
Developing and Managing Software Components
in an Ontology-Based Application Server

Daniel Oberle, Andreas Eberhart, Steffen Staab, and Raphael Volz

Institute for Applied Informatics and Formal Description Methods (AIFB)
University of Karlsruhe

Germany
lastname@aifb.uni-karlsruhe.de

Abstract. Application servers provide many functionalities commonly
needed in the development of a complex distributed application. So far,
the functionalities have mostly been developed and managed with the
help of administration tools and corresponding configuration files, re-
cently in XML. Though this constitutes a very flexible way of developing
and administrating a distributed application, e.g. an application server
with its components, the disadvantage is that the conceptual model un-
derlying the different configurations is only implicit. Hence, its bits and
pieces are difficult to retrieve, survey, check for validity and maintain.
To remedy such problems, we here present an ontology-based approach
to support the development and administration of software components
in an application server. The ontology captures properties of, relation-
ships between and behaviors of the components that are required for
development and administration purposes. The ontology is an explicit
conceptual model with formal logic-based semantics. Therefore its de-
scriptions of components may be queried, may foresight required actions,
e.g. preloading of indirectly required components, or may be checked to
avoid inconsistent system configurations – during development as well as
during run time. Thus, the ontology-based approach retains the original
flexibility in configuring and running the application server, but it adds
new capabilities for the developer and user of the system. The proposed
scheme has been prototypically implemented in KAON SERVER, an
application server running components that support a range of various
semantic technologies – thus applying semantic technologies to itself1.

1 Introduction

Application Servers are component-based middleware platforms that offer an
environment in which users can deploy components developed by themselves or
by third-party providers [1]. As a sophisticated middleware, application servers
provide functionality such as dynamic loading, naming services, load balancing,
security, connection pooling, transactions, or persistence.

Despite the bundled functionality, realizing a complex distributed application
remains all but an easy task. For instance, managing component dependencies,
1 The software is available for download at http://kaon.semanticweb.org/

H.-A. Jacobsen (Ed.): Middleware 2004, LNCS 3231, pp. 459–477, 2004.
c© IFIP International Federation for Information Processing 2004



460 Daniel Oberle et al.

versions, and licenses is a typical problem in an ever-growing repository of pro-
gramming libraries. In Microsoft environments, this is often referred to as “DLL
Hell”. Configuration files, even if they are more or less human-readable XML,
do not provide an abstraction mechanism to tame the complexity issues arising
in such systems.

Our approach is supplementary to the Object Modelling Group’s Model-
Driven Architecture (MDA) [16], in which models abstract from low-level and
often platform-specific implementation details. While MDA allows to separate
conceptual concerns from implementation-specific concerns, currently MDA has
not been applied for run time relevant characteristics of component manage-
ment, such as which version of an application interface requires which versions
of libraries.

The ability to compile platform-specific configuration files from our concep-
tual model is a first and immediately obvious advantage of our approach. We
do not apply MDA in this paper to tailor a modeling language for component
management, since its lack of (logical) formality disallows run time interpretabil-
ity. We consider this interpretability to be central for component management,
for example to query the application server whether configurations are valid or
whether further components are needed.

Therefore, the logical next step in developing and managing complex appli-
cations is the use of an explicit conceptual model that is executable, too, meaning
it may be queried and reasoned with, i.e. an ontology. The goal of this paper is
to show how ontologies may be defined that support the developer in creating
new software or in running new components in the complex environment of an
application server. Given software components described by semantic metadata,
which conforms to the ontology, inferencing allows for finding APIs that come
with certain capabilities (development time support) or for pre-loading compo-
nents that are required by other components (run time support).

The reader may note that though an application server is not the only soft-
ware that may be supported in that way, it is a very worthy challenge. The
reasons are that the needs are huge in this area and at the same time ontologies
may fruitfully contribute to this complex, but nevertheless reasonably restricted
domain of application.

We shortly present some motivating use cases for our approach of an explicit
conceptual model (section 2). We embed our approach into a generic architec-
ture for an ontology-based application server and briefly refer to its prototypical
implementation that supports semantic technology components [20] (section 3).
We introduce the well-known J2EE Pet Store demo (section 4) which will be re-
ferred to in subsequent sections as a source of examples. As a major contribution
of this paper, we describe the ontologies that have been developed since the in-
ception of the architecture implementation (section 5) and highlight some of the
new management capabilities provided to developers of the application server
(section 6). Finally, related work and conclusions are discussed in sections 7
and 8.



Developing and Managing Software Components 461

2 Motivation

The first subsection considers use cases for semantic metadata of components
and APIs that target development time support. Subsection 2.2 focusses on the
run time use cases.

2.1 Use Cases of Semantic Metadata
for Development Time Support

Today, the introspection feature of object-oriented languages provide syntac-
tic metadata of classes, fields, and methods along with their parameters, return
types, and possible exceptions. Similar information is available from WSDL Web
Service metadata [5], whereas component libraries such as dynamic linked li-
braries or Java archives only carry very little information. We believe that rich,
semantic metadata can provide added value to the user. Consider the following
use cases:
Component Dependencies and Versioning. Libraries often depend on other li-
braries and a certain archive can contain several libraries at once. Given this
information, a system can assist the developer in locating all the required li-
braries2. Furthermore, the user might be notified when two libraries require
different versions of a certain third component. For instance, the multitude of
versions of XML parsers causes a lot of trouble. We envision a system, which
reasons with this kind of information in order to make an educated suggestion
or to display inconsistencies.
Licensing. Similar to the component dependencies, we can describe licensing,
trustworthiness and quality. Including an external module in one’s software has
effects on the licensing options. For instance, using external GPL licensed code
prohibits distributing the bundle under a LGPL license. Along the same lines,
ISO software certification or a security guideline of a government agency might
prohibit certain external components to be used in mission critical software. In
all of these cases, it would be useful to model development constraints and reason
with these and semantic metadata to avoid problems.
Capability Descriptions. Database interfaces typically offer some method to ex-
ecute an SQL command. However, the behavior of specific database implemen-
tations can vary dramatically. Earlier versions of MySQL do not support trans-
actions or subqueries. In this case, component capabilities adhering to standard
interfaces can be made explicit to the developer.
Service Classification and Discovery. Given APIs with similar functionality, one
will find different methods and services with essentially the same functionality.
We suggest associating these implementations with a common service taxonomy.
This will allow the user to discover implementations for a certain taxonomy entry
and to classify a given service.
2 This idea is the basis of the RPM package manager: http://www.rpm.org/. Our goal

is to generalize this approach and integrate it with other tools and services for the
end user.



462 Daniel Oberle et al.

Semantics of Parameters. Parameters and return types of methods and ser-
vices are often implicitly encoded in the respective names. Providing meaningful
names is considered to be an important practice when developing software sys-
tems. However, in addition, it is desirable to associate the names with concepts
and relations of a common, agreed-upon domain ontology. Like the point men-
tioned before, this will allow more powerful searches over a large unfamiliar API.
These descriptions can even be used to generate a sequence of method invoca-
tions in order to achieve a goal specified [8].
Automatic Generation of Component and Service Metadata. Development
toolkits usually provide functionality for creating stubs and skeletons or for au-
tomatically generating interface metadata à la java2wsdl. With an entire set of
new markup languages like BPEL4WS [2] or OWL-S [13] emerging, tool sup-
port for these new languages is needed. Whereas WSDL [5] tools can obtain
almost all of the required input directly from the source code, richer descrip-
tions in these languages require additional metadata. If the respective metadata
are already available within the system, automatically generated BPEL4WS or
OWL-S descriptions can be a side product of a unified framework.

2.2 Use Cases of Semantic Metadata for Run Time Support

Application servers handle issues like load balancing, distributed transactions,
session management, user rights or access controls. All of these tasks are or-
thogonal to specific application issues in that they reappear in just about any
scenario. Consequently, it makes sense for an application server to manage these
issues in an application independent way. This means that the responsibility is
shifted from the coding to the deployment process.

While it is always a good idea to reduce the amount of source code that
has to be written, the deployment process can be quite tricky in itself. Consider
the J2EE platform as an example. The specification describes the structure of
XML deployment metadata3. J2EE implementations like JBoss (cf. [9]) provide
a set of tools, which help the user to generate such metadata. However, the tools
merely act as an input mask, which generates the specific XML syntax for the
user. This is definitely a nice feature, however, she or he must fully understand
the quite complicated concepts that lie behind the options for the transactional
behavior for instance. The current deployment tools do not help to avoid or even
actively repair configurations that may cause harmful system behavior. Consider
the following situations:
Access Rights. The access control mechanisms of application servers are based
on users and roles to whom access can be granted for certain resources and
services. In addition, services can be run using the credentials of the caller or
those of another user that runs the service on behalf of the caller. This is often
referred to as the authentication problem [10]. It is quite evident, that access
rights within a large business process can be very complex. A system should
be able to assist the user in suggesting suitable settings and in determining
3 Also called deployment descriptor, cf. http://java.sun.com/j2ee/j2ee-1 4-fr-spec.pdf



Developing and Managing Software Components 463

potential flaws in the security design. We believe that formal reasoning over
group memberships or resources being accessed by processes running on behalf
of other users will prove to be valuable here.
Error Handling. Modern programming languages make heavy use of exceptions.
Exceptions are raised and propagated along the calling stack in order to be
handled at the appropriate level. In order to avoid the embarrassing situation
that an exception is not handled at all and simply passed to the user interface
or business partner, a consistency check can be put in place. Similar to the
argument made in the previous example, rules describing how exceptions are
thrown, passed across the calling stack, and being caught or not can be applied
in this scenario.
Transactional Settings. Resources such as databases and message queues offer
transactional recovery. This notion is extended to regular software components,
which access transactional resources. Methods can be declared to not support
transactions, to initiate a new transaction, or to participate in the caller’s trans-
action. Again, a chain of calls across many components can contain inconsistent
settings such as a component which requires a transaction calling one that does
not support transactions. A formalization of invocations and the possible trans-
actional settings can be applied here.
Secure Communication. Confidential data might be made accessible to busi-
ness partners only. Settings on the application server typically determine that a
digital signature has to be checked before the request is passed along and that a
service can only be bound to a secure communication line or protocol. Similar to
the arguments made above, a system should be able to detect, that a confiden-
tial resource is accidentally made accessible via a non-encrypted communication
channel.

The contribution of this paper is to show how some of these use cases of
semantic metadata work. The claim that we make is that all of them – and many
more – can be handled in a generic way using an ontology and corresponding
semantic metadata.

3 An Ontology-Based Application Server

The various examples make it evident that there is a need for a conceptual
model. The advantage of such a model is twofold. The model abstracts from the
specifics of implementations such as J2EE with their proprietary configuration
and deployment formats. Instead it focuses on and reflects the underlying, well
defined and agreed-upon concepts such as users, access rights or transaction
settings. Furthermore, general domain knowledge about these concepts can be
formalized and reasoned with. This is a valuable basis for a variety of value-added
services.

We use ontologies as a representation of the conceptual model. Like con-
ceptual database schemata, ontologies define concepts and concept relationships
(associations). Ontologies differ from schemata mainly in two ways. First, ontolo-
gies aim at capturing the shared understanding, which often includes linguistic



464 Daniel Oberle et al.

Applications

J2EE Core Services

WEB-INF.xml

ejb-jar.xml

.htaccess

Annotations in
source code

Other metadata

...

...

Inference
Engine

Ontology

Application
1

(eBank)

Application 2

(Pet Store)

Naming

Transaction
Manager Security

...

Administration

Security
Management

Version
Management

...

Component
Loader

Fig. 1. System architecture of the application server. Semantic metadata and the on-
tology are loaded into the inference engine. Value-added services and tools leverage the
reasoning capability embedded in the application server.

issues as well. Issues such as performance, compact storage, and other applica-
tion specific features do not play a role. Second, ontologies contain axioms, which
further define domain concepts and allow to reason with them. Components are
described in terms of the ontology what results in semantic metadata.

Ontologies play a key role in area of the Semantic Web [3] and based on this
work, several representation languages have been standardized within the World
Wide Web Consortium (W3C)4. Consequently, we have chosen these languages
as the basis for our work.

The following subsections survey both the overall system architecture of an
ontology-based application server and our implementation called KAON SER-
VER.

3.1 Architecture

Figure 1 shows the overall system architecture. The left side outlines potential
sources, which provide input for the framework. This includes web and appli-
cation server configuration files, annotated source code, or metadata files. This
information is parsed and converted into semantic metadata, i.e. metadata in
terms of the ontology. Thus, this data is now available conforming to a harmo-
nizing conceptual model. The semantic metadata and the ontology are fed into
the inference engine which is embedded in the application server itself. The rea-
soning capability is used by an array of tools at development and at run time.
The tools either expose a graphical user interface (e.g. security management) or
provide core functionality (e.g. the dynamic component loader).
4 The W3C also standardized HTML, XML etc.



Developing and Managing Software Components 465

3.2 Implementation
This section gives a concrete example of how the overall system architecture can
be realized. For a detailed discussion the reader is referred to [20].

The aforementioned architecture is implemented in a system called KAON
SERVER which is part of the KArlsruhe ONtology and Semantic Web Toolsuite
(KAON) [12]. We made use of the Java Management Extensions (JMX [11]) – an
open technology for component management. With JMX it becomes possible to
configure, manage and monitor Java applications at run time, as well as break
applications into components that can be exchanged. Basically, JMX defines
interfaces of managed beans (MBeans) which are JavaBeans that represent JMX
manageable resources. MBeans are hosted by an MBeanServer which allows their
run time deployment and manipulation. All management operations performed
on the MBeans are done through interfaces on the MBeanServer.

JMX only provides an API specification with several available implemen-
tations. We have chosen JBossMX which is the core of the open-source JBoss
application server [9] that augments J2EE by dynamic component deployment.
This choice allows us to inherit all the functionality provided by JBoss in the
form of its MBeans (Servlet Containers, EJB Containers etc.). We deploy our
inference engine as an additional MBean and augment the existing component
loader and dependency management to exploit the inferencing. A version and
security management tool allows to browse and query the ontology at run time.
Thus, it is possible to use the KAON SERVER as a “semantically enhanced
JBoss”5.

4 The J2EE Pet Store Demo

The J2EE Pet Store Demo is a sample application by Sun Microsystems to
demonstrate how to use the capabilities of the J2EE platform. We use the Pet
Store example to illustrate the different use cases of ontologies and semantic
metadata in the remainder of the paper. To be self-contained, we introduce the
Pet Store briefly in this section.

The Pet Store illustrates the typical design decisions and tradeoffs a developer
makes when building a distributed application and shows how to use JavaServer
Pages (JSP), Servlets, Enterprise JavaBeans (EJB) and the Java Message Service
(JMS)6 Pet Store is a decoupled enterprise architecture that can interoperate
with existing data sources and business partners’ systems, all built on top of the
J2EE platform. The sample application comprises four separate sub-applications
that cooperate to fulfill the enterprise’s business needs, each of which is a J2EE
application:

Pet Store e-Commerce Web Site. Web application for end-users for pur-
chasing merchandise through a Web browser. Servlets and Servlet filters are
used to receive and process HTTP requests. JSPs define an application view
template and the contents of the areas of the template. EJBs are used to
implement business processes and to represent and manipulate business data.

5 The KAON SERVER can be obtained at http://kaon.semanticweb.org
6 http://java.sun.com/developer/releases/petstore/



466 Daniel Oberle et al.

Pet Store Administration Application. A Web application that enterprise
administrators use to view sales statistics and manually accept or reject
orders. While being a Web application, its user interface is a rich client that
uses XML messaging, rather than an HTML Web browser

Order Processing Center. A process-oriented application that manages or-
der fulfillment by providing several services to other enterprise participants.
It receives and processes XML documents containing orders from the Web
site via the Java Messaging Service (JMS), a message-oriented middleware.
In addition, it provides the admin application with order data using XML
messaging over HTTP, sends emails to customers acknowledging orders using
JavaMail, sends XML order documents to suppliers via JMS and it maintains
the purchase order database.

Supplier. A process-oriented application that manages shipping products to
customers by providing the following services: It receives XML order doc-
uments from the Order Processing Center via JMS, it triggers shipment of
products to customers, it provides manual inventory management through a
Web-based interface and it maintains the inventory database.

Throughout the subsequent sections we will refer to the Pet Store applica-
tion as a source of examples as it uses a multitude of XML configuration files:
the standard J2EE deployment descriptor for the Pet Store Web site (applica-
tion.xml), the standard J2EE deployment descriptor for the Pet Store Web-tier
components (web.xml), several J2EE deployment descriptors for the Pet Store
EJB-tier components (ejb-jar.xml) as well as vendor-specific deployment descrip-
tors and XML files specific to the application (for defining screens, control screen
flow, user sign-on, binding request URLs to HTML actions, etc.).

5 The KAON SERVER Ontology

This section details the ontology used in the KAON SERVER. It is subdivided
in an ontology dealing with development use cases and run time use cases. Both
are interrelated and split into several modules. They are further discussed in
subsections 5.1 and 5.27.

5.1 Ontology Modules for Development Use Cases

In this section we present our ontology, which allows to conceptualize the devel-
opment use cases introduced in section 2.1 by semantic metadata of components
and their APIs. Note that we only give a short overview due to the lack of space.
The interested reader is referred to [19]. The ontology is divided into several
modules (cf. Figure 2) which are explained in the following8:

7 Note that the ontologies are expressed in the KAON language [18] that is equivalent
to Datalog. For the sake of readability, however, we will express axioms in FOL
(First Order Logic) syntax throughout the paper.

8 Names of the uses cases introduced in section 2.1 are written in sans serif.



Developing and Managing Software Components 467

API Description. The API Description module offers a framework for tax-
onomically describing the functionality offered by methods of APIs (e.g. the
SupplierOrderEJB’s setter methods are instances of a method “AddData”) and
accordingly several types of APIs (e.g. StoreAPI). It also allows to express the
semantics of parameters. This kind of information is used to perform service clas-
sification and discovery as well as for automatic generation of component and
service metadata. E.g. by inspecting the API it becomes evident that Suppli-
erOrderEJB’s setOrderID takes a String as argument. However, semantically
enriched information, in this case specifying that the argument is information
typically attached to an Order, facilitates discovery and can also be used to
enrich automatically generated Web Service metadata.
Component. Simply consists of one concept that groups together Profile and
Grounding information (explained below) about every kind of component.
Profile. We use the Profile module to express capability descriptions of a com-
ponent. For example, a database adapter component would have an attribute
specifying the SQL dialect used. Information of this type might be used for
service classification and discovery.
Grounding. Basically, the Grounding module allows to express the mapping
between the existing syntactic metadata (e.g. the Pet Store’s application.xml,
web.xml or ejb-jar.xml) and the semantic metadata. In order to express the
mapping between the API Description and the source code we came up with a
conceptualization of IDL terms which is grouped together in the Implementation
module (see below).
Implementation. This module contains implementation level details of a com-
ponent responding to the use case of component dependencies and versioning.
Code details are described, like the class name or required archives. Besides,
each component has a certain version and potentially depends on others. Along
the same lines, some components will not work properly, if a conflicting compo-
nent is loaded at the same time. These relationships are modelled by dependsOn
and conflictsWith which are transitive and symmetric associations, respectively9.
Components can be in different states (active, available, serialized, etc.) that are
captured by an attribute of the same name. We also model the signature whose
methods and parameters are expressed according to the IDL module (see below).
IDL. We have conceptualized a small subset of the IDL (Interface Descrip-
tion Language [21]) specification into an ontology-module that allows describing
signatures of interfaces. The ontology module features concepts like Interface,
Operation or Parameter.
Domain Ontology Modules. While the ontology modules presented so far
formalize generic knowledge only, domain ontology modules grasp knowledge
specific to a certain application. First, Domain Profiles may distinguish com-
ponent types in a particular application server. While most J2EE servers support
Servlets and EJBs, newer ones also introduce MBeans. In addition, Microsoft’s
9 That means ∀c1, c2, c3 : dependsOn(c1, c3) ← dependsOn(c1, c2) ∧

dependsOn(c2, c3) and ∀c1, c2 : conflictsWith(c1, c2)↔ conflictsWith(c2, c1).



468 Daniel Oberle et al.

.NET architecture introduces further idiosyncracies. Second, Domain API De-
scriptions contain sets of APIs and functionality types (methods) that are typ-
ically offered by components in a certain domain. An analysis of the Pet Store
world results in a domain ontology conceptualizing Orders, Suppliers and Ani-
mals, for instance. It is then possible to semantically enrich information about
the API, such as setContactInfo’s parameter being a mailing address. Both sub-
modules can be easily replaced in a new domain.

Component

GroundingProfile

IDL

API Description

Implementation

Domain
API Description

Domain
Profiles

Generality

D
o

m
a

in
G

en
er

ic
S

em
a

n
tic

S
yn

ta
ctic

M
eta

d
a

ta
M

eta
d

a
ta

ontology module

uses module

application.xml
web.xml
ejb-jar.xml
...

Domain Ontology Modules

Fig. 2. Ontology Modules for use cases supporting development.

Like discussed in [17, 19] we used OWL-S as a starting point for building the
ontology. OWL-S [13] is an ontology expressed in the Ontology Web Language
(OWL [15]). Its aims are to enable automatic Web Service discovery, invocation,
composition and execution monitoring [22]. Several interesting design princi-
ples are realized by OWL-S that inspired our work: separation of semantic and
syntactic metadata, separation of generic and domain knowledge and modular-
ization. Our current state of work comprises a full analysis, yet our formalization
still lacks the individual groundings. The Component, Profile, Implementation
and Domain modules are already used within the KAON SERVER10.

5.2 Ontology Modules for Run Time Use Cases

In this section we describe part of our ontology for run time use cases. It concep-
tualizes interceptors, libraries, archives, security aspects and their interrelation-
10 The ontologies ship with the KAON SERVER distribution and are also separately

available at http://kaon.semanticweb.org. The site features a screenshot of browsing
the ontologies with a graphical user interface.



Developing and Managing Software Components 469

ships. We have modelled most of the modules. However, they are not yet used
within the KAON SERVER.

Due to space limitations, we focus on the security use case. The J2EE specifi-
cation distinguishes the key concepts of realm, user, group, and role. We extend
these basic notions by introducing additional concepts and some important as-
sociations and axioms in the following subsections.

Concepts

Resource. The J2EE specification distinguishes security issues on the web, ap-
plication, and persistence tiers. Even though the physical ways of accessing
these resources differ a lot, the notions of access control and security are the
same at all three levels. In our ontology, resources can be web resources, com-
ponents or databases (tables or SQL views). These are identified by URLs,
class names and database URIs (usually server URI augmented by table or
view name), respectively.

Method. Resources have methods, which constitute the most fine grained level
for access control. Methods are identified in combination with the resource.
Web methods are identified by the resource URL and the protocol’s method
such as HTTP GET. Methods of components are identified by their class
name and the method identifier consisting of name and signature11. In the
case of database resources, methods correspond to operations such as delete,
insert, update, or select, which can be granted individually by the database
management system. Message queues can be treated similarly to databases
with a logical queue behaving like a table and the methods being send and
receive instead of select, update etc.

ResourceGroup. Systems usually allow declaring security settings for an entire
set of resources. A web container allows URL patterns such as <url-pattern>
/secure/*</url-pattern>. A similar wildcard notation can encompass all
methods of a class.

ACL. The right to access a ResourceGroup, Resource or Method is formalized as
a concept AccessRight. This was necessary to circumvent ternary associations
that cannot be modelled in KAON and other Semantic Web languages like
RDF and OWL. Subsumption reasoning capabilities allow us to specialize
AccessRight in Read, Write, Modify and Execute. An Access Control List
(ACL) is comprised of one or more AccessRights.

Invocation and RequestContext. The definitions so far captured the static
aspects of security. At run time, any kind of resource is accessed by an
incoming request. The request is associated with context information, e.g.
on whose behalf the request is carried out. The context is propagated from
tier to tier, unless an explicit context change takes place. We model this
situation by Invocation and RequestContext concepts which are interrelated
(cf. Figure 3 and associatedWith below).

11 Methods can be overloaded such that the same method name is used with different
parameter lists. Consequently, the signature needs to be included in the method
identification.



470 Daniel Oberle et al.

Associations

definedOnx and grantedFory. Like mentioned before, AccessRights might
be defined on ResourceGroups, Resources or even Methods, and they might
be granted for Roles, UserGroups or even Users.

executes and Accesses. During processing, resources can use other resources.
This might be “cart.jsp” invoking the shopping cart EJB, the product entity
bean accessing the respective database table, or also an SQL view reading
other tables and views. In our ontology, Resources execute Invocations and
Invocations in turn access Resources (cf. also Figure 3).

associatedWith. We associated an Invocation with a RequestContext, where
each RequestContext carries information about authentication or transac-
tions. This kind of modeling was necessary to capture context propagation.
An example would be an administrator who authenticates himself using
HTTP basic authentication and accesses the administration webpage. The
script on this page, run using the admin credentials, connects to an EJB
with the respective security setting. The call succeeds, because the user in-
formation will be propagated and the service will also run using the admin-
istrator’s credentials. An explicit context switch will happen when the “run
as” paradigm is used or if a component connects to a database by explicitly
stating a username and password. In the Pet Store, this happens when an
entity bean reads tuples from the database. The container carries out the
actual JDBC call using the user id specified during deployment, instead of
the context associated with the end user request that triggered the initial
call.

Axioms

invokes. For convenience we defined a transitive association invokes by axioms.
It abbreviates executes and accesses in the following way:
∀r1, r2, i : invokes(r1, r2)← executes(r1, i) ∧ accesses(i, r2)
∀r1, r2, r3 : invokes(r1, r3)← invokes(r1, r2) ∧ invokes(r2, r3)

Roles, Users, and Groups. Further axioms are necessary to fully model the
domain described so far. As we mentioned before, users can be associated
to groups and access is granted via the role indirection. The effect of the
resulting relationships can be captured by the following rules:
∀ar, r, ug : grantedForUserGroup(ar, ug)← AccessRight(ar) ∧Role(r) ∧
UserGroup(ug) ∧ inRole(ug, r) ∧ grantedForRole(ar, r)
∀ar, r, u : grantedForUser(ar, u)← AccessRight(ar) ∧Role(r) ∧
User(u) ∧ inRole(u, r) ∧ grantedForRole(ar, r)
∀ar, u, ug : grantedForUser(ar, u)← AccessRight(ar) ∧ User(u) ∧
UserGroup(ug) ∧member(u, ug) ∧ grantedForUserGroup(ar, ug)



Developing and Managing Software Components 471

definedOnResource

Resource

executes

Invocation

accesses

associatedWith RequestContext

User

AccessRight

contextUser

grantedForUser

AssociationConcept Domain and Range of Association

Fig. 3. Snippet of the security module.

A similar rule can be defined for permissions on groups of resources:
∀ar, r, rg : definedOnResource(ar, r)← AccessRight(ar) ∧Resource(r) ∧
ResourceGroup(rg) ∧ partOf(r, rg) ∧ definedOnResourceGroup(ar, rg)
As we may recognize with this small example, it is preferable to specify
complex interactions with a few logical rules rather than with extensive
coding.

6 Examples

This section provides examples for both development and run time use cases.
The first subsection discusses where semantic metadata of components support
the developer in versioning problems, the latter recaps the security use case.

6.1 Development Time Example

One of the most relevant use cases for our ontology and semantic metadata
is the versioning problem. In the ontology, we distinguish components such as
an MBean and libraries such as a certain XML parser. Each of them has a
certain version and potentially depends on others. Along the same lines, some
components will not work properly, if a conflicting component is loaded at the
same time.

The formalization (cf. Implementation ontology module in 5.1) is quite generic
and can be applied in several application contexts, e.g. from within an IDE dur-
ing development as well as during run time or in a JMX enabled dynamic compo-
nent loader. All scenarios share the notion of a component being available to the
system12. In the following, we discuss the example of the classpath environment
12 Note that the technical details of this availability depends on the scenario.



472 Daniel Oberle et al.

variable, where only the first occurrence of a class, starting from the beginning,
will be loaded.

Obtaining the Semantic Metadata. In a first step, we need to determine
which components are available to the system. This is done by inspecting the
classpath environment variable as well as the Java lib/ext directory. The archive
is associated to its semantic metadata via its MD5 hash. Currently, we manually
specify the semantic metadata of a component. In the future, we envision this
information to be publicly available13.

Applying the Inference Engine. Given the set of components, we can now
determine whether all required components are available and whether there are
conflicting component versions present. The rule below evaluates if components
are missing and need to be included in the classpath, for instance. These queries
can be evaluated using the version management tool shown in Figure 4.

∀c1, c2 : missing(c2)← Component(c1) ∧
state(c1, ”available”)∧ dependsOn(c1, c2) ∧ state(c2, ”unavailable”)

Conflicts can be discovered using this rule:
∀c1, c2 : conflict(c1, c2)← Component(c1) ∧ state(c1, ”available”)∧
conflictsWith(c1, c2)∧ state(c2, ”available”)

6.2 Run Time Example

This section introduces two examples for a run time use case. Since section 5.2 fo-
cused on security, we also take an example from this use case. The following text
illustrates how the necessary information is loaded into the KAON SERVER,
provides two examples of how inferencing can be applied and shortly presents
the security management tool.

Obtaining the Semantic Metadata. There are several ways of extracting
the required information from configuration files, source code, or registries. Our
goal is not to provide a complete set of parsers and extraction tools at this point.
Instead, we aim at demonstrating the feasibility of our approach in providing a
proof of concept in extracting a reasonable amount of information.

Information about the available resources is obtained by reading the file
system of the web container and the application server. Database management
systems often make metadata on tables, users, and rights available via SQL. In
J2EE, the access control lists are specified in the ejb-jar.xml and WEB-INF.xml
deployment descriptors for the web and the application server tiers. Various
realms can manage the user, group, and role information. We worked with the
JDBC realm, where the data is read from tables in a database, making it also
easily available to our tool. Arguably the most complicated step is determining

13 The feasibility of such an approach is demonstrated by the RPM package managing
system (http://www.rpm.org).



Developing and Managing Software Components 473

the invocations from one resource to others. We propose a shallow analysis of
the source code and SQL statements to pick up the commonly used patterns
such as resolving a JNDI home interface reference. Furthermore, the ejb-ref tag
in the beans’ deployment descriptors provides hints as to which other beans are
used. Obviously, we are restricted to static code analysis, which is also used
by development environments. Note that this is not really a problem if the
complete invocation graph is not extracted automatically, since the system does
not actively intervene in the deployment process. It merely helps the user to
assess the situation before making an educated decision.

Applying the Inference Engine – Indirect Permissions. An interesting
example for reasoning over security settings is to see which resources a user
gets indirect access to. For instance, the customer table, accessible only by the
database admin, is indirectly readable to other users via the customer entity
bean, since this bean performs a context switch. Thus, the call is carried out
using admin rights on behalf of the user. This case is definitely not a bug;
however, it might be useful to assess the combined effect of various security
settings by analyzing the result of such a query. First, the axiom below introduces
a convenience predicate permission that is true when an AccessRight is granted
for a User u on a Resource r. Note that it captures permissions also when access
is granted for a UserGroup only but the User is a member (because of the axioms
introduced in 5.2).
∀ar, u, r : permission(u, r)← User(u) ∧Resource(r) ∧AccessRight(ar) ∧
grantedForUser(ar, u) ∧ definedOnResource(ar, r)

Second, the following axiom recursively extends the definition above that
any User having permissions to a Resource, implicitly has indirect access to all
resources, which are indirectly invoked by it. The same can be expressed for
ResourceGroups, Methods and Roles, UserGroups or combinations.
∀u1, u2, r1, r2, i, ct : permission(u1, r2)← permission(u1, r1) ∧
Resource(r2) ∧ invokes(r1, r2) ∧ accesses(i, r2) ∧ Invocation(i) ∧
associatedWith(i, ct) ∧RequestContext(ct) ∧
contextUser(ct, u2) ∧ permission(u2, r2)

Applying the Inference Engine – Non-accessible Resources. Given the
access control and collaboration information, we can determine security miscon-
figurations. Assume the order-processing bean accidentally grants access only
to customers. Furthermore, this bean invokes the order message queue without
switching user contexts. The message queue, however, is only accessible to the
order-processing role. Also assume that no user or group is in both the roles
customer and order-processing. From this situation, we can infer that any call
from the bean to the message queue must fail due to a security violation. We
can formulate a rule, which helps to find such cases. A violation is present, if
a component invokes another one by propagating the security context, and no
overlap exists in the permission sets.
∀r : inaccessible(r)←� ∃u.permission(u, r)



474 Daniel Oberle et al.

Fig. 4. Screenshot of the version and security management tool. Concepts are repre-
sented by rectangles, instances by rounded boxes, associations (also called properties in
the figure) by labelled edges. Subconcept associations are represented by non-labelled
edges. Clicking on “Search” allows the user to enter an arbitrary query.

Security Management Tool. Our tool allows the user to query the inference
engine about any concept in the ontology. For instance, one can retrieve the users
who are able to indirectly read a database table. As schematically introduced in
Figure 1, Figure 4 shows our version and security management tool that allows
to browse the ontology and execute queries at run time. The users who are able
to indirectly access the customer table are retrieved by a query.

We plan to realize a more convenient user interface in order to hide the base
query language from the user. Furthermore, we would like to develop a watchdog
that actively checks for inconsistencies such as a role with no assigned users or
groups, empty groups, or, as shown in section 5.2, clashes in the security settings
for inter-resource invocations.

7 Related Work

The current generation of application servers uses XML-based configuration
files, some of which follow fixed XML schemata. The individual schemata rep-
resent static conceptualizations of fragments of the complete configuration. Our
ontology-based approach aggregates individual aspects in a platform-independent
and extensible way.



Developing and Managing Software Components 475

Classical Software Reuse Systems also describe software modules for efficient
and precise retrieval. However, techniques like the faceted classification [7] are
limited to the representation of the provider’s features. In analogy, software reuse
shares a representation of modules that is based on functionalities achieved by
the software, roles and conditions [14]. [6] introduce a software repository system
that uses an ontological representation language for describing information about
requirements, designs and implementations of software. However, none of these
approaches take into account the run time use cases that occur in application
server settings. These efforts either describe different kinds of components or
concentrate solely on syntactic or semantic metadata without blending them
together like in our approach.

[4] shows how description logics can be used to augment CORBA IDL speci-
fications such that Compatibility testing of IDL specifications, Local consistency
checking, More thorough treatment of exceptions is possible. However, this ap-
proach just augments the syntactic part of an API’s description. It does not
deal with semantic information about method functionality and does not de-
scribe component configurations.

Microsoft’s System Definition Model (SDM)14 takes a similar approach to
ours in including information about software, hardware, and network in a unified
system model. SDM targets design, deployment, and operation. The first actual
software tool implementing this strategy will be the next version of the Visual
Studio development environment. Unfortunately, not much detailed information
is available at this point. Nevertheless, SDM illustrates the trend of representing
different system aspects in a common framework.

As a way to abstract from low-level and platform-specific problems, the
paradigm of Model-Driven Architectures (MDA) [16] has gained wide-spread
influence. The principal idea of MDA is to separate conceptual concerns, such as
which component is using which other component, from implementation-specific
concerns, such as which version of an application interface requires which ver-
sions of windows libraries. MDA achieves this separation by factorizing the two
concerns, specifying them separately and compiling them into an executable.
Like mentioned in the introduction, MDA has not been applied for run time rel-
evant characteristics of component management. Also, it lacks logical formality
what disallows to query the application server at run time.

8 Conclusions and Future Work

In this paper we have presented our approach, an ontology as an explicit, exe-
cutable conceptual model for administrating an application server. Though we
are still dealing with a preliminary version of the ontologies, we could demon-
strate small, sophisticated and yet very practical examples of how to improve the
development and maintenance of software components for and in an application
server.

14 http://www.microsoft.com/windowsserversystem/dsi/sdm.mspx



476 Daniel Oberle et al.

Doing so, our intention was to substantiate a twofold message: First, ontolo-
gies and corresponding semantic technology provide huge, practical benefits for
handling middleware environments – which we think are underestimated. Sec-
ond, the bread and butter issues of developing and administrating services and
components will outlive the utmost fancy issues like automatic composition of
services – which we think are overestimated in feasibility as well as with regard
to practical benefits.

Acknowledgements

We are indebted to Marta Sabou, Vrije Universiteit Amsterdam, The Nether-
lands, as well as Debbie Richards, MacQuarie University Sydney, Australia, for
their fruitful work on the ontology presented in section 5.1.

This work is financed by WonderWeb, an EU Information Society Technolo-
gies (IST) funded project (http://wonderweb.semanticweb.org) IST-2001-33052,
and by SmartWeb, a German BMBF funded project (http://smartweb.semantic-
web.org).

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Springer, Sep
2003.

2. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. K. F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Pro-
cess Execution Language for Web Services Version 1. Specification, May 2003.
http://www.ibm.com/developerworks/library/ws-bpel/.

3. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, pages 28–37, May 2001.

4. A. Borgida and P. Devanbu. Adding more ”DL” to IDL: Towards more knowledge-
able component inter-operability. In Proceedings of the 21st international confer-
ence on Software engineering. IEEE Computer Society Press, 1999.

5. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL). http://www.w3.org/TR/wsdl, Mar 2003. W3C
Note.

6. P. Constantopoulos, M. Jarke, J. Mylopoulos, and Y. Vassiliou. The software
information base: A server for reuse. VLDB Journal, 4(1):1–43, 1995.

7. R. P. Diaz. Implementing faceted classification for software reuse. Communications
of the ACM, 34(5):88–97, May 1991.

8. A. Eberhart. Ad-hoc Invocation of Semantic Web Services. In IEEE International
Conference on Web Services, July 6-9, 2004, San Diego, California, USA, 2004.

9. M. Fleury and F. Reverbel. The JBoss Extensible Server. In M. Endler and D. C.
Schmidt, editors, Middleware 2003, ACM/IFIP/USENIX International Middle-
ware Conference, Rio de Janeiro, Brazil, June 16-20, 2003, Proceedings, volume
2672 of Lecture Notes in Computer Science, pages 344–373. Springer, 2003.

10. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.



Developing and Managing Software Components 477

11. J. Lindfors and M. Fleury. JMX – Managing J2EE with Java Management Exten-
sions. Sams, 2002. The JBoss Group.

12. A. Maedche, B. Motik, and L. Stojanovic. Managing multiple and distributed
ontologies in the Semantic Web. VLDB Journal, 12(4):286–302, 2003.

13. D. Martin, M. Burstein, G. Denker, J. Hobbs, L. Kagal, O. Lassila, D. Mc-
Dermott, S. McIlraith, M. Paolucci, B. Parsia, T. Payne, M. Sabou, E. Sirin,
M. Solanki, N. Srinivasan, and K. Sycara. OWL-S 1.0 draft release.
http://www.daml.org/services/owl-s/1.0/, Dec 2003.

14. P. Massonet and A. van Lamsweerde. Analogical reuse of requirements frameworks.
In 3rd IEEE International Symposium on Requirements Engineering (RE’97), Jan-
uary 5-8, 1997, Annapolis, MD, USA, pages 26–39. IEEE Computer Society, 1997.

15. D. L. McGuinness and F. van Harmelen. Web Ontology Language (OWL)
Overview.
http://www.w3.org/TR/owl-features/, Feb 2004. W3C Recommendation.

16. S. J. Mellor, K. Scott, A. Uhl, and D. Weise. Model-Driven Architecture. In
Advances in Object-Oriented Information Systems, OOIS 2002 Workshops, Mont-
pellier, France, September 2, 2002, Proceedings, volume 2426 of Lecture Notes in
Computer Science, pages 290–297. Springer, 2002.

17. P. Mika, D. Oberle, A. Gangemi, and M. Sabou. Foundations for Service Ontolo-
gies: Aligning OWL-S to DOLCE. In The Thirteenth International World Wide
Web Conference Proceedings, pages 563–572. ACM, May 2004.

18. B. Motik, A. Maedche, and R. Volz. A conceptual modeling approach for building
semantics-driven enterprise applications. In R. Meersman and Z. Tari, editors, On
the Move to Meaningful Internet Systems, 2002 - DOA/CoopIS/ODBASE 2002
Confederated International Conferences DOA, CoopIS and ODBASE 2002 Irvine,
California, USA, October 30 - November 1, 2002, Proceedings, volume 2519 of
Lecture Notes in Computer Science. Springer, 2002.

19. D. Oberle, M. Sabou, and D. Richards. An ontology for semantic middleware: ex-
tending DAML-S beyond web-services. Technical Report 426, University of Karl-
sruhe, Institute AIFB, 76128 Karlsruhe, Germany, 2003.

20. D. Oberle, S. Staab, R. Studer, and R. Volz. Supporting Application Development
in the Semantic Web. ACM Transactions on Internet Technology (TOIT), 4(4),
Nov 2004.

21. Object Modelling Group. IDL / Language Mapping Specification - Java to IDL,
Aug 2002. 1.2.

22. OWL Services Coalition. OWL-S: Semantic Markup for Web Services. OWL-S
v1.0 White Paper, Nov 2003.


	1 Introduction
	2 Motivation
	2.1 Use Cases of Semantic Metadata for Development Time Support
	2.2 Use Cases of Semantic Metadata for Run Time Support

	3 An Ontology-Based Application Server
	3.1 Architecture
	3.2 Implementation

	4 The J2EE Pet Store Demo
	5 The KAON SERVER Ontology
	5.1 Ontology Modules for Development Use Cases
	5.2 Ontology Modules for Run Time Use Cases
	Concepts
	Associations
	Axioms


	6 Examples
	6.1 Development Time Example
	6.2 Run Time Example

	7 Related Work
	8 Conclusions and Future Work
	Acknowledgements
	References

