, minor

8- ---:
- I

8---

~

lcfJ. II

: ______________________ _

CHAPTER 5. USING NETWORKED CLASSIFICATION 134

Table 5.1: Local features of an issue

Feature Short description

Discussion time The period that a team spends on finding solutions to solve

an issue

Waiting time The time when an issue is waiting for being acted upon

Type Issue type

Task repetition The number of times that an issue is reopened

Priority Issue priority

Changing of priority The number of times an issue’s priority was changed

No. comments The number of comments from developers during the dis-

cussion time

No. fix versions The number of versions for which an issue was or will be

fixed

No. affect versions The number of versions for which an issue has been found

Changing of description The number of times in which the issue description was

changed

Reporter reputation The measurement of the reporter reputation

Developer’s workload The number of opened issues that have been assigned to a

developer at a time

Per. of delayed issues The percentage of delayed issues in all of the issues which

have been assigned to a developer

delayed or major delayed), which the issue belongs to, and attrs is a set of the

issue’s attribute-value pairs (attri,vali) (i.e. local features).

• each edge e ∈ E representing a link between issues u and v in the form of 〈〈u,v〉

, types,weights〉 where types is set of the link’s type and weigths is set of link’s

weight.

The set of issues (or nodes) V in an issue network is further divided into two

disjoint groups: issues with known class labels, V K , and issues whose labels need to be

estimated (unknown class), VU which VU =V \V K . Labeled issues are used for training,

and also serve as background knowledge for inferring the label of issues in VU .

A set of attributes (attrs) for an issue are also extracted (see Table 5.1). These

features represents the local information of each individual issue in the network. The local

features are used to build a local classifier which treats issues independently from each

other. Traditional state-of-the-art classifiers (e.g. Random Forest [42], Multiclass Support

Vector Machines [227], or Multiclass Logistic Regression [228]) can be employed for this

purpose.

CHAPTER 5. USING NETWORKED CLASSIFICATION 135

The second important component in our approach is the relational classifier. Un-

like the local classifier, the relational classifier makes use of the relations between issues

in the network (represented by edges) to estimate an issue’s label using the labels of its

neighbors. Relational classifier models exploit a phenomenon that is widely seen in rela-

tional data: the label of a node is influenced by the labels of its related nodes. Relational

classifier models may also use local attributes of the issues. Links between issues in the

network are established by extracting both explicit and implicit relations. Explicit re-

lations refer to the issue dependencies explicitly set by the developers (e.g. the block

dependency). On the other hand, implicit relations can be inferred from the resources

assigned to the issues (e.g. assigned to the same developer) or the nature of the issues.

We will discuss these types of issue relations in details in Section 5.2. Each type of re-

lationship can be assigned to a weight which quantitatively reflects the strength of the

relationship.

Another novel aspect of our approach is the collective inference component which

simultaneously classifies a set of related issues. Details of these approaches will be pro-

vided in Section 5.3.

5.2 Issue network construction

An important part of our approach is building an issue network for past and current issues.

In most of modern issue tracking system (e.g. JIRA), some dependencies between issues

are explicit recorded (i.e. in a special field) in the issue reports and can be easily extracted

from there. Figure 5.3 shows an example of issue JBAS-6227 in the JBoss project (from

our motivating example in Section 5). This issue is blocked by 1 issues (i.e. JBAS-

6472) and it also blocks 4 issues (JOPR-150, JOPR-44, JOPR-22, and JBAS-6620) from

resolving. We refer to these dependencies as explicit relationships. There are however

other types of issue dependency that are not explicitly recorded (e.g. issues assigned to

the same developer), and we need to infer them from extracting other information of the

issues. These are referred to as implicit relationships. We now discuss these types of

relationships in details.

Explicit relationships

There are a number of dependencies among issues which are explicitly specified in the

issue reports. These typically determine the order in which issues need to be performed.

CHAPTER 5. USING NETWORKED CLASSIFICATION 136

Figure 5.3: Example of an issue report with issue links

CHAPTER 5. USING NETWORKED CLASSIFICATION 137

JBIDE-1469

JBIDE-788
JBIDE-1329

JBIDE-1769

JBIDE-1457

JBIDE-6217

JBIDE-1636

JBIDE-1547

JBIDE-351

JBIDE-1498blocks

relates

relates

Figure 5.4: Example of explicit issue relationships in JBoss

There are generally four different types of relationships of the preceding tasks to the

succeeding tasks: finish to start (predecessor must finish before successor can start), start

to start (predecessor must start before successor can start), finish to finish (predecessor

must finish before successor can finish), and start to finish (predecessor must start before

successor can finish). For example, blocking is a common type of relationships that is

explicitly recorded in issue/bug tracking systems. Blocking issues are issues that prevent

other issues from being resolved, which could fall into the finish to start or finish to finish

category.

Figure 5.4 shows some explicit relationships between issues in the JBoss project,

which uses the JIRA issue tracking system. JIRA provides the issue link attribute to

specify the relationship between two or more related issues. The explicit relationships are

extracted directly from the dataset. For example, JBIDE-788 blocks JBIDE-1469, which

is represented by a directed edge connected the two nodes. In addition to blocking, JIRA

also provides three other default types of issue links: relates to, clones and duplicates.

Figure 5.4 shows some examples of the “relates to” relationship, e.g. issue JBIDE-788

relates to JBIDE-1547.

Implicit relationships

While explicit relationships are specified directly in the issue reports, implicit relationship

need to be inferred from other issue information. There are different issue information that

can be extracted to identify a (implicit) relationship between issues. We classified them

into three groups as described below.

• Resource-based relationship: this type of relationships exists between issues that

share the same (human) resource. The resource here could be the developers as-

CHAPTER 5. USING NETWORKED CLASSIFICATION 138

JBIDE-788

JBIDE-1492

JBIDE-1694

JBIDE-1694

rep

JBIDE-1492

JBIDE-1717

JBIDE-799

ver

dev = same developer

rep = same reporter

com = same component

fix = same fix version

ver = same affect version

top = same topic

JBDS-655

Figure 5.5: Example of implicit issue relationships in JBoss

signed to perform the tasks or the same person who created and reported the issues.

Resource-based relationship is important in our context since a resource’s skills,

experience, reputation and workload may affect a chance of delayed issues (i.e. a

developer who causes a delay of a current issue may do so again in the future). For

example, from Figure 5.5, JBIDE-788 has a relationship with JBIDE-1694 since

both of them are assigned to the same developer. Issue JBIDE-788 is also related to

JBIDE-1694 since they were reported by the same person.

• Attribute-based relationship: issues can be related if some of their attributes share

the same values. For example, there is a relationship between issues related to the

same component since they may affect the same or related parts of code. For issue

reports recorded in JIRA, we extract this type of relationship by examining three

attributes: affect version, fix version and component. For example, issue JBIDE-

788 and JBIDE-799 affects the same version while JBIDE-1694 and JBIDE-1717

affects the same component as shown in Figure 5.5.

• Content-based relationship: issues can be similar in terms of how they are con-

ducted and/or what they affect. The similarity may form an implicit relationship

between issues which can be established by extracting the description of the is-

sues. Different extraction techniques can be applied here, ranging from traditional

information retrieval techniques to recent NLP techniques like topic modeling. We

use Latent Dirichlet Allocation (LDA) [197] to build a topic model representing

the content of an issue description. We then establish relationships between on the

basis that related issues share a significant number of common topics. Figure 5.5

shows some example of content-based relationships in JBoss, e.g. issue JBIDE-788

CHAPTER 5. USING NETWORKED CLASSIFICATION 139

has the same topic with JBDS-655. The common topics shared between these two

issues are “code, access control exception, and document types”.

5.3 Predictive model

Our predictive models are built upon three components: local classifier (as done in pre-

vious work), relational classifier, and collective inference. Local classifiers treat issues

as being independent, making it possible to estimate class membership on an issue-by-

issue basis. Relational classifiers posit that the class membership of one issue may have

an influence on the class membership of a related issue in the network. Collective infer-

ence infers the class membership of all issues simultaneously [229]. In the following we

discuss the details of each components.

5.3.1 Local (non-relational) classifier

There are several available state-of-the-art algorithms and techniques that we could em-

ploy to develop local classifiers. We employ the state-of-the-art classifier which is Ran-

dom Forest (RF) [42] – the best performing technique in our experiments.

5.3.2 Relational classifier

Relational classifiers make use of information about issue links to estimate the label prob-

ability. For simplicity, we use only direct relations for class probability estimation:

P(c | G) = P(c | Ni)

where Ni is a set of the immediate neighbors of issue vi (i.e. those that are directly

related to vi) in the issue network G, such that P(c | Ni) is independent of G\Ni. This is

based on a theoretical property known as the Markov assumption which states that given

the neighborhood (also known as the Markov blanket), it is sufficient to infer about the

current label without knowing the other labels in the network [230].

For developing a relational classifier, we employ two highly effective methods.

One is Weighted-Vote Relational Neighbor (wvRN) [231] which is one of the best rela-

tional classification algorithms reported in [229]. The other is Stacked Graphical Learning

CHAPTER 5. USING NETWORKED CLASSIFICATION 140

[232], where classifiers are built in a stage-wise manner, making use of relational infor-

mation in the previous stage.

Weighted-Vote Relational Neighbor

Weighted-Vote Relational Neighbor (wvRN) estimates class membership probabilities

based on two assumptions [233]. First, the label of a node depends only on its immediate

neighbors. Second, wvRN relies on the principle of homophily which assumes that neigh-

boring class labels were likely to be the same [234]. Thus, wvRN estimates P(c|vi) as the

(weighted) mean of the class membership of the issues in the neighborhood (Ni):

P(c | vi) =
1

Z
∑

v j∈Ni

w(vi,v j)P(c | N j)

where Z = ∑v j∈Ni
w(vi,v j) and w(vi,v j) is the weight of the link between issue

vi and issue v j. Our experiments applied the same weight of 1 to all relationship types,

i.e. w(vi,v j) = 1. The optimized weights could be determined using the properties of

a network topology such as assortativity coefficient [229], [235], [236]). We denote the

prior class probability distributions from a relational classification as MR.

Stacked Graphical Learning

One inherent difficulty of the weighted-voting method is the computation of the neighbor

weights. Since there are multiple relations, estimating the weights are non-trivial. Stacked

learning offers an alternative way to incorporate relational information.

The idea of stacking is to learn joint models by multiple steps, taking into rela-

tional information of the previous step to improve the current step. At each step, relational

information together with local features are fed into a standard classifier (e.g., Random

Forests). We consider relations separately and the contribution of each relation is learnt by

the classifier through the relational features. The classifier is then trained. Its prediction

on all data points (vertices in the network) will be then used as features of the next stage.

We adapt the idea from [232]. Our contribution is in the novel use of Random Forests as

a strong local classifier rather than linear classifiers as used in [232].The stacked learning

algorithm is described in Algorithm 1. It returns T classifiers for T steps. At the first step,

the local classifier is used. At subsequent steps, relational classifiers are trained on both

local features and relation-specific averaged neighbor probabilities.

CHAPTER 5. USING NETWORKED CLASSIFICATION 141

Algorithm 1 The stacked learning algorithm (adapted from [232])

1: Train of the 1-st local classifiers on training nodes, ignoring relations

2: for step t=2,3,..,T do

3: Compute the class probabilities for all data points using the (t-1)th classifier

4: for each node i do

5: for each relation r that this node has with its neighbor do

6: if relation weight exist then

7: Average all probabilities of its neighbors j who have the relation r

with relation weight

8: else

9: Set relation weight to 1

10: Average all probabilities of its neighbors j who have the relation r

11: end if

12: Prepare k− 1 features using these averaged probabilities (k probabilities

sum to 1)

13: end for

14: Concatenate all relational features together with the original features

15: end for

16: Train the t-th local classifier on training nodes and new feature sets.

17: end for

18: Output T classifiers (one local, T-1 relational)

5.3.3 Collective inference

Collective inference is the process of inferring class probabilities simultaneously for all

unknown labels in the network conditioned on the seen labels. We employ two meth-

ods: Relaxation Labeling (RL) [237] and Stacked Inference (SI). RL is applicable to any

non-stagewise relational classifiers (e.g. wvRN described in Section 5.3.2). It has been

found to achieve good performance in [229]. SI, on the other hand, is specific to stacked

classifiers (e.g., see Section 5.3.2).

Relaxation Labeling

Relaxation Labeling (RL) has been shown to achieve good results in [229]. RL initializes

the class probabilities using the local classifier model. RL then iteratively corrects this

initial assignment if the neighboring issues have labels that are unlikely according to the

prior class distribution estimated by MR (see Section 5.3.2). Algorithm 2 describes the

Relaxation Labeling technique.

CHAPTER 5. USING NETWORKED CLASSIFICATION 142

Algorithm 2 The Relaxation Labeling algorithm (adapted from [233])

1: Use the 1-st classifier to predict the class probabilities using only local features

2: for step t=2,3,..,T do

3: Estimate the prior class probabilities using the relational classifier, MR, on the

current state of network

4: Reassign the class of each vi ∈ VU according to the current class probabilities

estimation

5: end for

6: Output the class probabilities of vertices with unknown labels.

Stacked Inference

Following the stacked learning algorithm in Section 5.3.2, stacked inference is described

in Algorithm 3. It involved T classifiers returned by the stack learning algorithm. At the

first step, the local classifier is used to compute the class probabilities. At T − 1 sub-

sequent steps, relational classifiers receives both the local features and relation-specific

weighted neighbor probabilities and outputs class probabilities. The final class probabili-

ties are the outcome of the inference process.

Algorithm 3 The stacked inference algorithm

1: Use the 1-st classifier to predict the class probabilities using only local features

2: for step t=2,3,..,T do

3: Prepare relational features using the neighbor probabilities computed from the

previous step

4: Use the t-th classifiers to predict the class probabilities using local features and

relational features.

5: end for

6: Output the class probabilities of vertices with unknown labels.

5.4 Dataset

In this study, the prediction task is similar to the previous chapter (i.e. predicting issue

delays). Since we use the issue reports recorded in JIRA platform, we refer to Section

4.5 for data collecting, labeling, and preprocessing. However, this study makes use of

the issue links (i.e. the explicit relationships) recorded in issue reports. This information

of issue links can be also obtained from the collected JSON files. Figure 5.6 shows an

example of issue links of issue JBAS-6227 from the JBoss repository. For example, issue

JBAS-6227 blocks issues JOPR-150, JOPR-44, and JOPR-22, and it is blocked by issue

CHAPTER 5. USING NETWORKED CLASSIFICATION 143

JBAS-6472. Issues were collected from the JIRA issue tracking system in five well-known

open source projects: Apache, Duraspace, JBoss, Moodle, and Spring.

{"key": "JBAS-6227", ...

"fields": {

"issuelinks": [{

"type": {

"name": "Dependency",

"inward": "blocks",

"outward": "is blocked by",},

"outwardIssue": {

"key": "JBAS-6472", ...}

"inwardIssue": {

"key": "JOPR-150", ...

"key": "JOPR-44", ...

"key": "JOPR-22", ...}

},...,}

Figure 5.6: Example of issue links in an issue JSON file

An issue network is built by extracting both explicit and implicit links among the

issues. We employ a number of measures to describe different properties of an issue

network: the number of nodes, the number of edges, and the average node degree (i.e. the

number of connections a node has to other nodes). In addition, assortativity coefficient

[138] is used to measure the correlation between two nodes: the preference of network

nodes to connect to other nodes that have similar or different degrees. Positive values of

assortativity coefficient indicate a correlation between nodes of similar degree (e.g. highly

connected nodes tends to be connected with other high degree nodes), while negative

values indicate relationships between nodes of different degree (e.g. high degree nodes

tend to connect to low degree nodes). As can be seen from Table 5.2, the inclusion of

implicit relationships significantly increases the density of the network issues across all

the five projects that we studied. By contrast, the assortativity coefficient remains nearly

the same with or without implicit relationships.

A weight is also applied to each edge type in an issue network. This allows us

to better quantify the strength of a relationship between issues. By default, each edge

is equally assigned the weight of 1. However, different weights can also be applied to

different types of relationships. More complex approaches can also be applied here. For

example, the weights could be decreased over time to reflect the fading of the relation-

ships, e.g. the issues have been assigned to the same developer for long time ago.

CHAPTER 5. USING NETWORKED CLASSIFICATION 144

Table 5.2: Datasets and networks’ statistics

Project Relationship
Num

Nodes

Num

Edges

Avg. node

degree

Node

Assort.

Apache Explicit 496 246 1.597 0.256

Implicit 496 27,460 55.362 0.246

All 496 27,706 55.858 0.225

Duraspace Explicit 1,116 563 1.700 0.257

Implicit 1,116 383,677 343.796 0.240

All 1,116 384,240 344.301 0.230

JBoss Explicit 8,206 4,904 2.057 0.235

Implicit 8,206 4,908,164 598.118 0.249

All 8,206 4,913,068 598.716 0.247

Moodle Explicit 1,439 1,283 3.055 0.222

Implicit 1,439 197,176 137.022 0.215

All 1,439 198,748 138.115 0.208

Spring Explicit 597 222 1.219 0.250

Implicit 597 63,430 106.247 0.249

All 597 63,652 106.619 0.242

5.5 Evaluation

Our empirical evaluation aims to answer the following research questions:

RQ1 Does the networked classification techniques improve the predictive performance?

We perform an experiment to compare the predictive performance between tra-

ditional classifiers (i.e. Random Forrests) and the two networked classifiers (i.e.

Weighted-Vote Relational Neighbor with Relaxation Labeling, and stacking method)

on five projects: Apache, Duraspace, JBoss, Moodle, and Spring to find the best

performer.

RQ2 Does collective inference improve the predictive performance of relational classi-

fiers?

This research question focuses on evaluating the predictive performance achieved

by using collective inference on relational classifiers. To do so, we setup two ex-

periments: one using Weighted-Vote Relational Neighbor and the other using both

Weighted-Vote Relational Neighbor and Relaxation Labeling.

RQ3 Does using different relationship types affect the predictive performance?

CHAPTER 5. USING NETWORKED CLASSIFICATION 145

We perform a number of experiments to evaluate the predictive performance achieved

by different sets of issue’s relationships. We test with five different combinations:

networks with explicit relationships, networks with explicit and resource-based re-

lationships, networks with explicit and attribute-based relationships, networks ex-

plicit and content-based relationships, and networks with all explicit and implicit

relationships.

RQ4 How does the size of training data affect the predictive performance?

We aim to assess the proportion of past issues (i.e. labeled issues) is needed to

achieve a good predictive performance. To answer this question, we vary the num-

ber of issues between 20% to 100% of the total issues in the training set for devel-

oping the predictive models.

5.5.1 Experimental setting

The dataset was divided into a training set and a test set (see Table 5.3). We try to mimic a

real project management scenario that prediction on a current issue is made using knowl-

edge from the past issues, the collected issues in training set are those that were opened

before the issues in test set. The collected datasets are shown in Table 5.2. Since the

number of delayed issues in our datasets is small, we chose to use two classes of delay:

major delayed and minor delayed (and the non-delayed class).

Table 5.3 shows the number of issues in training set and test set for each project.

Major delayed issues are those that have actual completed date (resolved date) greater

than 30 days from planned to completed date and less than 30 days of delays is minor

delayed. Note that the size of delayed can be defined by project managers who realize the

impact of schedule overruns to the projects. Since (major/minor) delayed issues are rare

and imbalanced, we had to be careful in creating the training and test sets. Specifically,

we placed 60% of the delayed issues into the training set and the remaining 40% into the

test set. In addition, we tried to maintain a similar ratio between delayed and non-delayed

issues in both test set and training set, i.e. stratified sampling.

5.5.2 Performance measures

Reporting the average of precision/recall across classes is likely to overestimate the true

performance, since our risk classes are ordinal and imbalanced and no-delays are the de-

CHAPTER 5. USING NETWORKED CLASSIFICATION 146

Table 5.3: Experimental setting

Project
Training set Test set

Major Minor Non Major Minor Non

Apache 10 52 236 6 34 158

Duraspace 23 71 575 16 47 384

JBoss 666 679 3,579 444 452 2,386

Moodle 42 52 770 28 34 513

Spring 13 34 310 8 22 207

fault and they are not of interest to the prediction of delayed issues. Hence, our evaluation

is focus on the predicting of risk classes as described below. A confusion matrix is used

to evaluate the performance of our predictive models. As a confusion matrix does not

deal with a multi-class probabilistic classification, we reduce the classified issues into

two binary classes: delayed and non-delayed using the following rule:

Ci =

{

delayed, i f P(i,Ma j)+P(i,Min)> P(i,Non)

non−delayed, otherwise

where Ci is the binary classification of issue i, and P(i,Ma j), P(i,Min), and

P(i,Non) are the probabilities of issue i classified in the major delayed, minor delayed,

and non-delayed classes respectively. Basically, this rule determines that an issue is con-

sidered as delayed if the sum probability of it being classified into the major and minor

delayed classes is greater than the probability of it being classified into the non-delayed

class. Note that our work on this chapter focuses on predicting delayed and non de-

layed issues. Our evaluations thus emphasize on measuring the performance of predicting

whether issues will cause a delay. We however acknowledge that the ability to distinguish

between major and minor is also important. Hence, future work involves using several ap-

propriate performance metrics (e.g. Macro-averaged mean absolute error [158]) to mea-

sure the performance of our models in distinguishing between the two delayed classes

(major and minor delayed).

The confusion matrix is then used to store the correct and incorrect decisions made

by a classifier. Those values are used to compute the Precision, Recall, F-measure, and

AUC for the delayed issues to evaluate the performance of the predictive models (see

Section 2.1.6).

CHAPTER 5. USING NETWORKED CLASSIFICATION 147

Table 5.4: Evaluation results of traditional classification, wvRN+RL, and stacked learn-

ing

Project Method Precision Recall F-measure AUC

Apache Traditional 0.38 0.65 0.48 0.75

Collective inference 0.46 0.75 0.57 0.78

Stack learning 0.62 0.85 0.72 0.83

Duraspace Traditional 0.43 0.71 0.54 0.80

Collective inference 0.97 0.46 0.62 0.92

Stack learning 0.63 0.83 0.71 0.95

JBoss Traditional 0.44 0.70 0.54 0.68

Collective inference 0.46 0.70 0.56 0.78

Stack learning 0.59 0.83 0.69 0.82

Moodle Traditional 0.21 0.45 0.29 0.64

Collective inference 0.46 0.80 0.57 0.79

Stack learning 0.83 0.65 0.73 0.89

Spring Traditional 0.51 0.60 0.55 0.91

Collective inference 0.74 0.77 0.75 0.84

Stack learning 0.55 0.97 0.70 0.94

Avg Traditional 0.39 0.62 0.48 0.76

Collective inference 0.62 0.70 0.61 0.82

Stack learning 0.64 0.82 0.71 0.89

5.5.3 Results

Comparison of different classification approaches (RQ1)

We compare three different settings: local classifier using Random Forrests (traditional

classification), Weighted-Vote Relational Neighbor (wvRN) with Relaxation Labeling

(RL), and stacking method (with stacked inference). Table 5.4 shows the precision, recall,

F-measure, and AUC achieved by three different classification approaches in each project

and averaging across all projects. Note that the stacking method uses Random Forests as

the base classifier.

The evaluation results indicate that the predictive performance achieved by stacked

learning is better and more consistent than traditional classification and relational classifi-

cation using wvRN+RL. Stacked learning achieved the best precision of 0.64 (averaging

across five projects), while the traditional classification achieved only 0.39 precision (av-

eraging across five projects). It should however be noted that wvRN+RL achieved the

highest precision of 0.97 for Duraspace. In addition, the precision achieved by stacked

learning is more consistent and steady in all projects. By contrast, the performance of

wvRN+RL are varied between projects. Relational classification with wvRN+RL is based

on the principle of homophily, which may not always hold in some projects. This is

reflected by its low performance in some cases (i.e. only 0.46 precision for Apache).

CHAPTER 5. USING NETWORKED CLASSIFICATION 148

On the other hand, stacked learning provides a more generalized approach to learn the

relationships within networked data – it achieved above 0.5 precision across the five

projects.

Stacked learning also outperforms the other classification approaches in terms of

recall and F-measure: it achieved the highest recall of 0.82 and the highest F-measure of

0.71 (averaging across five projects). The highest recall of 0.97 was also achieved by stack

learning for the Spring project. The degree of discrimination achieved by our predictive

models is also high, as reflected in the AUC results. The AUC quantifies the overall ability

of the discrimination between the delayed and non-delayed classes. The average of AUC

across all classifiers and across all projects is 0.83. All classifiers achieved more than 0.65

AUC while stacked learning is the best performer with 0.88 AUC (averaging across five

projects) and 0.95 for Duraspace.

Overall, the evaluation results demonstrate the effectiveness of our predictive mod-

els, achieving on average 46%–97% precision, 46%–97% recall, 56%–76% F-measure,

and 78%–95% Area Under the ROC Curve. Our evaluation results also show a significant

improvement over traditional approaches (local classifiers): 49% improvement in preci-

sion, 28% in recall, 39% in F-measure, and 16% in Area Under the ROC Curve.

Answer to RQ1: Using the networked classification techniques significantly im-

prove the predictive performance over traditional approaches. Stacked learning (stack-

ing method with stacked inference) is the best performer with respect to all perfor-

mance measures.

The usefulness of collective inference (RQ2)

Table 5.5 shows the comparison of the precision, recall, F-measure, and AUC achieved

by the relational classification with collective inference (wvRN+RL) and without collec-

tive inference (only wvRN). Overall, the predictive performance achieved by relational

classification with collective inference is better than that without collective inference in

all measures. The relational classification with collective inference achieves the highest

precision of 0.62, recall of 0.70, F-measure of 0.62, and 0.83 AUC (averaging across

five projects). Although, the predictive performance of Relaxation Labeling is lower than

stacked learning as we discussed earlier, the evaluation results still support that collective

inference significantly improve the performance of relational classifiers. However, collec-

tive inference applied on top of the wvRN still follows a strong assumption of homophily

CHAPTER 5. USING NETWORKED CLASSIFICATION 149

Table 5.5: Evaluation results of relational classifier with collective inference and without

collective

Project Method Precision Recall F-measure AUC

Apache Non CI 0.46 0.75 0.57 0.78

With CI 0.48 0.77 0.59 0.80

Duraspace Non CI 0.88 0.48 0.62 0.91

With CI 0.97 0.46 0.62 0.92

JBoss Non CI 0.48 0.71 0.57 0.82

With CI 0.46 0.70 0.56 0.78

Moodle Non CI 0.10 0.11 0.10 0.65

With CI 0.46 0.80 0.57 0.79

Spring Non CI 0.74 0.77 0.75 0.87

With CI 0.76 0.78 0.76 0.88

Avg Non CI 0.53 0.56 0.52 0.81

With CI 0.62 0.70 0.62 0.83

theory and as a result, it causes an inconsistent predictive performance among different

projects.

Answer to RQ2: Combining collective inference and relational classifiers significantly

improves the predictive performance.

The influence of explicit and implicit relationships (RQ3)

As can be seen from Figure 5.7, the highest predictive performance is achieved by using

both explicit and implicit relationships: it achieved the highest precision of 0.62 and the

highest recall of 0.70 (averaging across five projects). By contrast, the networks using

only explicit relationships achieved the lowest precision, i.e. 0.31, while the networks

using explicit and content-based relationships produced the lowest recall. In general, us-

ing both explicit relationships and implicit relationships (resource-based, attribute-based,

and content-based) significantly increases the predictive performance: 66.23 % increased

in precision and 21.62 % increased in recall (compare to using only explicit relation-

ships).

Answer to RQ3: The predictive models using both explicit and implicit relationships

perform best.

CHAPTER 5. USING NETWORKED CLASSIFICATION 150

0

0.2

0.4

0.6

0.8

1

Precision Recall F-measure

Explicit

Explicit and Resource-based

Explicit and Attribute-based

Explicit and Content-based

All

Figure 5.7: Evaluation results on different sets of relationships

The effect of the size of training data (RQ4)

In these experiments, given a data set, G = (V,E), V K (i.e. labeled issues) is created by

selecting samples of 20% – 100% of the training set (see Table 4.3). The test set, VU ,

is then defined as V \V K . Figure 5.8 shows the predictive performance from samples of

20% to 100% of V in terms of F-measure. The results clearly demonstrate that F-measure

(averaging across five projects) increases as more labeled data is used for training.

Answer to RQ4: Using more labeled data for training improves the predictive perfor-

mance of the model.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20% 30% 40% 50% 60% 70% 80% 90% 100%

F
-M
e
a
s
u
re

Apache Duraspace JBoss

Moodle Spring avg

Figure 5.8: Evaluation results on different sizes of training data

CHAPTER 5. USING NETWORKED CLASSIFICATION 151

5.5.4 Threats to validity

One relational setting involves the use of wvRN, which assumes the homophily prop-

erty among issues, that is, related issues should have similar delay risk. This is a strong

assumption and may not hold in reality, and this has been revealed in our experiments.

We have addressed this threat by proposing stacked learning approach which does not

rely on the the homophily assumption but rather estimates the contribution of separate

relationships.

We have attempted to identify all possible relationships among issues. However,

we acknowledge that the implicit relationships we have inferred are by no means compre-

hensive to represent all issue dependencies. Another threat to our study is that our data

set has the class imbalance problem (over 90% of the total data are non-delayed issues),

which may affect a classifier’s ability to learn to identify delayed issues. We have used

stratified sampling to mitigate this problem. We however acknowledge such a sampling

approach could be an external threat to validity. Further experiments to evaluate sampling

techniques used in practice are thus needed. In addition, patterns that hold in the train data

may not reflect the situation in the test, e.g. the team and management having changed

their approach or managed the risks they perceived. To address this threat, instead of split-

ting the data randomly (as done in traditional settings), we deliberately chose the time to

split training and test sets to mimic a real deployment.

We have considered 11,851 issue reports from the five projects which differ sig-

nificantly in size, complexity, development process, and the size of community. Although

these are real data, we however cannot claim that our data set would be representative of

all kinds of software projects, especially in commercial settings. Although open source

projects and commercial projects share similarities in many aspects, they are also different

in the nature of contributors, developers and project’s stakeholders. For example, open

source contributors are free to join and leave the communities (i.e. high turn over rate),

while developers in the commercial setting tend to be stable and fully commit to deliver

the project’s progress. Hence, further study is need to understand how our predict models

perform for commercial projects.

5.6 Related work

In this section, we discuss the thread of related work that makes use of networked data in

software projects. Zimmermann et al. [181] proposed a defect prediction model using net-

CHAPTER 5. USING NETWORKED CLASSIFICATION 152

work analysis approach on (directed-)dependency graphs built from source code. They

constructed the program dependencies as a directed relationship between two pieces of

code using two different types of dependencies: data dependencies (i.e. the relationships

between the definition and the value passing) and call dependencies (i.e. the relationships

between the functions and the locations that they were called). Their prediction model is

then built based on several metrics (i.e. features) from applying network analysis tech-

niques on the constructed dependency graphs for example size, tie, density, and shortest

paths. They have reported that the using of the network metrics improves the predictive

performance by 30% over object-oriented complexity metrics. In addition, the formal

method for constructing program dependencies that represent relationships between two

or more pieces of code has been previously proposed by Pogdurski et al. [238] in 1990.

Program dependencies have been used in several aspects in software development (e.g.

testing [239], code optimization [240], and software debugging [241]).

There are several methods for constructing a developer network based on the in-

formation recorded in source code repositories have been proposed. For example, Lopez-

Fernandez et al. [242] proposed an approach to construct developer networks e.g., two

developers are linked when they commit to same modules. They then applied network

analysis techniques on the constructed developer networks to study the patterns of devel-

oper’s collaborations in software projects. Huang et al. [243] also leveraged the data from

source code repositories to construct developer networks. They studied the evolutionary

process of learning behavior of developers in open source software projects to classify

developers into core and non-core groups. The work in [244] and [245] also makes use of

developer networks for predicting whether a software building fails. We, however, pro-

posed an approach to construct an issue network which also considers the relationships

between developers as the implicit links in the network.

The networked data also used in several aspects such as predicting software quality

using social network analysis (e.g. [180], [246]), predicting software evolution in terms

of estimating bug severity, efforts, and defect-prone releases using Graph-based analysis

(e.g. [138]).

5.7 Chapter summary

In this chapter, we have proposed a novel approach to predict whether a number of existing

issues in a software project are at risk of being delayed. Our approach exploits not only

features specific to individual issues but also the relationships between the issues (i.e.

CHAPTER 5. USING NETWORKED CLASSIFICATION 153

networked data). We have developed several prediction models using local classifiers,

relational classifiers and collective inference. The evaluation results demonstrate a strong

predictive performance of our networked classification techniques compared to traditional

approaches: achieving 49% improvement in precision, 28% improvement in recall, 39%

improvement in F-measure, and 16% improvement in Area Under the ROC Curve. In

particular, the stacked graphical learning approach consistently outperformed the other

techniques across the five projects we studied. The results from our experiments indicate

that the relationships between issues have an impact on the predictive performance.

Chapter 6

Story point estimation

EFFORT estimation is an important part of software project management, particu-

larly for planning and monitoring a software project. Effort estimates may be used

by different stakeholders as input for developing project plans, scheduling iteration or re-

lease plans, budgeting, and costing [247]. Hence, incorrect estimates may have adverse

impact on the project outcomes [24], [27]–[29]. Research in software effort estimation

dates back several decades and they can generally be divided into model-based methods,

expert-based methods, and hybrid methods which combine model-based and expert-based

methods [248]. Model-based approaches leverages data from old projects to make pre-

dictions about new projects. Expert-based methods rely on human expertise to make such

judgements. Most of the existing work (e.g. [7], [8], [95], [96], [98], [99], [249]–[254])

focus on the effort required for completing a whole project (as opposed to user stories

or issues). These approaches estimate the effort required for developing a complete soft-

ware system, relying on a set of features manually designed for characterizing a software

project.

Software is developed through repeated cycles (iterative) and in smaller parts at a

time (incremental) in modern agile development settings. A project has a number of itera-

tions (e.g. sprints in Scrum [126]). Each iteration requires the completion of a number of

user stories. There is thus a need to focus on estimating the effort of completing a single

user story at a time rather than the entire project. In fact, it has now become a common

practice for agile teams to go through each user story and estimate the effort required for

completing it. Story points are commonly used as a unit of effort measure for a user story

[125]. Currently, most agile teams heavily rely on experts’ subjective assessment (e.g.

planning poker, analogy, and expert judgment) to arrive at an estimate. This may lead to

inaccuracy and more importantly inconsistencies between estimates [30].

154

CHAPTER 6. STORY POINT ESTIMATION 155

We propose a prediction model which supports a team by recommending a story-

point estimate for a given user story. Our model learns from the team’s previous story

point estimates to predict the size of new issues. This prediction system will be used in

conjunction with (instead of a replacement for) existing estimation techniques practiced

by the team. It can be used in an completely automated manner, i.e. the team will use the

story points given by the prediction system. Alternatively, it could be used as a decision

support system and takes part in the estimation process. This is similar to the notions of

combination-based effort estimation in which estimates come from different sources, e.g.

a combination of expert and formal model-based estimates [248]. The key novelty of our

approach resides in the combination of two powerful deep learning architectures: long

short-term memory (LSTM) and recurrent highway network (RHN). LSTM allows us to

model the long-term context in the textual description of an issue, while RHN provides us

with a deep representation of that model. We named this approach as Deep learning model

for Story point Estimation (Deep-SE). Our prediction system is end-to-end trainable from

raw input data to prediction outcomes without any manual feature engineering.

We have performed an extensive evaluation on 23,313 issues. The evaluation re-

sults demonstrate that our approach consistently outperforms three common baseline es-

timators: Random Guessing, Mean, and Median methods and four alternatives (e.g. using

Doc2Vec and Random Forests) in Mean Absolute Error, Median Absolute Error, and

the Standardized Accuracy. These claims have also been tested using a non-parametric

Wilcoxon test and Vargha and Delaney’s statistic to demonstrate the statistical signifi-

cance and the effect size.

The remainder of this chapter is organized as follows. Section 6.1 provides a

background of the story point estimation and the deep learning techniques. Section 6.2

presents the Deep-SE model. We also explain how it can be trained in Section 6.3. We

explain how we collect the data for our empirical study and evaluation in Section 6.4.

Section 6.5 reports on the experimental evaluation of our approach. Related work is

discussed in Section 6.6 before we conclude our work in Section 6.7.

6.1 Story point estimation

When a team estimates with story points, it assigns a point value (i.e. story points) to

each user story. A story point estimate reflects the relative amount of effort involved in

resolving or completing the user story: a user story that is assigned two story points should

take twice as much effort as a user story assigned one story point. Many projects have

CHAPTER 6. STORY POINT ESTIMATION 156

now adopted this story point estimation approach [30]. Projects that use issue tracking

systems (e.g. JIRAa) record their user stories as issues. Figure 6.1 shows an example of

issue XD-2970 in the Spring XD projectb which is recorded in JIRA. An issue typically

has a title (e.g. “Standardize XD logging to align with Spring Boot”) and description.

Projects that use JIRA Agile also record story points. For example, the issue in Figure 6.1

has 8 story points.

Definition 5 (Story point) A story point estimate reflects the relative amount of effort

involved in resolving or completing the user story: a user story that is assigned two story

points should take twice as much effort as a user story assigned one story point.

• a story point assigned to an issue must be a numerical value

Figure 6.1: An example of an issue with estimated story points

Story points are usually estimated by the whole project team. For example, the

widely-used Planning Poker [255] method suggests that each team member provides an

estimate and a consensus estimate is reached after a few rounds of discussion and (re-

)estimation. This practice is different from traditional approaches (e.g. function points)

in several aspects. Both story points and function points are a measure of size. However,

ahttps://www.atlassian.com/software/jira
bhttps://jira.spring.io/browse/XD-2970

https://www.atlassian.com/software/jira
https://jira.spring.io/browse/XD-2970

CHAPTER 6. STORY POINT ESTIMATION 157

function points can be determined by an external estimator based on a standard set of

rules (e.g. counting inputs, outputs, and inquiries) that can be applied consistently by

any trained practitioner. On the other hand, story points are developed by a specific team

based on the team’s cumulative knowledge and biases, and thus may not be useful outside

the team (e.g. in comparing performance across teams). Since story points represent

the effort required for completing a user story, an estimate should cover different factors

which can affect the effort. These factors include how much work needed to be done,

the complexity of the work, and any uncertainty involving in the work [125]. Hence, it

is important that the team is consistent in their story point estimates to avoid reducing

the predictability in planning and managing their project. A machine learner can help

the team maintain this consistency, especially in coping with increasingly large numbers

of issues. It does so by learning insight from past issues and estimations to make future

estimations.

6.2 Deep-SE

Our overall research goal is to build a prediction system that takes as input the title and

description of an issue and produces a story-point estimate for the issue. Title and de-

scription are required information for any issue tracking system. Hence, our prediction

system is applicable to a wide range of issue tracking systems, and can be used at any

time, even when an issue is created.

We combine the title and description of an issue report into a single text document

where the title is followed by the description. Our approach computes vector represen-

tations for these documents. These representations are then used as features to predict

the story points of each issue. It is important to note that these features are automatically

learned from raw text, hence removing us from manually engineering the features.

Figure 6.2 shows the Deep learning model for Story point Estimation (Deep-SE)

that we have designed for the story point prediction system. It is composed of four com-

ponents arranged sequentially: (i) word embedding, (ii) document representation using

Long Short-Term Memory (LSTM) [66], (iii) deep representation using Recurrent High-

way Net (RHWN) [256]; and (iv) differentiable regression. Given a document which

consists of a sequence of words s = (w1,w2, ...,wn), e.g. the word sequence (Standardize,

XD, logging, to, align, with,) in the title and description of issue XD-2970 in Figure

6.1.

CHAPTER 6. STORY POINT ESTIMATION 158

pooling

Embedding	

word	vector

LSTM

story	point	

estimate

W1 W2
W3 W4

W5
W6

Recurrent	Highway	NetRegression

Standardize XD logging to align with

document	representation

h1
h2 h3 h4 h5

h6

….

….

….

….

Embedding	matrix	M

Figure 6.2: Deep learning model for Story point Estimation (Deep-SE). The input layer

(bottom) is a sequence of words (represented as filled circles). Words are first embedded

into a continuous space, then fed into the LSTM layer. The LSTM outputs a sequence of

state vectors, which are then pooled to form a document-level vector. This global vector

is then fed into a Recurrent Highway Net for multiple transformations (See Eq. (6.1) for

detail). Finally, a regressor predicts an outcome (story-point).

We model a document’s semantics based on the principle of compositionality: the

meaning of a document is determined by the meanings of its constituents (e.g. words) and

the rules used to combine them (e.g. one word followed by another). Hence, our approach

models document representation in two stages. It first converts each word in a document

into a fixed-length vector (i.e. word embedding). These word vectors then serve as an

input sequence to the Long Short-Term Memory (LSTM) layer which computes a vector

representation for the whole document.

The mechanism of LSTM allows the model to learn long-term dependencies in

text effectively. Consider trying to predict the last word in the following text extracted

from the description of issue XD-2970 in Figure 6.1: “Boot uses slf4j APIs backed by

CHAPTER 6. STORY POINT ESTIMATION 159

logback. This causes some build incompatibilities An additional step is to replace

log4j with .”. Recent information suggests that the next word is probably the name of a

logging library, but if we want to narrow down to a specific library, we need to remember

that “logback” and “log4j” are logging libraries from the earlier text. There could be a big

gap between relevant information and the point where it is needed, but LSTM is capable

to learn to connect the information.

After that, the document vector is fed into the Recurrent Highway Network (RHWN),

which transforms the document vector multiple times, before outputting a final vector

which represents the text. The vector serves as input for the regressor which predicts

the output story-point. While many existing regressors can be employed, we are mainly

interested in regressors that are differentiable with respect to the training signals and the

input vector. In our implementation, we use the simple linear regression that outputs the

story-point estimate.

Our entire system is trainable from end-to-end: (a) data signals are passed from the

words in issue reports to the final output node; and (b) the prediction error is propagated

from the output node all the way back to the word layer.

6.2.1 Word embedding

We represent each word as a low dimensional, continuous and real-valued vector, also

known as word embedding. Here we maintain a look-up table, which is a word embedding

matrix M ∈ R
d×|V | where d is the dimension of word vector and |V | is vocabulary size.

These word vectors are pre-trained from corpora of issue reports, which will be described

in details in Section 6.3.1.

6.2.2 Document representation using LSTM

Since an issue document consists of a sequence of words, we model the document by

accumulating information from the start to the end of the sequence. A powerful accumu-

lator is a Recurrent Neural Network (RNN) [64], which can be seen as multiple copies

of the same single-hidden-layer network, each passing information to a successor. Thus,

recurrent networks allow information to be accumulated. While RNNs are theoretically

powerful, they are difficult to train for long sequences [64], which are often seen in issue

reports (e.g. see the description of issue XD-2970 in Figure 6.1). Hence, our approach

employs Long Short-Term Memory (LSTM), a special variant of RNN.

CHAPTER 6. STORY POINT ESTIMATION 160

LSTM

Standardize

[0.1 0.3 ‐0.2]

XD

[‐1 ‐2.1 0.5]

logging

[1.5 0.5 ‐1.2]

XD logging to

[1 ‐0.5 ‐3] [‐1.3 0 2] [‐0.5 ‐0.5 ‐1]

[‐0.27 ‐0.33 ‐0.67]

LSTMLSTM
Sequence embedding

Word embedding

Output states

Figure 6.3: An example of how a vector representation is obtained for issue reports

After the vector output state has been computed for every word in the input se-

quence, the next step is aggregating those vectors into a single vector representing the

whole document (see Figure 6.3). The aggregation operation is known as pooling. There

are multiple ways to perform pooling, but the main requirement is that pooling must be

length invariant. In other words, pooling is not sensitive to variable length of the doc-

ument. For example, the simplest statistical pooling method is mean-pooling where we

take the sum of the state vectors and divide it by the number of vectors. Other pooling

methods are such as max pooling (e.g. choose the maximum value in each dimension),

min pooling and sum pooling. From our experience in other settings, a simple but often

effective pooling method is averaging, which we also employed here [257].

6.2.3 Deep representation using Recurrent Highway Network

Given that vector representation of an issue report has been extracted by the LSTM layer,

we can use a differentiable regressor for immediate prediction. However, this may be

sub-optimal since the network is rather shallow. Deep neural networks have become a

popular method with many ground-breaking successes in vision [258], speech recogni-

tion [259] and NLP [260], [261]. Deep nets represent complex data more efficiently than

shallow ones [262]. Deep models can be expressive while staying compact, as theoreti-

cally analysed by recent work [263]–[267]. This have been empirically validated in recent

record-breaking results in vision, speech recognition and machine translation. However,

learning standard feedforward networks with many hidden layers is notoriously difficult

due to two main problems: (i) the number of parameters grows with the number of layers,

CHAPTER 6. STORY POINT ESTIMATION 161

leading to overfitting; and (ii) stacking many non-linear functions makes it difficult for

the information and the gradients to pass through.

To address these problems, we designed a deep representation that performs multi-

ple non-linear transformations using the idea from Highway Networks. Highway Nets are

the latest idea that enables efficient learning through those many non-linear layers [268].

A Highway Net is a special type of feedforward neural networks with a modification to

the transformation taking place at a hidden unit to let information from lower layers pass

linearly through. Specifically, the hidden state at layer l is defined as:

hl+1 = α l ∗hl +(1−α l)∗σl (hl) (6.1)

where σl is a non-linear transform (e.g., a logistic or a tanh) and α l = logit(hl) is a linear

logistic transform of hl . Here α l plays the role of a highway gate that lets information

passing from layer l to layer l + 1 without loss of information. For example, α l → 1

enables simple copying.

We need to learn a mapping from the raw words in an issue description to the

story points. A deep feedforward neural network like Highway Net effectively breaks the

mapping into a series of nested simple mappings, each described by a different layer of

the network. The first layer provides a (rough) estimate, and subsequent layers iteratively

refine that estimate. As the number of layers increase, further refinement can be achieved.

Comparing to traditional feedforward networks, the special gating scheme in Highway

Net is highly effective in letting the information and the gradients to pass through while

stacking many non-linear functions. In fact, earlier work has demonstrated that Highway

Net can have up to a thousand layers [268], while traditional deep neural nets cannot go

beyond several layers [269].

We have also modified the standard Highway Network by sharing parameters be-

tween layers, i.e. all the hidden layers having the same hidden units. This is similar

to the notion of a recurrent network, and thus we called it a Recurrent Highway Net-

work. Previous work [256] has demonstrated the effectiveness of this approach in pattern

recognition. This key novelty allows us to create a very compact version of Recurrent

Highway Network with only one set of parameters in α l and σl . This clearly produces a

great advantage of avoiding overfitting. We note that the number of layers here refers to

the number of hidden layers of a Recurrent Highway Network, not the number of LSTM

layers. The number of LSTM layers is the same as the number of words in an issue’s

description.

CHAPTER 6. STORY POINT ESTIMATION 162

6.2.4 Regression

At the top-layer of Deep-SE, we employ linear activation function in a feedforward neural

network as the final regressor (see Figure 6.2) to produce a story-point estimate. This

function can be defined as follows.

y = b0 +
n

∑
i=1

bixi (6.2)

where y is the output story point , xi is an input signal from RHWN layer, bi is

trained coefficient (weight), and n is the size of embedding dimension.

6.3 Model training

6.3.1 Pre-training

Pre-training is a way to come up with a good parameter initialization without using the

labels (i.e. ground-truth story points). We pre-train the lower layers of Deep-SE (i.e.

embedding and LSTM), which operate at the word level. Pre-training is effective when

the labels are not abundant. During pre-training, we do not use the ground-truth story

points, but instead leverage two sources of information: the strong predictiveness of natu-

ral language, and availability of free texts without labels (e.g. issue reports without story

points). The first source comes from the property of languages that the next word can be

predicted using previous words, thanks to grammars and common expressions. Thus, at

each time step t, we can predict the next word wt+1 using the state ht , using the softmax

function:

P(wt+1 = k | w1:t) =
exp(Ukht)

∑k′ exp(Uk′ht)
(6.3)

where Uk is a free parameter. Essentially we are building a language model, i.e.,

P(s)=P(w1:n), which can be factorized using the chain-rule as: P(w1)∏
n
t=2 P(wt+1 | w1:t).

We note that the probability of the first word P(w1) in a sequence is the number

of sequences in the corpus which has that word w1 starting first. At step t, ht is computed

by feeding ht−1 and wt to the LSTM unit (see Figure 2.6). Since wt is a word embedding

vector, Eq. (6.3) indirectly refers to the embedding matrix .

CHAPTER 6. STORY POINT ESTIMATION 163

The language model can be learned by optimizing the log-loss − logP(s). How-

ever, the main bottleneck is computational: Equation (6.3) costs |V | time to evaluate

where |V | is the vocabulary size, which can be hundreds of thousands for a big corpus.

For that reason, we implemented an approximate but very fast alternative based on Noise-

Contrastive Estimation [270], which reduces the time to M ≪ |V |, where M can be as

small as 100. We also run the pre-training multiple times against a validation set to choose

the best model. We use perplexity, a common intrinsic evaluation metric based on the log-

loss, as a criterion for choosing the best model and early stopping. A smaller perplexity

implies a better language model. The word embedding matrix M ∈ R
d×|V | (which is first

randomly initialized) and the initialization for LSTM parameters are learned through this

pre-training process.

6.3.2 Training Deep-SE

We have implemented the Deep-SE model in Python using Theano [271]. To simplify

our model, we set the size of the memory cell in an LSTM unit and the size of a recur-

rent layer in RHWN to be the same as the embedding size. We tuned some important

hyper-parameters (e.g. embedding size and the number of hidden layers) by conducting

experiments with different values, while for some other hyper-parameters, we used the

default values. This will be discussed in more details in the evaluation section.

Recall that the entire network can be reduced to a parameterized function, which

maps sequences of raw words (in issue reports) to story points. Let θ be the set of all

parameters in the model. We define a loss function L(θ) that measures the quality of a

particular set of parameters based on the difference between the predicted story points

and the ground truth story points in the training data. A setting of the parameters θ that

produces a prediction for an issue in the training data consistent with its ground truth story

points would have a very low loss L. Hence, learning is achieved through the optimization

process of finding the set of parameters θ that minimizes the loss function.

Since every component in the model is differentiable, we use the popular stochas-

tic gradient descent to perform optimization: through backpropagation, the model param-

eters θ are updated in the opposite direction of the gradient of the loss function L(θ).

In this search, a learning rate η is used to control how large of a step we take to reach

a (local) minimum. We use RMSprop, an adaptive stochastic gradient method (unpub-

lished note by Geoffrey Hinton), which is known to work best for recurrent models. We

tuned RMSprop by partitioning the data into mutually exclusive training, validation, and

CHAPTER 6. STORY POINT ESTIMATION 164

test sets and running the training multiple times. Specifically, the training set is used to

learn a useful model. After each training epoch, the learned model was evaluated on the

validation set and its performance was used to assess against hyperparameters (e.g. learn-

ing rate in gradient searches). Note that the validation set was not used to learn any of

the model’s parameters. The best performing model in the validation set was chosen to

be evaluated on the test set. We also employed the early stopping strategy (see Section

6.5.3), i.e. monitoring the model’s performance during the validation phase and stopping

when the performance got worse. If the log-loss does not improve for ten consecutive

runs, we than terminate the training.

To prevent overfitting in our neural network, we have implemented an effective

solution called dropout in our model [58], where the elements of input and output states

are randomly set to zeros during training. During testing, parameter averaging is used. In

effect, dropout implicitly trains many models in parallel, and all of them share the same

parameter set. The final model parameters represent the average of the parameters across

these models. Typically, the dropout rate is set at 0.5.

An important step prior to optimization is parameter initialization. Typically the

parameters are initialized randomly, but our experience shows that a good initialization

(through pre-training of embedding and LSTM layers) helps learning converge faster to

good solutions.

6.4 Dataset

In this section, we describe how data were collected for our study and experiments.

6.4.1 Data collecting

To collect data for our dataset, we looked for issues that were estimated with story points.

JIRA is one of the few widely-used issue tracking systems that support agile development

(and thus story point estimation) with its JIRA Agile plugin. Hence, we selected a diverse

collection of nine major open source repositories that use the JIRA issue tracking system:

Apache, Appcelerator, DuraSpace, Atlassian, Moodle, Lsstcorp, MuleSoft, Spring, and

Talendforge. We then used the Representational State Transfer (REST) API provided by

JIRA to query and collected those issue reports. We collected all the issues which were

assigned a story point measure from the nine open source repositories up until August

CHAPTER 6. STORY POINT ESTIMATION 165

T
a
b

le
6
.1

:
D

es
cr

ip
ti

v
e

st
at

is
ti

cs
o
f

o
u
r

st
o
ry

p
o
in

t
d
at

as
et

R
ep

o
.

P
ro

je
ct

A
b

b
.

#
is

su
es

m
in

S
P

m
ax

S
P

m
ea

n
S

P
m

ed
ia

n
S

P
m

o
d

e
S

P
v
ar

S
P

st
d

S
P

m
ea

n
T

D
le

n
g

th
L

O
C

A
p

ac
h

e
M

es
o

s
M

E
1

,6
8

0
1

4
0

3
.0

9
3

3
5

.8
7

2
.4

2
1

8
1

.1
2

2
4

7
,5

4
2

+

U
se

rg
ri

d
U

G
4

8
2

1
8

2
.8

5
3

3
1

.9
7

1
.4

0
1

0
8

.6
0

6
3

9
,1

1
0

+

A
p

p
ce

le
ra

to
r

A
p

p
ce

le
ra

to
r

S
tu

d
io

A
S

2
,9

1
9

1
4

0
5

.6
4

5
5

1
1

.0
7

3
.3

3
1

2
4

.6
1

2
,9

4
1

,8
5

6
#

A
p

ta
n

a
S

tu
d

io
A

P
8

2
9

1
4

0
8

.0
2

8
8

3
5

.4
6

5
.9

5
1

2
4

.6
1

6
,5

3
6

,5
2

1
+

T
it

an
iu

m
S

D
K

/C
L

I
T

I
2

,2
5

1
1

3
4

6
.3

2
5

5
2

5
.9

7
5

.1
0

2
0

5
.9

0
8

8
2

,9
8

6
+

D
u

ra
S

p
ac

e
D

u
ra

C
lo

u
d

D
C

6
6

6
1

1
6

2
.1

3
1

1
4

.1
2

2
.0

3
7

0
.9

1
8

8
,9

7
8

+

A
tl

as
si

an
B

am
b

o
o

B
B

5
2

1
1

2
0

2
.4

2
2

1
4

.6
0

2
.1

4
1

3
3

.2
8

6
,2

3
0

,4
6

5
#

C
lo

v
er

C
V

3
8

4
1

4
0

4
.5

9
2

1
4

2
.9

5
6

.5
5

1
2

4
.4

8
8

9
0
,0

2
0

#

JI
R

A
S

o
ft

w
ar

e
JI

3
5

2
1

2
0

4
.4

3
3

5
1

2
.3

5
3

.5
1

1
1

4
.5

7
7

,0
7

0
,0

2
2

#

M
o

o
d

le
M

o
o

d
le

M
D

1
,1

6
6

1
1

0
0

1
5

.5
4

8
5

4
6

8
.5

3
2

1
.6

5
8

8
.8

6
2

,9
7

6
,6

4
5

+

L
ss

tc
o

rp
D

at
a

M
an

ag
em

en
t

D
M

4
,6

6
7

1
1

0
0

9
.5

7
4

1
2

7
5

.7
1

1
6

.6
1

6
9

.4
1

1
2

5
,6

5
1

*

M
u

le
so

ft
M

u
le

M
U

8
8

9
1

2
1

5
.0

8
5

5
1

2
.2

4
3

.5
0

8
1

.1
6

5
8

9
,2

1
2

+

M
u

le
S

tu
d

io
M

S
7

3
2

1
3

4
6

.4
0

5
5

2
9

.0
1

5
.3

9
7

0
.9

9
1

6
,1

4
0

,4
5

2
#

S
p

ri
n

g
S

p
ri

n
g

X
D

X
D

3
,5

2
6

1
4

0
3

.7
0

3
1

1
0

.4
2

3
.2

3
7

8
.4

7
1

0
7

,9
1

6
+

T
al

en
d

fo
rg

e
T

al
en

d
D

at
a

Q
u

al
it

y
T

D
1

,3
8

1
1

4
0

5
.9

2
5

8
2

6
.9

6
5

.1
9

1
0

4
.8

6
1

,7
5

3
,4

6
3

#

T
al

en
d

E
S

B
T

E
8

6
8

1
1

3
2

.1
6

2
1

2
.2

4
1

.5
0

1
2

8
.9

7
1

8
,5

7
1

,0
5

2
#

T
o

ta
l

2
3

,3
1

3

S
P

:
st

o
ry

p
o

in
ts

,
T

D
le

n
g

th
:

th
e

n
u

m
b

er
o

f
w

o
rd

s
in

th
e

ti
tl

e
an

d
d

es
cr

ip
ti

o
n

o
f

an
is

su
e,

L
O

C
:

li
n

e
o

f
co

d
e

(+
:

L
O

C
o

b
ta

in
ed

fr
o

m
w
w
w
.
o
p
e
n
h
u
b
.
n
e
t

,
*

:
L

O
C

fr
o

m
G

it
H

u
b

,
an

d
#

:
L

O
C

fr
o

m
th

e
re

v
er

se
en

g
in

ee
ri

n
g

)

www.openhub.net

CHAPTER 6. STORY POINT ESTIMATION 166

8, 2016. We then extracted the story point, title and description from the collected issue

reports.

6.4.2 Data preprocessing

Each repository contains a number of projects, and we chose to include in our dataset only

projects that had more than 300 issues with story points. Issues that were assigned a story

point of zero (e.g., a non-reproducible bug), as well as issues with a negative, or unrealisti-

cally large story point (e.g. greater than 100) were filtered out. Ultimately, about 2.66% of

the collected issues were filtered out in this fashion. In total, our dataset has 23,313 issues

with story points from 16 different projects: Apache Mesos (ME), Apache Usergrid (UG),

Appcelerator Studio (AS), Aptana Studio (AP), Titanum SDK/CLI (TI), DuraCloud (DC),

Bamboo (BB), Clover (CV), JIRA Software (JI), Moodle (MD), Data Management (DM),

Mule (MU), Mule Studio (MS), Spring XD (XD), Talend Data Quality (TD), and Talend

ESB (TE). Table 6.1 summarizes the descriptive statistics of all the projects in terms of

the minimum, maximum, mean, median, mode, variance, and standard deviations of story

points assigned used and the average length of the title and description of issues in each

project. These sixteen projects bring diversity to our dataset in terms of both applica-

tion domains and project’s characteristics. Specifically, they are different in the following

aspects: number of observation (from 352 to 4,667 issues), technical characteristics (dif-

ferent programming languages and different application domains), sizes (from 88 KLOC

to 18 millions LOC), and team characteristics (different team structures and participants

from different regions).

Since story points rate the relative effort of work between user stories, they are

usually measured on a certain scale (e.g. 1, 2, 4, 8, etc.) to facilitate comparison (e.g. a

user story is double the effort of the other) [30]. The story points used in planning poker

typically follow a Fibonacci scale, i.e. 1, 2, 3, 5, 8, 13, 21, and so on [125]. Among the

projects we studied, only seven of them (i.e. Usergrid, Talend ESB, Talend Data Quality,

Mule Studio, Mule, Appcelerator Studio, and Aptana Studio followed the Fibonacci scale,

while the other nine projects did not use any scale. When our prediction system give an

estimate, we did not round it to the nearest story point value on the Fibonacci scale. An

alternative approach (for those project which follow a Fibonacci scale) is treating this

as a classification problem: each value on the Fibonacci scale represents a class. The

limitations of this approach is that the number of classes must be pre-determined and that

it is not applicable to projects that do not follow this scale.

CHAPTER 6. STORY POINT ESTIMATION 167

6.5 Evaluation

The empirical evaluation we carried out aimed to answer the following research ques-

tions:

• RQ1. Sanity Check: Is the proposed approach suitable for estimating story points?

This sanity check requires us to compare our Deep-SE prediction model with the

three common baseline benchmarks used in the context of effort estimation: Ran-

dom Guessing, Mean Effort, and Median Effort. Random guessing is a naive bench-

mark used to assess if an estimation model is useful [168]. Random guessing per-

forms random sampling (with equal probability) over the set of issues with known

story points, chooses randomly one issue from the sample, and uses the story point

value of that issue as the estimate of the target issue. Random guessing does not

use any information associated with the target issue. Thus any useful estimation

model should outperform random guessing. Mean and Median Effort estimations

are commonly used as baseline benchmarks for effort estimation [7]. They use the

mean or median story points of the past issues to estimate the story points of the

target issue. Note that the samples used for all the naive baselines (i.e. Random

Guessing, Mean Effort, and Median Effort) were from the training set.

• RQ2. Benefits of deep representation: Does the use of Recurrent Highway Nets

provide more accurate story point estimates than using a traditional regression

technique?

To answer this question, we replaced the Recurrent Highway Net component with

a regressor for immediate prediction. Here, we compare our approach against four

common regressors: Random Forests (RF), Support Vector Machine (SVM), Au-

tomatically Transformed Linear Model (ATLM), and Linear Regression (LR). We

choose RF over other baselines since ensemble methods like RF, which combine

the estimates from multiple estimators, are an effective method for effort estima-

tion [8]. RF achieves a significant improvement over the decision tree approach

by generating many classification and regression trees, each of which is built on

a random resampling of the data, with a random subset of variables at each node

split. Tree predictions are then aggregated through averaging. We used the issues

in the validation set to fine-tune parameters (i.e. the number of tress, the maximum

depth of the tree, and The minimum number of samples). For SVM, it has been

widely use in software analytics (e.g. defect prediction) and document classifica-

tion (e.g. sentiment analysis) [272]. SVM is known as Support Vector Regression

(SVR) for regression problems. We also used the issues in the validation set to find

CHAPTER 6. STORY POINT ESTIMATION 168

the kernel type (e.g. linear, polynomial) for testing. We used the Automatically

Transformed Linear Model (ATLM) [273] recently proposed as the baseline model

for software effort estimation. Although ATLM is simple and requires no parame-

ter tuning, it performs well over a range of various project types in the traditional

effort estimation [273]. Since LR is the top layer of our approach, we also used LR

as the immediate regressor after LSTM layers to assess whether RHWN improves

the predictive performance. We then compare the performance of these alterna-

tives, namely LSTM+RF, LSTM+SVM, LSTM+ATLM, and LSTM+LR against

our Deep-SE model.

• RQ3. Benefits of LSTM document representation: Does the use of LSTM for

modeling issue reports provide more accurate results than the traditional Doc2Vec

and Bag-of-Words (BoW) approach?

The most popular text representation is Bag-of-Words (BoW) [136], where a text

is represented as a vector of word counts. For example, the title and description

of issue XD-2970 in Figure 6.1 would be converted into a sparse binary vector of

vocabulary size, whose elements are mostly zeros, except for those at the positions

designated to “standardize”, “XD”, “logging” and so on. However, BoW has two

major weaknesses: they lose the sequence of the words and they also ignore se-

mantics of the words. For example, “Python”, “Java”, and “logging ” are equally

distant, while semantically “Python” should be closer to “Java” than “logging”. To

address this issue, Doc2vec [274] (i.e. alternatively known as paragraph2vec) is an

unsupervised algorithm that learns fixed-length feature representations from texts

(e.g. title and description of issues). Each document is represented in a dense vector

which is trained to predict next words in the document.

Both BoW and Doc2vec representations however effectively destroys the sequen-

tial nature of text. This question aims to explore whether LSTM with its capability

of modeling this sequential structure would improve the story point estimation. To

answer this question, we feed three different feature vectors: one learned by LSTM

and the other two derived from BoW technique and Doc2vec to the same Ran-

dom Forrests regressor, and compare the predictive performance of the former (i.e.

LSTM+RF) against that of the latter (i.e. BoW+RF and Doc2vec+RF).We used

Gensimc, a well-known implementation for Doc2vec in our experiments.

• RQ4. Cross-project estimation: Is the proposed approach suitable for cross-

project estimation?

chttps://radimrehurek.com/gensim/models/doc2vec.html

https://radimrehurek.com/gensim/models/doc2vec.html

CHAPTER 6. STORY POINT ESTIMATION 169

Story point estimation in new projects is often difficult due to lack of training data.

One common technique to address this issue is training a model using data from

a (source) project and applying it to the new (target) project. Since our approach

requires only the title and description of issues in the source and target projects,

it is readily applicable to both within-project estimation and cross-project estima-

tion. In practice, story point estimation is however known to be specific to teams

and projects. Hence, this question aims to investigate whether our approach is suit-

able for cross-project estimation. We have implemented Analogy-based estimation

called ABE0, which were proposed in previous work [275]–[278] for cross-project

estimation, and used it as a benchmark. The ABE0 estimation bases on the dis-

tances between individual issues. Specifically, the story point of issues in the target

project is the mean of story points of k-nearest issues from the source project. We

used the Euclidean distance as a distance measure, Bag-of-Words of the title and

the description as the features of an issue, and k = 3.

• RQ5. Normalizing/adjusting story points: Does our approach still perform well

with normalized/adjusted story points?

We have ran our experiments again using the new labels (i.e. the normalized story

points) for addressing the concern that whether our approach still performs well on

those adjusted ground-truths. We adjusted the story points of each issue using a

range of information, including the number of days from creation to resolved time,

the development time, the number of comments, the number of users who com-

mented on the issue, the number of times that an issue had their attributes changed,

the number of users who changed the issue’s attributes, the number of issue links,

the number of affect versions, and the number of fix versions. These information

reflect the actual effort and we thus refer to them as effort indicators. The values

of these indicators were extracted after the issue was completed. The normalized

story point (SPnormalized) is then computed as the following:

SPnormalized = (0.5)SPoriginal +(0.5)SPnearest

where SPorginal is the original story point, and SPnearest is the mean of story points

from 10 nearest issues based on their actual effort indicators. Note that we use

K-Nearest Neighbour (KNN) to find the nearest issues and the Euclidean metric to

measure the distance. We ran the experiment on the new labels (i.e SPnormalized)

using our proposed approach against all other baseline benchmark methods.

CHAPTER 6. STORY POINT ESTIMATION 170

• RQ6. Compare against the existing approach: How does our approach perform

against existing approaches in story point estimation?

Recently, Porru et. al. [279] also proposed an estimation model for story points.

Their approach uses the type of an issue, the component(s) assigned to it, and the

TF-IDF derived from its summary and description as features representing the issue.

They also performed univariate feature selection to choose a subset of features for

building a classifier. By contrast, our approach automatically learns semantic fea-

tures which represent the actual meaning of the issue’s report, thus potentially pro-

viding more accurate estimates. To answer this research question, we ran Deep-SE

on the dataset used in Porru et. al, re-implemented their approach, and performed a

comparison on the results produced by the two approaches.

6.5.1 Experimental setting

We performed experiments on the sixteen projects in our dataset – see Table 6.1 for their

details. To mimic a real deployment scenario that prediction on a current issue is made by

using knowledge from estimations of the past issues, the issues in each project were split

into training set (60% of the issues), development/validation set (i.e. 20%), and test set

(i.e. 20%) based on their creation time. The issues in the training set and the validation

set were created before the issues in the test set, and the issues in the training set were

also created before the issues in the validation set.

6.5.2 Performance measures

There are a range of measures used in evaluating the accuracy of an effort estimation

model. Most of them are based on the Absolute Error, (i.e. |ActualSP−EstimatedSP|).

where AcutalSP is the real story points assigned to an issue and EstimatedSP is the out-

come given by an estimation model. Mean of Magnitude of Relative Error (MRE) or

Mean Percentage Error and Prediction at level l [150], i.e. Pred(l), have also been used

in effort estimation. However, a number of studies [151]–[154] have found that those

measures bias towards underestimation and are not stable when comparing effort estima-

tion models. Thus, the Mean Absolute Error (MAE), Median Absolute Error (MdAE),

and the Standardized Accuracy (SA) have recently been recommended to compare the

performance of effort estimation models [7], [280]. MAE is defined as:

CHAPTER 6. STORY POINT ESTIMATION 171

MAE =
1

N

N

∑
i=1

|ActualSPi −EstimatedSPi|

where N is the number of issues used for evaluating the performance (i.e. test set),

ActualSPi is the actual story point, and EstimatedSPi is the estimated story point, for the

issue i.

We also report the Median Absolute Error (MdAE) since it is more robust to large

outliers. MdAE is defined as:

MdAE = Median{|ActualSPi −EstimatedSPi|}

where 1 ≤ i ≤ N.

SA is based on MAE and it is defined as:

SA =

(

1−
MAE

MAErguess

)

×100

where MAErguess is the MAE of a large number (e.g. 1000 runs) of random

guesses. SA measures the comparison against random guessing. Predictive performance

can be improved by decreasing MAE or increasing SA.

We assess the story point estimates produced by the estimation models using

MAE, MdAE and SA. To compare the performance of two estimation models, we tested

the statistical significance of the absolute errors achieved with the two models using the

Wilcoxon Signed Rank Test [156]. The Wilcoxon test is a safe test since it makes no

assumptions about underlying data distributions. The null hypothesis here is: “the abso-

lute errors provided by an estimation model are not different to those provided by another

estimation model”. We set the confidence limit at 0.05 and also applied Bonferroni cor-

rection [281] (0.05/K, where K is the number of statistical tests) when multiple testing

were performed.

In addition, we also employed a non-parametric effect size measure, the correlated

samples case of the Vargha and Delaney’s ÂXY statistic [282] to assess whether the effect

size is interesting. The ÂXY measure is chosen since it is agnostic to the underlying

distribution of the data, and is suitable for assessing randomized algorithms in software

engineering generally [160] and effort estimation in particular [7]. Specifically, given a

performance measure (e.g. the Absolute Error from each estimation in our case), the ÂXY

CHAPTER 6. STORY POINT ESTIMATION 172

measures the probability that estimation model X achieves better results (with respect

to the performance measure) than estimation model Y . We note that this falls into the

correlated samples case of the Vargha and Delaney [282] where the Absolute Error is

derived by applying different estimation methods on the same data (i.e. same issues). We

thus use the following formula to calculate the stochastic superiority value between two

estimation methods:

ÂXY =
[#(X < Y)+(0.5×#(X = Y))]

n
,

where #(X < Y) is the number of issues that the Absolute Error from X less than Y ,

#(X = Y) is the number of issues that the Absolute Error from X equal to Y , and n is the

number of issues. We also compute the average of the stochastic superiority measures

(Aiu) of our approach against each of the others using the following formular:

Aiu =
∑k 6=i Aik

l −1
,

where Aik is the pairwise stochastic superiority values (ÂXY) for all (i,k) pairs of estima-

tion methods, k = 1, ..., l, and l is a number of estimation methods, e.g. variable i refers

to Deep-SE and l = 4 when comparing Deep-SE against Random, Mean and Median

methods.

6.5.3 Hyper-parameter settings for training a Deep-SE model

We focused on tuning two important hyper-parameters: the number of word embedding

dimensions and the number of hidden layers in the recurrent highway net component of

our model. To do so, we fixed one parameter and varied the other to observe the MAE

performance. We chose to test with four different embedding sizes: 10, 50, 100, and 200,

and twelve variations of the number of hidden layers from 2 to 200. The embedding size is

the number of dimensions of the vector which represents a word. This word embedding is

a low dimensional vector representation of words in the vocabulary. This tuning was done

using the validation set. Figure 6.4 shows the results from experimenting with Apache

Mesos. As can be seen, the setting where the number of embeddings is 50 and the number

of hidden layers is 10 gives the lowest MAE, and thus was chosen.

For both pre-training we trained with 100 runs and the batch size is 50. The initial

learning rate in pre-training was set to 0.02, adaptation rate was 0.99, and smoothing

factor was 10−7. For the main Deep-SE model we used 1,000 epoches and the batch size

CHAPTER 6. STORY POINT ESTIMATION 173

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2 3 5 10 20 30 40 50 60 80 100 200

M
A
E

Number	of	hidden	layers

DIM10 DIM50 DIM100 DIM200

Figure 6.4: Story point estimation performance with different parameter.

wass set to 100. The initial learning rate in the main model was set to 0.01, adaptation

rate was 0.9, and smoothing factor was 10−6. Dropout rates for the RHWN and LSTM

layers were set to 0.5 and 0.2 respectively. The maximum sequence length used by the

LSTM is 100 words, which is the average length of issue description.

6.5.4 Pre-training

In most repositories, we used around 50,000 issues without story points (i.e. without la-

bels) for pre-training, except the Mulesoft repository which has much smaller number of

issues (only 8,036 issues) available for pre-training. Figure 6.5 show the top-500 fre-

quent words used in Apache. They are divided into 9 clusters (using K-means clustering)

based on their embedding which was learned through the pre-training process. We used

t-distributed stochastic neighbor embedding (t-SNE) [283] to display high-dimensional

vectors in two dimensions.

We show here some representative words from some clusters for a brief illustra-

tion. Words that are semantically related are grouped in the same cluster. For example,

words related to networking like soap, configuration, tcp, and load are in one cluster. This

indicates that to some extent, the learned vectors effectively capture the semantic relations

between words, which is useful for the story-point estimation task we do later.

The pre-training step is known to effectively deal with limited labelled data [284]–

[286]. Here, pre-training does not require story-point labels since it is trained by predict-

ing the next words. Hence the number of data points equals to the number of words. Since

- --

CHAPTER 6. STORY POINT ESTIMATION 174

-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15

C1 C2 C3 C4 C5 C6 C7 C8 C9

localhost,	uri,	xml,

http,	schema

soap,	configuration,	

tcp,	load

java,	c,	implementation,

data, jvm

client,	service,	queue,

host,	session

string, method,	set,	

return,	thread

Figure 6.5: Top-500 word clusters used in the Apache’s issue reports

for each project repository we used 50,000 issues for pre-training, we had approximately

5 million data points per repository for pre-training.

6.5.5 The correlation between the story points and the development

time

Identifying the actual effort required for completing an issue is very challenging (espe-

cially in open source projects) since in most cases the actual effort was not tracked and

recorded. We were however able to extract the development time which was the duration

between when the issue’s status was set to “in-progress” and when it was set to “resolved”.

Thus, we have explicitly excluded the waiting time for being assigned to a developer or

being put on hold. The development time is the closest to the actual effort of completing

the issue that we were able to extract from the data. We then performed two widely-used

statistical tests (Spearman’s rank and Pearson rank correlation) [287] for all the issues in

r
+

+

•

"'
... ~

... ... ttt ... •
......

.1 _
~ ... i ... -

... -
... ... -
... ~

-- -

• + •

1

• •
•

·~ • • 4- .

• I I

.. I

X X

X: I
X

X X

~~ X X

r x 1?-
--

X

X

•

CHAPTER 6. STORY POINT ESTIMATION 175

Table 6.2: The coefficient and p-value of the Spearman’s rank and Pearson rank corre-

lation on the story points against the development time

Spearman’s rank Pearson correlation

Project coefficient p-value coefficient p-value

Appcelerator Studio 0.330 <0.001 0.311 <0.001

Aptana Studio 0.241 <0.001 0.325 <0.001

Bamboo 0.505 <0.001 0.476 <0.001

Clover 0.551 <0.001 0.418 <0.001

Data Management 0.753 <0.001 0.769 <0.001

DuraCloud 0.225 <0.001 0.393 <0.001

JIRA Software 0.512 <0.001 0.560 <0.001

Mesos 0.615 <0.001 0.766 <0.001

Moodle 0.791 <0.001 0.816 <0.001

Mule 0.711 <0.001 0.722 <0.001

Mule Studio 0.630 <0.001 0.565 <0.001

Spring XD 0.486 <0.001 0.614 <0.001

Talend Data Quality 0.390 <0.001 0.370 <0.001

Talend ESB 0.504 <0.001 0.524 <0.001

Titanium SDK/CLI 0.322 <0.001 0.305 <0.001

Usergrid 0.212 0.005 0.263 0.001

our dataset. Table 6.2 shows the Spearman’s rank and Pearson rank correlation coefficient

and p-value for all projects. We have found that there is a significantly (p < 0.05) positive

correlation between the story points and the development time across all 16 project we

studied. In some projects (e.g. Moodle) there was a strong correlation with the coeffi-

cients was around 0.8. This positive correlation demonstrates that the higher story point,

the longer development time, which suggests that a correlation between an issue’s story

points and its actual effort.

6.5.6 Results

We report here the results in answering research questions RQs 1–6.

RQ1: Sanity check

Table 6.3 shows the results achieved from Deep-SE, and two baseline methods:

Mean and Median method (See Appendix A.1 for the distribution of the Absolute Er-

ror). The analysis of MAE, MdAE, and SA suggests that the estimations obtained with

our approach, Deep-SE, are better than those achieved by using Mean, Median, and Ran-

CHAPTER 6. STORY POINT ESTIMATION 176

Table 6.3: Evaluation results of Deep-SE, the Mean and Median method (the best results

are highlighted in bold). MAE and MdAE - the lower the better, SA - the higher the

better.

Proj Method MAE MdAE SA Proj Method MAE MdAE SA

ME Deep-SE 1.02 0.73 59.84 JI Deep-SE 1.38 1.09 59.52

mean 1.64 1.78 35.61 mean 2.48 2.15 27.06

median 1.73 2.00 32.01 median 2.93 2.00 13.88

UG Deep-SE 1.03 0.80 52.66 MD Deep-SE 5.97 4.93 50.29

mean 1.48 1.23 32.13 mean 10.90 12.11 9.16

median 1.60 1.00 26.29 median 7.18 6.00 40.16

AS Deep-SE 1.36 0.58 60.26 DM Deep-SE 3.77 2.22 47.87

mean 2.08 1.52 39.02 mean 5.29 4.55 26.85

median 1.84 1.00 46.17 median 4.82 3.00 33.38

AP Deep-SE 2.71 2.52 42.58 MU Deep-SE 2.18 1.96 40.09

mean 3.15 3.46 33.30 mean 2.59 2.22 28.82

median 3.71 4.00 21.54 median 2.69 2.00 26.07

TI Deep-SE 1.97 1.34 55.92 MS Deep-SE 3.23 1.99 17.17

mean 3.05 1.97 31.59 mean 3.34 2.68 14.21

median 2.47 2.00 44.65 median 3.30 2.00 15.42

DC Deep-SE 0.68 0.53 69.92 XD Deep-SE 1.63 1.31 46.82

mean 1.30 1.14 42.88 mean 2.27 2.53 26.00

median 0.73 1.00 68.08 median 2.07 2.00 32.55

BB Deep-SE 0.74 0.61 71.24 TD Deep-SE 2.97 2.92 48.28

mean 1.75 1.31 32.11 mean 4.81 5.08 16.18

median 1.32 1.00 48.72 median 3.87 4.00 32.43

CV Deep-SE 2.11 0.80 50.45 TE Deep-SE 0.64 0.59 69.67

mean 3.49 3.06 17.84 mean 1.14 0.91 45.86

median 2.84 2.00 33.33 median 1.16 1.00 44.44

CHAPTER 6. STORY POINT ESTIMATION 177

dom estimates. Deep-SE consistently outperforms all these three baselines in all sixteen

projects.

Our approach improved between 3.29% (in project MS) to 57.71% (in project BB)

in terms of MAE, 11.71% (in MU) to 73.86% (in CV) in terms of MdAE, and 20.83%

(in MS) to 449.02% (in MD) in terms of SA over the Mean method. The improvements

of our approach over the Median method are between 2.12% (in MS) to 52.90% (in JI)

in MAE, 0.50% (in MS) to 63.50% (in ME) in MdAE, and 2.70% (in DC) to 328.82%

(in JI) in SA. Overall, the improvement achieved by Deep-SE over the Mean and Median

method is 34.06% and 26.77% in terms of MAE, averaging across all projects.

We note that the results achieved by the estimation models vary between different

projects. For example, our Deep-SE achieved 0.64 MAE in the Talend ESB project (TE),

while it achieved 5.97 MAE in Moodle (MD) project. The distribution of story points

may be the cause of this variation: the standard deviation of story points in TE is only

1.50, while that in MD is 21.65 (see Table 6.1).

Table 6.4 shows the results of the Wilcoxon test (together with the corresponding

ÂXY effect size) to measure the statistical significance and effect size (in brackets) of the

improved accuracy achieved by Deep-SE over the baselines: Mean Effort, Median Effort,

and Random Guessing. In 45/48 cases, our Deep-SE significantly outperforms the base-

lines after applying Bonferroni correction with effect sizes greater than 0.5. Moreover, the

average of the stochastic superiority (Aiu) of our approach against the baselines is greater

than 0.7 in the most cases. The highest Aiu achieving in the Talend Data Quality project

(TD) is 0.86 which can be considered as large effect size (ÂXY > 0.8).

We note that the improvement brought by our approach over the baselines was

not significant for project MS. One possible reason is that the size of the training and

pre-training data for MS is small, and deep learning techniques tend to perform well with

large training samples.

Answer to RQ1: Our approach outperforms the baselines, thus passing the sanity check

required by RQ1.

RQ2: Benefits of deep representation

Table 6.5 shows MAE, MdAE, and SA achieved from Deep-SE using Recurrent

Highway Networks (RHWN) for deep representation of issue reports against using Ran-

dom Forests, Support Vector Machine, Automatically Transformed Linear Model, and

CHAPTER 6. STORY POINT ESTIMATION 178

Table 6.4: Comparison on the effort estimation benchmarks using Wilcoxon test and

ÂXY effect size (in brackets)

Deep-SE vs Mean Median Random Aiu

ME <0.001 [0.77] <0.001 [0.81] <0.001 [0.90] 0.83

UG <0.001 [0.79] <0.001 [0.79] <0.001 [0.81] 0.80

AS <0.001 [0.78] <0.001 [0.78] <0.001 [0.91] 0.82

AP 0.040 [0.69] <0.001 [0.79] <0.001 [0.84] 0.77

TI <0.001 [0.77] <0.001 [0.72] <0.001 [0.88] 0.79

DC <0.001 [0.80] 0.415 [0.54] <0.001 [0.81] 0.72

BB <0.001 [0.78] <0.001 [0.78] <0.001 [0.85] 0.80

CV <0.001 [0.75] <0.001 [0.70] <0.001 [0.91] 0.79

JI <0.001 [0.76] <0.001 [0.79] <0.001 [0.79] 0.78

MD <0.001 [0.81] <0.001 [0.75] <0.001 [0.80] 0.79

DM <0.001 [0.69] <0.001 [0.59] <0.001 [0.75] 0.68

MU 0.003 [0.73] <0.001 [0.73] <0.001 [0.82] 0.76

MS 0.799 [0.56] 0.842 [0.56] <0.001 [0.69] 0.60

XD <0.001 [0.70] <0.001 [0.70] <0.001 [0.78] 0.73

TD <0.001 [0.86] <0.001 [0.85] <0.001 [0.87] 0.86

TE <0.001 [0.73] <0.001 [0.73] <0.001 [0.92] 0.79

Linear Regression Model coupled with LSTM (i.e. LSTM+RF, LSTM+SVM, LSTM+ATLM,

and LSTM+LR). The distribution of the Absolute Error is reported in Appendix A.2.

When we use MAE, MdAE, and SA as evaluation criteria, Deep-SE is still the best ap-

proach, consistently outperforming LSTM+RF, LSTM+SVM, LSTM+ATLM, and LSTM+LR

across all sixteen projects.

Using RHWN improved over RF between 0.91% (in MU) to 39.45% (in MD)

in MAE, 5.88% (in UG) to 71.12% (in CV) in MdAE, and 0.58% (in DC) to 181.58%

(in MD) in SA. The improvements of RHWN over SVM are between 1.50% (in TI) to

32.35% (in JI) in MAE, 9.38% (in MD) to 65.52% (in CV) in MdAE, and 1.30% (in TI)

to 48.61% (in JI). In terms of using ATLM, RHWN improved over it between 5.56% (in

MS) to 62.44% (in BB) in MAE, 8.70% (in AP) to 67.87% (in CV) in MdAE, and 3.89%

(in ME) to 200.59% (in BB) in SA. Overall, RHWN improved , in terms of MAE, 9.63%

over SVM, 13.96% over RF, 21.84% over ATLM, and 23.24% over LR, averaging across

all projects.

In addition, the results for the Wilcoxon test to compare our approach (Deep-SE)

against LSTM+RF, LSTM+SVM, LSTM+ATLM, and LSTM+LR is shown in Table 6.6.

The improvement of our approach over LSTM+RF, LSTM+SVM, and LSTM+ATLM

is still significant after applying p-value correction with the effect size greater than 0.5

in 59/64 cases. In most cases, when comparing the proposed model against LSTM+RF,

CHAPTER 6. STORY POINT ESTIMATION 179

Table 6.5: Evaluation results of Deep-SE, LSTM+RF, LSTM+SVM, LSTM+ATLM,

and LSTM+LR (the best results are highlighted in bold). MAE and MdAE - the lower

the better, SA - the higher the better.

Proj Method MAE MdAE SA Proj Method MAE MdAE SA

ME Deep-SE 1.02 0.73 59.84 JI Deep-SE 1.38 1.09 59.52

lstm+rf 1.08 0.90 57.57 lstm+rf 1.71 1.27 49.71

lstm+svm 1.07 0.90 58.02 lstm+svm 2.04 1.89 40.05

lstm+atlm 1.08 0.95 57.60 lstm+atlm 2.10 1.95 38.26

lstm+lr 1.10 0.96 56.94 lstm+lr 2.10 1.95 38.26

UG Deep-SE 1.03 0.80 52.66 MD Deep-SE 5.97 4.93 50.29

lstm+rf 1.07 0.85 50.70 lstm+rf 9.86 9.69 17.86

lstm+svm 1.06 1.04 51.23 lstm+svm 6.70 5.44 44.19

lstm+atlm 1.40 1.20 35.55 lstm+atlm 9.97 9.61 16.92

lstm+lr 1.40 1.20 35.55 lstm+lr 9.97 9.61 16.92

AS Deep-SE 1.36 0.58 60.26 DM Deep-SE 3.77 2.22 47.87

lstm+rf 1.62 1.40 52.38 lstm+rf 4.51 3.69 37.71

lstm+svm 1.46 1.42 57.20 lstm+svm 4.20 2.87 41.93

lstm+atlm 1.59 1.30 53.29 lstm+atlm 4.70 3.74 35.01

lstm+lr 1.68 1.46 50.78 lstm+lr 5.30 3.66 26.68

AP Deep-SE 2.71 2.52 42.58 MU Deep-SE 2.18 1.96 40.09

lstm+rf 2.96 2.80 37.34 lstm+rf 2.20 2.21 38.73

lstm+svm 3.06 2.90 35.26 lstm+svm 2.28 2.89 37.44

lstm+atlm 3.06 2.76 35.21 lstm+atlm 2.46 2.39 32.51

lstm+lr 3.75 3.66 20.63 lstm+lr 2.46 2.39 32.51

TI Deep-SE 1.97 1.34 55.92 MS Deep-SE 3.23 1.99 17.17

lstm+rf 2.32 1.97 48.02 lstm+rf 3.30 2.77 15.30

lstm+svm 2.00 2.10 55.20 lstm+svm 3.31 3.09 15.10

lstm+atlm 2.51 2.03 43.87 lstm+atlm 3.42 2.75 12.21

lstm+lr 2.71 2.31 39.32 lstm+lr 3.42 2.75 12.21

DC Deep-SE 0.68 0.53 69.92 XD Deep-SE 1.63 1.31 46.82

lstm+rf 0.69 0.62 69.52 lstm+rf 1.81 1.63 40.99

lstm+svm 0.75 0.90 67.02 lstm+svm 1.80 1.77 41.33

lstm+atlm 0.87 0.59 61.57 lstm+atlm 1.83 1.65 40.45

lstm+lr 0.80 0.67 64.96 lstm+lr 1.85 1.72 39.63

BB Deep-SE 0.74 0.61 71.24 TD Deep-SE 2.97 2.92 48.28

lstm+rf 1.01 1.00 60.95 lstm+rf 3.89 4.37 32.14

lstm+svm 0.81 1.00 68.55 lstm+svm 3.49 3.37 39.13

lstm+atlm 1.97 1.78 23.70 lstm+atlm 3.86 4.11 32.71

lstm+lr 1.26 1.16 51.24 lstm+lr 3.79 3.67 33.88

CV Deep-SE 2.11 0.80 50.45 TE Deep-SE 0.64 0.59 69.67

lstm+rf 3.08 2.77 27.58 lstm+rf 0.66 0.65 68.51

lstm+svm 2.50 2.32 41.22 lstm+svm 0.70 0.90 66.61

lstm+atlm 3.11 2.49 26.90 lstm+atlm 0.70 0.72 66.51

lstm+lr 3.36 2.76 21.07 lstm+lr 0.77 0.71 63.20

CHAPTER 6. STORY POINT ESTIMATION 180

Table 6.6: Comparison between the Recurrent Highway Net against Random Forests,

Support Vector Machine, Automatically Transformed Linear Model, and Linear Regres-

sion using Wilcoxon test and Â12 effect size (in brackets)

Deep-SE vs LSTM+RF LSTM+SVM LSTM+ATLM LSTM+LR Aiu

ME <0.001 [0.57] <0.001 [0.54] <0.001 [0.59] <0.001 [0.59] 0.57

UG 0.004 [0.59] 0.010 [0.55] <0.001 [1.00] <0.001 [0.73] 0.72

AS <0.001 [0.69] <0.001 [0.51] <0.001 [0.71] <0.001 [0.75] 0.67

AP <0.001 [0.60] <0.001 [0.52] <0.001 [0.62] <0.001 [0.64] 0.60

TI <0.001 [0.65] 0.007 [0.51] <0.001 [0.69] <0.001 [0.71] 0.64

DC 0.406 [0.55] 0.015 [0.60] <0.001 [0.97] 0.024 [0.58] 0.68

BB <0.001 [0.73] 0.007 [0.60] <0.001 [0.84] <0.001 [0.75] 0.73

CV <0.001 [0.70] 0.140 [0.63] <0.001 [0.82] 0.001 [0.70] 0.71

JI 0.006 [0.71] 0.001 [0.67] 0.002 [0.89] <0.001 [0.79] 0.77

MD <0.001 [0.76] <0.001 [0.57] <0.001 [0.74] <0.001 [0.69] 0.69

DM <0.001 [0.62] <0.001 [0.56] <0.001 [0.61] <0.001 [0.62] 0.60

MU 0.846 [0.53] 0.005 [0.62] 0.009 [0.67] 0.003 [0.64] 0.62

MS 0.502 [0.53] 0.054 [0.50] <0.001 [0.82] 0.195 [0.56] 0.60

XD <0.001 [0.63] <0.001 [0.57] <0.001 [0.65] <0.001 [0.60] 0.61

TD <0.001 [0.78] <0.001 [0.68] <0.001 [0.70] <0.001 [0.70] 0.72

TE 0.020 [0.53] 0.002 [0.59] <0.001 [0.66] 0.006 [0.65] 0.61

LSTM+SVM, LSTM+ATLM, and LSTM+LR, the effect sizes are small (between 0.5 and

0.6). A major part of those improvement were brought by our use of the deep learning

LSTM architecture to model the textual description of an issue. The use of highway

recurrent networks (on top of LSTM) has also improved the predictive performance, but

not as large effects as the LSTM itself (especially for those projects which have very small

number of issues). However, our approach, Deep-SE, achieved Aiu greater than 0.6 in the

most cases.

Answer to RQ2: The proposed approach of using Recurrent Highway Networks is

effective in building a deep representation of issue reports and consequently improving

story point estimation.

RQ3: Benefits of LSTM document representation

To study the benefits of using LSTM in representing issue reports, we compared

the improved accuracy achieved by Random Forest using the features derived from LSTM

against that using the features derived from BoW and Doc2vec. For a fair comparison we

used Random Forests as the regressor in all settings and the result is reported in Table 6.7

(see the distribution of the Absolute Error in Appendix A.3). LSTM performs better than

BoW and Doc2vec with respect to the MAE, MdAE, and SA measures in twelve projects

CHAPTER 6. STORY POINT ESTIMATION 181

Table 6.7: Evaluation results of LSTM+RF, BoW+RF, and Doc2vec+RF (the best results

are highlighted in bold). MAE and MdAE - the lower the better, SA - the higher the

better.

Proj Method MAE MdAE SA Proj Method MAE MdAE SA

ME lstm+rf 1.08 0.90 57.57 JI lstm+rf 1.71 1.27 49.71

bow+rf 1.31 1.34 48.66 bow+rf 2.10 2.35 38.34

d2v+rf 1.14 0.98 55.28 d2v+rf 2.10 2.14 38.29

UG lstm+rf 1.07 0.85 50.70 MD lstm+rf 9.86 9.69 17.86

bow+rf 1.19 1.28 45.24 bow+rf 10.20 10.22 15.07

d2v+rf 1.12 0.92 48.47 d2v+rf 8.02 9.87 33.19

AS lstm+rf 1.62 1.40 52.38 DM lstm+rf 4.51 3.69 37.71

bow+rf 1.83 1.53 46.34 bow+rf 4.78 3.98 33.84

d2v+rf 1.62 1.41 52.38 d2v+rf 4.71 3.99 34.87

AP lstm+rf 2.96 2.80 37.34 MU lstm+rf 2.20 2.21 38.73

bow+rf 2.97 2.83 37.09 bow+rf 2.31 2.54 36.64

d2v+rf 3.20 2.91 32.29 d2v+rf 2.21 2.69 39.36

TI lstm+rf 2.32 1.97 48.02 MS lstm+rf 3.30 2.77 15.30

bow+rf 2.58 2.30 42.15 bow+rf 3.31 2.57 15.58

d2v+rf 2.41 2.16 46.02 d2v+rf 3.40 2.93 12.79

DC lstm+rf 0.69 0.62 69.52 XD lstm+rf 1.81 1.63 40.99

bow+rf 0.96 1.11 57.78 bow+rf 1.98 1.72 35.56

d2v+rf 0.77 0.77 66.14 d2v+rf 1.88 1.73 38.72

BB lstm+rf 1.01 1.00 60.95 TD lstm+rf 3.89 4.37 32.14

bow+rf 1.34 1.26 48.06 bow+rf 4.49 5.05 21.75

d2v+rf 1.12 1.16 56.51 d2v+rf 4.33 4.80 24.48

CV lstm+rf 3.08 2.77 27.58 TE lstm+rf 0.66 0.65 68.51

bow+rf 2.98 2.93 29.91 bow+rf 0.86 0.69 58.89

d2v+rf 3.16 2.79 25.70 d2v+rf 0.70 0.89 66.61

CHAPTER 6. STORY POINT ESTIMATION 182

Table 6.8: Comparison of Random Forest with LSTM, Random Forests with BoW, and

Random Forests with Doc2vec using Wilcoxon test and ÂXY effect size (in brackets)

LSTM vs BoW Doc2Vec Aiu

ME <0.001 [0.70] 0.142 [0.53] 0.62

UG <0.001 [0.71] 0.135 [0.60] 0.66

AS <0.001 [0.66] <0.001 [0.51] 0.59

AP 0.093 [0.51] 0.144 [0.52] 0.52

TI <0.001 [0.67] <0.001 [0.55] 0.61

DC <0.001 [0.73] 0.008 [0.59] 0.66

BB <0.001 [0.77] 0.002 [0.66] 0.72

CV 0.109 [0.61] 0.581 [0.57] 0.59

JI 0.009 [0.67] 0.011 [0.62] 0.65

MD 0.022 [0.63] 0.301 [0.51] 0.57

DM <0.001 [0.60] <0.001 [0.55] 0.58

MU 0.006 [0.59] 0.011 [0.57] 0.58

MS 0.780 [0.54] 0.006 [0.57] 0.56

XD <0.001 [0.60] 0.005 [0.55] 0.58

TD <0.001 [0.73] <0.001 [0.67] 0.70

TE <0.001 [0.69] 0.005 [0.61] 0.65

(e.g. ME, UG, and AS) from sixteen projects. LSTM improved 4.16% and 11.05% in

MAE over Doc2vec and BoW, respectively, averaging across all projects.

Among those twelve projects, LSTM improved over BoW between 0.30% (in MS)

to 28.13% (in DC) in terms of MAE, 1.06% (in AP) to 45.96% (in JI) in terms of MdAE,

and 0.67% (in AP) to 47.77% (in TD) in terms of SA. It also improved over Doc2vec

between 0.45% (in MU) to 18.57% (in JI) in terms of MAE, 0.71% (in AS) to 40.65% (in

JI) in terms of MdAE, and 2.85% (in TE) to 31.29% (in TD) in terms of SA.

We acknowledge that BoW and Doc2vec perform better than LSTM in some cases.

For example, in the Moodle project (MD), D2V+RF performed better than LSTM+RF in

MAE and SA – it achieved 8.02 MAE and 33.19 SA. This could reflect that the com-

bination between LSTM and RHWN significantly improves the accuracy of the estima-

tions.

The improvement of LSTM over BoW and Doc2vec is significant after applying

Bonferroni correction with effect size greater than 0.5 in 24/32 cases and Aiu being greater

than 0.5 in all projects (see Table 6.8).

Answer to RQ3: The proposed LSTM-based approach is effective in automatically

learning semantic features representing issue description, which improves story-point

estimation.

CHAPTER 6. STORY POINT ESTIMATION 183

Table 6.9: Mean Absolute Error (MAE) on cross-project estimation and comparison of

Deep-SE and ABE0 using Wilcoxon test and ÂXY effect size (in brackets)

Source Target Deep-SE ABE0 Deep-SE vs ABE0

(i) within-repository

ME UG 1.07 1.23 <0.001 [0.78]

UG ME 1.14 1.22 0.012 [0.52]

AS AP 2.75 3.08 <0.001 [0.67]

AS TI 1.99 2.56 <0.001 [0.70]

AP AS 2.85 3.00 0.051 [0.55]

AP TI 3.41 3.53 0.003 [0.56]

MU MS 3.14 3.55 0.041 [0.55]

MS MU 2.31 2.64 0.030 [0.56]

Avg 2.33 2.60

(ii) cross-repository

AS UG 1.57 2.04 0.004 [0.61]

AS ME 2.08 2.14 0.022 [0.51]

MD AP 5.37 6.95 <0.001 [0.58]

MD TI 6.36 7.10 0.097 [0.54]

MD AS 5.55 6.77 <0.001 [0.61]

DM TI 2.67 3.94 <0.001 [0.64]

UG MS 4.24 4.45 0.005 [0.54]

ME MU 2.70 2.97 0.015 [0.53]

Avg 3.82 4.55

RQ4: Cross-project estimation

We performed sixteen sets of cross-project estimation experiments to test two set-

tings: (i) within-repository: both the source and target projects (e.g. Apache Mesos and

Apache Usergrid) were from the same repository, and pre-training was done using only

the source projects, not the target projects; and (ii) cross-repository: the source project

(e.g. Appcelerator Studio) was in a different repository from the target project Apache

Usergrid, and pre-training was done using only the source project.

Table 6.9 shows the performance of our Deep-SE model and ABE0 for cross-

project estimation (see the distribution of the Absolute Error in Appendix A.4). We also

used a benchmark of within-project estimation where older issues of the target project

were used for training (see Table 6.3). In all cases, the proposed approach when used for

cross-project estimation performed worse than when used for within-project estimation

(e.g. on average 20.75% reduction in performance for within-repository and 97.92% for

CHAPTER 6. STORY POINT ESTIMATION 184

cross-repository). However, our approach outperformed the cross-project baseline (i.e.

ABE0) in all cases – it achieved 2.33 and 3.82 MAE in within and cross repository, while

ABE0 achieved 2.60 and 4.55 MAE. The improvement of our approach over ABE0 is still

significant after applying p-value correction with the effect size greater than 0.5 in 14/16

cases.

These results confirm a universal understanding [30] in agile development that

story point estimation is specific to teams and projects. Since story points are relatively

measured, it is not uncommon that two different same-sized teams could give different

estimates for the same user story. For example, team A may estimate 5 story points for

user story UC1 while team B gives 10 story points. However, it does not necessarily mean

that team B would do more work for completing UC1 than team A. It more likely means

that team’B baselines are twice bigger than team A’s, i.e. for “baseline” user story which

requires 5 times less the effort than UC1 takes, team A would give it 1 story point while

team B gives 2 story points. Hence, historical estimates are more valuable for within-

project estimation, which is demonstrated by this result.

Answer to RQ4: Given the specificity of story points to teams and projects, our pro-

posed approach is more effective for within-project estimation.

RQ5: Adjusted/normalized story points

Table 6.10 shows the results of our Deep-SE and the other baseline methods in

predicting the normalized story points. Deep-SE performs well across all projects. Deep-

SE improved MAE between 2.13% to 93.40% over the Mean method, 9.45% to 93.27%

over the Median method, 7.02% to 53.33% over LSTM+LR, 1.20% to 61.96% over

LSTM+ATLM, 1.20% to 53.33% over LSTM+SVM, 4.00% to 30.00% over Doc2vec+RF,

2.04% to 36.36% over BoW+RF, and 0.86% to 25.80% over LSTM+RF. The best result

is obtained in the Usergrid project (UG), it is 0.07 MAE, 0.01 MdAE, and 93.50 SA. We

however note that the adjusted story points benefits all methods since it narrows the gap

between minimum and maximum value and the distribution of the story points.

Answer to RQ5: Our proposed approach still outperformed other techniques in esti-

mating the new adjusted story points.

CHAPTER 6. STORY POINT ESTIMATION 185

Table 6.10: Evaluation results on the adjusted story points (the best results are high-

lighted in bold). MAE and MdAE - the lower the better, SA - the higher the better.

Proj Method MAE MdAE SA Proj Method MAE MdAE SA

ME Deep-SE 0.27 0.03 76.58 JI Deep-SE 0.60 0.51 63.20

lstm+rf 0.34 0.15 70.43 lstm+rf 0.74 0.79 54.42

bow+rf 0.36 0.16 68.82 bow+rf 0.66 0.53 58.99

d2v+rf 0.35 0.15 69.87 d2v+rf 0.70 0.53 56.99

lstm+svm 0.33 0.10 71.20 lstm+svm 0.94 0.89 41.97

lstm+atlm 0.33 0.14 70.97 lstm+atlm 0.89 0.89 45.18

lstm+lr 0.37 0.21 67.68 lstm+lr 0.89 0.89 45.18

mean 1.12 1.07 3.06 mean 1.31 1.71 18.95

median 1.05 1.00 8.87 median 1.60 2.00 1.29

UG Deep-SE 0.07 0.01 93.50 MD Deep-SE 2.56 2.29 31.83

lstm+rf 0.08 0.00 92.59 lstm+rf 3.45 3.55 8.24

bow+rf 0.11 0.01 90.31 bow+rf 3.32 3.27 11.54

d2v+rf 0.10 0.01 91.22 d2v+rf 3.39 3.48 9.70

lstm+svm 0.15 0.10 86.38 lstm+svm 3.12 3.07 16.94

lstm+atlm 0.15 0.08 86.25 lstm+atlm 3.48 3.49 7.41

lstm+lr 0.15 0.08 86.25 lstm+lr 3.57 3.28 4.98

mean 1.04 0.98 4.79 mean 3.60 3.67 4.18

median 1.06 1.00 2.64 median 2.95 3.00 21.48

AS Deep-SE 0.53 0.20 69.16 DM Deep-SE 2.30 1.43 31.99

lstm+rf 0.56 0.45 67.49 lstm+rf 2.83 2.59 16.23

bow+rf 0.56 0.49 67.39 bow+rf 2.83 2.63 16.33

d2v+rf 0.56 0.46 67.37 d2v+rf 2.92 2.80 13.80

lstm+svm 0.55 0.32 68.34 lstm+svm 2.45 1.78 27.56

lstm+atlm 0.57 0.46 66.87 lstm+atlm 2.83 2.57 16.28

lstm+lr 0.57 0.49 67.12 lstm+lr 2.83 2.57 16.28

mean 1.18 0.79 31.89 mean 3.27 3.41 3.25

median 1.35 1.00 21.54 median 2.61 2.00 22.94

AP Deep-SE 0.92 0.86 21.95 MU Deep-SE 0.68 0.59 63.83

lstm+rf 0.99 0.87 16.23 lstm+rf 0.70 0.55 63.01

bow+rf 1.00 0.87 15.33 bow+rf 0.70 0.57 62.79

d2v+rf 0.99 0.86 15.94 d2v+rf 0.71 0.57 62.17

lstm+svm 1.12 0.92 5.26 lstm+svm 0.70 0.62 62.62

Continued on next page

CHAPTER 6. STORY POINT ESTIMATION 186

Table 6.10 – continued from previous page

Proj Method MAE MdAE SA Proj Method MAE MdAE SA

lstm+atlm 1.03 0.84 12.63 lstm+atlm 0.93 0.74 50.77

lstm+lr 1.17 1.05 1.14 lstm+lr 0.79 0.61 58.00

mean 1.15 0.64 2.49 mean 1.21 1.51 35.86

median 0.94 1.00 20.29 median 1.64 2.00 12.80

TI Deep-SE 0.59 0.17 56.53 MS Deep-SE 0.86 0.65 56.82

lstm+rf 0.72 0.56 46.22 lstm+rf 0.91 0.76 54.37

bow+rf 0.73 0.58 46.10 bow+rf 0.89 0.93 55.48

d2v+rf 0.72 0.56 46.17 d2v+rf 0.90 0.69 54.66

lstm+svm 0.73 0.62 45.74 lstm+svm 0.94 0.78 52.91

lstm+atlm 0.73 0.57 45.86 lstm+atlm 0.99 0.87 50.45

lstm+lr 0.73 0.56 45.77 lstm+lr 0.99 0.87 50.45

mean 1.32 1.56 1.57 mean 1.23 0.62 38.49

median 0.86 1.00 36.04 median 1.44 1.00 27.83

DC Deep-SE 0.48 0.48 55.77 XD Deep-SE 0.35 0.08 80.66

lstm+rf 0.49 0.49 55.02 lstm+rf 0.44 0.37 75.78

bow+rf 0.49 0.48 54.76 bow+rf 0.45 0.38 75.33

d2v+rf 0.50 0.50 53.59 d2v+rf 0.45 0.32 75.31

lstm+svm 0.49 0.43 55.24 lstm+svm 0.38 0.20 79.16

lstm+atlm 0.53 0.47 51.02 lstm+atlm 0.92 0.76 49.05

lstm+lr 0.53 0.47 51.02 lstm+lr 0.45 0.40 75.33

mean 1.07 1.49 1.29 mean 1.03 1.28 43.06

median 0.58 1.00 46.76 median 0.75 1.00 58.74

BB Deep-SE 0.41 0.12 72.00 TD Deep-SE 0.82 0.64 53.36

lstm+rf 0.43 0.38 70.37 lstm+rf 0.84 0.68 52.65

bow+rf 0.45 0.40 69.33 bow+rf 0.88 0.65 50.30

d2v+rf 0.49 0.45 66.34 d2v+rf 0.86 0.70 51.46

lstm+svm 0.42 0.21 71.21 lstm+svm 0.83 0.62 53.24

lstm+atlm 0.47 0.41 67.53 lstm+atlm 0.83 0.58 52.82

lstm+lr 0.47 0.41 67.53 lstm+lr 0.90 0.74 48.88

mean 1.15 0.76 20.92 mean 1.29 1.42 27.20

median 1.39 1.00 4.50 median 0.99 1.00 44.17

CV Deep-SE 1.15 0.79 23.29 TE Deep-SE 0.40 0.05 74.58

lstm+rf 1.16 1.05 22.55 lstm+rf 0.47 0.46 70.39

Continued on next page

CHAPTER 6. STORY POINT ESTIMATION 187

Table 6.11: Mean Absolute Error (MAE) and comparison of Deep-SE and the Porru’s

approach using Wilcoxon test and ÂXY effect size (in brackets)

Proj Deep-SE Porru Deep-SE vs Porru

APSTUD 2.67 5.69 <0.001 [0.63]

DNN 0.47 1.08 <0.001 [0.74]

MESOS 0.76 1.23 0.003 [0.70]

MULE 2.32 3.37 <0.001 [0.61]

NEXUS 0.21 0.39 0.005 [0.67]

TIMOB 1.44 1.76 0.047 [0.57]

TISTUD 1.04 1.28 <0.001 [0.58]

XD 1.00 1.86 <0.001 [0.69]

avg 1.24 2.08

Table 6.10 – continued from previous page

Proj Method MAE MdAE SA Proj Method MAE MdAE SA

bow+rf 1.22 1.10 18.95 bow+rf 0.48 0.48 69.52

d2v+rf 1.20 1.09 20.30 d2v+rf 0.48 0.48 69.41

lstm+svm 1.22 1.15 18.77 lstm+svm 0.45 0.41 71.77

lstm+atlm 1.47 1.28 2.22 lstm+atlm 0.49 0.48 69.14

lstm+lr 1.47 1.28 2.22 lstm+lr 0.49 0.48 69.14

mean 1.27 1.11 15.18 mean 0.99 0.60 37.28

median 1.29 1.00 13.92 median 1.39 1.00 12.09

RQ6: Compare Deep-SE against the existing approach

We applied our approach, Deep-SE, and the Porru et. al.’s approach on their

dataset consisted of eight projects. Table 6.11 shows the evaluation results in MAE and

the comparison of Deep-SE and the Porru et. al.’s approach. The distribution of the Ab-

solute Error is reported in Appendix A.5. Deep-SE outperforms the existing approach in

all cases. Deep-SE improved between 18.18% (in TIMOB) to 56.48% (in DNN) in terms

of MAE. In addition, the improvement of our approach over the Porru et. al.’s approach

is still significant after applying p-value correction with the effect size greater than 0.5 in

all cases. Especially, the large effect size (ÂXY > 0.7) of the improvement is obtained in

the DNN project.

Answer to RQ6: Our proposed approach outperformed the existing technique using

TF-IDF in estimating the story points.

CHAPTER 6. STORY POINT ESTIMATION 188

Table 6.12: The pre-training, training, and testing time at 50 embedding dimensions of

our Deep-SE model

Repository Pre-training time Proj. Training time Testing time

Apache 6 h 28 min ME 23 min 1.732 s

UG 15 min 0.395 s

Appcelerator 5 h 11 min AS 27 min 2.209 s

AP 18 min 0.428 s

TI 32 min 2.528 s

Duraspace 3 h 34 min DC 18 min 1.475 s

Jira 6 h 42 min BB 15 min 0.267 s

CV 14 min 0.219 s

JI 13 min 0.252 s

Moodle 6 h 29 min MD 15 min 1.789 s

Lsstcorp 3 h 26 min DM 40 min 5.293 s

Mulesoft 2 h 39 min MU 21 min 0.535 s

MS 17 min 0.718 s

Spring 5 h 20 min XD 40 min 2.774 s

Talendforge 6 h 56 min TD 19 min 1.168 s

TE 16 min 0.591 s

6.5.7 Training/testing time

Deep learning models are known for taking a long time for training. This is an important

factor in considering adopting our approach, especially in an agile development setting.

If training time takes longer than the duration of a sprint (e.g. one or two weeks), the

prediction system would not be useful in practice. We have found that the training time

of our model was very small, ranging from 13 minutes to 40 minutes with an average of

22 minutes across the 16 projects (see Table 6.12). Pre-training time took much longer

time, but it was done only once across a repository and took just below 7 hours at the

maximum. Once the model was trained, getting an estimation from the model was very

fast. As can be seen from Table 6.12, the time it took for testing all issues in the test sets

was in the order of seconds. Hence, for a given new issue, it would take less than a second

for the machinery to come back with an story point estimation. All the experiments were

run on a MacOS laptop with 2.4 GHz Intel Core i5 and 8 GB of RAM and the embedding

dimensions of 50. Hence, this result suggests that using our proposed approach to estimate

story points is applicable in practice.

6.5.8 Threats to validity

We tried to mitigate threats to construct validity by using real world data from issues

recorded in large open source projects. We collected the title and description provided

CHAPTER 6. STORY POINT ESTIMATION 189

with these issue reports and the actual story points that were assigned to them. We are

aware that those story points were estimated by human teams, and thus may contain biases

and in some cases may not be accurate. We have mitigated this threats by performing

two set of experiments: one on the orgianal story points and the other on the adjusted

normalized story points. We further note that for story points, the raw values are not

as important as the relative values [288]. A user story that is assigned 6 story points

should be three times as much as a user story that is assigned 2 story points. Hence,

when engineers determine an estimate for a new issue, they need to compare the issue to

other issues in the past in order to make the estimation consistently. The problem is thus

suitable for a machine learner. The trained prediction system works in a similar manner

as human engineers: using past estimates as baselines for new estimation. The prediction

system tries to reproduce an estimate that human engineers would arrive at.

However, since we aim to mimic the team’s capability in effort estimation, the cur-

rent set of ground-truths sufficiently serves this purpose. When other sets of ground-truths

become available, our model can be easily retrained. To minimize threats to conclusion

validity, we carefully selected unbiased error measures, applied a number of statistical

tests, and applied multiple statistical testing correction to verify our assumptions [157].

Our study was performed on datasets of different sizes. In addition, we carefully followed

recent best practices in evaluating effort estimation models [160], [168], [273] to decrease

conclusion instability [289].

The original implementation of Porru et. al.’s method [279] was not released, thus

we have re-implemented our own version of their approach. We strictly followed the

described provided in their work, however we acknowledge that our implementation may

not reflect all the implementation details in their approach. To mitigate this threat, we

have tested our implementation using the dataset provided in their work. We have found

that our results were consistent with the results reported in their work.

To mitigate threats to external validity, we have considered 23,313 issues from

sixteen open source projects, which differ significantly in size, complexity, team of devel-

opers, and community. We however acknowledge that our dataset would not be represen-

tative of all kinds of software projects, especially in commercial settings (although open

source projects and commercial projects are similar in many aspects). One of the key dif-

ferences between open source and commercial projects that may affect the estimation of

story points is the nature of contributors, developers, and project’s stakeholders. Further

investigation for commercial agile projects is needed.

CHAPTER 6. STORY POINT ESTIMATION 190

6.5.9 Implications

In this section, we discuss a number of implications of our results.

What do the results mean for the research on effort estimation? Existing work

on effort estimation mainly focus on estimating the whole project with a small number

of data points (see the datasets in the PROMISE repository [82] for example). The fast

emergence of agile development demand more research on estimation at the issue or user

story level. Our work opens a new research area for the use of software analytics in

estimating story points. The assertion demonstrated by our results is that our current

method works and no other methods has been demonstrated to work at this scale of above

23,000 data points. Existing work in software effort estimation have dealt with a much

smaller number of observations (i.e. data points) than our work did. For example, the

China dataset has only 499 data points, Desharnais has 77, and Finish has 38 (see the

datasets for effort estimation on the PROMISE repository) – these are commonly used

in existing effort estimation work (e.g. [7], [290]). By contrast, in this work we deal

with the scale of thousands of data points. Since we make our dataset publicly available,

further research (e.g. modeling the codebase and adding team-specific features into the

estimation model) can be advanced in this topic, and our current results can serve as the

baseline.

Should we adopt deep learning? To the best of our knowledge, our work is the

first major research in using deep learning for effort estimation. The use of deep learning

has allowed us to automatically learn a good representation of an issue report and use

this for estimating the effort of resolving the issue. The evaluation results demonstrates

the significant improvement that our deep learning approach has brought in terms of pre-

dictive performance. This is a powerful result since it helps software practitioners move

away from the manual feature engineering process. Feature engineering usually relies on

domain experts who use their specific knowledge of the data to create features for machine

learners to work. In our approach, features are automatically learned from a textual de-

scription of an issue, thus obviating the need for designing them manually. We of course

need to collect the labels (i.e. story points assigned to issues) as the ground truths used

for learning and testing. Hence, we believe that the wide adoption of software analytics

in industry crucially depends on the ability to automatically derive (learn) features from

raw software engineering data.

In our context of story point estimation, if the number of new words is large, trans-

fer learning is needed, e.g. by using the existing model as a strong prior for the new model.

CHAPTER 6. STORY POINT ESTIMATION 191

However, this can be mitigated by pre-training on a large corpus so that most of the terms

are covered. After pre-training, our model is able to automatically learn semantic relations

between words. For example, words related to networking like “soap”, “configuration”,

“tcp”, and “load” are in one cluster (see Figure 7). Hence, even when a user story has

several unique terms (but already pre-trained), retraining the main model is not neces-

sary. Pre-training may however take time and effort. One potential research direction is

therefore building up a community for sharing pre-trained networks, which can be used

for initialization, thus reducing training times. As the first step towards this direction, we

make our pre-trained models publicly available for the research community.

We acknowledged that the explainability of a model is important for full adoption

of machine learning techniques. This is not a unique problem only for recurrent networks

(RNN), but also for many powerful modern machine learning techniques (e.g. Random

Forests and SVM). However, RNN is not entirely a black-box as it seems (e.g. see [291]).

For example, word importance can be credited using various techniques (e.g., using gra-

dient with respect to word value). Alternatively, there are model agnostic technique to

explain any prediction [292]. Even with partly interpretable RNN, if the prediction is

accurate, then we can still expect a high level of adoption.

What do the results mean for project managers and developers?

Our positive results indicate that it is possible to build a prediction system to sup-

port project managers and developers in estimating story points. Our proposal enables

teams to be consistent in their estimation of story points. Achieving this consistency is

central to effectively leveraging story points for project planning. The machine learner

learns from past estimates made by the specific team which it is deployed to assist. The

insights that the learner acquires are therefore team-specific. The intent is not to have the

machine learner supplant existing agile estimation practices. The intent, instead, is to de-

ploy the machine learner to complement these practices by playing the role of a decision

support system. Teams would still meet, discuss user stories and generate estimates as per

current practice, but would have the added benefit of access to the insights acquired by the

machine learner. Teams would be free to reject the suggestions of the machine learner, as

is the case with any decision support system. In every such estimation exercise, the actual

estimates generated are recorded as data to be fed to the machine learner, independent of

whether these estimates are based on the recommendations of the machine learner or not.

This estimation process helps the team not only understand sufficient details about what

it will take to to resolve those issues, but also align with their previous estimations.

CHAPTER 6. STORY POINT ESTIMATION 192

6.6 Related work

Existing estimation methods can generally be classified into three major groups: expert-

based, model-based, and hybrid approaches. Expert-based methods rely on human ex-

pertise to make estimations, and are the most popular technique in practice [293], [294].

Expert-based estimation however tends to require large overheads and the availability

of experts each time the estimation needs to be made. Model-based approaches use data

from past projects but they are also varied in terms of building customized models or using

fixed models. The well-known construction cost (COCOMO) model [249] is an example

of a fixed model where factors and their relationships are already defined. Such estima-

tion models were built based on data from a range of past projects. Hence, they tend to

be suitable only for a certain kinds of project that were used to build the model. The cus-

tomized model building approach requires context-specific data and uses various methods

such as regression (e.g. [98], [99]), Neural Network (e.g. [95], [97]), Fuzzy Logic (e.g.

[96]), Bayesian Belief Networks (e.g.[250]), analogy-based (e.g. [251], [252]), and multi-

objective evolutionary approaches (e.g. [7]). It is however likely that no single method

will be the best performer for all project types [8], [248], [295]. Hence, some recent work

(e.g. [8]) proposes to combine the estimates from multiple estimators. Hybrid approaches

(e.g. [253], [254]) combine expert judgements with the available data – similarly to the

notions of our proposal.

While most existing work focuses on estimating a whole project, little work has

been done in building models specifically for agile projects. Today’s agile, dynamic and

change-driven projects require different approaches to planning and estimating [125].

Some recent approaches leverage machine learning techniques to support effort estima-

tion for agile projects. Recently, the work in [279] proposed an approach which extracts

TF-IDF features from issue description to develop an story-point estimation model. The

univariate feature selection technique are then applied on the extracted features and fed

into classifiers (e.g. SVM). In addition, the work in [296] applied Cosmic Function Points

(CFP) [297] to estimate the effort for completing an agile project. The work in [170]

developed an effort prediction model for iterative software development setting using re-

gression models and neural networks. Differing from traditional effort estimation models,

this model is built after each iteration (rather than at the end of a project) to estimate ef-

fort for the next iteration. The work in [173] built a Bayesian network model for effort

prediction in software projects which adhere to the agile Extreme Programming method.

Their model however relies on several parameters (e.g. process effectiveness and process

improvement) that require learning and extensive fine tuning. Bayesian networks are also

CHAPTER 6. STORY POINT ESTIMATION 193

used in [175] to model dependencies between different factors (e.g. sprint progress and

sprint planning quality influence product quality) in Scrum-based software development

project in order to detect problems in the project. Our work specifically focuses on es-

timating issues with story points using deep learning techniques to automatically learn

semantic features representing the actual meaning of issue descriptions, which is the key

difference from previous work. Previous research (e.g. [130], [135], [176], [177]) has

also been done in predicting the elapsed time for fixing a bug or the delay risk of resolv-

ing an issue. However, effort estimation using story points is a more preferable practice

in agile development.

LSTM has shown successes in many applications such as language models [68],

speech recognition [69] and video analysis [70]. Our Deep-SE is a generic in which it

maps text to a numerical score or a class, and can be used for other tasks, e.g. mapping

a movie review to a score, or assigning scores to essays, or sentiment analysis. Deep

learning has recently attracted increasing interests in software engineering. Our previous

work [298] proposed a generic deep learning framework based on LSTM for modeling

software and its development process. White et. al. [299] has employed recurrent neural

networks (RNN) to build a language model for source code. Their later work [300] ex-

tended these RNN models for detecting code clones. The work in [301] also used RNNs

to build a statistical model for code completion. Our recent work [302] used LSTM to

build a language model for code and demonstrated the improvement of this model com-

pared to the one using RNNs. Gu et. al. [303] used a special RNN Encoder–Decoder,

which consists of an encoder RNN to process the input sequence and a decoder RNN

with attention to generate the output sequence. This model takes as input a given API-

related natural language query and returns API usage sequences. The work in [304] also

uses RNN Encoder–Decoder but for fixing common errors in C programs. Deep Belief

Network [305] is another common deep learning model, which has been used in software

engineering, e.g. for building defection prediction models [19], [91].

6.7 Chapter summary

In this chapter, we have proposed a deep learning-based, fully end-to-end prediction sys-

tem for estimating story points, removing the users from manually designing features

from the textual description of issues. A key novelty of our approach is the combination

of two powerful deep learning architectures: Long Short-Term Memory (to learn a vector

representation for issue reports) and Recurrent Highway Network (for building a deep

CHAPTER 6. STORY POINT ESTIMATION 194

representation). The proposed approach has consistently outperformed three common

baselines and four alternatives according to our evaluation results. Compared against the

Mean and Median techniques, the proposed approach has improved 34.06% and 26.77%

respectively in MAE averaging across 16 projects we studied. Compared against the

BoW and Doc2Vec techniques, our approach has improved 23.68% and 17.90% in MAE.

These are significant results in the literature of effort estimation. A major part of those im-

provement were brought by our use of the deep learning LSTM architecture to model the

textual description of an issue. The use of highway recurrent networks (on top of LSTM)

has also improved the predictive performance, but not as significantly as the LSTM itself

(especially for those project which have very small number of issues). We have discussed

(informally) our work with several software developers who has been practising agile and

estimating story points. They all agreed that our prediction system could be useful in

practice. However, to make such a claim, we need to implement it into a tool and perform

a user study. Hence, we would like to evaluate empirically the impact of our prediction

system for story point estimation in practice by project managers and/or software devel-

opers. This would involve developing the model into a tool (e.g. a JIRA plugin) and then

organising trial use in practice. This is an important part of our future work to confirm the

ultimate benefits of our approach in general.

Chapter 7

Conclusions and future work

THIS chapter concludes the work that has been carried out in this thesis and provides

some pointers to possible future lines of research.

Cost and schedule overruns are common in software projects. This is one of the

major problems, regardless of which development process is employed, due to inherent

dynamic nature of software development project. It is highly challenging to manage soft-

ware projects to satisfy those cost and time constraints. Thus, there is increasing need

for project managers and decision makers to make reliable predictions as the project pro-

gresses.

As software analytics approaches emerge since software development becomes

data-rich activities, an increasing number of the applications of software analytics have

been developed. These approaches focus on leverage different source of data using several

techniques in machine learning to provide supports in software development. Therefore,

it is important to support project managers and decision makers with insightful and ac-

tionable information.

However, there has been very little work that directly supports project manage-

ment, especially at the fine-grained level of iteration and issues. Our work aims to fill that

gap. In this thesis, we have empirically studied the issue reports from well-known open

source projects to build predictive models using machine learning techniques (including

deep learning). Our predictive analytics suite provides support in three aspects in soft-

ware project management: predicting whether an issue is at risk of being delayed against

its deadline, predicting delivery capability for an ongoing iteration, and estimating the

effort of resolving issues. In the remainder of this chapter, we summarize our findings

and contributions of this thesis and discuss future work.

195

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 196

7.1 Thesis contributions

We presented three predictive models to support project management tasks and decision

making in software projects. The results from each extensive evaluation demonstrated the

effectiveness of our predictive models. We summarize our contributions as follows:

• Predicting delivery capability (Chapter 3):

We used a data-driven approach to provide automated support for project managers

and other decision makers in delivery-related risk prediction in iterative develop-

ment settings. Our approach is able to predict delivery capability as to whether

the target amount of work will be delivered at the end of an iteration. To build

the predictive models, we extracted 15 features associated with an iteration and

12 features associated with an issue. To build a feature vector representing an it-

eration, we introduced three novel feature aggregation techniques: Statistical ag-

gregation, Bag-of-words feature aggregation, and Graph-based feature aggregation

to aggregate features of issues associated to an iteration. Our predictive models

are built based on three state-of-the-art randomized ensemble methods: Random

Forests, Stochastic Gradient Boosting Machines, and Deep Neural Networks with

Dropouts. The evaluation results on five open source projects demonstrated that

the proposed feature aggregation techniques can improve predictive performance.

The best combination of aggregated features varies between projects. Our approach

also outperforms the baseline methods: Random Guessing, Mean Effort, and Me-

dian Effort.

• Predicting delays (Chapter 4):

We have proposed the predictive model to predict if an issue will be at risk of being

delayed. Our approach is also able to predict the likelihood of the risk occurring

and the risk impact in terms of the extension of the delay. We have performed

the study in eight well known open source projects (e.g. Apache) and extracted a

comprehensive set of 19 features. We have developed a sparse logistic regression

model and performed feature selection on those risk factors to choose those with

good discriminative power. In feature selection, we compared two different fea-

ture selection techniques: ℓ1-penalized logistic regression model and using p-value

from logistic regression model. The outcomes from feature selection techniques

also confirmed the diversity of projects where the good discriminative features are

different between projects. We have however seen some common patterns that in

our eight case studies the discussion time and the percentage of delayed issues that

a developer is involved with have positive correlation with the outcome (e.g., the

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 197

longer discussion time, the higher probability of issues being delay). In addition,

the developer’s workload, the discussion time, and the percentage of delayed issues

that a developer is involved with are the top-three highest discrimination power

features across all projects. The evaluation results on eight open source projects

demonstrate that our predictive models have a strong predictive performance.

• Predicting delays using networked classification (Chapter 5):

We have presented an approach to enhance the predictive model which predicts if

an issue will be at risk of being delayed. Our approach exploits not only features

specific to individual issues but also the relationships between the issues (i.e. net-

worked data). In addition, we have proposed the techniques to extract the explicit

and implicit relationships between issues in software projects to build an issue net-

work. The explicit relationships can determine the order of issues, while the im-

plicit relationships reflect other aspects of issue relations such as issues assigned to

the same developer. We extracted 3 aspects of implicit relations: Resource-based

relationship (they are assigned to the same developer), Attribute-based relation-

ship (they affect the same component), and Content-based relationship (they de-

scriptions share the common topics). The evaluation results demonstrate a strong

predictive performance of our networked classification techniques compared to tra-

ditional approaches: achieving 49% improvement in precision, 28% improvement

in recall, 39% improvement in F-measure, and 16% improvement in Area Under

the ROC Curve. In particular, the stacked graphical learning approach consistently

outperformed the other techniques across the five projects we studied. The results

from our experiments indicate that considering the relationships between issues has

an impact on the predictive performance.

• Estimating story points (Chapter 6):

We have developed a story point estimation model using deep learning techniques.

Our model can estimate story points of issue reports from their textual description

which requires no feature engineering. The estimation model is end-to-end train-

able from raw input data (i.e. issue’s textual description) which consists of two

deep learning architectures: long short-term memory (LSTM) and recurrent high-

way network (RHWN). LSTM produces the feature vector representation of the

description which can capture semantic and sequential meaning of the text, and

RWHN enables the model to learn different scales of story points (e.g. Fibonacci

scale) using multiple non-linear layers. We collected over 200,000 issues from 16

open source projects for training the model. We also found the positive correlation

between the story points and the development time which demonstrates that the

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 198

higher story point, the longer development time. Our story point estimation model

has consistently outperformed three common baselines in effort estimation: Ran-

dom, Mean, and Median method and the alternatives according to our evaluation

results. Our model would help maintain the consistency in effort estimation in agile

planning.

7.2 Future work

In this section, we discuss possible extensions of the research work presented in this

thesis.

• Commercial setting: We empirically studied software data generated from open

source projects. We, however, cannot claim that the study covers all kinds of soft-

ware projects. Future work would involve expanding the study to commercial soft-

ware projects and other large open source projects to assess our proposed approach

further. This replication of the study is important to address the threat to conclu-

sion validity which focuses on the generalizability of the proposed approach. For

example, important risk factors related to delays in commercial projects might be

different from open source projects. Furthermore, the comparisons of our proposed

approaches with similar methods is needed. For example, the proposed delay pre-

diction model could be compared against some existing issue resolving time pre-

diction models (e.g. [178]).

• Industry graded tool: The proposed approach can be developed as a tool which

is integrated into an existing project management platform (e.g. JIRA software).

Moreover, visualization techniques (e.g. predicting dashboard) can be applied to

improve user experiences. For example, the predictive suite can be embedded into

an issue tracking system to notify the users (e.g. decision maker) when issues are

at risk of being delays. Furthermore, the actions of users who responded to the

notified issues can be recorded for further analysis.

• User evaluation testing: The study focuses on measuring the predictive perfor-

mance of the proposed approaches. However, a user study to demonstrate the use-

fulness of our models is required in the deployment phase. The evaluation from

the users (e.g. project manager and decision maker) is essential to the success of

deployment of our predictive models in terms of gaining the user’s trust. Eliciting

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 199

user requirements to better integrate the models into existing issue tracking systems

is also part of the user study for future work.

• Different sources of data: The proposed predictive models leverage the data (i.e.

issue and iteration reports) collected from issue tracking systems. There are differ-

ent types of data available in software repositories which can be taken into account

to build various predictive models. For example, the delay prediction model can be

enhanced with the information from version control systems (e.g. GitHub).

• Risk mitigation plan: The ability to make accurate forecasting which we focus

in this thesis is just only the first part of the activities in risk management which

are risk identification and assessment. The next step involves risk mitigation where

project managers come up with the plan to mitigate risks (e.g. adjusting the iter-

ation plan to prevent the risk of under achieving iterations). Further work would

involve building those prescriptive models, i.e., giving recommendation plans to

deal with under/over achieving iterations or issue delays. There is a possibility of

using collaborative filtering techniques to derive risk mitigation actions since open

source software projects often involve large teams of contributors.

Bibliography

[1] B. Michael, S. Blumberg, and J. Laartz, “Delivering large-scale IT projects on

time, on budget, and on value,” Tech. Rep., 2012.

[2] P. Bright, What windows as a service and a free upgrade mean at home and at

work, https://arstechnica.com/information-technology/2015/07/what-windows-as-

a-service-and-a-free-upgrade-mean-at-home-and-at-work/, 2015.

[3] L. Williams, “What agile teams think of agile principles,” Communications of the

ACM, vol. 55, no. 4, p. 71, 2012.

[4] U. Abelein and B. Paech, “Understanding the Influence of User Participation and

Involvement on System Success - a Systematic Mapping Study,” Empirical Soft-

ware Engineering, pp. 1–54, 2013.

[5] A. Mockus, D. Weiss, and P. Z. P. Zhang, “Understanding and predicting effort in

software projects,” in Proceedings of the 25th International Conference on Soft-

ware Engineering (ICSE), vol. 6, IEEE, 2003, pp. 274–284.

[6] B. Stewart, “Predicting project delivery rates using the Naive-Bayes classifier,”

Journal of Software Maintenance and Evolution: Research and Practice, vol. 14,

no. 3, pp. 161–179, May 2002.

[7] F. Sarro, A. Petrozziello, and M. Harman, “Multi-objective Software Effort Esti-

mation,” in Proceedings of the 38th International Conference on Software Engi-

neering (ICSE), 2016, pp. 619–630.

[8] E. Kocaguneli, T. Menzies, and J. W. Keung, “On the value of ensemble effort es-

timation,” IEEE Transactions on Software Engineering, vol. 38, no. 6, pp. 1403–

1416, 2012.

[9] L. Huang, D. Port, L. Wang, T. Xie, and T. Menzies, “Text mining in supporting

software systems risk assurance,” in Proceedings of the IEEE/ACM international

conference on Automated software engineering (ASE), New York, USA: ACM

Press, 2010, pp. 163–167.

200

BIBLIOGRAPHY 201

[10] Z. Xu, B. Yang, and P. Guo, “Software Risk Prediction Based on the Hybrid Algo-

rithm of Genetic Algorithm and Decision Tree,” in Proceedings of International

Conference on Intelligent Computing (ICIC), 2007, pp. 266–274.

[11] Y. Hu, X. Zhang, E. Ngai, R. Cai, and M. Liu, “Software project risk analysis

using Bayesian networks with causality constraints,” Decision Support Systems,

vol. 56, pp. 439–449, 2013.

[12] C. Fang and F. Marle, “A simulation-based risk network model for decision sup-

port in project risk management,” Decision Support Systems, vol. 52, no. 3, pp. 635–

644, 2012.

[13] J. Zhou, H. Zhang, and D. Lo, “Where Should the Bugs Be Fixed ?” Proceedings

of the 34th International Conference on Software Engineering (ICSE), pp. 14–24,

2012.

[14] S. Wang, D. Lo, and J. Lawall, “Compositional vector space models for improved

bug localization,” in Proceedings of the 30th International Conference on Soft-

ware Maintenance and Evolution (ICSME), 2014, pp. 171–180.

[15] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Bug Localiza-

tion with Combination of Deep Learning and Information Retrieval,” in Proceed-

ings of the 25th IEEE/ACM International Conference on Program Comprehension

(ICPC), 2017, pp. 218–229.

[16] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Combining deep

learning with information retrieval to localize buggy files for bug reports,” in Pro-

ceedings of the 30th IEEE/ACM International Conference on Automated Software

Engineering (ASE), 2016, pp. 476–481.

[17] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and T. N. Nguyen,

“A topic-based approach for narrowing the search space of buggy files from a

bug report,” in Proceedings of the 26th IEEE/ACM International Conference on

Automated Software Engineering (ASE), 2011, pp. 263–272.

[18] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards building a universal

defect prediction model with rank transformed predictors,” Empirical Software

Engineering, vol. 21, no. 5, pp. 2107–2145, Aug. 2015.

[19] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep Learning for Just-in-Time

Defect Prediction,” in Proceedings of the IEEE International Conference on Soft-

ware Quality, Reliability and Security (QRS), 2015, pp. 17–26.

[20] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating complexity,

code churn, and developer activity metrics as indicators of software vulnerabili-

ties,” IEEE Transactions on Software Engineering, vol. 37, no. 6, pp. 772–787,

2011.

BIBLIOGRAPHY 202

[21] A. F. Otoom, D. Al-shdaifat, M. Hammad, and E. E. Abdallah, “Severity Predic-

tion of Software Bugs,” in Proceedings of the 7th International Conference on

Information and Communication Systems (ICICS), 2016, pp. 92–95.

[22] T. Menzies and A. Marcus, “Automated severity assessment of software defect re-

ports,” in Proceedings of the International Conference on Software Maintenance

(ICSM), IEEE, 2008, pp. 346–355.

[23] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the severity of

a reported bug,” in Proceedings of the 7th IEEE Working Conference on Mining

Software Repositories (MSR), IEEE, 2010, pp. 1–10.

[24] A. Trendowicz and R. Jeffery, Software project effort estimation: Foundations and

best practice guidelines for success. Springer, 2014.

[25] L. C. Briand and I. Wieczorek, “Resource estimation in software engineering,”

Encyclopedia of software engineering, 2002.

[26] E. Kocaguneli, A. T. Misirli, B. Caglayan, and A. Bener, “Experiences on devel-

oper participation and effort estimation,” in Proceedings of the 37th EUROMI-

CRO Conference on Software Engineering and Advanced Applications (SEAA),

IEEE, 2011, pp. 419–422.

[27] S. McConnell, Software estimation: demystifying the black art. Microsoft press,

2006.

[28] T. Menzies, Z. Chen, J. Hihn, and K. Lum, “Selecting best practices for effort es-

timation,” IEEE Transactions on Software Engineering, vol. 32, no. 11, pp. 883–

895, 2006.

[29] I. Sommerville, Software Engineering, 9th. Pearson, 2010.

[30] M. Usman, E. Mendes, F. Weidt, and R. Britto, “Effort Estimation in Agile Soft-

ware Development: A Systematic Literature Review,” in Proceedings of the 10th

International Conference on Predictive Models in Software Engineering (PROMISE),

2014, pp. 82–91.

[31] C. E. Brodley, U. Rebbapragada, K. Small, and B. Wallace, “Challenges and Op-

portunities in Applied Machine Learning,” AI Magazine, vol. 33, no. 1, pp. 11–24,

2012.

[32] E. Blanzieri and A. Bryl, “A survey of learning-based techniques of email spam

filtering,” Artificial Intelligence Review, vol. 29, no. 1, pp. 63–92, 2008.

[33] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis of malware

behavior using machine learning,” Journal of Computer Security, vol. 19, no. 4,

pp. 639–668, 2011.

BIBLIOGRAPHY 203

[34] O. Chapelle, P. Haffner, and V. N. Vapnik, “Support vector machines for histogram-

based image classification,” IEEE transactions on Neural Networks, vol. 10, no. 5,

pp. 1055–1064, 1999.

[35] C. M. Bishop, Pattern Recognition and Machine Learning, 9. 2013, vol. 53, pp. 1689–

1699. arXiv: arXiv:1011.1669v3.

[36] K. Christensen, S. Nørskov, L. Frederiksen, and J. Scholderer, “In search of new

product ideas: Identifying ideas in online communities by machine learning and

text mining,” Creativity and Innovation Management, vol. 26, no. 1, pp. 17–30,

2017.

[37] K. Siau and Y. Yang, “Impact of Artificial Intelligence, Robotics, and Machine

Learning on Sales and Marketing,” in Twelve Annual Midwest Association for

Information Systems Conference (MWAIS 2017), 2017, pp. 18–19.

[38] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical machine

learning tools and techniques. Morgan Kaufmann, 2016.

[39] J. R. Quinlan, C4.5: programs for machine learning. Morgan Kaufmann Publish-

ers Inc., Mar. 1993.

[40] R. Conforti, M. de Leoni, M. La Rosa, W. M. van der Aalst, and A. H. ter Hof-

stede, “A recommendation system for predicting risks across multiple business

process instances,” Decision Support Systems, vol. 69, pp. 1–19, Jan. 2015.

[41] W. M. Ibrahim, N. Bettenburg, E. Shihab, B. Adams, and A. E. Hassan, “Should

I contribute to this discussion?” In Proceedings of the 7th IEEE Working Confer-

ence on Mining Software Repositories (MSR), Ieee, May 2010, pp. 181–190.

[42] L. Breiman, “Random forests,” Machine learning, pp. 5–32, 2001.

[43] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking Classification

Models for Software Defect Prediction: A Proposed Framework and Novel Find-

ings,” IEEE Transactions on Software Engineering, vol. 34, no. 4, pp. 485–496,

Jul. 2008.

[44] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams, and A. E.

Hassan, “Revisiting common bug prediction findings using effort-aware models,”

English, in Proceedings of the IEEE International Conference on Software Main-

tenance (ICSM), IEEE, Sep. 2010, pp. 1–10.

[45] J. H. Friedman, “Greedy function approximation: A gradient boosting machine,”

Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001.

[46] J. H. Friedman, “Stochastic gradient boosting,” Computational Statistics & Data

Analysis, vol. 38, no. 4, pp. 367–378, 2002.

https://arxiv.org/abs/arXiv:1011.1669v3

BIBLIOGRAPHY 204

[47] K. Crammer and Y. Singer, “On the Algorithmic Implementation of Multiclass

Kernel-based Vector Machines,” Journal of Machine Learning Research, vol. 2,

pp. 265–292, 2001.

[48] D. D. Lewis, “Naive (Bayes) at forty: The independence assumption in infor-

mation retrieval,” in European conference on machine learning, Springer, 1998,

pp. 4–15.

[49] D. M. Grether, “Bayes rule as a descriptive model: The representativeness heuris-

tic,” The Quarterly Journal of Economics, vol. 95, no. 3, pp. 537–557, 1980.

[50] J. Wolfson, S. Bandyopadhyay, M. Elidrisi, G. Vazquez-Benitez, D. Musgrove,

G. Adomavicius, P. Johnson, and P. O’Connor, “A Naive Bayes machine learn-

ing approach to risk prediction using censored, time-to-event data,” Statistics in

medicine, pp. 21–42, Apr. 2014.

[51] W. Abdelmoez, M. Kholief, and F. M. Elsalmy, “Bug Fix-Time Prediction Model

Using Naı̈ve Bayes Classifier,” in Proceedings of the 22nd International Confer-

ence on Computer Theory and Applications (ICCTA), 2012, pp. 13–15.

[52] R. Kohavi, “Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-

Tree Hybrid,” in Proceedings of the 2nd International Conference on Knowledge

Discovery and Data Mining (KDD), 1996, pp. 202–207.

[53] Y. Bengio, “Artificial Neural Networks and Their Application to Sequence Recog-

nition,” PhD thesis, Montreal, Que., Canada, Canada, 1991.

[54] D. F. Specht, “Probabilistic neural networks,” Neural networks, vol. 3, no. 1,

pp. 109–118, 1990.

[55] Y. Hu, J. Huang, J. Chen, M. Liu, K. Xie, and S. Yat-sen, “Software Project Risk

Management Modeling with Neural Network and Support Vector Machine Ap-

proaches,” in Proceedings of the 3rd International Conference on Natural Com-

putation (ICNC), vol. 3, 2007, pp. 358–362.

[56] D. Neumann, “An enhanced neural network technique for software risk analysis,”

IEEE Transactions on Software Engineering, vol. 28, no. 9, pp. 904–912, Sep.

2002.

[57] Q. Wang, J. Zhu, and B. Yu, “Combining Classifiers in Software Quality Pre-

diction : A Neural Network Approach,” in Proceedings of the 2nd International

Symposium on Neural Networks, Springer Berlin Heidelberg, 2005, pp. 921–926.

[58] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A simple way to prevent neural networks from overfitting,” Journal

of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[59] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,

pp. 436–444, 2015.

BIBLIOGRAPHY 205

[60] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[61] L. Deng and D. Yu, “Deep Learning: Methods and Applications,” Tech. Rep., May

2014.

[62] Y. LeCun, Y. Bengio, et al., “Convolutional networks for images, speech, and time

series,” The handbook of brain theory and neural networks, vol. 3361, no. 10,

pp. 255–258, 1998.

[63] M. Ranzato and G. E. Hinton, “Modeling pixel means and covariances using fac-

torized third-order boltzmann machines,” in Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, IEEE, IEEE,

Jun. 2010, pp. 2551–2558.

[64] J. F. Kolen and S. C. Kremer, “Gradient Flow in Recurrent Nets: The Difficulty

of Learning LongTerm Dependencies,” in A Field Guide to Dynamical Recurrent

Networks, Wiley-IEEE Press, 2009, pp. 237–243. arXiv: arXiv:1011.1669v3.

[65] X. He and L. Deng, “Speech recognition, machine translation, and speech translation-

a unified discriminative learning paradigm,” IEEE Signal Processing Magazine,

vol. 28, no. 5, pp. 126–133, 2011.

[66] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-

tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[67] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual pre-

diction with lstm,” Neural computation, vol. 12, no. 10, pp. 2451–2471, 2000.

[68] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM Neural Networks for Language

Modeling,” in INTERSPEECH, 2012, pp. 194–197.

[69] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recur-

rent neural networks,” in Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2013, pp. 6645–6649.

[70] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and

G. Toderici, “Beyond short snippets: Deep networks for video classification,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2015, pp. 4694–4702.

[71] Project Management Institute Inc, A guide to the project management body of

knowledge (PMBOK guide). 2000, p. 211. arXiv: 978-1-933890-51-7.

[72] C. Jones, “Software Project Management Practices : Failure Versus Success,”

CrossTalk: The Journal of Defense Software Engineering, vol. 17, no. 10, pp. 5–9,

2004.

[73] A. L. Lederer and J. Prasad, “Nine management guidelines for better cost estimat-

ing,” Communications of the ACM, vol. 35, no. 2, pp. 51–59, 1992.

https://arxiv.org/abs/arXiv:1011.1669v3
https://arxiv.org/abs/978-1-933890-51-7

BIBLIOGRAPHY 206

[74] H. Kerzner and H. R. Kerzner, Project management: a systems approach to plan-

ning, scheduling, and controlling. John Wiley & Sons, 2017.

[75] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc, “Is It a Bug

or an Enhancement?: A Text-based Approach to Classify Change Requests,” in

Proceedings of the Conference of the Center for Advanced Studies on Collabora-

tive Research: Meeting of Minds, ACM, 2008, pp. 304–318.

[76] D. Alencar, S. L. Abebe, S. Mcintosh, D. Alencar da Costa, S. L. Abebe, S. Mcin-

tosh, U. Kulesza, and A. E. Hassan, “An Empirical Study of Delays in the Inte-

gration of Addressed Issues,” in Proceedings of the International Conference on

Software Maintenance and Evolution (ICSME), IEEE, 2014, pp. 281–290.

[77] G. Murphy and D. Čubranić, “Automatic bug triage using text categorization,”

in Proceedings of the 16th International Conference on Software Engineering &

Knowledge Engineering (SEKE), 2004, pp. 92–97.

[78] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” In Proceedings

of the 28th International Conference on Software engineering (ICSE), New York,

USA: ACM Press, May 2006, pp. 361–370.

[79] Y. Tian, D. Lo, X. Xia, and C. Sun, “Automated prediction of bug report prior-

ity using multi-factor analysis,” Empirical Software Engineering, vol. 20, no. 5,

pp. 1354–1383, 2015.

[80] P. Bourque and R. E. Fairley, Guide to the Software Engineering - Body of Knowl-

edge. 2014, p. 346. arXiv: arXiv:1210.1833v2.

[81] T. Menzies and T. Zimmermann, “Software Analytics: So What?” IEEE Software,

vol. 30, no. 4, pp. 31–37, Jul. 2013.

[82] T. Menzies, B. Caglayan, Z. He, E. Kocaguneli, J. Krall, F. Peters, and B. Turhan,

The PROMISE Repository of empirical software engineering data, 2012.

[83] R. P. L. Buse and T. Zimmermann, “Information needs for software development

analytics,” in Proceedings of the 34th International Conference on Software En-

gineering (ICSE), IEEE, Jun. 2012, pp. 987–996.

[84] O. Baysal, R. Holmes, and M. W. Godfrey, “Developer dashboards: The need for

qualitative analytics,” IEEE Software, vol. 30, no. 4, pp. 46–52, 2013.

[85] A. E. Hassan, A. Hindle, M. Shepperd, C. O. Brian, K. Enjoy, and T. Menzies,

“Roundtable: What’s Next in Software Analytics,” IEEE Software, vol. 30, no. 4,

pp. 53–56, 2013.

[86] D. Zhang, Y. Dang, J.-G. Lou, S. Han, H. Zhang, and T. Xie, “Software analyt-

ics as a learning case in practice,” in Proceedings of the International Workshop

on Machine Learning Technologies in Software Engineering (MALETS), 2011,

pp. 55–58.

https://arxiv.org/abs/arXiv:1210.1833v2

BIBLIOGRAPHY 207

[87] R. P. Buse and T. Zimmermann, “Analytics for software development,” in Pro-

ceedings of the FSE/SDP workshop on Future of software engineering research

(FoSER), 2010, pp. 77–81.

[88] D. Zhang, S. Han, Y. Dang, J.-G. Lou, H. Zhang, and T. Xie, “Software Analytics

in Practice,” IEEE Software, vol. 30, no. 5, pp. 30–37, 2013.

[89] N. R. Darwish, A. A. Mohamed, and A. S. Abdelghany, “A Hybrid Machine

Learning Model for Selecting Suitable Requirements Elicitation Techniques A

Hybrid Machine Learning Model for Selecting Suitable Requirements Elicitation

Techniques,” International Journal of Computer Science and Information Secu-

rity, vol. 14, no. 6, pp. 380–391, 2016.

[90] G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, and L. Mounier, “Toward

Large-Scale Vulnerability Discovery using Machine Learning,” in Proceedings

of the 6th ACM Conference on Data and Application Security and Privacy (CO-

DASPY), 2016, pp. 85–96.

[91] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features for defect

prediction,” in Proceedings of the International Conference on Software Engi-

neering (ICSE), vol. 14-22, 2016, pp. 297–308.

[92] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang, “Improving

Automated Bug Triaging with Specialized Topic Model,” IEEE Transactions on

Software Engineering, vol. 43, no. 3, pp. 272–297, 2016.

[93] H. K. Dam, T. Pham, S. W. Ng, T. Tran, J. Grundy, A. Ghose, T. Kim, and C.-J.

Kim, “A deep tree-based model for software defect prediction,” arXiv:1802.00921,

no. February, 2018. arXiv: 1802.00921.

[94] T. Menzies, E. Kocagüneli, L. Minku, F. Peters, and B. Turhan, “Effort Esti-

mation,” in Sharing Data and Models in Software Engineering, Elsevier, 2015,

pp. 47–50.

[95] S. Kanmani, J. Kathiravan, S. S. Kumar, and M. Shanmugam, “Neural Network

Based Effort Estimation Using Class Points for OO Systems,” in Proceedings of

the International Conference on Computing: Theory and Applications (ICCTA),

IEEE, Mar. 2007, pp. 261–266.

[96] S. Kanmani, J. Kathiravan, S. S. Kumar, and M. Shanmugam, “Class point based

effort estimation of OO systems using Fuzzy Subtractive Clustering and Artificial

Neural Networks,” in Proceedings of the 1st India Software Engineering Confer-

ence (ISEC), 2008, pp. 141–142.

[97] A. Panda, S. M. Satapathy, and S. K. Rath, “Empirical Validation of Neural Net-

work Models for Agile Software Effort Estimation based on Story Points,” Pro-

cedia Computer Science, vol. 57, pp. 772–781, 2015.

https://arxiv.org/abs/1802.00921

BIBLIOGRAPHY 208

[98] P. Sentas, L. Angelis, and I. Stamelos, “Multinomial Logistic Regression Applied

on Software Productivity Prediction,” in Proceedings of the 9th Panhellenic con-

ference in informatics, 2003, pp. 1–12.

[99] P. Sentas, L. Angelis, I. Stamelos, and G. Bleris, “Software productivity and ef-

fort prediction with ordinal regression,” Information and Software Technology,

vol. 47, no. 1, pp. 17–29, 2005.

[100] B. Boehm, “Software risk management: principles and practices,” Software, IEEE,

vol. 8, no. 1, pp. 32–41, 1991.

[101] A. Pika, W. M. van der Aalst, C. J. Fidge, A. H. ter Hofstede, M. T. Wynn, and

W. V. D. Aalst, “Profiling event logs to configure risk indicators for process de-

lays,” in Proceedings of the 25th International Conference on Advanced Informa-

tion Systems Engineering (CAiSE), Springer, Jul. 2013, pp. 465–481.

[102] C.-P. Chang, “Mining software repositories to acquire software risk knowledge,”

in Proceedings of the 14th International Conference on Information Reuse & In-

tegration (IRI), IEEE, Aug. 2013, pp. 489–496.

[103] P. S. Kochhar, F. Thung, and D. Lo, “Automatic fine-grained issue report reclas-

sification,” in Proceedings of the IEEE International Conference on Engineering

of Complex Computer Systems (ICECCS), 2014, pp. 126–135.

[104] K. Somasundaram and G. C. Murphy, “Automatic categorization of bug reports

using latent Dirichlet allocation,” in Proceedings of the 5th India Software Engi-

neering Conference (ISEC), 2012, pp. 125–130.

[105] A. Sureka, “Learning to Classify Bug Reports into Components,” in Proceedings

of the 50th international conference on Objects, Models, Components, Patterns,

Springer, 2012, pp. 288–303.

[106] S. Vargas-Baldrich, M. Linares-Vásquez, and D. Poshyvanyk, “Automated tag-

ging of software projects using bytecode and dependencies,” in Proceedings of

the 30th IEEE/ACM International Conference on Automated Software Engineer-

ing (ASE), 2016, pp. 289–294.

[107] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonckz, “Comparing min-

ing algorithms for predicting the severity of a reported bug,” in Proceedings of

the European Conference on Software Maintenance and Reengineering (CSMR),

2011, pp. 249–258.

[108] R. Jindal, R. Malhotra, and A. Jain, “Prediction of defect severity by mining soft-

ware project reports,” International Journal of System Assurance Engineering and

Management, vol. 8, no. 2, pp. 334–351, 2017.

BIBLIOGRAPHY 209

[109] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in bug reposito-

ries,” in Proceedings of the 34th International Conference on Software Engineer-

ing (ICSE), 2012, pp. 25–35.

[110] R. Robbes and D. Rothlisberger, “Using developer interaction data to compare

expertise metrics,” in Proceedings of the 10th Working Conference on Mining

Software Repositories (MSR), IEEE, May 2013, pp. 297–300.

[111] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy, “Characterizing and

predicting which bugs get reopened,” in Proceedings of the 34th International

Conference on Software Engineering (ICSE), IEEE Press, Jun. 2012, pp. 1074–

1083.

[112] X. Xia, D. Lo, E. Shihab, X. Wang, and B. Zhou, “Automatic, high accuracy

prediction of reopened bugs,” Automated Software Engineering, vol. 22, no. 1,

pp. 75–109, 2014.

[113] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams, A. E. Has-

san, and K.-i. Matsumoto, “Studying re-opened bugs in open source software,”

Empirical Software Engineering, vol. 18, no. 5, pp. 1005–1042, Sep. 2012.

[114] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the Comprehension of Pro-

gram Comprehension,” ACM Transactions on Software Engineering and Method-

ology, vol. 23, no. 4, pp. 1–37, 2014.

[115] A. E. Hassan, “The road ahead for Mining Software Repositories,” in Frontiers of

Software Maintenance, IEEE, Sep. 2008, pp. 48–57.

[116] D. Čubranić, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat: A project

memory for software development,” IEEE Transactions on Software Engineer-

ing, vol. 31, no. 6, pp. 446–465, 2005.

[117] A. E. Hassan and R. C. Holt, “Using development history sticky notes to un-

derstand software architecture,” in Proceedings of the 12th IEEE International

Workshop on Program Comprehension, Jun. 2004, pp. 183–192.

[118] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Mining email

social networks,” in Proceedings of the International Workshop on Mining Soft-

ware Repositories (MSR), ACM, 2006, pp. 137–143.

[119] P. C. Rigby and A. E. Hassan, “What Can OSS Mailing Lists Tell Us? A Pre-

liminary Psychometric Text Analysis of the Apache Developer Mailing List,” in

Proceedings of the 4th International Workshop on Mining Software Repositories

(MSR), May 2007, pp. 23–30.

[120] M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis: MSR for app

stores,” in Proceedings of the International Working Conference on Mining Soft-

ware Repositories (MSR), 2012, pp. 108–111.

BIBLIOGRAPHY 210

[121] I. J. Mojica, M. Nagappan, B. Adams, and A. E. Hassan, “Understanding Reuse in

the Android Market,” in Proceedings of the 20th IEEE International Conference

on Program Comprehension (ICPC), 2012, pp. 113–122.

[122] A. S. Sayyad, T. Menzies, and H. Ammar, “On the value of user preferences

in search-based software engineering: A case study in software product lines,”

in Proceedings of the 35th International Conference on Software Engineering

(ICSE), 2013, pp. 492–501.

[123] F. Palma, H. Farzin, Y. G. Guéhéneuc, and N. Moha, “Recommendation system

for design patterns in software development: An DPR overview,” in Proceedings

of the 3rd International Workshop on Recommendation Systems for Software En-

gineering (RSSE), 2012, pp. 1–5.

[124] A. Hindle, “Green mining: a methodology of relating software change and config-

uration to power consumption,” Empirical Software Engineering, vol. 20, no. 2,

pp. 374–409, 2015.

[125] M. Cohn, Agile estimating and planning. Pearson Education, 2005.

[126] H. F. Cervone, “Understanding agile project management methods using Scrum,”

OCLC Systems & Services: International digital library perspectives, vol. 27,

no. 1, pp. 18–22, 2011.

[127] M. Choetkiertikul, H. K. Dam, T. Tran, and A. Ghose, “Characterization and pre-

diction of issue-related risks in software projects,” in Proceedings of the 12th

Working Conference on Mining Software Repositories (MSR), IEEE, 2015, pp. 280–

291.

[128] S. Kaufman and C. Perlich, “Leakage in Data Mining : Formulation , Detection ,

and Avoidance,” ACM Transactions on Knowledge Discovery from Data (TKDD),

vol. 6(4), no. 15, pp. 556–563, 2012.

[129] D. R. McCallum and J. L. Peterson, “Computer-based readability indexes,” in

Proceedings of the ACM Conference, ACM, 1982, pp. 44–48.

[130] L. D. Panjer, “Predicting Eclipse Bug Lifetimes,” in Proceedings of the 4th Inter-

national Workshop on Mining Software Repositories (MSR), 2007, pp. 29–32.

[131] X. Xia, D. Lo, E. Shihab, X. Wang, and X. Yang, “ELBlocker: Predicting blocking

bugs with ensemble imbalance learning,” Information and Software Technology,

vol. 61, pp. 93–106, 2015.

[132] M. Choetkiertikul, H. K. Dam, T. Tran, and A. Ghose, “Predicting delays in soft-

ware projects using networked classification,” in Proceedings of the 30th IEEE/ACM

International Conference on Automated Software Engineering (ASE), 2015, pp. 353–

364.

BIBLIOGRAPHY 211

[133] H. Valdivia Garcia, E. Shihab, and H. V. Garcia, “Characterizing and predicting

blocking bugs in open source projects,” in Proceedings of the 11th Working Con-

ference on Mining Software Repositories (MSR), ACM Press, 2014, pp. 72–81.

[134] X. Xia, D. Lo, M. Wen, E. Shihab, and B. Zhou, “An empirical study of bug report

field reassignment,” in Proceedings of the Conference on Software Maintenance,

Reengineering, and Reverse Engineering, 2014, pp. 174–183.

[135] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in Proceedings of

the 22 IEEE/ACM international conference on Automated software engineering

(ASE), ACM Press, Nov. 2007, pp. 34–44.

[136] P. Tirilly, V. Claveau, and P. Gros, “Language modeling for bag-of-visual words

image categorization,” in Proceedings of the International Conference on Content-

based Image and Video Retrieval, 2008, pp. 249–258.

[137] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an internetwork,” in

Proceedings of the 15th Annual Joint Conference of the IEEE Computer Societies

Networking the Next Generation (INFOCOM), vol. 2, 1996, pp. 594–602.

[138] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-based Anal-

ysis and Prediction for Software Evolution,” in Proceedings of the 34th Interna-

tional Conference on Software Engineering (ICSE), IEEE Press, 2012, pp. 419–

429.

[139] L. Rokach, “Taxonomy for characterizing ensemble methods in classification tasks:

A review and annotated bibliography,” Computational Statistics and Data Analy-

sis, vol. 53, no. 12, pp. 4046–4072, 2009.

[140] D. O. Maclin and R., “Popular Ensemble Methods: An Empirical Study,” Journal

of Artificial Intelligence Research, vol. 11, pp. 169–198, 1999.

[141] T. Dietterich, “Ensemble methods in machine learning,” in Proceedings of the 1st

International Workshop on Multiple Classifier Systems, vol. 1857, Springer, 2000,

pp. 1–15.

[142] T. G. Dietterich, “An experimental comparison of three methods for construct-

ing ensembles of decision trees: Bagging, boosting, and randomization,” Machine

learning, vol. 40, no. 2, pp. 139–157, 2000.

[143] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera, “A review

on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-

based approaches,” IEEE Transactions on Systems, Man and Cybernetics Part C:

Applications and Reviews, vol. 42, no. 4, pp. 463–484, 2012.

[144] S. M. Halawani, I. A. Albidewi, and A. Ahmad, “A Novel Ensemble Method for

Regression via Classification Problems,” Journal of Computer Science, vol. 7,

no. 3, pp. 387–393, 2011.

BIBLIOGRAPHY 212

[145] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[146] J. H. Friedman, “Greedy function approximation: A gradient boosting machine,”

Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001.

[147] X. Wang and A. McCallum, “Topics over time: A non-markov continuous-time

model of topical trends,” in Proceedings of the 12th ACM SIGKDD international

conference on Knowledge discovery and data mining, ACM, 2006, pp. 424–433.

[148] M. Fernández-Delgado, E. Cernadas, S. Barro, D. Amorim, and D. Amorim Fernández-

Delgado, “Do we Need Hundreds of Classifiers to Solve Real World Classifica-

tion Problems?” Journal of Machine Learning Research, vol. 15, pp. 3133–3181,

2014.

[149] K. H. Esbensen and P. Geladi, “Principles of proper validation: Use and abuse

of re-sampling for validation,” Journal of Chemometrics, vol. 24, pp. 168–187,

2010.

[150] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software Engineering Metrics and

Models. Redwood City, CA, USA: Benjamin-Cummings Publishing Co., Inc.,

1986.

[151] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, “A simulation study of the

model evaluation criterion MMRE,” IEEE Transactions on Software Engineering,

vol. 29, no. 11, pp. 985–995, 2003.

[152] B. Kitchenham, L. Pickard, S. MacDonell, and M. Shepperd, “What accuracy

statistics really measure,” IEE Proceedings - Software, vol. 148, no. 3, p. 81, 2001.

[153] M. Korte and D. Port, “Confidence in software cost estimation results based on

MMRE and PRED,” in Proceedings of the 4th international workshop on Predic-

tor models in software engineering (PROMISE), 2008, pp. 63–70.

[154] D. Port and M. Korte, “Comparative studies of the model evaluation criterions

mmre and pred in software cost estimation research,” in Proceedings of the 2nd

ACM-IEEE international symposium on Empirical software engineering and mea-

surement, ACM, 2008, pp. 51–60.

[155] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste: A Constant Time

Collaborative Filtering Algorithm,” Information Retrieval, vol. 4, no. 2, pp. 133–

151, 2001. arXiv: 0005074v1 [arXiv:astro-ph].

[156] K. Muller, “Statistical power analysis for the behavioral sciences,” Technometrics,

vol. 31, no. 4, pp. 499–500, 1989.

[157] A. Arcuri and L. Briand, “A Hitchhiker’s guide to statistical tests for assessing

randomized algorithms in software engineering,” Software Testing, Verification

and Reliability, vol. 24, no. 3, pp. 219–250, 2014.

https://arxiv.org/abs/0005074v1

BIBLIOGRAPHY 213

[158] S. Baccianella, A. Esuli, and F. Sebastiani, “Evaluation measures for ordinal re-

gression,” in Proceedings of the 9th International Conference on Intelligent Sys-

tems Design and Applications (ISDA), IEEE, 2009, pp. 283–287.

[159] D. M. W. Powers, “Evaluation: From Precision, Recall and F-Factor to ROC,

Informedness, Markedness & Correlation David,” Journal of Machine Learning

Technologies, vol. 2, no. 1, pp. 37–63, 2011.

[160] A. Arcuri and L. Briand, “A practical guide for using statistical tests to assess

randomized algorithms in software engineering,” in Proceedings of the 33rd In-

ternational Conference on Software Engineering (ICSE), 2011, pp. 1–10.

[161] R. M. Everson and J. E. Fieldsend, “Multi-class ROC analysis from a multi-

objective optimisation perspective,” Pattern Recognition Letters, vol. 27, no. 8,

pp. 918–927, 2006.

[162] B. W. Matthews, “Comparison of the predicted and observed secondary structure

of T4 phage lysozyme,” Biochimica et Biophysica Acta (BBA)-Protein Structure,

vol. 405, no. 2, pp. 442–451, 1975.

[163] G. Jurman, S. Riccadonna, and C. Furlanello, “A comparison of MCC and CEN

error measures in multi-class prediction,” PLoS ONE, vol. 7, no. 8, pp. 1–8, 2012.

arXiv: 1008.2908.

[164] R. Genuer, J.-M. Poggi, and C. Tuleau-Malot, “Variable selection using random

forests,” Pattern Recognition Letters, vol. 31, no. 14, pp. 2225–2236, 2010.

[165] K. Tumer and N. C. Oza, “Input decimated ensembles,” Pattern Analysis and

Applications, vol. 6, no. 1, pp. 65–77, 2003.

[166] K. Tumer and J. Ghosh, “Error Correlation and Error Reduction in Ensemble

Classifiers,” Connection Science, vol. 8, no. 3-4, pp. 385–404, 1996.

[167] E. Tuv, “Feature Selection with Ensembles , Artificial Variables , and Redundancy

Elimination,” Journal of Machine Learning Research, vol. 10, pp. 1341–1366,

2009.

[168] M. Shepperd and S. MacDonell, “Evaluating prediction systems in software project

estimation,” Information and Software Technology, vol. 54, no. 8, pp. 820–827,

2012.

[169] M. Usman, E. Mendes, and J. Börstler, “Effort estimation in agile software de-

velopment: A survey on the state of the practice,” in Proceedings of the 19th In-

ternational Conference on Evaluation and Assessment in Software Engineering,

Nanjing, China, 2015, pp. 1–10.

[170] P. Abrahamsson, R. Moser, W. Pedrycz, A. Sillitti, and G. Succi, “Effort pre-

diction in iterative software development processes – incremental versus global

prediction models,” in Proceeding of the 1st International Symposium on Empir-

https://arxiv.org/abs/1008.2908

BIBLIOGRAPHY 214

ical Software Engineering and Measurement (ESEM), IEEE Computer Society,

2007, pp. 344–353.

[171] B. W. Boehm, R. Madachy, and B. Steece, Software cost estimation with Cocomo

II. Prentice Hall PTR, 2000.

[172] O. Benediktsson, D. Dalcher, K. Reed, and M. Woodman, “COCOMO-Based Ef-

fort Estimation for Iterative and Incremental Software Development,” Software

Quality Journal, vol. 11, pp. 265–281, 2003.

[173] P. Hearty, N. Fenton, D. Marquez, and M. Neil, “Predicting Project Velocity in

XP Using a Learning Dynamic Bayesian Network Model,” IEEE Transactions on

Software Engineering, vol. 35, no. 1, pp. 124–137, 2009.

[174] R. Torkar, N. M. Awan, A. K. Alvi, and W. Afzal, “Predicting software test effort

in iterative development using a dynamic Bayesian network,” in Proceedings of

the 21st IEEE International Symposium on Software Reliability Engineering –

(Industry Practice Track), IEEE, 2010.

[175] M. Perkusich, H. De Almeida, and A. Perkusich, “A model to detect problems on

scrum-based software development projects,” The ACM Symposium on Applied

Computing, pp. 1037–1042, 2013.

[176] P. Bhattacharya and I. Neamtiu, “Bug-fix time prediction models: can we do bet-

ter?” In Proceedings of the 8th working conference on Mining software reposito-

ries (MSR), ACM, 2011, pp. 207–210.

[177] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of bugs,” in Proceed-

ings of the 2nd International Workshop on Recommendation Systems for Software

Engineering (RSSE), ACM, 2010, pp. 52–56.

[178] L. Marks, Y. Zou, and A. E. Hassan, “Studying the fix-time for bugs in large open

source projects,” in Proceedings of the 7th International Conference on Predictive

Models in Software Engineering (Promise), ACM Press, 2011, pp. 1–8.

[179] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How Long Will It Take

to Fix This Bug?” In Proceedings of the 4th International Workshop on Mining

Software Repositories (MSR), 2007, pp. 1–8.

[180] N. Bettenburg and A. E. Hassan, “Studying the impact of dependency network

measures on software quality,” in Proceedings of the International Conference on

Software Maintenance (ICSM), 2012, pp. 1–10.

[181] T. Zimmermann and N. Nagappan, “Predicting defects using network analysis

on dependency graphs,” in Proceedings of the 13th international conference on

Software engineering (ICSE), 2008, pp. 531–540.

BIBLIOGRAPHY 215

[182] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage,” ACM

Transactions on Software Engineering and Methodology, vol. 20, no. 3, pp. 1–35,

2011.

[183] M. M. Rahman, G. Ruhe, and T. Zimmermann, “Optimized assignment of devel-

opers for fixing bugs an initial evaluation for eclipse projects,” in Proceedings of

the 3rd International Symposium on Empirical Software Engineering and Mea-

surement (ESEM), IEEE, Oct. 2009, pp. 439–442.

[184] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of Duplicate Defect

Reports Using Natural Language Processing,” in Proceedings of the 29th Interna-

tional Conference on Software Engineering (ICSE), IEEE, 2007, pp. 499–510.

[185] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to detecting dupli-

cate bug reports using natural language and execution information,” in Proceed-

ings of the 30th International Conference on Software Engineering (ICSE), 2008,

pp. 461–470.

[186] N. Bettenburg, R. Premraj, and T. Zimmermann, “Duplicate bug reports consid-

ered harmful . . . really?” In Proceedings of the International Conference on Soft-

ware Maintenance (ICSM), 2008, pp. 337–345.

[187] C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more accurate retrieval of dupli-

cate bug reports,” in Proceedings of the 26th IEEE/ACM International Conference

on Automated Software Engineering (ASE), IEEE, 2011, pp. 253–262.

[188] N. Jalbert and W. Weimer, “Automated duplicate detection for bug tracking sys-

tems,” in Proceedings of the International Conference on Dependable Systems

and Networks With FTCS and DCC (DSN), IEEE, 2008, pp. 52–61.

[189] A. T. Nguyen, T. T. T. N. Nguyen, D. Lo, and C. Sun, “Duplicate bug report de-

tection with a combination of information retrieval and topic modeling,” in Pro-

ceedings of the 27th IEEE/ACM International Conference on Automated Software

Engineering (ASE), 2012, pp. 70–79.

[190] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and D. Poshyvanyk,

“Detecting bad smells in source code using change history information,” in Pro-

ceedings of the 28th IEEE/ACM International Conference on Automated Software

Engineering (ASE), 2013, pp. 268–278.

[191] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” in Proceedings of

the 28th IEEE/ACM International Conference on Automated Software Engineer-

ing (ASE), 2013, pp. 279–289.

[192] B. Flyvbjerg and A. Budzier, “Why Your IT Project May Be Riskier Than You

Think,” Harvard Business Review, vol. 89, no. 9, pp. 601–603, 2011.

BIBLIOGRAPHY 216

[193] S. Group, “CHAOS Report,” West Yarmouth, Massachusetts: Standish Group,

Tech. Rep., 2004.

[194] M. J. Carr and S. L. Konda, “Taxonomy-Based Risk Identification,” Software En-

gineering Institute, Carnegie Mellon University, Tech. Rep. June, 1993.

[195] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Characterizing and

predicting which bugs get fixed: an empirical study of Microsoft Windows,” Pro-

ceedings of the 32nd International Conference on Software Engineering (ICSE),

pp. 495–504, 2010.

[196] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmermann,

“What makes a good bug report?” In Proceedings of the 16th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, New York,

USA: ACM Press, Nov. 2008, pp. 308–318.

[197] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,” Journal of

Machine Learning Research, vol. 3, no. 4-5, pp. 993–1022, 2012.

[198] W.-M. Han and S.-J. Huang, “An empirical analysis of risk components and per-

formance on software projects,” Journal of Systems and Software, vol. 80, no. 1,

pp. 42–50, Jan. 2007.

[199] A. A. Porter, H. P. Siy, and L. G. Votta, “Understanding the effects of developer

activities on inspection interval,” in Proceedings of the 19th international confer-

ence on Software engineering (ICSE), ACM Press, May 1997, pp. 128–138.

[200] L. Wallace and M. Keil, “Software project risks and their effect on outcomes,”

Communications of the ACM, vol. 47, no. 4, pp. 68–73, Apr. 2004.

[201] S. Kim, T. Zimmermann, K. Pan, and E. Jr. Whitehead, “Automatic Identifica-

tion of Bug-Introducing Changes,” in Proceedings of the 21st IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE), IEEE, Sep. 2006,

pp. 81–90.

[202] I. Guyon and A. Elisseeff, “An Introduction to Variable and Feature Selection,”

The Journal of Machine Learning Research, vol. 3, pp. 1157–1182, 2003.

[203] S. Menard, Applied logistic regression analysis, 2nd edition. SAGE University

paper, 2002, vol. 106.

[204] D. A. Belsley, E. Kuh, and R. E. Welsch, Regression diagnostics: Identifying in-

fluential data and sources of collinearity. John Wiley & Sons, 2005, vol. 571.

[205] A. K. Cline and I. S. Dhillon, Computation of the Singular Value Decomposition.

2006, 45(1)–45(14).

[206] S.-I. Lee, H. Lee, P. Abbeel, and A. Y. Ng, “Efficient l1 regularized logistic regres-

sion,” in Proceedings of the National Conference on Artificial Intelligence, Menlo

BIBLIOGRAPHY 217

Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, vol. 21, 2006,

pp. 401–409.

[207] B. Zadrozny and C. Elkan, “Transforming classifier scores into accurate multi-

class probability estimates,” in Proceedings of the 8th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, ACM, 2002, pp. 694–

699.

[208] N. Chawla and D. Cieslak, “Evaluating probability estimates from decision trees,”

in American Association for Artificial Intelligence (AAAI), 2006, pp. 1–6.

[209] A. Garg and D. Roth, “Understanding Probabilistic Classifiers,” in Machine Learn-

ing: Lecture Notes in Computer Science, ser. Lecture Notes in Computer Science,

vol. 2167, 2001, pp. 179–191.

[210] L.-M. Wang, X.-L. Li, C.-H. Cao, and S.-M. Yuan, “Combining decision tree

and Naive Bayes for classification,” Knowledge-Based Systems, vol. 19, no. 7,

pp. 511–515, Nov. 2006.

[211] B. Boehm, Software risk management. Springer, 1989, pp. 1–19.

[212] A. Iqbal, “Understanding Contributor to Developer Turnover Patterns in OSS

Projects : A Case Study of Apache Projects,” ISRN Software Engineering, vol. 2014,

pp. 10–20, 2014.

[213] V. J. Hodge and J. Austin, “A Survey of Outlier Detection Methodoligies,” Artifi-

cial Intelligence Review, vol. 22, no. 1969, pp. 85–126, 2004.

[214] D. H. Jr and S. Lemeshow, Applied logistic regression, 3rd edition. Wiley, 2004.

[215] X. Lam, T. Vu, and T. Le, “Addressing cold-start problem in recommendation

systems,” in Proceedings of the 2nd international conference on Ubiquitous in-

formation management and communication, 2008, pp. 208–211.

[216] X. Qin, M. Salter-Townshend, and P. Cunningham, “Exploring the Relationship

between Membership Turnover and Productivity in Online Communities,” in Pro-

ceedings of the 8th International AAAI Conference on Weblogs and Social Media,

2014, pp. 406–415.

[217] Xu Ruzhi, Q. leqiu, and Jing Xinhai, “CMM-based software risk control optimiza-

tion,” in Proceedings of the 5th IEEE Workshop on Mobile Computing Systems

and Applications, IEEE, 2003, pp. 499–503.

[218] E. Letier, D. Stefan, and E. T. Barr, “Uncertainty, risk, and information value in

software requirements and architecture,” in Proceedings of the 36th International

Conference on Software Engineering (ICSE), New York, USA: ACM Press, May

2014, pp. 883–894.

[219] F. Thung, D. Lo, and L. Jiang, “Automatic defect categorization,” in Proceedings

of the Working Conference on Reverse Engineering (WCRE), 2012, pp. 205–214.

BIBLIOGRAPHY 218

[220] D. A. da Costa, S. L. Abebe, S. Mcintosh, U. Kulesza, and A. E. Hassan, “An Em-

pirical Study of Delays in the Integration of Addressed Issues,” in Proceedings of

the International Conference on Software Maintenance and Evolution (ICSME),

2014, pp. 281–290.

[221] M. M. Rahman, G. Ruhe, and T. Zimmermann, “Optimized assignment of devel-

opers for fixing bugs an initial evaluation for eclipse projects,” in Proceedings of

the 3rd International Symposium on Empirical Software Engineering and Mea-

surement, IEEE, Oct. 2009, pp. 439–442.

[222] M. Zanoni, F. Perin, F. A. Fontana, and G. Viscusi, “Pattern detection for concep-

tual schema recovery in data-intensive systems,” Journal of Software: Evolution

and Process, vol. 26, no. 12, pp. 1172–1192, 2014. arXiv: 1408.1293.

[223] J. Neville and D. Jensen, “Collective Classification with Relational Dependency

Networks,” in Proceedings of the 2nd International Workshop on Multi-Relational

Data Mining, 2003, pp. 77–91.

[224] B. Taskar, V. Chatalbashev, and D. Koller, “Learning Associative Markov Net-

works,” in Proceedings of the 21st International Conference on Machine Learn-

ing, 2004, pp. 102–110.

[225] L. Getoor, “Link-based classification,” in Advanced Methods for Knowledge Dis-

covery from Complex Data, vol. 3, 2005, pp. 189–207.

[226] E. Segal, R. Yelensky, and D. Koller, “Genome-wide discovery of transcriptional

modules from DNA sequence and gene expression,” Bioinformatics, vol. 19, pp. 273–

282, 2003.

[227] C. Science, R. Holloway, and L. Egham, “Support Vector Machines for Multi-

Class Pattern Recognition,” in European Symposium on Artificial Neural Net-

works, Computational Intelligence and Machine Learning, vol. 99, 1999, pp. 219–

224.

[228] D. Böhning, “Multinomial logistic regression algorithm,” Annals of the Institute

of Statistical Mathematics, vol. 44, no. 1, pp. 197–200, 1992.

[229] S. a. Macskassy and F. Provost, “Classification in Networked Data: A toolkit and

a univariate case study,” Journal of Machine Learning Research, vol. 8, no. De-

cember 2004, pp. 1–41, 2005.

[230] S. L. Lauritzen, Graphical models. Oxford University Press, 1996.

[231] S. a. Macskassy and F. Provost, “A simple relational classifier,” in Proceedings of

the 2nd Workshop on Multi-Relational Data Mining (MRDM), 2003, pp. 64–76.

[232] Z. Kou and W. W. Cohen, “Stacked Graphical Models for Efficient Inference in

Markov Random Fields,” in Proceedings of the SIAM International Conference

https://arxiv.org/abs/1408.1293

BIBLIOGRAPHY 219

on Data Mining. Society for Industrial and Applied Mathematics, 2007, pp. 533–

538.

[233] S. a. Macskassy, “Relational classifiers in a non-relational world: Using homophily

to create relations,” in Proceedings of the 10th International Conference on Ma-

chine Learning and Applications (ICMLA), vol. 1, 2011, pp. 406–411.

[234] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a Feather: Homophily

in Social Networks,” Annual Review of Sociology, vol. 27, no. 1, pp. 415–444,

2001.

[235] P. Vojtek and M. Bieliková, “Homophily of neighborhood in graph relational clas-

sifier,” Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5901 LNCS,

pp. 721–730, 2010.

[236] B. Golub and M. O. Jackson, “How homophily affects the speed of learning

and best-response dynamics,” Quarterly Journal of Economics, vol. 127, no. 3,

pp. 1287–1338, 2012. arXiv: 1004.0858.

[237] R. a. Hummel and S. W. Zucker, “On the foundations of relaxation labeling pro-

cesses.,” IEEE transactions on pattern analysis and machine intelligence, vol. 5,

no. 3, pp. 267–287, 1983.

[238] A. Podgurski and L. A. Clarke, “A Formal Model of Program Dependeces and Its

Implications for Software Testing, Debugging and Maintenance,” IEEE Transac-

tions on Software Engineering, vol. Vol. 16, no. 9, pp. 965–979, 1990.

[239] B. Korel, “The Program Dependence Graph in Static Program Testing,” Informa-

tion Processing Letters, vol. 24, no. 2, pp. 103–108, Jan. 1987.

[240] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The Program Dependence Graph

and Its Use in Optimization,” ACM Transactions on Programming Languages and

Systems, vol. 9, no. 3, pp. 319–349, Jul. 1987.

[241] A. Orso, S. Sinha, and M. J. Harrold, “Classifying Data Dependences in the Pres-

ence of Pointers for Program Comprehension, Testing, and Debugging,” ACM

Transactions on Software Engineering and Methodology (TOSEM), vol. 13, no. 2,

pp. 199–239, Apr. 2004.

[242] L. Lopez-Fernandez, “Applying social network analysis to the information in CVS

repositories,” in Proceedings of the International Workshop on Mining Software

Repositories (MSR), 2004, pp. 101–105.

[243] S.-K. Huang and K.-m. Liu, “Mining version histories to verify the learning pro-

cess of Legitimate Peripheral Participants,” ACM SIGSOFT Software Engineering

Notes, vol. 30, no. 4, p. 1, 2005.

https://arxiv.org/abs/1004.0858

BIBLIOGRAPHY 220

[244] T. Wolf, A. Schröter, D. Damian, and T. Nguyen, “Predicting build failures using

social network analysis on developer communication,” in Proceedings of the 31st

International Conference on Software Engineering (ICSE), 2009, pp. 1–11.

[245] A. Meneely, L. Williams, W. Snipes, and J. Osborne, “Predicting failures with de-

veloper networks and social network analysis,” in Proceedings of the 16th ACM

SIGSOFT International Symposium on Foundations of Software Engineering (FSE),

2008, p. 13.

[246] W. Hu and K. Wong, “Using citation influence to predict software defects,” in

Proceedings of the 10th Working Conference on Mining Software Repositories

(MSR), IEEE, May 2013, pp. 419–428.

[247] M. Jorgensen, “What we do and don’t know about software development effort

estimation,” IEEE software, vol. 31, no. 2, pp. 37–40, 2014.

[248] M. Jorgensen and M. Shepperd, “A systematic review of software development

cost estimation studies,” IEEE Transactions on Software Engineering, vol. 33,

no. 1, pp. 33–53, 2007.

[249] B. W. Boehm, R. Madachy, and B. Steece, Software cost estimation with Cocomo

II. Prentice Hall PTR, 2000.

[250] S. Bibi, I. Stamelos, and L. Angelis, “Software cost prediction with predefined

interval estimates,” in Proceedings of the 1st Software Measurement European

Forum, Rome, Italy, 2004, pp. 237–246.

[251] M. Shepperd and C. Schofield, “Estimating Software Project Effort Using Analo-

gies,” IEEE Transactions on Software Engineering, vol. 23, no. 12, pp. 736–743,

1997.

[252] L. Angelis and I. Stamelos, “A Simulation Tool for Efficient Analogy Based Cost

Estimation,” Empirical Software Engineering, vol. 5, no. 1, pp. 35–68, 2000.

[253] R. Valerdi, “Convergence of Expert Opinion via the Wideband Delphi Method:

An Application in Cost Estimation Models,” in Proceedings of the 21st Annual

International Symposium of the International Council on Systems Engineering

(INCOSE), vol. 21, Jun. 2011, pp. 1238–1251.

[254] S. Chulani, B. Boehm, and B. Steece, “Bayesian analysis of empirical software

engineering cost models,” IEEE Transactions on Software Engineering, vol. 25,

no. 4, pp. 573–583, 1999.

[255] J. Grenning, Planning poker or how to avoid analysis paralysis while release

planning. 2002, vol. 3.

[256] T. Pham, T. Tran, D. Phung, and S. Venkatesh, “Faster training of very deep net-

works via p-norm gates,” in Proceedings of the 23rd International Conference on

Pattern Recognition (ICPR), 2016, pp. 3542–3547.

BIBLIOGRAPHY 221

[257] ——, “Predicting healthcare trajectories from medical records: A deep learning

approach,” Journal of Biomedical Informatics, vol. 69, pp. 218–229, 2017.

[258] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification,” in Proceedings of the IEEE

International Conference on Computer Vision, 2015, pp. 1026–1034.

[259] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V.

Vanhoucke, P. Nguyen, T. N. Sainath, et al., “Deep neural networks for acoustic

modeling in speech recognition: The shared views of four research groups,” Signal

Processing Magazine, IEEE, vol. 29, no. 6, pp. 82–97, 2012.

[260] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with

neural networks,” in Advances in Neural Information Processing Systems, 2014,

pp. 3104–3112.

[261] A. Kumar, O. Irsoy, J. Su, J. Bradbury, R. English, B. Pierce, P. Ondruska, I. Gul-

rajani, and R. Socher, “Ask me anything: Dynamic memory networks for natural

language processing,” arXiv preprint arXiv:1506.07285, 2015.

[262] Y. Bengio, “Learning deep architectures for AI,” Foundations and trends R© in

Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[263] S. Liang and R. Srikant, “Why Deep Neural Networks for Function Approxima-

tion?” In arXiv:1610.04161, 2016, pp. 1–13.

[264] H. Mhaskar, Q. Liao, and T. A. Poggio, “When and Why Are Deep Networks

Better Than Shallow Ones?” In AAAI, 2017, pp. 2343–2349.

[265] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein, “On the ex-

pressive power of deep neural networks,” in Proceedings of the 34th International

Conference on Machine Learning (ICML), 2017, pp. 2847–2854.

[266] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the number of linear

regions of deep neural networks,” in Proceedings of the 27th International Con-

ference on Neural Information Processing Systems, 2014, pp. 2924–2932.

[267] M. Bianchini and F. Scarselli, “On the complexity of neural network classifiers:

A comparison between shallow and deep architectures,” IEEE transactions on

neural networks and learning systems, vol. 25, no. 8, pp. 1553–1565, 2014.

[268] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training very deep networks,”

arXiv preprint arXiv:1507.06228, 2015.

[269] J. Schmidhuber, “Deep Learning in neural networks: An overview,” Neural Net-

works, vol. 61, pp. 85–117, 2015. arXiv: 1404.7828.

[270] M. U. Gutmann and A. Hyvärinen, “Noise-contrastive estimation of unnormal-

ized statistical models, with applications to natural image statistics,” Journal of

Machine Learning Research, vol. 13, no. Feb, pp. 307–361, 2012.

https://arxiv.org/abs/1404.7828

BIBLIOGRAPHY 222

[271] T. D. Team, “Theano: A {Python} framework for fast computation of mathemat-

ical expressions,” arXiv e-prints, vol. abs/1605.0, 2016.

[272] R. Moraes, J. F. Valiati, and W. P. Gavião Neto, “Document-level sentiment clas-

sification: An empirical comparison between SVM and ANN,” Expert Systems

with Applications, vol. 40, no. 2, pp. 621–633, 2013.

[273] P. A. Whigham, C. A. Owen, and S. G. Macdonell, “A Baseline Model for Soft-

ware Effort Estimation,” ACM Transactions on Software Engineering and Method-

ology (TOSEM), vol. 24, no. 3, p. 20, 2015.

[274] Q. Le and T. Mikolov, “Distributed Representations of Sentences and Documents,”

in Proceedings of the 31st International Conference on Machine Learning (ICML),

vol. 32, 2014, pp. 1188–1196.

[275] E. Kocaguneli, S. Member, and T. Menzies, “Exploiting the Essential Assump-

tions of Analogy-Based Effort Estimation,” IEEE Transactions on Software Engi-

neering, vol. 38, no. 2, pp. 425–438, 2012.

[276] E. Kocaguneli, T. Menzies, and E. Mendes, “Transfer learning in effort estima-

tion,” Empirical Software Engineering, vol. 20, no. 3, pp. 813–843, 2015.

[277] E. Mendes, I. Watson, and C. Triggs, “A Comparative Study of Cost Estima-

tion Models for Web Hypermedia Applications,” Empirical Software Engineer-

ing, vol. 8, pp. 163–196, 2003.

[278] Y. F. Li, M. Xie, and T. N. Goh, “A Study of Project Selection and Feature Weight-

ing for Analogy Based Software Cost Estimation,” Journal of Systems and Soft-

ware, vol. 82, no. 2, pp. 241–252, Feb. 2009.

[279] S. Porru, A. Murgia, S. Demeyer, M. Marchesi, and R. Tonelli, “Estimating Story

Points from Issue Reports,” in Proceedings of the 12th International Conference

on Predictive Models and Data Analytics in Software Engineering (PROMISE),

2016, pp. 1–10.

[280] T. Menzies, E. Kocaguneli, B. Turhan, L. Minku, and F. Peters, Sharing data and

models in software engineering. Morgan Kaufmann, 2014.

[281] H. H. Abdi, “The Bonferonni and Sidak Corrections for Multiple Comparisons,”

Encyclopedia of Measurement and Statistics., vol. 1, pp. 1–9, 2007. arXiv: arXiv:

1011.1669v3.

[282] A. Vargha and H. D. Delaney, “A Critique and Improvement of the CL Common

Language Effect Size Statistics of McGraw and Wong,” Journal of Educational

and Behavioral Statistics, vol. 25, no. 2, pp. 101–132, 2000.

[283] L. van der Maaten and G. Hinton, “Visualizing high-dimensional data using t-

sne,” Journal of Machine Learning Research, vol. 9, pp. 2579–2605, Nov 2008.

https://arxiv.org/abs/arXiv:1011.1669v3
https://arxiv.org/abs/arXiv:1011.1669v3

BIBLIOGRAPHY 223

[284] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio,

“Why does unsupervised pre-training help deep learning?” Journal of Machine

Learning Research, vol. 11, pp. 625–660, Mar. 2010.

[285] J. Weston, F. Ratle, and R. Collobert, “Deep learning via semi-supervised embed-

ding,” in Proceedings of the 25th International Conference on Machine Learning

(ICML), Helsinki, Finland: ACM, 2008, pp. 1168–1175.

[286] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa,

“Natural language processing (almost) from scratch,” Journal of Machine Learn-

ing Research, vol. 12, pp. 2493–2537, Nov. 2011.

[287] D. Zwillinger and S. Kokoska, CRC standard probability and statistics tables and

formulae. Crc Press, 1999.

[288] J. McCarthy, “From here to human-level AI,” Artificial Intelligence, vol. 171,

no. 18, pp. 1174–1182, 2007.

[289] T. Menzies and M. Shepperd, “Special issue on repeatable results in software

engineering prediction,” Empirical Software Engineering, vol. 17, no. 1-2, pp. 1–

17, 2012.

[290] P. L. Braga, A. L. I. Oliveira, and S. R. L. Meira, “Software Effort Estimation

using Machine Learning Techniques with Robust Confidence Intervals,” in Pro-

ceedings of the 7th International Conference on Hybrid Intelligent Systems (HIS),

2007, pp. 352–357.

[291] A. Karpathy, J. Johnson, and L. Fei-Fei, “Visualizing and Understanding Re-

current Networks,” in arXiv preprint arXiv:1506.02078, 2015, pp. 1–12. arXiv:

1506.02078.

[292] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why Should I Trust You?: Explaining

the Predictions of Any Classifier,” in Proceedings of the 22nd ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining, ACM, 2016,

pp. 1135–1144. arXiv: 1602.04938.

[293] M. Jorgensen, “A review of studies on expert estimation of software development

effort,” Journal of Systems and Software, vol. 70, no. 1-2, pp. 37–60, 2004.

[294] M. Jorgensen and T. M. Gruschke, “The impact of lessons-learned sessions on

effort estimation and uncertainty assessments,” IEEE Transactions on Software

Engineering, vol. 35, no. 3, pp. 368–383, 2009.

[295] F. Collopy, “Difficulty and complexity as factors in software effort estimation,”

International Journal of Forecasting, vol. 23, no. 3, pp. 469–471, 2007.

[296] R. D. A. Christophe Commeyne, Alain Abran, Effort Estimation with Story Points

and COSMIC Function Points - An Industry Case Study, 1. 2008, vol. 21, pp. 25–

36.

https://arxiv.org/abs/1506.02078
https://arxiv.org/abs/1602.04938

BIBLIOGRAPHY 224

[297] ISO/IEC JTC 1/SC 7, INTERNATIONAL STANDARD ISO/IEC Software engi-

neering COSMIC: a functional size measurement method. 2011, vol. 2011, pp. 1–

14.

[298] H. K. Dam, T. Tran, J. Grundy, and A. Ghose, “DeepSoft: A vision for a deep

model of software,” in Proceedings of the 24th ACM SIGSOFT International Sym-

posium on Foundations of Software Engineering (FSE), Seatle, WA, USA: ACM,

To Appear., 2016.

[299] M. White, C. Vendome, M. Linares-v, and D. Poshyvanyk, “Toward Deep Learn-

ing Software Repositories,” in Proceedings of the 12th Working Conference on

Mining Software Repositories (MSR), 2015, pp. 334–345.

[300] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning code

fragments for code clone detection,” in Proceedings of the 31st IEEE/ACM In-

ternational Conference on Automated Software Engineering (ASE), Singapore,

Singapore: ACM, 2016, pp. 87–98.

[301] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical language

models,” in Proceedings of the 35th ACM SIGPLAN Conference on Programming

Language Design and Implementation, 2014, pp. 419–428.

[302] H. Dam, T. Tran, and T. Pham, “A deep language model for software code,” arXiv

preprint arXiv:1608.02715, no. August, pp. 1–4, 2016. arXiv: 1608.02715.

[303] Deep learning, http://deeplearning.net/.

[304] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common C lan-

guage errors by deep learning,” in Proceedings of the 31st AAAI Conference on

Artificial Intelligence, AAAI Press, 2017, pp. 1345–1351.

[305] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with neu-

ral networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

https://arxiv.org/abs/1608.02715

Appendix A

The distribution of the Absolute Error achieved by

Deep-SE2
2
5

A
P

P
E

N
D

IX
A

.
T

H
E

D
IS

T
R

IB
U

T
IO

N
O

F
T

H
E

A
B

S
O

L
U

T
E

E
R

R
O

R
A

C
H

IE
V

E
D

B
Y

D
E

E
P

-S
E

2
2
6

A.1 RQ1. Sanity Check

0

2

4

6

8

10

12

14

16
D
e
e
p
-S
E

m
e
a
n

m
e
d
ia
n

D
e
e
p
-S
E

m
e
a
n

m
e
d
ia
n

D
e
e
p
-S
E

m
e
a
n

m
e
d
ia
n

D
e
e
p
-S
E

m
e
a
n

m
e
d
ia
n

D
e
e
p
-S
E

m
e
a
n

m
e
d
ia
n

D
e
e
p
-S
E

m
e
a
n

m
e
d
ia
n

D
e
e
p
-S
E

m
e
a
n

m
e
d
ia
n

D
e
e
p
-S
E

m
e
a
n

m
e
d
ia
n

D
e
e
p
-S
E

m
e
a
n

m
e
d
ia
n

D
e
e
p
-S
E

m
e
a
n

m
e
d
ia
n

D
e
e
p
-S
E

m
e
a
n

m
e
d
ia
n

D
e
e
p
-S
E

m
e
a
n

m
e
d
ia
n

D
e
e
p
-S
E

m
e
a
n

m
e
d
ia
n

D
e
e
p
-S
E

m
e
a
n

m
e
d
ia
n

D
e
e
p
-S
E

m
e
a
n

m
e
d
ia
n

D
e
e
p
-S
E

m
e
a
n

m
e
d
ia
n

ME UG AS AP TI DC BB CV JI MD DM MU MS XD TD TE

A
b
so
lu
te
	E
rr
o
r

Figure A.1: The distribution of the Absolute Error achieved by Deep-SE, mean and median method in each project. X is a mean of the

Absolute Error averaging across all issues in test set (the lower the better).

A
P

P
E

N
D

IX
A

.
T

H
E

D
IS

T
R

IB
U

T
IO

N
O

F
T

H
E

A
B

S
O

L
U

T
E

E
R

R
O

R
A

C
H

IE
V

E
D

B
Y

D
E

E
P

-S
E

2
2
7

A.2 RQ2. Benefits of deep representation

0

2

4

6

8

10

12

14

16

D
e
e
p
-S
E

ls
tm

+
rf

ls
tm

+
sv
m

ls
tm

+
a
tl
m

ls
tm

+
lr

D
e
e
p
-S
E

ls
tm

+
rf

ls
tm

+
sv
m

ls
tm

+
a
tl
m

ls
tm

+
lr

D
e
e
p
-S
E

ls
tm

+
rf

ls
tm

+
sv
m

ls
tm

+
a
tl
m

ls
tm

+
lr

D
e
e
p
-S
E

ls
tm

+
rf

ls
tm

+
sv
m

ls
tm

+
a
tl
m

ls
tm

+
lr

D
e
e
p
-S
E

ls
tm

+
rf

ls
tm

+
sv
m

ls
tm

+
a
tl
m

ls
tm

+
lr

D
e
e
p
-S
E

ls
tm

+
rf

ls
tm

+
sv
m

ls
tm

+
a
tl
m

ls
tm

+
lr

D
e
e
p
-S
E

ls
tm

+
rf

ls
tm

+
sv
m

ls
tm

+
a
tl
m

ls
tm

+
lr

D
e
e
p
-S
E

ls
tm

+
rf

ls
tm

+
sv
m

ls
tm

+
a
tl
m

ls
tm

+
lr

D
e
e
p
-S
E

ls
tm

+
rf

ls
tm

+
sv
m

ls
tm

+
a
tl
m

ls
tm

+
lr

D
e
e
p
-S
E

ls
tm

+
rf

ls
tm

+
sv
m

ls
tm

+
a
tl
m

ls
tm

+
lr

D
e
e
p
-S
E

ls
tm

+
rf

ls
tm

+
sv
m

ls
tm

+
a
tl
m

ls
tm

+
lr

D
e
e
p
-S
E

ls
tm

+
rf

ls
tm

+
sv
m

ls
tm

+
a
tl
m

ls
tm

+
lr

D
e
e
p
-S
E

ls
tm

+
rf

ls
tm

+
sv
m

ls
tm

+
a
tl
m

ls
tm

+
lr

D
e
e
p
-S
E

ls
tm

+
rf

ls
tm

+
sv
m

ls
tm

+
a
tl
m

ls
tm

+
lr

D
e
e
p
-S
E

ls
tm

+
rf

ls
tm

+
sv
m

ls
tm

+
a
tl
m

ls
tm

+
lr

D
e
e
p
-S
E

ls
tm

+
rf

ls
tm

+
sv
m

ls
tm

+
a
tl
m

ls
tm

+
lr

ME UG AS AP TI DC BB CV JI MD DM MU MS XD TD TE

A
b
so
lu
te
	E
rr
o
r

Figure A.2: The distribution of the Absolute Error achieved by Deep-SE, LSTM+RF, LSTM+SVM, LSTM+ATLM, and LSTM+LR in each

project. X is a mean of the Absolute Error averaging across all issues in test set (the lower the better).

A
P

P
E

N
D

IX
A

.
T

H
E

D
IS

T
R

IB
U

T
IO

N
O

F
T

H
E

A
B

S
O

L
U

T
E

E
R

R
O

R
A

C
H

IE
V

E
D

B
Y

D
E

E
P

-S
E

2
2
8

A.3 RQ3. Benefits of LSTM document representation

0

2

4

6

8

10

12

14

16

ls
tm

+
rf

b
o
w
+
rf

d
2
v
+
rf

ls
tm

+
rf

b
o
w
+
rf

d
2
v
+
rf

ls
tm

+
rf

b
o
w
+
rf

d
2
v
+
rf

ls
tm

+
rf

b
o
w
+
rf

d
2
v
+
rf

ls
tm

+
rf

b
o
w
+
rf

d
2
v
+
rf

ls
tm

+
rf

b
o
w
+
rf

d
2
v
+
rf

ls
tm

+
rf

b
o
w
+
rf

d
2
v
+
rf

ls
tm

+
rf

b
o
w
+
rf

d
2
v
+
rf

ls
tm

+
rf

b
o
w
+
rf

d
2
v
+
rf

ls
tm

+
rf

b
o
w
+
rf

d
2
v
+
rf

ls
tm

+
rf

b
o
w
+
rf

d
2
v
+
rf

ls
tm

+
rf

b
o
w
+
rf

d
2
v
+
rf

ls
tm

+
rf

b
o
w
+
rf

d
2
v
+
rf

ls
tm

+
rf

b
o
w
+
rf

d
2
v
+
rf

ls
tm

+
rf

b
o
w
+
rf

d
2
v
+
rf

ls
tm

+
rf

b
o
w
+
rf

d
2
v
+
rf

ME UG AS AP TI DC BB CV JI MD DM MU MS XD TD TE

A
b
so
lu
te
	E
rr
o
r

Figure A.3: The distribution of the Absolute Error achieved by LSTM+RF, BoW+RF, and Doc2vec+RF in each project. X is a mean of the

Absolute Error averaging across all issues in test set (the lower the better).

X X X

X X X

~'~ijijij xxx xxx ~.$~~~ x ~$~

A
P

P
E

N
D

IX
A

.
T

H
E

D
IS

T
R

IB
U

T
IO

N
O

F
T

H
E

A
B

S
O

L
U

T
E

E
R

R
O

R
A

C
H

IE
V

E
D

B
Y

D
E

E
P

-S
E

2
2
9

A.4 RQ4. Cross-project estimation

0

2

4

6

8

10

12

14

16
D
e
e
p
-S
E

A
B
E
0

D
e
e
p
-S
E

A
B
E
0

D
e
e
p
-S
E

A
B
E
0

D
e
e
p
-S
E

A
B
E
0

D
e
e
p
-S
E

A
B
E
0

D
e
e
p
-S
E

A
B
E
0

D
e
e
p
-S
E

A
B
E
0

D
e
e
p
-S
E

A
B
E
0

D
e
e
p
-S
E

A
B
E
0

D
e
e
p
-S
E

A
B
E
0

D
e
e
p
-S
E

A
B
E
0

D
e
e
p
-S
E

A
B
E
0

D
e
e
p
-S
E

A
B
E
0

D
e
e
p
-S
E

A
B
E
0

D
e
e
p
-S
E

A
B
E
0

D
e
e
p
-S
E

A
B
E
0

ME>UG UG>ME AS>AP AS>TI AP>AS AP>TI MU>MS MS>MU AS>UG AS>ME MD>AP MD>TI MD>AS DM>TI UG>MS ME>MU

A
b
so
lu
te
	E
rr
o
r

Figure A.4: The distribution of the Absolute Error achieved by Deep-SE and ABE0 in cross-project estimation. X is a mean of the Absolute

Error averaging across all issues in test set (the lower the better).

A
P

P
E

N
D

IX
A

.
T

H
E

D
IS

T
R

IB
U

T
IO

N
O

F
T

H
E

A
B

S
O

L
U

T
E

E
R

R
O

R
A

C
H

IE
V

E
D

B
Y

D
E

E
P

-S
E

2
3
0

A.5 RQ6. Compare Deep-SE against the existing approach

0

2

4

6

8

10

12

14

16

D
e
e
p
-S
E

P
o
rr
u
's
	m

e
th
o
d

D
e
e
p
-S
E

P
o
rr
u
's
	m

e
th
o
d

D
e
e
p
-S
E

P
o
rr
u
's
	m

e
th
o
d

D
e
e
p
-S
E

P
o
rr
u
's
	m

e
th
o
d

D
e
e
p
-S
E

P
o
rr
u
's
	m

e
th
o
d

D
e
e
p
-S
E

P
o
rr
u
's
	m

e
th
o
d

D
e
e
p
-S
E

P
o
rr
u
's
	m

e
th
o
d

D
e
e
p
-S
E

P
o
rr
u
's
	m

e
th
o
d

APSTUD DNN MESOS MULE NEXUS TIMOB TISTUD XD

A
b
so
lu
te
	E
rr
o
r

Figure A.5: The distribution of the Absolute Error achieved by Deep-SE and the Porru’s approach on the Porru’s dataset. X is a mean of the

Absolute Error averaging across all issues in test set (the lower the better).

	Developing analytics models for software project management
	Recommended Citation

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Research questions
	Research outcomes and main contributions
	Thesis organization

	Background
	Machine learning
	Supervised vs unsupervised learning
	Classification vs regression
	Learning algorithms
	Deep learning
	Long Short Term Memory
	Predictive performance measures

	Issue-driven software project management
	Characteristics of an issue
	Lifecycle of an issue
	Characteristics of an iteration

	Software engineering analytics
	Applications of software engineering analytics

	Chapter summary

	Delivery capability prediction
	Approach
	Feature extraction and aggregation
	Features of an iteration
	Features of an issue
	Feature aggregation

	Predictive model
	Random Forests
	Stochastic Gradient Boosting Machines
	Deep Neural Networks with Dropouts

	Dataset
	Data collecting and preprocessing

	Evaluation
	Experimental setting
	Performance measures
	Results
	Implications and lessons learned
	Threats to validity

	Related work
	Chapter summary

	Delay prediction
	Approach
	Features of an issue
	Feature selection
	Using p-value from logistic regression model
	1-penalized logistic regression model

	Predictive model
	Predicting the likelihood of a risk occurring
	Risk exposure prediction

	Dataset
	Data collecting
	Data preprocessing

	Evaluation
	Experimental setting
	Applying feature selection
	Performance measures
	Results
	Implications
	Threats to validity

	Related work
	Chapter summary

	Delay prediction using networked classification
	Approach
	Issue network construction
	Predictive model
	Local (non-relational) classifier
	Relational classifier
	Collective inference

	Dataset
	Evaluation
	Experimental setting
	Performance measures
	Results
	Threats to validity

	Related work
	Chapter summary

	Story point estimation
	Story point estimation
	Deep-SE
	Word embedding
	Document representation using LSTM
	Deep representation using Recurrent Highway Network
	Regression

	Model training
	Pre-training
	Training Deep-SE

	Dataset
	Data collecting
	Data preprocessing

	Evaluation
	Experimental setting
	Performance measures
	Hyper-parameter settings for training a Deep-SE model
	Pre-training
	The correlation between the story points and the development time
	Results
	Training/testing time
	Threats to validity
	Implications

	Related work
	Chapter summary

	Conclusions and future work
	Thesis contributions
	Future work

	Bibliography
	The distribution of the Absolute Error achieved by Deep-SE
	RQ1. Sanity Check
	RQ2. Benefits of deep representation
	RQ3. Benefits of LSTM document representation
	RQ4. Cross-project estimation
	RQ6. Compare Deep-SE against the existing approach

