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ABSTRACT:  Six commonly used nonlinear growth functions were fitted to individual tree height-diameter

data of nine major tree species in Ontario’s boreal forests. A total of 22,571 trees was collected from new

permanent sample plots across the northeast and northwest of Ontario. The available data for each species were

split into two sets: the majority (90%) was used to estimate model parameters, and the remaining data (10%)
were reserved to validate the models. The performance of the models was compared and evaluated by model,
R2, mean difference, and mean absolute difference. The results showed that these six sigmoidal models were
able to capture the height–diameter relationships and fit the data equally well, but produced different asymptote
estimates. Sigmoidal models such as Chapman–Richards, Weibull, and Schnute functions provided the most
satisfactory height predictions. The effect of model performance on tree volume estimation was also
investigated. Tree volumes of different species were computed by Honer’s volume equations using a range of
diameters and the predicted tree total height from the six models. For trees with diameter less than 55 cm, the
six height-diameter models produced very similar results for all species, while more differentiation among the
models was observed for large-sized trees (e.g., diameters > 80 cm). North. J. Appl. For. 18:87–94.
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The northern circumpolar boreal forests are one of the
Earth’s largest biomes, covering 14.7 million km2 (11% of
the world’s continental land mass) (Bonan and Shugart
1989). Eighty percent (80%) of Canada’s forests occur within
the boreal ecoregion, extending longitudinally from Labra-
dor to the Yukon (Larsen 1980). Canadian boreal forests play
an important role not only in timber, mining, and recreational
sectors (Pye 1991), but also in global carbon cycles (Apps et
al. 1993). One of the most important elements of boreal forest
structure is the relationship between tree height and diameter.
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Individual tree height and diameter are essential forest inven-
tory measures for estimating timber volume, site index, and
other important variables in forest growth and yield, succes-
sion, and carbon budget models (Spurr 1952, Botkin et al.
1972, Kurz et al. 1992, Vanclay 1994). Tree diameters can be
easily measured at little cost. Tree height data, however, are
relatively more difficult and costly to collect. Often total tree
heights are estimated from observed tree diameter at breast
height (DBH) outside bark. Estimating individual tree vol-
ume and site index, and describing stand growth dynamics
and succession over time, require accurate height–diameter
models (Curtis 1967, Botkin et al. 1972).  A number of tree
height–diameter equations have been developed for various
tree species in North America (e.g., Curtis 1967, Wykoff et
al. 1982, Larsen and Hann 1987, Wang and Hann 1988,
Huang et al. 1992, Moore et al. 1996, Zhang 1997, Peng
1999), and other regions (e.g., Hökkä 1997, Fang and Bailey
1998, Fekedulegn et al. 1999). These height-diameter equa-
tions can be used to predict “missing” tree heights from field
diameter measurements (Larsen and Hann 1987), and to
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estimate individual tree biomass using appropriate single–
tree biomass equations (Singh 1982, Penner et al. 1997).

The purpose of this study was  (1) to develop tree height-
diameter models for nine boreal forest tree species using six
widely used nonlinear growth functions, and (2) to evaluate
the relative performance of these models calibrated from a
wide range of site productivity, tree age, and tree size using
independent validation data sets from Ontario.

Data, Models, and Methods

A total of 22,571 individual height-diameter measurements
for nine boreal forest tree species were collected from new
permanent sample plots across the northeast and northwest of
Ontario. The common name, scientific name, and an assigned
code for each species are listed in Table 1. All sampled trees
were measured for diameter at breast height (DBH) outside
bark, and total height (HT). Forked trees or those with
damaged tops were excluded from the analysis. The available
tree heightdiameter data were split into two sets: the majority
(90%) was used for model development; and 10% of trees in
each diameter class for each species were randomly selected
and reserved for model validation (Moore et al. 1996). For
example, data from 3,089 trembling aspen trees were selected
for model fitting; the remaining 343 trees were used for
model validation. Both model development and validation
data sets covered the same ranges of DBH and HT (Figure 1).
Summary statistics are provided in Tables 2 and 3 for all nine
species. Numbers of trees by species ranged from 240 to
5,555 for the model development data (Table 2) and from 26
to 616 for the validation data (Table 3).

Many nonlinear models have been used to model tree
height–diameter relationships (e.g., Huang et al. 1992, Moore
et al. 1996, Zhang 1997, Fang and Bailey 1998, Peng 1999,
Fekedulegn et al. 1999). Model selection in this study was
based on an examination of the height–diameter relationships

revealed by plotting HT against DBH for all nine species.
Scatter plots of tree HT vs. DBH presented typical sigmoidal-
concave curves. Six nonlinear growth functions (Table 4)
were selected as candidate height–diameter models based on
their appropriate mathematical features (e.g., typical sigmoid
shape, number of parameters, flexibility), possible biological
interpretation of parameters (e.g., upper asymptote, maximum
or minimum growth rate), and satisfactory prediction for tree
height–diameter relationships in the literature (Brewer et al.
1985, Arabatzis and Burkhart 1992, Huang et al. 1992, Zeide
1993, Zhang et al. 1996, Zhang 1997, Fang and Bailey 1998,
Huang 1999, Fekedulegn et al. 1999). These six nonlinear

Figure 1.  Scatter plot of total height (HT) against diameter at
breast height (DBH) for trembling aspen: (a) Model development
data, (b) Model validation data, and (c) Combined data.
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Table 2.  Summary statistics of diameter at breast height (DBH) outside bark and total tree height (HT) for data used
in model development.

No. of Dbh (cm) Ht (m)
Species trees Mean Min. Max. STD Mean Min. Max. STD
Jack pine 4,954 14.79 1.40 44.80 7.91 13.28 2.06 28.02 6.48
Black spruce 5,555 11.31 0.70 36.50 6.10 10.24 1.42 26.80 4.92
White spruce 743 12.93 2.50 56.30 9.63 9.45 2.12 30.78 6.06
Trembling aspen 3,089 17.19 2.50 55.50 10.32 16.38 2.75 35.00 6.91
White pine 2,162 21.48 2.50 90.20 14.41 15.09 1.49 38.87 7.94
Red pine 1,332 22.03 2.50 61.20 12.70 16.26 1.97 40.68 8.43
Balsam fir 1,845 8.09 2.40 42.70 5.43 7.22 1.52 26.88 4.24
Yellow birch 398 15.07 2.50 77.20 13.01 13.41 3.61 26.22 5.69
Balsam poplar 240 23.36 2.60 55.10 11.11 19.48 2.21 32.38 6.42

Table 1.  Common names, scientific names and assigned codes
for the nine tree species.

Common name Scientific name Code
Jack pine Pinus banskiana Lamb. JP
Black spruce Picea mariana (Mill.) B.S.P. BS
White spruce P. glauca (Moench) Voss WS
Trembling aspen Populsu tremuloides Michx. TA
White pine Pinus strobus L. WP
Red pine P. resinosa RP
Balsam fir Abies balsamea (L.) Mill BF
Yellow birch Betula alleghaniensis Arnold YB
Balsam poplar Populus balsamifera L. BP
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growth functions have been widely used for two major
reasons. First they define sigmoid curves, in which the
growth rate increases as size increases from a minimum value
to a maximum at a point of inflection, and then declines
towards zero at an upper asymptote. Second, they have three
parameters (i.e., an upper asymptote, a rate parameter, and a
shape parameter) that describe various biological processes
and behaviors. For example, the Chapman-Richards and
Weibull models are well known flexible growth functions
with biologically interpretable coefficients (Pienaar and
Turnbull 1973, Yang et al. 1978).

The six candidate models (Table 4) were fitted to the
model development data of tree height and diameter for
each species, respectively. Parameters were estimated
using the PROC NLIN procedure in the Statistical Analysis
System (SAS Institute Inc. 1990). We elected to use the
Marquardt method because it is considered to be most
useful when parameter estimates are highly correlated
(Fang and Bailey 1998) and represents a combination of
the best features of the linearization (Gauss-Newton)
method and the steepest descent method (Fekedulegn et al.
1999). To ensure that the least–squares solution is global
rather than local, multiple initial values of the model

parameters were provided for the fits. The validity of a
homogeneous variance was investigated. There was no
significant evidence of unequal error variances, as observed
in other studies (e.g., Huang et al. 1992). Under this
circumstance, weighted least-squares may increase model
fit marginally, but may not significantly improve model
performance (Cormier et al. 1992, Zhang 1997).  Therefore,
ordinary nonlinear least-squares was used for parameter
estimation rather than weighted least-squares. Each model
was evaluated using R2, mean difference (MD), and mean
absolute difference (MAD). computed as follows:
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Table 3.  Summary statistics of diameter at breast height (DBH) outside bark and total tree height (HT) for data used
in model validation.

No. of Dbh (cm) Ht (m)
Species trees Mean Min. Max. STD Mean Min. Max. STD
Jack pine 550 14.81 2.50 42.10 7.92 13.32 2.15 24.96 6.42
Black spruce 616 11.34 2.10 33.30 6.12 10.25 1.30 24.80 4.93
White spruce 82 12.99 2.50 48.10 9.66 9.82 2.30 28.97 6.38
Trembling aspen 343 17.24 2.50 50.90 10.36 16.47 3.40 33.94 6.77
White pine 240 21.59 2.50 78.20 14.55 15.05 2.74 31.90 7.95
Red pine 148 22.56 2.60 68.50 22.56 16.05 2.09 36.38 8.16
Balsam fir 204 8.03 2.50 27.80 5.26 7.17 1.80 22.95 4.24
Yellow birch 44 15.64 2.50 66.70 14.04 13.76 3.27 27.50 6.03
Balsam poplar 26 23.53 4.00 45.30 10.70 20.18 5.59 29.02 6.03

NOTE: HT is tree total height (m); DBH is tree diameter at breast height (cm); a,b,c are model parameters to be estimated; e is the base of natural logarithm
(≈2.71828); 1.3 is a constant used to account for measuring tree DBH at 1.3 m above ground. In Equation (3): DBH0 = 0.0 and DBH2 = 100.

Table 4.  Nonlinear height-diameter models selected for comparison using data from boreal forests in northeast and
northwest of Ontario.

Model References
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where, for a given data set of size n, Hi is the observed, and
Ĥi  is the predicted height for the ith tree, respectively; and

H  is the observed mean tree height. For any appropriately
fitted height–diameter model, the R2 should be large.  A
higher R2 value indicates a better fitting to the given data set.
A positive MD indicates, on average, underprediction by the
model and a negative value of MD indicates overprediction.

The model validation data (Table 3) were divided into
eight DBH classes (i.e., <5 cm, 5–10 cm, 10–15 cm, 15–20
cm, 20–25 cm, 25–30 cm, 30–35 cm, and >35 cm) for jack
pine (JP), trembling aspen (TA), white pine (WP) and red
pine (RP); and six DBH classes (i.e., <5 cm, 5–10 cm, 10–15
cm, 15–20 cm, 20–25 cm, and >25 cm) for other species. The
six height-diameter models were employed to predict tree
total height using the observed tree DBH in the validation
data sets. The mean prediction errors (MD) were computed
for each DBH class of each tree species and were illustrated
in Figure 2. An overall prediction error was also calculated
across all DBH classes for each species.

Results and Discussion

Model Development
The R2 values for all 6 models and all 9 species (54

combinations) were 0.96 or greater in each case (Table 5),
explaining at least 96% of the total variation in tree heights.
The highest R2 value of 0.99 was found in fitting the models
for balsam poplar. The MD from –0.002 to 0.45, and MAD
from 0.90 to 2.75, respectively, for the nine species. Differ-
ences in MD among the six models for each species were not
significant. In general models (1) (Chapman–Richards), (2)
(Weibull) and (3) (Schnute) had relatively smaller MAD
than other three models for all species, with a few excep-
tions: models (4) (Exponential) and (5) (Modified Logistic)
fitted to black spruce (BS), white pine (WP) and balsam fir
(BF). All model coefficients were significant at the 5%
level. The results from model statistics suggested that all six
models fitted equally well to the tree height–diameter data
of the nine species (Table 5). This is consistent with the
findings reported by Huang et al. (1992) for major Alberta
tree species and by Zhang (1997) for ten tree species in
inland Northwest of the United States. It is also worthy to
note that the six models fitted to the same data sets produced
different asymptote coefficients (coefficient a in Table 5,

Figure 2. Average prediction errors from the six height–diameter models for the 5-cm DBH classes in the model validation data set for
nine tree species. Model 1 (Chapman-Richards), Model 2 (Weibull), Model 3 (Schnute), Model 4 (Exponential), Model 5 (Modified Logistic),
and Model 6 (Korf/Lundqvist) refer to the six models in Table 4.  The “overall” represents mean prediction error across all DBH classes.
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Table 5.  Parameter estimates and performance criteria of six nonlinear height-diameter models for nine boreal forest
tree species in northeast and northwest of Ontario. MD: Mean difference; MAD: Mean absolute difference. See Table
4 for the form of the model; See Table 1 for species codes.

Parameters Performance criteria
Model and species a b c R2 MD MAD
(1) Chapman-Richards

JP 22.9430 0.0967 1.9923 0.9651 0.0651 1.9736
BS 22.2124 0.0729 1.4633 0.9680 –0.0115 1.3183
WS 27.3476 0.0469 1.4360 0.9697 0.3424 1.2633
TA 27.0190 0.0667 1.2249 0.9799 –0.0238 1.7663
WP 31.6215 0.0367 1.1899 0.9678 –0.0760 2.2602
RP 31.5167 0.0487 1.5772 0.9627 –0.3107 2.7107
BF 20.1136 0.0791 1.5449 0.9570 –0.0311 0.8956
YB 20.7576 0.0858 1.0532 0.9807 0.2007 1.1037
BP 27.0418 0.0670 1.3050 0.9884 0.4530 1.5546

(2) Weibull
JP 21.3607 0.0137 1.5825 0.9654 0.0741 1.9619
BS 20.8565 0.0253 1.3119 0.9679 –0.0178 1.3233
WS 25.5603 0.0148 1.3081 0.9696 0.3250 1.2643
TA 26.4919 0.0388 1.1482 0.9780 –0.0201 1.7647
WP 30.9183 0.0214 1.1307 0.9678 –0.0856 2.2588
RP 29.7470 0.0115 1.3666 0.9627 –0.2836 2.7127
BF 18.7403 0.0234 1.3670 0.9569 –0.0355 0.8974
YB 20.7055 0.0759 1.0345 0.9808 0.2015 1.1048
BP 26.5287 0.0331 1.1865 0.9884 0.4467 1.5565

(3) Schnute
JP 0.1383 –0.1353 22.7063 0.9707 0.0622 1.9538
BS 0.0901 0.3676 22.3022 0.9741 –0.0168 1.3287
WS 0.0593 0.3990 26.8356 0.9752 0.3272 1.2720
TA 0.0708 0.7053 28.0084 0.9825 –0.0219 1.7646
WP 0.0391 0.7475 31.7029 0.9720 –0.0934 2.2591
RP 0.0586 0.3495 31.3228 0.9672 –0.3144 2.7160
BF 0.1078 0.1975 19.8436 0.9674 –0.0461 0.8992
YB 0.0864 0.9244 22.0426 0.9837 0.2036 1.1054
BP 0.0719 0.6223 28.0183 0.9897 0.4536 1.5590

(4) Exponential
JP 35.4102 –16.9804 2.3852 0.9645 0.0503 2.0044
BS 32.2518 –17.9185 3.4605 0.9681 –0.0060 1.3145
WS 39.7715 –27.8572 5.5976 0.9696 0.3419 1.2641
TA 35.9494 –15.6759 3.5565 0.9798 –0.0276 1.7702
WP 42.2.84 –28.1327 6.5547 0.9679 –0.0875 2.2745
RP 46.1240 –28.0922 4.9393 0.9627 –0.3062 2.7193
BF 29.7533 –17.4797 3.2353 0.9572 –0.0250 0.8969
YB 24.9856 –9.0828 2.0794 0.9803 0.1919 1.0872
BP 35.7474 –15.6913 3.1557 0.9883 0.4504 1.5245

(5) Modified logistic
JP 25.9658 0.0079 1.8180 0.9651 0.0583 1.9764
BS 27.5359 0.0165 1.4327 0.9681 –0.0156 1.3167
WS 33.9942 0.0095 1.4114 0.9696 0.3451 1.2609
TA 32.3786 0.0254 1.3231 0.9798 –0.0096 1.7738
WP 39.7993 0.0137 1.2509 0.9679 –0.0978 2.2746
RP 37.5550 0.0067 1.5352 0.9627 –0.3478 2.7133
BF 24.3867 0.0155 1.4942 0.9571 –0.0374 0.8957
YB 23.4921 0.0530 1.2774 0.9804 0.1972 1.0843
BP 31.4760 0.0199 1.4140 0.9884 0.4517 1.5418

(6) Korf/Lundqvist
JP 42.9266 7.8409 0.7033 0.9640 0.0809 2.0287
BS 66.4854 5.9281 0.4613 0.9680 –0.0018 1.3098
WS 98.3565 6.8664 0.4113 0.9690 0.3619 1.2635
TA 49.3730 5.3055 0.5611 0.9794 –0.0097 1.7927
WP 84.0387 6.2928 0.4278 0.9676 –0.0655 2.3180
RP 74.0437 8.0952 0.5414 0.9624 –0.2847 2.7451
BF 60.3138 5.9834 0.4703 0.9568 –0.0153 0.9111
YB 28.2458 4.1391 0.6790 0.9800 0.1921 1.0815
BP 43.8525 6.0371 0.6417 0.9881 0.4526 1.5282

with the exception of the Schnute model (3) in which the
asymptotic coefficient is approximate to coefficient c). In
most cases models (1) (Chapman–Richards), (2) (Weibull),
and (3) (Schnute)  had similar asymptotic coefficients for all
species. Model (6) (Korf/Lundqvist) produced the largest
asymptotic coefficients for all species.

Model Validation

Figure 2 illustrates the mean prediction errors for the 5 cm
DBH classes and overall mean prediction error across the
DBH classes for each model and tree species. In general,
based on the validation data, the overall mean standard
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Figure 3.  Estimations of total tree volume (m3/tree) based on the individual tree total volume equations developed by Honer
et al. (1983; Equation 14 and Table 3 on p. 17), given observed DBH and predicted total tree height from six height–diameter
models as shown in Table 4 for nine boreal forest tree species in Ontario. Note: Equation 14 (Honer et al. 1983) is Volume =
0.0043891 DBH2 (1 – 0.04365b2)2 / (c1 + (0.3048c2 / HT)). The regression coefficients b2, c1, c2 for each species are given by Honer
et al. 1983 (Table 3 ). Model 1 (Chapman-Richards), Model 2 (Weibull), Model 3 (Schnute), Model 4 (Exponential), Model 5
(Modified Logistic), and Model 6 (Korf/Lundqvist) refer to the six models in Table 4.
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deviations of prediction error range from 1.3 to 3.5 m
depending on tree species (Figure 2). On one hand, all six
models produced similar prediction errors (<1 m) for small
trees (DBH < 20 cm), with the model (6) (Korf/Lundqvist)
having the largest errors. On the other hand, all six models
underestimate heights for large trees for YB, WS, TA, BP,
WP, BP, and BF, but overestimate heights of large trees for
JP and RP. Model (6) (Korf/Lundqvist) consistently had the
largest mean predicted errors. Models (1) (Chapman-
Richards), (2) (Weibull), and (3) (Schnute) showed the
superiority in prediction performance than others (Figure 2).
However, using the models to extrapolate beyond the data
range may increase the degree of over- or underestimation for
large trees (Zhang et al. 1996). Using the Monte Carlo cross-
validation method, Zhang (1997) evaluated the prediction
performance of six height–diameter models for ten conifer
species in the inland Northwest of the United States and
found that Schnute, Weibull, and Chapman–Richards
functions gave more accurate results than other models.
Considering the model mathematical features, biological
interpretation of parameter, and accurate prediction, we
recommend the Chapman-Richards model as the best
candidate.

Model Evaluation Based on Tree Volume Estimation
Tree volume is commonly expressed as a function of tree

DBH and HT. To investigate the effects of tree height
prediction on volume estimation, we set a range of tree
diameters starting at 5 cm, followed by 5 cm intervals, up to
100 cm. Corresponding tree height was estimated using the
six models for each species (Table 4). The individual tree
volume equations developed by Honer et al. (1983; Table 3,
p. 17) was used to calculate tree volumes. Tree volume
estimations are similar for trees with DBH less than 55 cm for
all species. For some species such as WP, RP, and YB this is
true up to 70 cm (Figure 3). For large-sized trees (DBH > 80
cm), however, tree volume estimations show some
differentiation among the six height–diameter models. Model
(6) always produces larger tree volumes than other models,
mainly because of higher upper asymptotes, while models
(1), (2), and (3) yield consistent volume ranges for all species.
For forest inventories or model simulations (e.g., forest
succession and carbon budget) containing large trees, we
recommend that models (1), (2), and (3) should be used.

Conclusion

Development and analysis of six nonlinear height–
diameter models fitted to nine tree species in Ontario’s
boreal forests show that most concave and sigmoidal
functions are able to accurately describe tree height–
diameter relationships. The results are consistent with
findings reported by Huang et al. (1992) for major Alberta
tree species, and by Zhang (1997) for ten tree species in the
inland northwest of the United States. Validation of the six
selected models using independent data sets indicate that
sigmoidal models such as the Chapman–Richards, Weibull,
and Schnute functions give the most satisfactory results.
Model evaluation based on tree volume demonstrate that

all models produce similar prediction for trees less than 55
cm DBH for all species. For large trees (DBH > 80 cm),
total tree volume estimations showed some differentiation
among the six height–diameter models. In general, the
Chapman-Richards model should be considered the best
model for all species across the entire study region.

However, height–diameter relationship varies within a
region, depending on local environmental condition. These
provincial-based height–diameter models do not take into
account the effects of climatic and ecological factors on
height–diameter relationships within the different ecological
site regions and thus are only appropriate for making height
predictions on a broad provincial basis. Further development
of ecoregion–based individual tree height–diameter models
is critical for accurate models on which to base, forest
management decisions (Huang 1999, Huang et al. 2000).
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