
Developing Correctly Replicated Databases
Using Formal Tools

Nicolas Schiper Vincent Rahli Robbert Van Renesse Mark Bickford Robert L. Constable
Department of Computer Science, Cornell University

Abstract—Fault-tolerant distributed systems often contain
complex error handling code. Such code is hard to test or
model-check because there are often too many possible failure
scenarios to consider. As we will demonstrate in this paper,
formal methods have evolved to a state in which it is possible
to generate this code along with correctness guarantees.

This paper describes our experience with building highly-
available databases using replication protocols that were gener-
ated with the help of correct-by-construction formal methods.
The goal of our project is to obtain databases with unsurpassed
reliability while providing good performance.

We report on our experience using a total order broadcast
protocol based on Paxos and specified using a new formal
language called EventML. We compile EventML specifications
into a form that can be formally verified while simultaneously
obtaining code that can be executed. We have developed two
replicated databases based on this code and show that they
have performance that is competitive with popular databases
in one of the two considered benchmarks.

I. Introduction
Replicated databases form the backbone of much critical
software infrastructure, including the storage tiers of large
cloud services. Their availability is of utmost importance,
but replication code that runs correctly in the normal case
and deals correctly with each failure allowed by the system
model is difficult to develop. For example, the mature and
widely used MySQL database had a bug in the replication
code that caused the slave to crash after a query cache filled
up. This bug was experienced by many users for months
until it was fixed in May 2012.

While the normal case of a replicated database can be
tested fairly easily, there are many failure scenarios to
consider. Failure scenarios can be hard to generate and
testing them all is not usually possible. One may try to
leverage model checking tools, but such tools work on
models of the actual replication code and even then may not
be able to search the space of failure scenarios exhaustively.
Testing and model checking tools do not scale well and do
not provide a proof that the code is correct.

In recent years, considerable progress has been made in
the area of tools that can be used to generate executable code
with proven correctness guarantees. An excellent example is
seL4 [1], in which a small OS Kernel (less than 10,000 lines
of code) with correctness guarantees was developed using
the Isabelle/HOL proof assistant [2]. Another such example
is the certified CompCert C compiler [3], which has been

verified and generated using the Coq proof assistant [4].
While groundbreaking, these works left open whether or not
such techniques can scale to distributed systems.

This paper shows that formal tools have now developed to
a point where it is possible to build high-assurance databases
using such tools. In our work we leverage the availability of
various open-source databases, assuming they will fail more-
or-less independently. We combine several of these into a
single replicated database using a replication protocol. Based
upon an early version of a replicated database [5], we have
built two such replication protocols, one based on Primary-
Backup [6] and one based on State Machine Replication [7].
The first protocol relies on code with formal guarantees
for recovery; with the second protocol, both normal case
operation (apart from transaction execution) and recovery
come with correctness guarantees.

At the core of both replication protocols is a Paxos-based
atomic broadcast service. In order to specify this service
we used and extended EventML [8], a language to develop
asynchronous distributed systems. EventML is an extension
of the ML programming language [9] with event recognizers
and event handlers. Finding the appropriate level of abstrac-
tion for specifying such algorithms was the result of a long-
standing cooperation between formal methods and systems
researchers at our lab. EventML is high-level enough so that
it can be used for formal reasoning (without getting buried
in implementation details), but also sufficiently low-level so
that specifications can be compiled into executable forms.

The diagram presented below in Fig. 1 gives a high-
level overview of our methodology. We use EventML as
our specification and runtime environment, and the Nuprl
proof assistant [10], [11], [12] to verify that the distributed
protocols we generate are correct. Starting from a distributed
protocol expressed in EventML, we generate a logical spec-
ification as well as the corresponding executable code. An
automatic proof verifies that the generated code complies
with the logical specification. The correctness properties of
the distributed protocol are then proved semi-automatically
using an interactive proof assistant.

The contributions of this paper are as follows: (1) We
present a methodology to generate provably correct repli-
cated databases; (2) we develop an improved version of the
primary-backup based replication protocol [5] and present
a new protocol based on state machine replication; (3)
we improve two existing models of distributed computing

Figure 1. A high-level overview of our methodology.

as well as the EventML programming interface for ease
of use and better performance; and (4) we show through
experimental evaluations that both replicated databases have
performance that is competitive with popular databases in
one of the two considered benchmarks. This shows that
building a replicated database with formal guarantees can
provide good performance.

The remainder of the paper is structured as follows. In
Section II we review the formal methodology that we use
in our work, and then discuss the scalability of the method-
ology. The methodology resembles that of the one used for
the seL4 OS Kernel but departs in some important ways.
Section III describes the design of the replicated database
and the two replication protocols that we developed. In
Section IV, we evaluate the performance of the broadcast
service and the two replicated databases, comparing against
appropriate baselines. Section V discusses related work, and
we conclude in Section VI.

II. Formal Methodology
This section describes the different components and steps
involved in generating running code and proving correctness
properties of that code. We make use of the Nuprl proof
assistant [10], [11], [12]. Our methodology resembles the
one used to verify the seL4 microkernel [1]. With seL4,
the verified runnable code is obtained in three steps. In the
first step, the OS kernel is specified at a high-level in the
Isabelle/HOL proof assistant. This specification is refined
to Haskell code before being refined a second time to a
subset of C. To show the correctness of their implementation,
the authors prove that the refinements are correct. As a
result, the C code “satisfies” the high-level specification.
Similarly, we use EventML to design protocols, and we
compile these EventML specifications to Nuprl programs
that can be executed by an interpreter or compiled into Lisp
(which we chose for its similarities to Nuprl’s programming
language). We also compile these EventML specifications
to Nuprl specifications and automatically prove that the
Nuprl programs implement the Nuprl specifications. One
key difference with seL4’s approach is that we automatically
generate implementations from specifications and automati-
cally prove that they satisfy the corresponding specifications.

We have used this methodology to develop a Paxos based
total order broadcast service. Because describing the details
of this service is rather involved, we instead illustrate our
methodology using an implementation of Lamport’s Logical
Clocks [7]. Developing this example will touch upon most
of the important steps. We then describe how the method
scales up to the broadcast service.

A. Overview of Methodology: Fig. 2 provides a detailed
illustration of our workflow to obtain formally verified
distributed programs from informal high-level specifications.
High-level protocol specifications can be specifications writ-
ten in English or pseudo-code. Given such a high-level spec-
ification we manually generate a corresponding EventML
specification and formal correctness properties.

EventML is an ML-like [9] event-based functional pro-
gramming language targeted at developing distributed proto-
cols. EventML expressions can be seen as event recognizers
and event handlers or, alternatively, as functions that receive
and produce messages. We refer to EventML programs
as “constructive specifications” because we can generate
running code from them and use them for formal reasoning.

We have extended EventML in such a way that it now
provides a workable balance between programming and
proving: its level of abstraction is high-level enough so that
reasoning about specifications is not impeded by low-level
implementation details, while the level is low enough so
that we can automatically generate executable programs.
EventML’s semantics is defined in terms of two models of
distributed computation implemented in Nuprl: the Logic of
Events (LoE) [13], [14], [15] to specify and reason about
the information flow of distributed programs, as well as
a General Process Model (GPM) [16] to implement these
information flows1. Given a specification, we implemented
an EventML compiler that generates both an LoE speci-
fication and a GPM program (arrows a and b in Fig. 2).
To run an EventML constructive specification, the tool first
compiles the EventML specification to a GPM program,
which can then be executed. Therefore, EventML’s opera-
tional semantics is defined in terms of GPM’s operational
semantics. This means that our compiler cannot be incorrect
because it defines the semantics of EventML by providing
mappings from EventML abstract syntax trees to LoE and
GPM, whatever these mappings are.

Because debugging code by running it tends to be much
cheaper than proving correctness (which can take days or
even weeks), we often start by running the GPM program
to test some of the most critical scenarios. However, to
guarantee correctness, we have to show that (1) the GPM
program complies with the corresponding LoE specification

1To handle distributed programs such as the replicated database discussed
in this paper we extended both LoE and GPM by adding new sets of
primitive constructors that are more fundamental, easier to compose, and
more efficient.

2

Figure 2. The workflow of our methodology.

(label c), and (2) the LoE specification satisfies the cor-
rectness properties specified by the high-level specification
(label d). Both these tasks are carried out within Nuprl.

Nuprl automatically proves that the GPM program imple-
ments the LoE specification. If the proof fails that can mean
that our EventML compiler has to be modified accordingly.
To show that the LoE specification satisfies the desired
correctness properties, the proof developer interacts with
Nuprl to produce such a proof. At this point, the generated
GPM program is considered to be correct.

Nuprl provides a program optimizer that can transform
programs (for example, by unrolling recursive definitions)
and prove that the optimized program is equivalent to the
original one (label e). Running the program optimizer can
significantly reduce the execution time of the GPM program,
by a factor of two or more.

A GPM program is a program written in Nuprl’s de-
pendently typed functional programming language. A Nuprl
program can be executed by an interpreter. In addition we
have implemented a translator into Lisp (arrows labeled f).
We assume that the interpreter and the Lisp translator are
correct. Given the simplicity of the Nuprl programming
language (an applied, lazy, untyped λ-calculus), it is a
relatively safe assumption to make. Confidence can be fur-
ther improved because EventML provides two interpreters,
one written in SML and one in OCaml. We can exploit
this diversity for increased reliability by running different
replicas in different interpreters (Sec. III-C).

B. Nuprl Concepts: Before illustrating the methodology
with an example, we introduce the concepts that are neces-
sary to understand in more details the tasks of Fig. 2.

The EventML compiler generates an LoE specification for
reasoning about the code using Nuprl. LoE is an event-based
specification language, where events are abstract objects
corresponding to points in space/time. The “space” aspect of
an event is the physical location at which the event occurs.
The “time” aspect of an event is given by a well-founded
causal order relation on events similar to Lamport’s [7].

Events are tagged with additional information, such as the
message that triggered a receive event.

A core LoE abstraction is the event class, a function that
takes events as inputs and outputs some information. The
simplest event classes are what we call base classes. They
play the role of event recognizers. They pattern match on
the headers of the incoming messages and return the content
of the message if the header matches, or nothing otherwise.

From such base classes and using LoE combinators we
can build more complex event classes. For example, X || Y

is the parallel composition of the two event classes X and
Y. It recognizes events recognized by either of its two
components, and handles these events in parallel to produce
the outputs of both X and Y.

The EventML compiler also produces a GPM program.
In GPM a process is modeled as a tail-recursive function
that takes an input, produces output, and computes a new
process to replace the original one. In our case, these inputs
and outputs are messages.

C. Illustration of the methodology: This section illus-
trates our methodology using a simple running example:
Lamport’s logical clocks [7]. We show an EventML specifi-
cation of that protocol and describe how we prove its correct-
ness. We also present some of the program transformations
we apply to the code to simplify and optimize it.

1) Specification: Logical clocks partially order events of a
distributed system in a way that respects causal order. Events
represent any processing done locally on one machine, as
well as the sending and reception of a message. The event
e1 happens before the event e2, denoted as e1→ e2, if e1
happens before e2 at the same location, or if e1 is the sending
of a message and e2 its reception. The happens before
relation is transitive. Logical clocks associate a timestamp to
each event e, written as LC(e), and ensure that if e1→e2,
then LC(e1) < LC(e2).

In Lamport’s protocol, each process maintains a local
clock, a positive integer. When a process sends a message,
the message is tagged with the local clock. When a process

3

1 specification CLK
2
3 parameter locs : Loc Bag
4 parameter MsgVal: Type
5 parameter handle: Loc x MsgVal −> MsgVal x Loc
6
7 type Timestamp = Int
8 internal msg : MsgVal x Timestamp
9

10 import imax

11 let upd_clock slf (_,timestamp) clock =
12 (imax timestamp clock) + 1 ;;
13 class Clock = State(0,upd_clock ,msg’base) ;;
14
15 let on_msg slf (value ,_) clock =
16 let (newval ,recipient) = handle (slf , value)
17 in {msg’send recipient (newval ,clock)} ;;
18 class Handler = on_msg o (msg’base ,Clock) ;;
19
20 main Handler @ locs

Figure 3. A simple protocol that implements Lamport clocks.

receives a message, the process clock is updated to the
maximum of the process clock value and the logical clock
tagged to the message, incremented by one.

Fig. 3 presents an EventML specification of Lamport
clocks, which we call CLK. It is parametrized by the fol-
lowing three variables (lines 3-5): locs is the collection of
processes of the specified distributed system, MsgVal is the
type of the information contained in the messages exchanged
by the processes, and handle is the function used to handle
incoming messages. When a process running at location loc

receives a message msg, it applies the handle function to loc

and msg, computing a new message newmsg and the location
of a recipient process to which newmsg has to be sent.

A Timestamp is a logical clock, represented by an integer
(line 7), and a message body is a pair consisting of a MsgVal

and a Timestamp (line 8). We refer to the first component of
a message as its value and to the second component as its
timestamp. The msg declaration (line 8) implicitly declares
the msg’base event class that recognizes such messages, and
extracts their content. It also implicitly declares the msg’send

message constructor that takes a recipient loc and a message
content (value,timestamp) and builds the instruction “send
message with content (value,timestamp) to loc”.

Next, we define the event class Clock in charge of keeping
track of the current clock at each process location (line 13).
EventML’s State keyword defines a state machine; Clock

specifies a state machine with initial state 0. On each mes-
sage, Clock invokes upd_clock (lines 11-12), which extracts
the timestamp of the message, computes the maximum max

between this timestamp and its current clock (given by the
parameter clock in upd_clock’s definition), sets its clock to
max + 1, and returns its new clock.

We define the event class Handler using the EventML
composition combinator o (line 18). On each input mes-
sage, if msg’base produces (value,timestamp), and if
Clock produces clock, then Handler produces the result
of (on_msg slf (value,timestamp) clock), where slf is
the location at which the process is running. First, on_msg
(lines 15-17) applies the function handle (a parameter of the
system) to slf and to value to produce a new value newval.
Then, using msg’send, on_msg builds a “send message”
instruction with data newval and timestamped with the
current clock clock provided by Clock.

Finally, the declaration main Handler @ locs declares
that CLK is composed of processes implementing Handler

and running at each location in locs (line 20).

2) Verification: We have to prove that e1 → e2 implies
LC(e1) < LC(e2). Lamport specifies two conditions C1
and C2 that are enough to prove that this so-called Clock
Condition holds [7]. C1 is the local property that the clock
of a process as specified by Clock can only strictly increase
over time. In EventML and Nuprl, this is called a progress
property. We specify it as follows in EventML:
progress strict_inc on clock1 then clock2 in Clock

with msg’base
== clock1 < clock2 ;;

This says that if the clock (as specified by Clock) of a
process is clock1 at some event e1, and clock2 at some later
event e2 (i.e., the process received a message in between the
two events), then clock1 is strictly less than clock2. C2 is
the global property that the clock of the sender of a message
must be less than the clock of the receiver of that message.
Our definition of upd_clock enforces C2.

To prove in Nuprl that CLK satisfies Lamport’s Clock
Condition, we first define the recursive “happened before”
relation as follows, using LoE’s causal order relation2 <:

e1 → e2 ==r ∃e:E.
((e < e2)
∧ ((¬(loc(e) = loc(e2))) ⇒ (e2 caused by e))
∧ ((e = e1) ∨ e1 → e))

This formula says that event e1 happens before event e2
if there exists an event e in between such that: (1) e happens
causally before e2 in LoE; (2) if e and e2 do not happen at
the same location then e2 was triggered by a message sent at
e (this is captured by the “caused by” Nuprl abstraction); and
(3) because the “happens before” relation is transitive then
either e is e1 or e1 happens before e (this is the recursive
call to the “happens before” relation).

Nuprl provides a tool to translate an LoE specification
into a so-called Inductive Logical Form (ILF). Using the ILF,
distributed system properties can be proven by induction on
causal order. An ILF characterizes the outputs of the LoE
specification in terms of its state and inputs. ILF formulas
are called “inductive” because in general they describe

2LoE’s causal order relation is more abstract that Lamport’s “happens
before” relation. In LoE, the causal ordering of the events of a system is an
axiom. It might follow from more subtle and complicated communication
means than exchanges of messages.

4

1. ∀[MsgVal:ValueAllype]. ∀[locs:bag(Id)]. ∀[handle:Id → MsgVal → (MsgVal × Id)].
2. ∀[f:headers_type]. ∀[eo:EO(f)]. ∀[e:E(eo)]. ∀[d:Z]. ∀[i:Id]. ∀[m:Message(f)].
3. {<d, i, m> ∈ CLK(MsgVal;locs;handle;f)(e)
4. ⇐⇒ loc(e) ↓∈ locs
5. ∧ (header(e) = ‘‘msg‘‘)
6. ∧ has-es-info-type(eo;e;f;MsgVal × Z)
7. ∧ (d = 0)
8. ∧ (i = (snd((handle loc(e) (fst(msgval(e)))))))
9. ∧ (m = make-Msg(‘‘msg‘‘;<fst((handle loc(e) (fst(msgval(e))))), ClockVal(MsgVal;f)@e>))}

Figure 4. The Inductive Logical Form of CLK.

the information computed at some events in terms of the
information computed at prior events.

Fig. 4 shows CLK’s ILF. This ILF is automatically gen-
erated by Nuprl using various logical simplifications and
using characterizations of the LoE combinators. It says
that in CLK, an event e results in message m being sent
to location i (line 3) iff3: event e happens at one of the
locations in locs (line 4); ‘‘msg‘‘ is the header of the
message that triggered e to happen (line 5); the type of
the data contained in that triggering message is MsgVal × Z
(line 6); the location i is computed by applying handle to e’s
location and to the value of the triggering message (line 8);
m’s value is also computed using handle, and its timestamp is
the current clock, given by ClockVal(MsgVal;f)@e (line 9).
ClockVal is automatically generated from the Clock event
class. Because at each event Clock returns one and only
one value, ClockVal is the function that takes an event and
returns that value. Clock is what we call a single-valued
event class. All our state classes are single-valued.

It turns out that the ILF presented in Fig. 4 is not explicitly
inductive in the sense that it does not mention earlier events.
The inductive character of that particular ILF comes from
the occurrence of ClockVal. ClockVal’s value at a particular
event e is defined in terms of prior events, as expressed
by the equality presented in Fig. 5. These equalities are
generated and proved semi-automatically as required.

Using the ILF presented in Fig. 4 and the characterization
presented in Fig. 5, it is then easy to prove that CLK

satisfies Lamport’s Clock Condition (this corresponds to task
labeled d in Fig. 2). Fig. 6 shows a Nuprl statement of this
fact. To prove this property, we assume that events can only
be caused by messages with headers ‘‘msg‘‘ as specified by
the hypothesis (∀e:E(eo).↑e ∈b msg’base(MsgVal;f)).

Note that the ILF transformation is optional—it is possi-
ble, though more tedious and difficult, to prove correctness
using the LoE specification directly in Nuprl.

3) Process optimizations: Having proved that CLK satisfies
the desired correctness properties we can now trust the GPM
code generated by EventML’s compiler. However, this code
is often hard to read and inefficient because GPM programs
are built using several combinators defined as recursive
functions, leading to programs composed of several nested

3Variable d in Fig. 4 is a period of time the process must wait before
sending the message. These delays are useful, e.g., to implement timers.

recursive functions. Also, event classes typically occur more
than once in specifications, leading to unnecessary duplica-
tion of code.

To overcome these inefficiencies, we have built a tool that
can optimize GPM programs and prove that the optimized
program has the same computational behavior as the non-
optimized program. Our optimizer merges nested recursive
functions into one and also applies common subexpression
elimination. Besides producing more efficient code, the
optimized code tends to be easier to read as it is closer
to what one would write by hand.

Fig. 7 shows the statement (lines 1–10) and proof
(line 11) that the non-optimized GPM program generated
by EventML, called CLK-program in that figure (line 1), is
equivalent to the optimized code (lines 2–10) presented on
the right-hand-side of the ∼ symbol (which is a bisimulation
relation) as generated by our program optimizer. This pro-
gram is a distributed system generator. It takes a location,
slf (line 2), and returns the process that is meant to run
at that location. If slf is not a member of locs then our
process generator returns the halted process halt (line 10).
Otherwise, it returns the application of the process R to the
initial state 0 (line 9), the initial timestamp. The process
R (lines 3–8) is a recursive function that takes a state s, a
message m, and depending on whether or not the header of
that message is ‘‘msg‘‘ (line 4) does one of two things: if
m’s header is ‘‘msg‘‘, R builds a new state s’ (line 5), a
collection out of messages to send in response to m (line 6),
and returns the pair of the new process R(s’) and the outputs
out (line 7); otherwise R returns the process R(s) and an
empty list of outgoing messages (line 8). Given such a
pair <R(s’),out>, EventML sends the messages in out, and
R(s’) replaces R(s).

D. Generation and Verification of a broadcast service:
Fault handling in a distributed system can be difficult

because there may be disagreement among the participants
about who is up and who is down. At the core of the
solution is a consensus protocol that participants use to reach
agreement on competing proposals for recovery actions.

Implementing such protocols is difficult even if the proto-
col itself is well-understood. For instance, Google describes
an extension to Paxos that allows them to recover from disk
corruption [17]. Unfortunately, this extension has a bug in
it. A Paxos acceptor could promise one leader not to accept
ballots lower than b, lose this state after a disk corruption,

5

∀[MsgType:ValueAllType]. ∀[f:headers_type]. ∀[es:EO(f)]. ∀[e:E(eo)].
(ClockVal(MsgType;f)@e = if e ∈b msg’base(MsgType;f)

then if first(e) then imax(snd(msg’base(MsgType;f)@e);0) + 1
else imax(snd(msg’base(MsgType;f)@e);ClockVal(MsgType;f)@pred(e)) + 1 fi

else if first(e) then 0 else ClockVal(MsgType;f)@pred(e) fi)

Figure 5. A characterization of the Clock event class in Nuprl.

∀MsgVal:ValueAllType. ∀locs:bag(Id). ∀handle:Id → MsgVal → (MsgVal × Id).
∀f:headers_type. ∀es:EO(f). ∀e1,e2:E(eo). ∀clk1,clk2:Z.

((∀e:E(eo).↑ e ∈b msg’base(MsgVal;f)) ∧ e1 → e2 ∧ clk1 ∈ Clock(MsgVal;f)(e1) ∧ clk2 ∈ Clock(MsgVal;f)(e2))
⇒ (clk1 < clk2)

Figure 6. The clock condition as stated in Nuprl.

1. ` ∀[MsgVal,locs,handle,f:Top]. (CLK-program(MsgVal;locs;handle;f)
2. | ∼ λslf.if slf∈blocs
3. | then let rec R(s) = run (λm.let hdr,body = m
4. | in if name_eq(hdr;‘‘msg‘‘)
5. | then let s’ ← upd_clock(MsgVal) slf body s in
6. | let out ← (on_msg(MsgVal;handle;f) slf body s’) @ [] in
7. | <R(s’), out>
8. | else let s’ ← s in <R(s’), []>)
9. | in R(0)
10. | else halt)
11. BY SqequalProcProve2

Figure 7. An optimized implementation of CLK.

EventML LoE GPM opt. GPM correctness correctness
spec. spec. prog. prog. properties proofs

CLK 79N (1H) 590N 452N 249N 73N (1H) 1A/3M (2H)
TwoThird Consensus 646N (4H) 1398N 1343N 1752N 122N (1H) 8A/6M (3D)
Paxos-Synod 1729N (2D) 2673N 2625N 3165N 97N (1H) 24A/75M (3W)
Broadcast Service 820N (2D) 1434N 1352N 1245N 418N (1H) 0A/22M (1W)

Table I
SOME STATISTICS REGARDING SPECIFICATION, VERIFICATION, CODE GENERATION OF VARIOUS MODULES. “N” STANDS FOR NUMBER OF AST
NODES, “A” FOR AUTOMATICALLY PROVED LEMMAS, “M” FOR MANUALLY PROVED LEMMAS, “H”, FOR HOURS, “D” FOR DAYS, AND “W” FOR

WEEKS.

and subsequently accept lower ballots. Such bugs cannot be
found easily with either testing or model checking.

During the past several years, we drew from our ex-
perience in building formal method tools, programming
languages, and distributed systems to develop tools and
libraries of definitions and lemmas that offer the right
level of abstraction to build formally verified distributed
algorithms. We have learned from our experiences that it
is best to adapt logical methods to follow the way system
designers build and reason about systems. For example,
LoE captures some design patterns that distributed system
developers often use such as the delegation of a task to a
sub-process. Our LoE delegation combinator allows us to
specify distributed programs using a modular or “divide and
conquer” method, which makes human reasoning tractable.
Also, instead of deriving code in a top-down way from
abstract specifications using refinements maps, our tools
directly generate both code and specifications from pseudo-
code specifications, which allows us to test the code before
doing any formal reasoning.

We started our experiments with a consensus protocol that
we call TwoThird Consensus, based on the One Third Rule
algorithm [18]. Simpler than Paxos, it is a leaderless, round-
based protocol that is fully symmetric. With the tools that

we developed, it now takes us a few days to specify it in
EventML and prove its safety properties.

Table I presents some statistics. While the CLK specifi-
cation contains 79 nodes in the EventML Abstract Syntax
Tree (AST), TwoThird Consensus is almost 10 times larger.
We developed the CLK specification in under an hour, and
a person experienced with our environment can develop the
EventML specification of TwoThird Consensus from an in-
formal specification in an afternoon. The next three columns
show the sizes (in Nuprl AST nodes) of the automatically
generated LoE specification, the GPM program, and the size
of the GPM program after optimization. Note that we can
run and test GPM programs even before we proved any
properties about them.

The “correctness properties” column shows the approxi-
mate time required to formalize the correctness properties
from informal specification. In each case, we were able to
do so in under an hour. Proving the properties is another
issue. Nuprl is a tactic-based prover in the style of LCF [19].
These hand-crafted tactics try to find a proof of a lemma
automatically. This is not always successful. The last column
specifies the number of lemmas that were proved automati-
cally by Nuprl without interactive assistance, and the number
of lemmas that required manual help from us. In the case

6

of CLK, we were able to do all this in a matter of a few
hours, and it took us only three days to formally prove the
safety properties of the TwoThird Consensus specification.
This is in part due to the rich library of tactics and lemmas
about LoE that we developed over the past several years.

At the time, we only proved safety properties. Interest-
ingly, using manual inspection of the code we found that our
initial version was not live because of a deadlock scenario.
We would have found this if we had tried proving liveness
properties. Fixing the specification as well as fixing the
proofs turned out to be easy. About two lines of code had
to change and it took less than a day to fix the proofs.

We then moved on to the multi-decree Paxos Synod pro-
tocol, the heart of the same protocol in the Paxos implemen-
tation used by Google. We started from an existing informal
English specification of the protocol and its correctness
properties [20]. While it took us years when counting the
development of the tools and libraries of tactics and lemmas,
it is now possible to formally specify Synod in a few days
and verify it in a few weeks.

We made a mistake in an early version of our EventML
specification of Synod. Running and testing the unverified
GPM code did not reveal the bug—instead, we found the
bug when we were unable to prove the safety properties of
our specification. Thankfully, fixing the specification as well
as the proofs turned out to be a fairly easy task (only a few
lines of code had to change and it only took us a few days
to fix the proofs). Not shown in the table, we also specified
and verified the Multi-Paxos protocol, including the state
machine replicas. Again, we made mistakes but fixing the
mistakes required mostly machine time.

Finally, we built a total order broadcast service that
we use in the replicated databases described in the next
section. The total order broadcast service guarantees that the
participating processes deliver the same messages and in the
same order [21]. The total order broadcast service builds
upon consensus protocols, and is able to switch between
protocols for different messages. Currently, the total order
broadcast service can use both the TwoThird Consensus
and the Paxos multi-decree Synod consensus modules. This
demonstrates that we can develop complex services in a
modular fashion.

III. Building a Replicated Database

The total order broadcast service is a powerful building
block for implementing various well-known fault-tolerant
replication protocols such as primary-backup [6], state ma-
chine replication [7], deferred update replication [22], and
chain replication [23].

We have developed a replicated database, ShadowDB, that
can be configured with either primary-backup (PBR) or state
machine replication (SMR). In both cases, strict serializabil-
ity consistency is ensured [24]: to clients it appears as if

transactions were executed sequentially, each at some point
between the time that a client submitted the transaction and
the client received the result. We assume that sequential
transaction execution is deterministic.

For both primary-backup and state machine replication we
assume a partially-synchronous environment [25] and crash
failures only—failure detection is unreliable in either case.
The participants communicate over TCP channels, and we
assume that correct processes can eventually communicate
with one another. ShadowDB does not currently mask bugs
that lead databases to corrupt data, improperly handle con-
currency, or give unauthorized access to users. Mandelbugs
and Heisenbugs can cause replica states to diverge even if
transactions are ordered. Dealing with these is the subject
of future work.

In the case of primary-backup, we make a distinction
between normal case processing and failure handling. The
normal case protocol is relatively simple and hand-written (it
deals with ordering transactions only). If either the primary
or a backup is suspected of having failed, the total order
broadcast service is used to propose and decide on a new
configuration. With state machine replication, transactions
are ordered by broadcasting them to the replicas using the
total order broadcast service. For both primary-backup and
state machine replication, the crash of all but one of the
database replicas can be masked. It is worth noting that
the number of tolerated database replica failures is different
from the number of failures tolerated by the total order
broadcast service. When using Paxos to broadcast messages
in order, only a minority of failures can be tolerated, that is,
if we deploy the broadcast service on three replicas, then at
most one failure can be masked.

In this section, we present in more detail how ShadowDB
handles transactions in both types of replication, and how
we exploit diversity to improve reliability. In the presenta-
tion below, T is a transaction. Submitting a transaction T
involves sending T ’s type and its parameters to a server. In
case of failures, clients may timeout and resend transactions
to the replicas. To ensure that a transaction is executed only
once, each replica has to keep track of which transactions
have been performed already, treating duplicates as no-ops.
This can be done efficiently by recording the sequence
number of the last transaction submitted by each client.

A. Primary-backup: Our primary-backup protocol han-
dles a transaction T in the normal case similar to other
primary-backup protocols [6]: (i) the client sends T to the
primary database, (ii) upon first reception of T , the primary

7

executes and commits4 T and forwards T to the backups,5

(iii) the backups, upon receipt of T , also execute and
commit T , and send an acknowledgment back to the primary,
(iv) the primary waits to receive an acknowledgment from
all backups before notifying the client of the transaction’s
success. The notification contains the transaction’s result
set, if any. Transaction execution is sequential both at the
primary and at backups.

If one or more replicas crash or become unreachable,
the protocol is unable to make progress. To detect failures,
the primary and backups monitor each other by periodically
exchanging heartbeats. The recovery procedure allows sur-
viving replicas to propose new configurations that exclude
suspect replicas and optionally replace them with new ones.
Different replicas could propose conflicting configurations.
The recovery procedure uses the total order broadcast service
to ensure agreement on the sequence of configurations.

Each configuration is identified by a sequence number.
The initial configuration has sequence number 0. During
normal operation, the primary tags transactions with the
sequence number of its configuration. Backups only accept
and execute transactions if the sequence number tag matches
their current configuration.

When a replica r suspects a subset of replicas to have
crashed, recovery happens as follows:

1) r stops executing transactions in the current configura-
tion, ensuring that the configuration can no longer order new
transactions even if the failure suspicions are inaccurate.

2) r creates a proposal for a new configuration and broad-
casts its proposal using the total order broadcast service.
This message is tagged with the current configuration’s
sequence number and a list of replicas, where replicas that
are suspected of having crashed have been removed and
possibly replaced by new replicas.

3) Upon receipt of a proposal for a new configuration, a
replica r′ first checks if the proposal’s sequence number g
corresponds to its current configuration. If not, r′ ignores
the proposal. This way only the first proposal is considered
by the replicas. To elect a new primary, replica r′ sends
(g + 1, seqr ′) to all replicas in the new configuration (over
TCP channels). Here seqr′ is the sequence number of the
last executed transaction by r′. If r′ was not part of the
previous configuration, r′ sends (g + 1, 0).

4) Each replica in the new configuration waits to hear
from all replicas. The new primary is the replica with the
largest sequence number. In case of a tie the replica with
the smallest identifier wins.

4The execution of the transaction may lead the operations within the
transaction to request an abort. Because we assume transactions are
deterministic, all replicas will abort the transaction. Databases unable to
commit a transaction for other reasons are treated as crashed replicas.

5The primary does not extract state updates resulting from the execution
because we are using unmodified databases and cannot extract state updates
in general.

5) Where possible, the new primary sends missing trans-
actions to those backups that need to catch up. If this is
not possible (each replica only caches a limited number of
executed transactions), the new primary sends a snapshot of
its entire database.

6) Each backup sends an acknowledgment to the primary
upon recovery.

7) When the primary has received an acknowledgment
from all backups, the normal protocol resumes and the
primary can start ordering new transactions.
If failures occur during recovery, the procedure is restarted.
It is easy to show that the recovery procedure maintains two
important properties:
• Durability: Once a client receives a transaction’s an-

swer, the execution of this transaction is permanently
reflected in the state of the surviving replicas;

• State-agreement: In each configuration, replicas that
process transactions start in the same state.

The recovery protocol sends the entire database snapshot
to new replicas. This leads to a long disruption of the service
when the database is large. In some cases, it is possible to
overlap state transfer with the normal case protocol however.
If there are at least three replicas and at least one other
replica has been brought up-to-date by the primary, we
can resume normal execution and propagate the database
snapshot to the other backups in parallel. Such recovering
replicas buffer incoming transactions until they have the
full snapshot. The primary waits only for acknowledgments
from replicas that have recovered. While this takes place,
the maximum number of tolerated failures is one fewer
than the number of recovered replicas. If failures occur
during recovery, the recovery procedure is restarted but only
replicas with a full copy of the database can be candidates
to become primary.

B. State Machine Replication: With state machine
replication, all transactions are ordered by the total order
broadcast service. Executing a transaction T happens as
follows: (i) the client broadcasts T to all replicas using
the broadcast service, (ii) upon delivering T , each database
executes and commits the transaction and sends the answer
to the client, (iii) the client waits to receive the first answer.

When a replica crashes, the protocol proceeds normally
with no interruptions as long as at least one replica survives.
If a replica suspects another replica to have crashed, it
creates a snapshot of its database and broadcasts a reconfig-
uration request to add a new replica and remove the crashed
one. This request contains the sequence number of the last
ordered transaction but not the snapshot. The new replica
obtains the snapshot from the proposer (a recovering replica
can potentially fetch only the transactions it is missing).

C. Diversity: While the total order broadcast service
has provable correctness guarantees at the level of Nuprl
programs, for the rest ShadowDB relies on an environment

8

that is hand-written and may contain bugs. This environ-
ment contains the Nuprl program interpreters, the operating
systems, compilers, libraries, and of course the databases
themselves. We employ diversity to attempt to mask corre-
lated failures in the environment [26].

As we shall see, we deploy different databases in Shad-
owDB. Our implementation allows to easily plug in any
JDBC-enabled database by specifying the database driver
and the connection URL. We could easily go further and
compile these with different compilers, and run these on
different operating systems and hardware.

The total order broadcast service itself can also benefit
from diversity. We currently have Nuprl program interpreters
available in SML and Ocaml. Such interpreters are easy
to build and test as Nuprl programs are built from few
constructs with well-defined semantics. Nuprl programs can
also be translated into other functional languages. Indeed,
we developed a translator from Nuprl programs to Lisp. We
can then compile the Lisp code using different compilers
and run it in different environments.

IV. Evaluation
In this section, we evaluate the performance of the broadcast
service and compare ShadowDB with primary-backup repli-
cation (ShadowDB-PBR) and with state machine replication
(ShadowDB-SMR) to popular databases. We do so on a
cluster of quad-core 3.6GHz Intel Xeons connected with a
gigabit switch. Each machine runs Red Hat Linux 5.8 and
is equipped with 4GB of memory. The hand-written part of
ShadowDB is coded in Java and respectively contains 1,199
and 292 lines of code for PBR and SMR. ShadowDB and
the broadcast service interact using TCP sockets.

A. The broadcast service: We measure the time needed to
broadcast a message and receive a deliver notification from
the broadcast service when running Paxos on three machines
(f = 1). Each experiment consists of 500 messages broad-
cast per client when the service runs in the SML interpreter,
and 10,000 messages per client when we run the service
translated into Lisp. Each message contains 140 bytes of
payload. All versions of the broadcast service implement
batching, that is, multiple messages can be bundled in one
Paxos proposal. In Fig. 8, we report the average delivery
latency as a function of the load and we vary the number of
clients broadcasting messages between 1 and 43. With one
client, the non-optimized service run in the SML interpreter
takes 122ms to deliver a message. The optimized version re-
duces this latency to 69.4ms. At their maximum throughput
of respectively 27 and 65 messages delivered per second,
both interpreted versions are CPU-bound.

Not surprisingly, the broadcast service greatly benefits
from being translated into Lisp: only 8.8ms are required
to deliver a message with one client, and the maximum
throughput reaches 900 messages per second. At this

1

10

100

1000

1 10 100 1000 10000

L
at

en
cy

(m
s)

Delivered messages per second

Interpreted –+– Inter.-Opt. – – Compiled –×–

Figure 8. The performance of the broadcast service with Paxos.

throughput the execution is CPU-bound. Although compil-
ing the service brings a significant speed-up, performance
remains one order of magnitude slower than a hand-coded
Paxos. However, Sec. IV-B shows that the Lisp broadcast
service is fast enough to let ShadowDB with state machine
replication match the performance of its primary-backup
counterpart under one of the two considered benchmarks.

B. ShadowDB: We assess the performance of ShadowDB-
PBR and ShadowDB-SMR using a micro-benchmark and
TPC-C [27]. The micro-benchmark consists of a database
of bank accounts, each having an identifier, an owner,
and a balance. For the sake of diversity, we deploy each
ShadowDB replica with a different in-memory embedded
SQL databases: H2 1.3.170, HSQLDB 2.2.9, or Apache
Derby 10.9.1. For a few setups, all replicas are deployed
with the same database to make comparisons fair.

In all experiments below, group configurations contain
two databases (f = 1); the third database is used by
ShadowDB-PBR to replace the backup when we crash the
primary. The broadcast service relies on the Paxos protocol
and is deployed on three servers (Paxos needs three ma-
chines to tolerate one failure). We run the broadcast service
in the interpreter with ShadowDB-PBR, and we rely on the
Lisp service for ShadowDB-SMR. Databases are co-located
with the processes of the broadcast service. Clients run on
a separate machine.

Normal Case: Fig. 9(a) plots the average latency as
a function of the number of committed transactions per
second. We increase the load imposed on the system by
varying the number of clients between 1 and 32, each
submitting 35,000 update transactions. These transactions
deposit money on a randomly selected account. Rows are
16 bytes in length and the database contains 50,000 rows.

We compare the performance of ShadowDB with the
stand-alone H2 database (the fastest database among H2,
Derby, and HSQLDB), the built-in H2 replication protocol,
and MySQL replication. To make the comparison fair we
deploy ShadowDB with H2 both at the primary and at
the backup. ShadowDB-PBR reaches a throughput of more
than 4,600 update transactions per second or 72% of the
maximal throughput attained by a stand-alone H2 database.

9

0.1

1

10

100

0 2K 4K 6K 8K

L
at

en
cy

(m
s)

Committed transactions per second

ShadowDB-PBR –+– ShadowDB-SMR – –
H2-repl. – – MySQL-repl. – – H2-stdalone –•–

(a)

1

10

100

0 200 400 600 800 1000

L
at

en
cy

(m
s)

Committed TPC-C transactions per second

ShadowDB-PBR –+– ShadowDB-SMR – –
MySQL-repl. – – H2-stdalone –•–

(b)

Figure 9. The performance of ShadowDB compared to other replication protocols: (a) our micro-benchmark; (b) the TPC-C benchmark.

This is the best performance attained by any of the replicated
databases considered and is a consequence of ShadowDB-
PBR’s design: the normal case is hand-coded for efficiency.
This performance comes with confidence in the code’s cor-
rectness: normal case processing is simple and can easily be
tested; recovery relies on code with correctness guarantees.

The H2 replication protocol quickly reaches its maximum
throughput as can be seen in Fig. 9(a). This happens when
contention is too high and transactions timeout when trying
to lock the database table (H2 does not offer row-level
locks). comparison, ShadowDB-PBR executes transactions
sequentially at each replica, thereby avoiding this prob-
lem, and commits transactions in batches, to provide high
throughput. The in-memory storage engine of MySQL only
provides table locking and thus suffers from a similar issue.
The maximum throughput attained is 3,900 transactions per
second. Adding more clients results in even higher con-
tention and lower overall throughput. We also benchmarked
MySQL replication with an InnoDB table and synchronous
writes turned off. Since InnoDB uses row-level locks, this
lowered the abort rate, but the maximum throughput reached
is lower than with an in-memory table. ShadowDB-SMR
reaches a maximal throughput of 760 transactions per second
and is the slowest replicated database under the micro-
benchmark. At this throughput, transaction execution con-
sumes a significant amount of CPU and this prevents the
Lisp broadcast service from reaching its maximal throughput
since databases and Paxos processes are co-located.

In Figure 9(b) the same databases are compared using
the TPC-C benchmark configured with 1 warehouse. We
report the average transaction execution latency, considering
all five TPC-C transaction types, as a function of the load.
Experiments consist of between 1 and 10 clients, each
submitting 3,000 TPC-C transactions. H2 replication suffers
from contention on the table locks and can only sustain a
maximum of 62 TPC-C transactions per second; the curve is
therefore omitted from the graph. ShadowDB-PBR reaches a
maximum throughput of 550 transactions per second, or 66%
of the maximum throughput of a standalone H2 database.

Interestingly, ShadowDB-SMR provides a similar maximum
throughput of 526 transactions per second. Recall that with
ShadowDB-SMR, all but transaction execution comes with
correctness properties. This shows that using formal methods
to build replicated databases is not only feasible but it can
also provide good performance.

For TPC-C, we run MySQL with the InnoDB storage
engine, sufficient buffer space to hold the entire database in
memory, and synchronous disk writes disabled—the mem-
ory engine provides lower performance than InnoDB due to
operations on indices such as “less than” and “order by” that
are not optimized. TPC-C transactions involve several round-
trips between the client and the database for each of the
five transaction types. The ShadowDB-PBR and ShadowDB-
SMR replicas execute the transactions in the same JVM as
the database, which lowers latency and improves throughput
significantly compared to running them in separate JVMs.

Recovery: Fig. 10(a) illustrates an execution of ShadowDB-
PBR using the micro-benchmark where we crash the primary
(with ShadowDB-SMR, a crash of a replica is transparent as
long as one replica is functioning). We plot the instantaneous
throughput of committed transactions as a function of time.
The experiment consists of 10 clients with H2 on the
primary, HSQLDB on the backup, and Derby on the spare
backup. After 15 seconds of execution we crash the primary,
and 10 seconds later the backup detects this crash (detec-
tion time is configurable). The new group configuration is
delivered about 69ms after its broadcast, and the remaining
of the recovery protocol, including state transfer, takes 3.8
seconds (the database contains 50,000 tuples, each 16 bytes
long). At time 40 seconds clients resume their execution.

Fig. 10(b) presents the time it takes to transfer the
database state from one replica to another. With ShadowDB-
PBR, this happens when a crash has occurred and the
primary transfers its state to the backups. With ShadowDB-
SMR, a state transfer happens when we add a replica to
the group using the broadcast service (possibly long after a
crash occurred). State transfer consists in selecting the rows
of each table, sending the rows in batches, and inserting

10

2K

4K

6K

0 10 20 30 40 50 60

Tr
an

s.
pe

r
se

c.

Seconds elapsed

1 2
3

(a)

0.01
0.1

1
10

100
1000

5 ∗ 102 5 ∗ 103 5 ∗ 104 5 ∗ 105

Ti
m

e
(s

)

Database size (number of rows)

16B –+– 1KB –×–

0.4s
1.4s 3.8s

22.6s0.5s
2.4s

9.1s
69.6s

(b)

Figure 10. An execution with a crash of the primary (a) (1: crash detection in 10 sec, 2: group reconfiguration and state transfer in 3.8
sec, 3: clients resume their execution) and the overhead of state transfer (b).

them in the corresponding table at the destination replica. We
consider rows of 16 bytes and 1 kilobyte with respectively
3 and 4 columns, and a number of rows varying from
500 to 500,000. For both row sizes, the batch size was
chosen such that it would be close to 50 kilobytes in
serialized form. Our state transfer technique allows to do
state transfer with any JDBC-enabled database but is at
best one order of magnitude slower than what the network
can accomplish. In all experiments, row insertion speed
constitutes the bottleneck of state transfer.

With a TPC-C database configured with 1 warehouse, or
the equivalent of about 100MB of data, state transfer takes
54.5 seconds. In the case of TPC-C, serializing table rows
has a higher overhead compared to our micro-benchmark
because tables have many more columns (serialization over-
head is proportional to the number of table columns). As a
consequence, serializing the equivalent of 100MB of data
takes 77% of the time it takes to transfer a database of
500MB with rows of 4 columns (the state transfer time for
500,000 rows of 1KB in Fig. 10(b)).

V. Related Work

Our methodology resembles the one of seL4, the first
machine-verified operating system kernel [1]. Both our work
and seL4 start with an informal specification. From the infor-
mal specification, formal correctness properties are derived,
as well as a specification of the system. In the case of
seL4, the formal correctness properties are specified in Is-
abelle/HOL [2], and the system specification in Haskell [28].
For our work, we used Nuprl and EventML respectively.
In both cases, the system specification is translated into
a specification in the respective formal environment, and
a manual correctness proof is performed to show that the
specification satisfies the desired correctness properties.

Our methodologies depart from there. For seL4, the
executable code was handwritten in a subset of C and
has to be related to the specification using a refinement
mapping in Isabelle/HOL. Because EventML operates at a
different abstraction level than Haskell, we were able to
generate executable Nuprl code directly from the EventML

specification and automatically prove the correspondence to
the LoE specification. Also, exploiting Nuprl’s Inductive
Logical Form translator, we were able to prove correctness
of distributed system properties by induction on causal order.

Another similar approach is taken by the Formally Veri-
fiable Networking (FVN) project [29]. They use Network
Datalog (NDlog), a variant of Datalog [30], to specify
routing protocols in a declarative fashion. In our system we
use EventML. An NDlog specification can be translated into
axioms of PVS [31], and correctness proofs can be carried
out interactively. This corresponds to carrying out proofs at
the level of LoE. In FVN, it is also possible to translate PVS
axioms into NDlog. Within the P2 framework [32], the ND-
log specification is compiled into a dataflow program, with
dataflow elements written in C++. In our work, we generate
GPM programs from EventML specifications. P2 has been
extended with cardinality abstractions [33]. This technique
allows formal reasoning on the effects of applications of
declarative rules directly.

EventML has strong similarities to Orc [34], [35], a pro-
gramming language for structured concurrent programming.
Like EventML, Orc has a small set of combinators that
perform basic services, and Orc expressions are similar
to our event classes. Although there are formal semantics
of Orc, to the best of our knowledge none of them are
formalized in a theorem prover.

There are a variety of other languages to specify dis-
tributed systems concisely. Mace [36] specifications can
be model-checked and translated into C++ code. MOM-
MIE [37] specifications can be translated to runnable code
as well as to a TLA+ specification, to be verified. Nomadic
Pict [38] is a language designed for programming mobile
agents, with a precise semantics that allows reasoning about
correctness. In none of these cases is there a verifiable link
between the correctness of the specification and that of the
generated code that is executed.

VI. Conclusion

We presented our methodology to build highly-available
databases using new formal tools that allow the generation

11

of correct distributed protocols. Based on a total order broad-
cast service whose code comes with correctness properties,
we built two replicated databases: one is based on primary-
backup replication and the other is based on state machine
replication.

Primary-backup replication offers performance similar or
superior to the popular MySQL database. Although not as
fast as primary-backup replication on all benchmarks, we
showed that the state machine replication protocol provides
similar peak throughput on the TPC-C benchmark. With
state machine replication, normal case operation relies on
the broadcast service, and a larger proportion of the code
comes with correctness guarantees. This shows that building
replicated databases with formal guarantees is not only
feasible but it can also provide good performance.

References
[1] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood, “seL4: formal verification of an OS kernel,” in SOSP’09.
ACM, 2009, pp. 207–220.
[2] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, ser. LNCS. Springer, 2002, vol. 2283.
[3] X. Leroy, “Formal certification of a compiler back-end or: program-
ming a compiler with a proof assistant,” in POPL’06. ACM, 2006, pp.
42–54.
[4] “The Coq Proof Assistant,” http://coq.inria.fr/.
[5] N. Schiper, V. Rahli, R. V. Renesse, M. Bickford, and R. L.
Constable, “ShadowDB: A replicated database on a synthesized consensus
core,” in HotDep’12, 2012. [Online]. Available: http://nuprl.org/KB/show.
php?ID=696
[6] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg, “The primary-
backup approach,” in Distributed systems (2nd Ed.), S. Mullender, Ed. New
York, NY: ACM Press/Addison-Wesley Publishing Co., 1993.
[7] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” CACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.
[8] V. Rahli, “Interfacing with proof assistants for domain specific pro-
gramming using EventML,” presented at UITP 2012.
[9] M. J. C. Gordon, R. Milner, and C. P. Wadsworth, Edinburgh LCF:
A Mechanised Logic of Computation., ser. LNCS. Springer-Verlag, 1979,
vol. 78.
[10] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland,
J. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler,
P. Panangaden, J. T. Sasaki, and S. F. Smith, Implementing mathematics
with the Nuprl proof development system. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1986.
[11] C. Kreitz, The Nuprl Proof Development System, Version 5, Reference
Manual and User’s Guide, Cornell University, Ithaca, NY, 2002, www.
nuprl.org/html/02cucs-NuprlManual.pdf.
[12] S. F. Allen, M. Bickford, R. L. Constable, R. Eaton, C. Kreitz,
L. Lorigo, and E. Moran, “Innovations in computational type theory using
Nuprl,” J. Applied Logic, vol. 4, no. 4, pp. 428–469, 2006.
[13] M. Bickford, “Component specification using event classes,” in
Component-Based Software Engineering, 12th Int’l Symp., ser. LNCS, vol.
5582. Springer, 2009, pp. 140–155.
[14] M. Bickford and R. L. Constable, “Formal foundations of computer
security,” in NATO Science for Peace and Security Series, D: Information
and Communication Security, 2008, vol. 14, pp. 29–52.
[15] M. Bickford, R. L. Constable, and V. Rahli, “Logic of Events, a
framework to reason about distributed systems,” in Languages for Dis-
tributed Algorithms Workshop, Philadelphia, PA, 2012. [Online]. Available:
http://www.nuprl.org/documents/Bickford/LOE-LADA2012.html
[16] M. Bickford, R. L. Constable, and D. Guaspari, “Generating event
logics with higher-order processes as realizers,” Cornell University, Tech.
Rep., 2010.
[17] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: an
engineering perspective,” in PODC’07. Portland, OR: ACM, 2007, pp.
398–407.

[18] B. Charron-Bost and A. Schiper, “The Heard-Of model: computing in
distributed systems with benign failures,” Distributed Computing, vol. 22,
no. 1, pp. 49–71, 2009.
[19] M. Gordon, R. Milner, and C. Wadsworth, Edinburgh LCF: a mech-
anised logic of computation, ser. LNCS. Springer-Verlag, 1979, vol. 78.
[20] R. V. Renesse, “Paxos made moderately complex,” Cornell University,
Tech. Rep., 2011.
[21] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and
multicast algorithms: Taxonomy and survey,” ACM Comput. Surv., vol. 36,
no. 4, pp. 372–421, 2004.
[22] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.
[23] R. Van Renesse and F. B. Schneider, “Chain replication for
supporting high throughput and availability,” in OSDI’04. USENIX
Association, 2004, pp. 7–7. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1251254.1251261
[24] C. Papadimitrou, “The serializability of concurrent updates in
databases,” J. ACM, vol. 26, no. 4, pp. 631–653, Oct. 1979.
[25] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” J. ACM, vol. 35, no. 2, pp. 288–323, 1988.
[26] L. Chen and A. Avizienis, “N-version programming: A fault-tolerance
approach to reliability of software operation,” in FTCS’77. Los Alamitos,
CA: IEEE Computer Society Press, 1977.
[27] “Transaction processing performance council benchmark c
http://www.tpc.org/tpcc/.”
[28] S. Jones, Haskell 98 language and libraries: the Revised Report.
Cambridge University Press, 2003.
[29] A. Wang, L. Jia, C. Liu, B. T. Loo, O. Sokolsky, and P. Basu,
“Formally verifiable networking,” in HotNets. ACM SIGCOMM, 2009.
[30] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases.
Addison Wesley, 1995.
[31] S. Owre, N. Shankar, and J. Rushby, “PVS: A prototype verification
system,” in CADE 11, Saratoga Springs, NY, Jun. 1992.
[32] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and
I. Stoica, “Implementing declarative overlays,” SIGOPS Oper. Syst. Rev.,
vol. 39, no. 5, pp. 75–90, Oct. 2005.
[33] J. A. Pérez, A. Rybalchenko, and A. Singh, “Cardinality abstraction
for declarative networking applications,” in CAV’09. Springer-Verlag,
2009, pp. 584–598.
[34] D. Kitchin, W. R. Cook, and J. Misra, “A language for task orchestra-
tion and its semantic properties,” in CONCUR 2006 - Concurrency Theory,
17th Int’l Conf., ser. LNCS, vol. 4137. Springer, 2006, pp. 477–491.
[35] D. Kitchin, A. Quark, W. R. Cook, and J. Misra, “The Orc program-
ming language,” in Formal Techniques for Distributed Systems, ser. LNCS,
vol. 5522. Springer, 2009, pp. 1–25.
[36] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. M. Vahdat,
“Mace: language support for building distributed systems,” in PLDI’07.
ACM, 2007, pp. 179–188.
[37] P. Maniatis, M. Dietz, and C. Papamanthou, “Mommie knows best:
systematic optimizations for verifiable distributed algorithms,” in HotOS’11.
USENIX Association, 2011, pp. 30–30.
[38] P. Sewell, P. Wojciechowski, and A. Unyapoth, “Nomadic Pict: Pro-
gramming languages, communication infrastructure overlays, and semantics
for mobile computation,” Trans. on Programming Languages and Systems,
vol. 32, no. 4, 2010.

12

