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Résumé — Développement de corrélations pour la prédiction des propriétés des fractions
pétrolières par les algorithmes génétiques — Notre étude concerne la caractérisation des fractions
pétrolières dont les propriétés thermodynamiques et physiques peuvent seulement être connues par une
expérimentation lourde et coûteuse due à la multiplicité de leurs constituants. Après une introduction des
éléments et des nouvelles tendances dans l’utilisation des techniques d’intelligence artificielle, cet article
prouve que les algorithmes génétiques peuvent être appliqués à ce domaine du pétrole. Par conséquent,
nous proposons une approche empirique pour estimer les propriétés critiques et le facteur acentrique des
fractions pétrolières, basée sur leurs points d’ébullition et densité facilement accessibles. Les algorithmes
génétiques nous fournissent aussi une forme appropriée de fonction pour la prédiction de ces propriétés.
Des résultats très prometteurs sont obtenus et plusieurs perspectives méritant d’autres investigations sont
soulignées.

Abstract — Developing Correlations for Prediction of Petroleum Fraction Properties Using Genetic
Algorithms — This paper deals with the characterization of petroleum fractions whose thermo-physical
behaviours can only be known through expensive measurement efforts due to the multiplicity of their
constituents. After introducing the issue and new trends in the use of artificial intelligence techniques, this
paper shows how genetic algorithms can be applied to this field. Hence, we propose an empirical
approach for estimating petroleum fractions critical properties and acentric factor based on their boiling
point and density that can be easily obtained. Genetic algorithms provide us with a proper function form
for the prediction. Moreover, very promising results are obtained and several relevant issues that deserve
further investigations are emphasized.
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NOTATIONS

Pc Critical pressure (bar)
SG Specific gravity
Tb Normal boiling temperature (K)
Tc Critical temperature (K) 
Vc Critical molar volume (cm3/gmol)
ω Acentric factor

INTRODUCTION

No matter how well advanced the knowledge is in the field of
chemical analysis and in the property-structure relationships,
an empirical approach based on correlation for estimating
properties of oil fractions remains unavoidable because they
are complex mixtures. This paper deals with the empirical
determination of the most significant properties of liquids
which are the acentric factor and the critical properties,
namely, the critical pressure, the critical temperature and the
critical volume. The reasons for the need to predict critical
properties and acentric factor of petroleum fractions are widely
known. Let us just briefly recall that the rationalization of
energy use depends strongly on an accurate thermo-physical
property prediction and that almost all fluid properties are
related to the critical properties and the acentric factor.

The experimental estimation of these parameters requires
sophisticated and expensive equipments as well as long and
precise manipulations. Moreover, it is limited to substances
with low molecular masses and that are stable near the criti-
cal points. The measurement of these characteristics for sub-
stances with high molecular mass becomes indeed difficult
and gives uncertain results due to the thermal decomposition
and the appearance of certain reactions around the critical
points of the substances. In order to overcome this difficulty,
correlations based approaches are widely used in the oil field.
In other words, since the well-known group contribution
methods cannot be used for the mixture of indefinite struc-
tures such as petroleum fractions, then the different correla-
tion methods try to relate critical properties with other prop-
erties that are easily obtained through experiments such as
the normal boiling point for instance.

Hence, over the years, several correlations have been pro-
posed for the characterization of petroleum fractions.
Simmrock et al. [1] surveyed 56 methods for estimating criti-
cal temperature, 55 for critical pressure and 54 for critical
volume. Even if several accurate methods are reported, the
characterization of the petroleum fractions still remains an
active research area [2-11]. This is mainly due to the fact that
a small error in critical property estimation can lead to a
much higher error in thermo-physical property prediction,
which can deteriorate the system operation efficiency.
Therefore, improvements to the classical approaches by
introducing new techniques are still necessary.

Artificial techniques brought a new sight to the characteri-
zation of petroleum fractions. To of the best of our knowl-
edge, the pioneer of the use of these techniques is the work
presented in [11], where authors proposed neural network for
estimating normal boiling point and critical properties as well
as acentric factor based on group contribution approach.
Even if contribution group approach suffers from limited
applications, encouraging results of this work motivated
other authors to overcome this drawback. [12] introduced a
neural network approach for the characterization of the petro-
leum fractions and studied the feasibility by comparing its
results with those of the most known correlations. Other
notable work is the one presented in [13]. This is based on a
genetic algorithm which was used to optimize the values of
the critical temperature and the critical pressure of a treated
North Sea crude oil without the light fraction. As in the case
of neural networks, genetic algorithms provide encouraging
results and show that correlations can be improved by artifi-
cial intelligence techniques. 

However, correlations still keeps the advantage of the eas-
iness of use when one faces the lack of experimental data.
For instance, the only way to benefit from results of [13] is to
reproduce the same implementations and to redo the same
computing and checking proceedings. From a practical point
of view, the main reason of such a way of use of artificial
intelligence techniques is that they avoid the difficult task of
looking for a functional form when developing an empirical
model [12]. The main motivation of our paper, which pro-
poses reusable mathematical formulas based on genetic algo-
rithms, is to benefit from the advantages of artificial intelli-
gence techniques and correlations.

Proper functions require significant computational effort
when they are nonlinear and involve large number of para-
meters. For this reason, genetic algorithms bring efficient
solutions by avoiding local minima. Moreover, it improves
the robustness toward the uncertainties on the correlation
coefficients, due to their adaptive and stochastic aspects.
Contrasting with the issue of petroleum fraction property pre-
diction, genetic algorithms have been widely applied in sev-
eral domains, especially in system optimizations and in eco-
nomical predictions [14, 15]. Our work shows the potential
of applying genetic algorithms to the thermodynamic field.
Using a data set of 109 different hydrocarbons, we obtain
interesting correlations in a short computing-time. The attrac-
tive point of implementing genetic algorithm to find correla-
tion parameters instead of a black box is to provide users
with a function that they can apply. Besides, if it is necessary,
the function can be adapted without changing the model
structure.

The paper is organized as follows. Firstly, Section 1 gives
a brief overview of genetic algorithms. In Section 2, the pro-
posed method is presented through an example. In Section 3,
the results of our method are then compared to the ones
obtained from the most general and widely admitted methods
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in the petroleum characterization field, in order to show that
our proposed formulas are still appropriate for petroleum
fractions.

1 GENETIC ALGORITHMS

Genetic algorithm is a particular class of evolutionary algo-
rithms, which are adaptive search techniques for approximat-
ing solutions of optimization and prediction problems. They
are based on a biological metaphor which simulates
processes in natural systems that are necessary for evolution,
specifically those that follow the principles first proposed by
Charles Darwin of the survival of the fittest [16, 17]. As
such, they represent an intelligent exploitation of a random
search within a defined search space to solve a problem. A
population of abstract representations (chromosomes) of
solution candidates (individuals) for an optimisation problem
evolves toward better solutions.

Traditionally, solutions are represented in binary systems
as an array of bits, but different encodings are also possible,
such as integer or real encodings. The evolution begins from
a population of completely random individuals (initialization)
and happens in generations. In each generation, the fitness of
the whole population is evaluated. Multiple individuals are
stochastically selected (selection) from the current population
according to their fitness, and mutated (mutation) or recom-

bined (crossover) to form a new population (reproduction).
The latter is then used in the next iteration. The algorithm
stops when a solution is found satisfying minimum criteria or
when a fixed number of iterations is reached.

When applying genetic algorithm, one has to define at
least a genetic representation of the solution domain (encod-
ing) and at the same time a fitness function to evaluate the
defined solution domain. In other words, one needs to fix the
encoding of the solution as an array of bits, integers or floats
in such a way that their parts are easily aligned due to their
fixed size. Besides, at the encoding stage, one has to take into
account the crossover and mutation operator complexity,
which depends on the solution representation. Indeed, in
some situations, in addition to problems associated with
encoding and with evaluation definitions, one can face the
problem of the definition of crossover and mutation operators
in order to keep the validity of the solution. Furthermore, the
fitness function has to be defined over the genetic representa-
tion in order to measure the quality of the represented solu-
tion. The fitness function is always problem dependent.

Once the genetic representation of the solution is known
and the corresponding fitness function is defined, the genetic
algorithm starts initializing a population of solutions ran-
domly. Then the algorithm improves it by repetitive applica-
tions of crossover, mutation and selection operators (Fig. 1).

After comparing real and binary encodings, we choose to
represent the solution in our case as a binary array because it
provides us with better results. The fitness is a sum of the
square of the difference between the known value of the dealt
property and the obtained one. Crossover and mutation oper-
ators are the uniform distribution [18] and the bit negation
rule, respectively. The algorithm stops when the fitness value
is less then the required precision. The following section
gives more details about the used genetic algorithm, through
an example of a given property.

2 APPROACH

The main objective is to find a function that relate a critical
property with the normal boiling point (Tb) and the specific
gravity (SG), from the following general function form:

(1)

where ∏c is a critical parameter which can be Tc (in Kelvin),
Pc (in bar), Vc (in cm3/g.mol) or the acentric factor.

We can notice that:
– Equation 1 is very helpful for obtaining an order of magni-

tude about the values of different important parameters of
the liquid considered. Only values of Tb and SG are
needed, which are very easy to measure in a short time
with inexpensive equipments.
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– The polynomial equation combined with the exponential
one is inspired from the literature. The final form is
deduced after several tests of different combinations
between polynomial and exponential functions of Tb and
SG.

– Equation 1 is easy to compute: a more complicated equa-
tion than the one presented can discourage the user and a
less complicated one does not provide us with good
results.
We draw the reader’s attention to the fact that the genetic

algorithm is used to help us obtain the values of the constants
a-i in Equation 1. In other words, the use of genetic algo-
rithm leads us to propose an appropriate function form for
each property. Since approaches to all critical parameters are
the same, let us focus our attention to one critical parameter.
Considering only the critical temperature (Tc), we have there-
fore to compute the constants of the following relation:

(2)

One can note that the solutions we have to encode are the
values of the constants in Equation 2. Using known experi-
mental data, we firstly fix an interval of variation for each
constant xi of the equation by means of a linear adjustment.
For example, we obtain –10 ≤ a ≤ 10 and 0 ≤ f ≤ 20. More
generally, we have ximin ≤ xi ≤ ximax. Then, each constant is
encoded in an array of 32 bits. Hence, each solution is repre-
sented by an array of 288 binaries. However, before starting
the encoding, we transform each float xi (a proposed value of
a constant in the equation) into an integer gi as follows:

(3)

where 0 ≤ gi ≤ gmax and gmax = 232 – 1. 
For more details about the range of constants, see Table 1.
The selection operator of the proposed genetic algorithm

is the well-known stochastic roulette wheel. This aims at giv-
ing preference to better individuals and granting them more
chance to pass on their genes to the next generation. The
crossover occurs by means of a comparison of binary indi-

gi = gmaxximax – ximin

xi – ximin

T aT cSG eT SG
SG h

T ic b
b d

b
f g

b

= + +( ) +
+

⎡

⎣
⎢

⎤

⎦
⎥exp

vidual bits in the string between two parents. The bits are
swapped with a probability of 0.5. A stochastic mutation is
implemented. The algorithm provides each constant of the
function with a 1% chance to be modified. At each step of
the algorithm, a random value is computed for each constant
in order to decide whether or not it will mutate. A constant
mutation means that one bit is chosen randomly and modi-
fied. The algorithm stops when the maximal absolute error of
the best solution is lesser than or equal to the admitted value. 

A set of 109 experimental data points of pure hydrocarbon
components was used to identify the proposed model. For
that purpose, we used the DIPPR’s data banks [19] devel-
oped by the Institute of Chemical Engineering of the
University of Pennsylvania, the data banks of the
Thermodynamical Research Center of the University of
Houston of Texas [20] and the API’s data banks [21, 22].
Table 2 summarizes the hydrocarbon family, the range of
carbon number and the number of data used in the evaluation
process.

TABLE 2

Hydrocarbon family of data bank

Component type Range number of compounds

Alkanes C6 – C30 40

Alkenes C6 – C20 15

Alkynes C6 – C20 9

Aromatics C6 – C28 20

Naphthenes C6 – C22 25

We can fix different error limitations (1%, 2%, 3%,
4%, ...). The user of the program has to do a compromise
between the quality of the solution and the CPU time. We
can obtain very satisfactory results in less than 1 minute. The
worst case we faced was 10 minutes of running time.
Moreover, we can stop the algorithm at any moment we
want. Figure 3 gives the running time on a Pentium III
against the precision and the population size. Table 3 shows
the results we obtain when we fix the error to 1%. 
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TABLE 1

Range of admitted values for constants of Equation 1

a B c d e f g h I

ximin ximax ximin ximax ximin ximax ximin ximax ximin ximax ximin ximax ximin ximax ximin ximax ximin ximax

Tc -10 10 -10 10 -10 10 -10 10 5 25 0 20 -5 15 -15 5 -500 500

Pc -4.106 8.106 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -10 10 -500 500

Vc -10 10 -10 10 -10 10 -10 10 0 1000 -10 10 -10 10 -10 10 -500 500

ω -10 10 0 20 -10 10 -10 10 -20 20 -10 10 -10 10 -15 5 -500 500



According to Equation 2, we obtain Table 3.

TABLE 3

Values of constants of Equation 2

a b c d e f g h i

0 0 0 0 17.8443 0.5965 0.2945 0 –100

From Table 3, Equation 2 can be rewritten as follows:

(4)

Figure 4 shows a comparison between results obtained
from formula (4) and two most widely used correlations
(Riazi-Daubert [23] and Lee-Kesler [24]) against experimen-
tal data. Each point corresponds to the percentage of the dif-
ference between an experimental critical temperature and the
computed one. For readability reasons, an exponential trend

T  . T SG
SG

T -c b
. .

b

=
⎡

⎣
⎢

⎤

⎦
17 8443

100
0 5965 0 2945 exp ⎥⎥

curve is presented for each used formula. One can immedi-
ately observe that results of Equation 4 are the nearest to
experimental values of critical temperature. 

The same approach is applied to compute the other critical
parameters and the acentric factor (see Fig. 2). Table 4 gives
the relations given by these parameters.

Table 5 summarizes precisions of functions (4-7) for pure
hydrocarbons. It compares their precision with the best
results of other correlations given in [23-26]. One can note
from this table that the functions we are proposing give better
results than those of other correlations for the data we have.
Indeed, errors of the proposed formulas are noticeably lesser
than the most used correlations.

In light of these encouraging results, we tested the reliabil-
ity of the proposed functions by applying them to the petro-
leum fractions which are complex hydrocarbon mixtures.
Hence, we use datasets of petroleum fractions and compare
our obtained values with the ones computed by the most
admitted relations.
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TABLE 4

Obtained relations from genetic algorithm

Parameters Relations

Critical pressure (5)

Critical molar volume1 Vc = 0.0038 (Tb – 273.16)2 + 0.9814 (Tb – 273.16) SG + 310.6783 (6)

Acentric factor (7)

1 For critical molar volume, we use (Tb – 273.16) instead of Tb.

ω = − −
⎡

⎣
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⎥[ . . . ]exp0 0024 0 8112 0 2347T SG
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b
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Figure 2
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3 RESULTS

Let us recall that our objective is to provide mathematical
proper functions that can be used for petroleum fractions
having just boiling temperature and specific gravity proper-
ties. Hence, after obtaining these acceptable results for pure
hydrocarbons (see Table 5), relations (4-7) are then applied
to oil fractions. For this application, we chose two Algerians
crude oils for which we have 43 and 49 petroleum fractions,
respectively. Distillation ‘TBP’ of these two oils provided us
with interesting data, i.e. boiling temperature and specific
gravity. These data are used for comparing the proposed
functions, which are based on genetic algorithms, with those
which are well-recommended in the literature. This aims at
checking if relations obtained by means of genetic algorithms
remain well-adapted to other data that we did not use for the
computation of the proposed relations. Hence, in the follow-
ing, we present differences between the results given by the

genetic algorithm method and by the other ones for each
property.

3.1 Critical Temperature

In order to compute the critical temperature, the relations
using the boiling point and the specific gravity, which are
well-recommended in the literature, are the ones of Riazi-
Daubert [23] and of Lee-Kesler [24]:

Tc = 24.2787 Tb
0.58848 SG0.3596 (8)

and

(9)

respectively. Tc and Tb are expressed in °R.

The values of the difference between the previsions of our
proposed model (4) and the ones of relations (8 and 9) for
crude oils 1 and 2 are given in Figure 5 and Figure 6, respec-
tively.

From Figure 5 and Figure 6 one can note that, for both
crude oils, the results given by our suggested model are in
perfect harmony (within 1% variations) with those given by
the correlations proposed by Riazi-Daubert and Lee-Kesler.
Hence our proposed model can be considered as a reliable
one for this application.

3.2 Critical Pressure

As for critical temperature, we apply our model (5) as well as
the Riazi-Daubert [23] and Lee-Kesler [24] ones to both
crude oils for computing critical pressure. The Riazi-Daubert
[23] and Lee-Kesler [24] models are respectively as follows:

Pc = 3.12281 × 109 Tb
-2.3125 SG2.3201 (10)

and

(11)

with Tb in °R and Pc in psia.

ln(Pc ) =
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Figure 4

% of differences between computed and experimental critical
temperatures results.
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TABLE 5

Precision of functions for pure hydrocarbons

Parameters Average absolute error (%) Maximal error (%) Minimal error (%)

Best other correlation AG Best other correlation AG Best other correlation AG

Tc 0.6230 0.3500 1.5939 0.9674 0.0022 0.0006

Pc 5.0230 2.7225 10.4303 6.6039 1.2592 0.0677

Vc 2.0805 0.8063 4.0805 2.5523 0.9033 0.0099

ω 11.8461 9.9050 14.1317 16.8543 1.3810 0.1290



Figure 7 and Figure 8 show the difference between the
prediction of our proposed model and of both other models
for crude oils 1 and 2, respectively.

For critical pressure, the percentages of differences
between the proposed model and the ones recommended by
the literature are more significant than for critical tempera-
ture. However, the results are still encouraging: the percent-
age of difference exceeds only once 10% but remains less
than 11% (see Fig. 7).

3.3 Critical Molar Volume

The same comparisons are done. The functions taken into
consideration are the Riazi-Daubert1 [23] and Riazi-
Daubert2 [25] relations:

Vc = 7.5214 × 10-3 Tb
0.2896 SG-0.7666 (12)

and
Vc = 6.233 × 10-4 Tb

0.7506 SG-1.2028 exp
[–1.4679 × 10-3 Tb – 0.26404 SG + 1.095 × 10-3 Tb SG] (13)
whith Vc in ft3/lb and Tb in °R.
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Figure 5

Crude oil 1: % of difference between genetic algorithm
previsions and the ones of relations 8 and 9.
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Crude oil 2: % of difference between genetic algorithm
previsions and the ones of relations 8 and 9.
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Figure 7

Crude oil 1: % of difference between genetic algorithm
previsions and the ones of relations 10 and 11.

-2

0

2

4

6

8

10

12

0 10 20 30 40

Pc (bar)

D
iff

er
en

ce
 A

G
_R

ia
zi

_L
ee

  (
%

)

%D (AG_Riazi)

%D(AG_Lee)

Figure 8

Crude oil 2: % of difference between genetic algorithm
prevision and the ones of relations 10 and 11.
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In Figure 10, one point exceeds 4% of absolute percent-
age of difference in prediction. Nevertheless, gathering all
points of Figure 9 and Figure 10, the proposed model is
satisfactory.

3.4 Acentric Factor

One can note from (7), that the acentric factor estimation
does not depend on critical properties. However, this is not
the case in the literature where the estimation of acentric fac-
tor requires an estimation of critical properties. Hence, to car-
ryout the comparison, we use relations (8) and (9) to compute
the critical temperature and relations (10) and (11) to com-
pute the critical pressure. More precisely, the obtained values
of acentric factor from model (7) are compared against two
approaches: the first ones use both Riazi-Daubert relations
for computing critical temperature and pressure and the sec-
ond one uses both Lee-Kesler relations. Once the critical
properties are computed, the following Edmister equation
[26] is used to estimate the acentric factor:

(14)

where Pc is the critical pressure in atmospheres.
One can note from Figure 11 and Figure 12 that the appli-

cation of the literature based approaches gives us divergent
results. At the same time, our proposed model can be consid-

ω =
−

⎡

⎣

⎢
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⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−
3

7 1
1log

P
T
T

c

c

b

ered as the one providing intermediate solutions. Besides, the
absolute difference of acentric factor estimation for both oils
does not exceed 10%. Hence, our model can be considered
satisfactory for this thermophysical parameter.

CONCLUSION

In this paper, we present an approach based on genetic algo-
rithm in order to propose a new function form for the predic-
tion of critical properties of petroleum fractions as well as the
acentric factor. In spite of the lack of data, we show that the
functions we obtained provide us with values near those
obtained from the most widely used functions in the litera-
ture. The proposed correlations can thus be applied to a wide
range of temperatures and doe not require information about
the oil compounds. It is obvious that, with more experimental
data, the obtained functions can be improved with our pro-
posed genetic algorithm. It is basically this fact that motivates
us to present our results.

Several issues deserve further investigations. Improvement
to the proposed functions is possible through parameters exten-
sion or adjustment using genetic algorithm. On the other hand,
if experimental data are available, it is possible to use genetic
algorithm to estimate the petroleum fraction compounds.
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Figure 9
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Figure 11

Crude oil 1: % of difference between genetic algorithm
previsions and the literature based approach.
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Figure 12

Crude oil 2: % of difference between genetic algorithm
previsions and the literature based approach.
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