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Abstract
Human pluripotent stem cells (hPSCs)—including embryonic stem cells (hESCs) and induced plu-
ripotent stem cells (hiPSCs)—are very promising candidates for cell therapies, tissue engineering, 
high throughput pharmacology screens, and toxicity testing. These applications require large num-
bers of high quality cells; however, scalable production of human pluripotent stem cells and their 
derivatives at a high density and under well-defined conditions has been a challenge. We recently 
reported a simple, efficient, fully defined, scalable, and good manufacturing practice (GMP) compat-
ible 3D culture system based on a thermoreversible hydrogel for hPSC expansion and differentia-
tion. Here, we describe additional design rationale and characterization of this system. For instance, 
we have determined that culturing hPSCs as a suspension in a liquid medium can exhibit lower 
volumetric yields due to cell agglomeration and possible shear force-induced cell loss. By contrast, 
using hydrogels as 3D scaffolds for culturing hPSCs reduces aggregation and may insulate from 
shear forces. Additionally, hydrogel-based 3D culture systems can support efficient hPSC expansion 
and differentiation at a high density if compatible with hPSC biology. Finally, there are considerable 
opportunities for future development to further enhance hydrogel-based 3D culture systems for pro-

ducing hPSCs and their progeny. 

Keywords: Human embryonic stem cells, Induced pluripotent stem cells, 3D culture system, 
Thermoreversible hydrogel. 

Introduction

Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs)35
 

and induced human pluripotent stem cells (hiPSCs),34 are being investigated for a broad 
range of biomedical applications because of their unique characteristics. Not only can they 
undergo effective long-term expansion in vitro to yield large quantities of cells, but they 
can also be differentiated into presumably all cell types in the adult body.5 Thus, they are 
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promising candidates in cell replacement therapies for various human degenerative diseases 
or injuries,18,28 for generating engineered tissues or organs,2

 
and for drug discovery and tox-

icity testing.7,20 

All of these applications require a large number of cells.2,7,20,28 In particular, the patient 
populations with degenerative diseases/injuries or organ failure are large, with for example 
~ 8 million patients with myocardial infarction (MI), ~1–2.5 million with type I diabetes, and 
~1 million with Parkinson’s disease (PD) in the US alone.27,29 In addition, to treat an indi-
vidual with MI, type I diabetes, or PD, approximately 109 surviving cardiomyocytes, 109 b 
cells, or 105 dopaminergic (DA) neurons are required, respectively.29 Furthermore, due to the 
low survival of transplanted cells in vivo (e.g. ~6% DA neurons or 1% cardiomyocytes have 
survived several months after transplantation in rodents 14,15), even more cells will be neces-
sary in reality. In addition, tissue engineering endeavors would require ~109 hepatocytes or 
cardiomyocytes to create an engineered human liver or heart, respectively.2 Finally, for drug 
discovery, ~1010 cells are necessary to screen a library with a million compounds,7 and there 
are many large chemical, peptide, and nucleotide libraries that can be screened against many 
types of cells derived from hPSCs.41 In summary, a substantial number of hPSCs are neces-
sary for current and future research and development. 

Current strategies for producing hPSCs or their derivatives at a large scale generally in-
volve three steps.29 First, a working cell bank containing many hPSC aliquots is established 
and cryopreserved. Second, an aliquot is grown into the desired number of cells through a 
series of expansions. Finally, these cells are then differentiated into the targeted cell types. 
An efficient and scalable bioprocess is required for both the expansion and differentiation. 
In addition, if the cells are being produced for clinical application, the bioprocess must com-
ply with good manufacturing practices (GMP).36 Currently, the most widely used systems 
involve the expansion and differentiation of hPSCs on 2D surfaces. Though significant ad-
vances have resulted in increasingly well-defined 2D culture systems (including a range of 
media and substrates), the production of cells on a large scale remains a challange.29,38 For 
instance, at a typical density of ~5000 DA neurons/cm2 or ~50,000 cardiomyocytes/ cm2, 
~0.5 km2 or 16 km2

 
of cell culture surfaces are necessary to contain sufficient numbers of 

DA neurons or cardiomyocytes to treat PD or MI populations in the US, not to mention the 
surface area required to expand the parent hPSCs. 

Thus, it may be desirable, and even unavoidable, to move from 2D to 3D for the large-
scale hPSC production.19,29 A number of 3D suspension culture systems have been investi-
gated for hPSC culture during the past decade. Single or small clumps of hPSCs have been 
suspended and cultured as cell aggregates in liquid medium under continuous stirring or 
shaking.1,6,32,42 Alternatively, hPSCs have been first seeded onto polymeric microspheres 
coated with matrix proteins and then cultured as a microcarrier suspension in a liquid me-
dium.4,22

 
While these 3D systems have achieved some degrees of success, many challenges 

have also been reported.17 In particular, considerable cell agglomeration, which can lead to 
cell death or uncontrolled differentiation, is frequently observed in suspension cultures.4,17,32 
Apoptosis induced by shear forces resulting from the medium flow is also common.1,4,6,22,32,42

 

As a result of such constraints, suspension systems often use low initial seeding densities 
and result in relatively low cell expansion and volumetric cell yields.17,29 Encapsulating and 
culturing small clumps of hPSCs in a number of hydrogels have also been studied.3,10,30,33 

However, limited cell growth has been achieved to date, and uncontrolled differentiation 
can occur in such 3D culture systems.17,29 In short, costeffective production of hPSCs or their 
derivatives on a large scale and under well-defined conditions is very challenging. 
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An efficient 3D culture system for large-scale hPSC production should exhibit a number 
of features. First, it should support a high density hPSC culture at a high cell growth rate. 
Culturing hPSCs at a high density can significantly reduce the space, labor, and material 
necessary for cell expansion, and is thus highly desirable for large-scale hPSC production. 
Likewise, the cell growth rate should be close or equal to the highest rate achieved on 2D 
surfaces. Second, the system should be well-defined such that production is reproducible 
and compatible with GMP. Third, the system should be simple, scalable, and easy to au-
tomate. Finally, it would be desirable to support single cell seeding to ‘‘synchronize’’ the 
environmental conditions that cells experience. While research has shown that cell dissoci-
ation promotes hPSC apoptosis,23 single cell seeding offers the potential for more uniform 
and reproducible expansion and differentiation.8,13,21 

We recently developed and reported a simple, welldefined, efficient, scalable 3D culture 
system, utilizing a thermoreversible hydrogel as a biomaterial scaffold, for both hPSC ex-
pansion and differentiation at high density.17 In this paper, we describe additional charac-
terization of the system as well as general design rationale for 3D systems that enable hPSC 
culture at a high density. Briefly, we found that under a typical set of conditions, we were 
unable to culture hPSCs as a suspension in a liquid medium with high volumetric yields. 
Substantial cell agglomeration was observed in these suspension cultures. The use of hy-
drogels as 3D scaffolds for hPSC culture was able to mitigate cell aggregation, and such 
scaffolds may also isolate cells from shear forces that accompany cell culture agitation and 
can lead to cytotoxicity.1,4,6,22,32,42 Finally, the ability to adapt this system to also support 
cell differentiation—such as into neural lineages—is a useful feature, and future work may 
further enhance the ability of the system to promote economical cell expansion as well as 
differentiation into additional lineages. 

Materials and Methods

Reagents 
hESC lines H1 and H9 were obtained from WiCell Research Institute. iPS-MSC25 (derived 
from human mesenchymal stem cells) and iPS-Fib225 (derived from human dermal fibro-
blasts) were a kind gift from George Q. Daley at Children’s Hospital Boston. Essential 8 
medium (E8),5 0.5 mM EDTA, Accutase, ProLong® Antifade reagents, LIVE/DEAD® Cell 
Viability staining kit, Click-iT® EdU Alexa Fluor® 594 Imaging Kit and Alkaline Phospha-
tase Live Stain kit were obtained from Life Technologies. Small molecules Y-27632 (ROCK 
inhibitor, or RI), SB431542, and LDN193189 were from Selleckchem. Matrigel was obtained 
from BD Biosciences. PNIPAAm-PEG polymer (Mebiol Gel) was from Cosmo Bio, USA. 
SCID Beige mice were from Charles River Laboratory. Finally, the following antibodies and 
dilutions were used: Oct4 and Nanog (Santa Cruz Biotech, 1:100); FOXA2 or HNF3b (Santa 
Cruz Biotech, 1:200); Nestin (Millipore, 1:200); aSMA (Abcom, 1:200). 

Expanding hPSCs in Suspension in Liquid Medium 
hPSCs maintained on Matrigel-coated plates were incubated with Accutase at 37 °C for 5 
min and dissociated into single cells. Single hPSCs were then suspended in mTeSR or E8 
medium in low adhesion plates. For dynamic cell cultures, the plate was shaken at 70–90 
rpm. To change medium, cells were spun down at 300 g for 3 min before replacing the old 
medium with fresh medium. 
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FIGURE 1. 3D static suspension culture. Single iPS-Fib2s were cultured for 4 days in static liquid culture with 
mTeSR or E8 medium and RI (present for the full 4 days) at low, medium, or high seeding density (2.5 3 105, 1.0 
3 106, or 2.5 3 106 cells/mL, respectively). (a and b) Cell morphologies on day 1, 2, 3, and 4 are shown with phase 
contrast images. (c, d and e) Mean diameter of the hPSC aggregates, fold expansion and cell densities at different 
days within the 4 days culture period. ***indicates statistical significance at a level of p < 0.001. Scale bar: 250 lm.
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FIGURE 2. 3D dynamic suspension culture. Single iPS-Fib2s were cultured in liquid medium for 4 days in 
mTeSR or E8 with 4 days of RI at low, medium, or high seeding density (2.5 3 105, 1.0 3 106, or 2.5 3 106 cells/
mL, respectively) under 75–90 rpm shaking. (a and b) Cell morphologies on day 1, 2, 3, and 4 are shown with 
phase contrast images. (c, d and e) Mean diameter of the hPSC aggregates, fold expansion and cell densities at 
intermediate times within the 4 days culture. ***indicates statistical significance at a level of p<0.001. Scale bar: 
250 lm.
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Expanding hPSCs in HA, Agarose, or Alginate Hydrogels 
Hyaluronic acids (60–90 kDa, Lifecore, #HA60 K-1) were modified with acrylates and cross-
linked via UV with 0.05% Irgacure 2959 and cells.10,16 The agarose hydrogel was made from 
low melting temperature agarose (Lonza, #50080).33 The alginate hydrogel was prepared by 
extruding alginate (Sigma, #A2033) solution with cells into 100 mM CaC l2 

3,30 Cells were 
encapsulated and cultured for 4 days in medium supplied with ROCK inhibitor for 24 h or 
4 days. On day 4, live/dead cell staining was performed. 

Expanding hPSCs in Thermoreversible Hydrogels 
Single cells were mixed with 10% ice-cold PNIPAAm-PEG solution that was then cast on 
tissue culture plates and incubated at 37 °C for 15 min to form hydrogels. To passage hPSCs, 
the medium was removed, and the gel was dissociated and dissolved with ice cold PBS for 
2 min. Spheroids were collected, incubated with Accutase at 37 °C for 10 min, and dissoci-
ated into single cells. Cells were counted with the NucleoCounter NC-200 (Chemometec). 

Staining and Imaging 
Cells on 2D surfaces were fixed with 4% paraformaldehyde (PFA) for 15 min, permeabilized 
with 0.25% Triton X-100 for 15 min, pre-blocked with 5% goat serum for 1 h, then incubated 
with primary antibodies for 2 h. After 3 washes with PBS, they were incubated with second-
ary antibodies in 2% BSA for 1 h. After 3 washes with PBS, cells were imaged. hPSC spher-
oids were fixed with 4% PFA for 30 min, incubated with PBS + 0.25% Triton X-100 + 5% goat 
serum + primary antibodies overnight. After 3 washes with PBS, spheroids were incubated 
with secondary antibodies in 2% BSA for 4 h. After 3 washes with PBS, cells were mounted 
with ProLong® Antifade reagent and imaged. All procedures were conducted at room tem-
perature. Live/dead staining, EdU pulse labeling, and alkaline phosphatase staining were 
conducted with the LIVE/DEAD® Cell Viability staining kit, Click-iT® EdU Alexa Fluor® 

594 Imaging Kit, and Alkaline Phosphatase Live Stain kit, respectively. 

Embryoid Body (EB) Differentiation 
Single hPSCs were suspended in liquid medium in low adhesion plates for 6 days to form 
EBs, which were then plated on gelatin-coated plate and cultured for another 6days before 
fixation and staining. DMEM + 20% FBS + 10 lM b-mercaptoethanol were used for the EB 
differentiation. 

Teratoma Assay 
The teratoma assay was approved by the Animal Care and Use Committee of the University 
of California, Berkeley. 5.0 9 106 hPSCs were suspended in 50 lL 50% Matrigel and injected 
subcutaneously in SCID Beige mice. Teratomas were harvested after 6–12 weeks; fixed with 
4% PFA for 48 h; dehydrated with 70, 95, 100% ethanol and xylene sequentially; and embed-
ded in paraffin. 10 lm thick sections were cut and stained with hematoxylin and eosin. All 
procedures were conducted at room temperature. 

Statistical Analysis 
Statistical analyses were conducted using the statistical package Instat (GraphPad Software, 
La Jolla, CA). For multiple comparisons, the means of triplicate samples were compared 
using the Tukey multiple comparisons analysis with the alpha level indicated in the figure 
legend. 
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FIGURE 3. Culturing iPS-Fib2s in various hydrogels withc mTeSR or E8 and RI at medium seeding density. 
Cells were encapsulated and cultured for 4 days. Medium was supplied with RI for 24 h or 4 days. On day 4, 
live/dead cell staining was conducted to evaluate the viability. (a) Phase contrast images and live dead cell 
staining showing the cell morphologies and viability. (b and c) Fold expansion and final cell density for hPSCs 
over day 4 in various hydrogels. ***indicates statistical significance at a level of p < 0.001. Scale bar: 250 lm.
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FIGURE 4. Expanding hPSCs in the 3D thermoreversible hydrogel. Single hPSCs were encapsulated and 
cultured in 10% PNIPAAm-PEG hydrogel in E8 with RI for 5 days with daily medium change. (a) Phase 
contrast images showing the growing spheroids on day 1, 3, 4, and 5 within the hydrogel. (b) Live/dead cell 
staining revealed that the majority of cells were viable, and (c) uniform EdU pulse labeling was seen across the 
spheroid. Spheroids on day 5 are shown in (b, c). The majority of cells in the spheroids expressed the pluripo- 
tency markers alkaline phosphatase (d), as well as Oct4 and Nanog (e). Quantification of the expansion (f), cell 
density (g), and Oct4 and Nanog (h) expression during a 5 days culture. (i) Long term, serial expansions of 
iPS-Fib2, iPS-MSC, and H9 cells could be achieved in the 3D thermoreversible hydrogel. The fold expansion at 
passages 1, 5, 15, 25, and 35 are shown. Passaging was conducted every 5 days. (j) EB differentiation in vitro. 
iPS-Fib2s were expanded in the 3D hydrogel for 25 passages and harvested for EB differentiation. Expression 
of markers indicating differentiation into the three germ layers (e.g. ectoderm: Nestin; mesoderm: aSMA; 
and endoderm: HNF3b) were found. (k) Teratoma formation in vivo. iPS-Fib2s were expanded in the 3D 
hydrogel for 25 passages and har- vested for teratoma analysis. Structures from all 3 germ layers (e.g. ectoderm: 
epidermis; mesoderm: muscle; and endo- derm: gut-like-structure) (arrows) were found in tissue sec- tions with 
hematoxylin and eosin staining. (l) iPS-Fib2s were cultured in the 3D gel for 10 passages and replated on 2D 
surfaces. Phase contrast image (1d) and Oct4 staining (4d) for iPS-Fib2s on 2D surfaces are shown. Scale bar: (b, 
c) 50 lm, (d, e, k) 100 lm and (j, l) 200 lm.



Lei et aL .                                   9

Results and Discussion

3D Expansion of hPSCs in Static and Dynamic Liquid Cultures 
The expansion and differentiation of hPSCs at high density offers the potential to pro-
vide uniform culture conditions for large numbers of cells, and to reduce production 
costs.17 The 3D suspension cultures previously reported represent significant advances 
over prior practice, though they have typically utilized low initial seeding densities and 
resulted in limited final volumetric cell yields.17,29 Some of these 3D systems reached rela-
tively high cell yields, but had other problems, such as slow cell growth, using undefined 
medium, or uncontrolled differentiation.17,29 To assess final cell density in suspension 
cultures, single iPSFib2s (iPSCs derived from human dermal fibroblasts) were cultured 
as a suspension in broadly used mTeSR or in the well-defined Essential 8 medium (E8). 
Cell passaging and seeding as small clusters were previously described.17

 
These experi-

ments were performed in the absence and presence of ROCK inhibitor (RI), which was 
either added during the first 24 h or during the entire culture period (4 days). In addition, 
three initial seeding densities—2.5 9 105 (low), 1.0 9 106 (medium), and 2.5 9 106 cells/mL 
(high)—were tested. Finally, the culture was either maintained under static conditions 
(static suspension culture, Fig. 1) or shaken at a low speed (75-90 rpm, dynamic suspen-
sion culture, Fig. 2). 

For both the static and dynamic liquid cultures, the addition of RI was crucial to the 
survival and expansion of hPSCs in suspension culture as demonstrated by the obser-
vation that no hPSCs survived after 4 days in the absence of RI (data now shown). No 
significant differences were observed in the final cell yields for the static or dynamic cul-
tures grown in the presence of RI, either during the first 24 h (data not shown) or during 
the entire 4 days, which indicates that RI is only important for the survival and expan-
sion of the initial single hPSCs. It should also be noted that the hPSCs quickly associated 
to form small spherical aggregates in the suspension cultures. 

Under static conditions at a low seeding density in liquid suspension culture, the cell 
number exhibited an increase on day 3 followed by a slower increase on day 4, result-
ing in a ~3.0-fold total expansion by day 4 with a final cell density at ~0.75 9 106 cells/
mL (Fig. 1). After the first 2 days of such cultures, spheroids were relatively small and 
uniform. However, large aggregates were observed as the cell density approached 1.0 9 
106 cells/mL on day 3 and 4 (Figs. 1a–1c). Under static conditions at a medium seeding 
density, the cell number was constant during the 4 days, indicating that either no cell 
growth occurred or that cell growth was equal to cell death (Figs. 1d, 1e). Considerable 
cell agglomeration was observed from day 2–4 (Figs. 1a–1c). Similarly, under static con-
ditions at a high seeding density, excessive agglomeration and a progressive decrease in 
cell number were observed from day 1 to day 4, resulting in a final cell density of ~1.25 
9 106 cells/mL (Fig. 1). In all cases for static conditions, there were no significant differ-
ences between the mTeSR and E8 media (Fig. 1). 

The use of dynamic conditions significantly reduced the level of cell agglomeration, 
especially at the low or medium seeding densities (Figs. 2a–2c), presumably due to shear 
forces either preventing aggregation or dissociating aggregates above a certain size.13 

Severe cell agglomeration was still observed for the culture with a high seeding density 
(Figs. 2a–2c). Under dynamic conditions at a low seeding density, cell number increased 
linearly during the 4 days, resulting in a ~4.0-fold final expansion and a final density 
of ~1.0 9 106 cells/mL (Figs. 2d, 2e). In the case of the medium seeding density, a slight 
increase in the cell number was observed, resulting in a final density of ~1.25 9 106 cells/
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mL (Figs. 2d, 2e). Finally, at high seeding density, the cell density decreased to ~1.25 9 106 

cells/mL at end of the 4 days period (Figs. 2d, 2e). Again, no significant differences were 
observed when mTeSR or E8 was used as the medium. 

In summary, hPSCs tend to aggregate due to strong cell–cell interactions.31 Culture 
agitation can reduce cell agglomeration but under the conditions explored here does not 
dramatically improve the cell yield. Regardless of the initial seeding density, the final 
volumetric yield for static or dynamic 3D suspension culture was ~1.0–1.5 9 106 cells/mL 
(Figs. 1, 2). Thus, complementary approaches should be explored to achieve high hPSC 
densities. 

Expanding hPSCs in Hydrogels 
It is possible that encompassing hPSCs within a physical medium or barrier may prevent 
excessive cell agglomeration and isolate hPSCs from shear forces generated by medium 
flow. Based on prior literature that encapsulated hESCs within several materials, we in-
vestigated whether hydrogels could enable high density cultures or support single hPSCs 
in mTeSR or the well-defined E8 medium, and in the presence of RI. Chemically cross-
linked hyarulonic acid (HA),10,16 physically associated agarose,33 and ionically associated 
alginate hydrogels were 3,30prepared as described. In HA hydrogels, no cell expansion 
or spheroids were observed under the conditions and liquid medium used, and the ma-
jority of cells were nonviable on day 4 (Fig. 3). In agarose hydrogels, most of the cells 
remained viable, but no cell expansion or spheroid formation was observed here (Fig. 3). 
Finally, significant cell death was observed in alginate hydrogels when the RI was only 
present during the first 24 h in either mTeSR or E8 media. However, while only sporadic 
spheroids were observed in the hydrogel with mTeSR, a significant number of spheroids 
formed in this hydrogel in the presence of the E8 medium when RI was supplied for 4 
days. In short, these hydrogels successfully prevented cell agglomeration; however, cell 
growth in these gels under the defined conditions used was limited. 

While the properties of the materials varied substantially, several suggestions may be 
gleaned from this experiment (Fig. 3). First, hPSCs grew better in the physically or ioni-
cally associated hydrogels that were tested here. The storage modulus for the HA, aga-
rose, and alginate hydrogels was 3600, 3111, and 2100 Pa, respectively.17 In addition to 
being slightly softer, the latter physically associated gels may also offer cells the capacity 
to forcibly rearrange the gel during cell and spheroid expansion. Second, compared with 
mTeSR, the well-defined E8 medium supports better hPSCs growth in hydrogels. Third, 
supplying RI for the first 24 h is insufficient to support the survival and proliferation of 
single hPSCs in such materials. However, the fact that a ~3.0-fold expansion was achieved 
in the alginate hydrogel with the E8 medium and 4 days RI suggests that some hydrogels 
may be promising as scaffolds for hPSC culture (Fig. 3). It may thus be worthwhile to 
explore additional hydrogel materials. 

Expanding hPSCs in Thermoreversible Hydrogels 
We investigated the use of thermoreversible hydrogels as scaffolds for 3D hPSC culture. 
Thermoreversible hydrogels have the following features that make them attractive for 
the 3D hPSC culture: (A) they can be synthetically generated on a large scale to enhance 
reproducibility and reduce material costs; (B) they can be chemically well-defined and 
thus compatible with GMP; (C) they can be biocompatible and have low cytotoxicity; 
(D) they rapidly respond to temperature changes, which makes it possible to harvest or 
passage cells by simply changing the temperature from 4 to 37 °C; and (E) they can be 
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processed into fibers or spheres through extrusion or emulsion for suspension culture 
in large bioreactors. We studied a number of ‘‘home-made’’ and commercially available 
thermoreversible hydrogels in a prior study,17 and additional results reported here indicate 
that the 6–10% PNIPAAm-PEG hydrogels (Mebiol Gel) are able to support the survival, 
proliferation and pluripotency of single hPSCs. 

6–10% aqueous PNIPAAm-PEG solutions exhibit low viscosity, allowing for facile and 
homogenous mixing with cells. In particular, they form soft and elastic hydrogels with 
G¢ in the range of 300–1000 Pa upon heating to 22 °C within 5 min,17 and they can be re-
liquefied by cooling to 4 °C within 5 min in the culture conditions we used. As with the 
prior materials, we observed that hPSC growth is sensitive to the duration of RI presence 
and the type of medium. No cell growth was found when RI was added for only the first 24 
h. However, with the 4 days RI treatment, a 2or 10-fold expansion was achieved in mTeSR 
or E8 medium, respectively (Fig. 3). After a systematic optimization with using a factorial 
designed experiment as we recently reported,17 a system with a 8-10%PNIPAAm-PEG, 
well-defined E8, a 4 days RI treatment, and a medium seeding density were found to sup-
port approximately a 10.0or 20.0-fold cell expansion in a single 4 days or 5 days passage, 
with doubling times (~27.7 h) close to that on 2D surfaces (~27.0 h). 

Using this optimized system, single hPSCs rapidly expanded and formed uniform 
spheroids without cell agglomeration (Fig. 4a). In addition, live/dead cell staining re-
vealed that the majority of cells in the gel were viable (Fig. 4b). Also, uniform EdU pulse 
labeling was observed within spheroids, indicating efficient mass transport (e.g., nutrients, 
growth factors, and O2) within the hydrogel and the spheroids (Fig. 4c). Furthermore, the 
majority of cells in the gel expressed pluripotency markers, such as alkaline phosphatase, 
Oct4, and Nanog (Figs. 4d, 4e). We also found this system could support long-term culture 
for multiple hPSC lines, including iPS-Fib2s, iPS-MSCs, and H9s (H1 cells growth slightly 
slower17). Over a 5 days culture of such cells, the hPSCs exhibited a ~1.0, 2.5, 6.0, 10.0, 
and 20.0-fold expansion over day 1, 2, 3, 4, and 5, respectively (Fig. 4f), resulting a final 
density of ~2.0 9 107 cells/mL (Fig. 4g). Importantly, consistent ~20.0-fold expansions were 
achieved for each passage (5 days) during long-term serial expansion (Fig. 4i), and both 
Oct4 and Nanog expression was maintained at ~95% during the culture (Fig. 4h). Lastly, no 
significant differences in performance were observed between these 3 cell lines. 

Finally, we assessed functional maintenance of pluripotency using in vitro EB differen-
tiation and in vivo teratoma formation. Endodermal (HNF3b), mesodermal (aSMA), and 
ectodermal (Nestin) markers were observed in all EB differentiations from the three cell 
lines following 25 passages in the 3D hydrogel system (Fig. 4j). In addition, all hPSC lines 
formed teratomas in vivo, including epidermis from the ectoderm, muscle from the me-
soderm, and gut-like structure from the endoderm (Fig. 4k). Moreover, karyotypes were 
normal for these hPSCs after longterm culture within the gel.17 hPSCs cultured in the 3D 
hydrogel for long term could also be returned to conventional 2D surfaces (Fig. 4l). Finally, 
we the 3D culture system can efficiently support directed differentiation into multiple cell 
types.17 

Conclusions
 
In summary, we developed a simple, well-defined and scalable 3D culture system for 
rapid hPSC expansion and efficient differentiation at high densities.17 When cultured 
as a suspension in liquid medium under the reported conditions, there was a limit 
to the maximum volumetric cell yield that could be achieved due to substantial cell 
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agglomeration and potential shear force induced cell apoptosis.8,13,21 In contrast, the 
use of hydrogels as scaffolds for the hPSC culture can prevent cell agglomeration and 
may isolate cells from shear forces. 

However, to achieve efficient hPSC expansion at a high density, a hydrogel-based 
3D system (including the scaffold and the medium) must not only overcome engineer-
ing challenges, but also support certain aspects of hPSC biology.17 For example, both 
hESCs and iPSCs are epiblast-like pluripotent stem cells whose survival and prolif-
eration depends on multiple extracellular cues.20,23 Soluble protein factors, such as 
FGF2 and TGF-b, signal through a variety of pathways to support their survival, pro-
liferation, and pluripotency.12,37,39 Integrin-mediated cell–matrix interactions are also 
important.40Likewise, cadherin-mediated cell–cell contacts are key for hPSC survival 
and proliferation.23,24 Dissociating hPSC colonies into single cells as a result leads to 
Abr-dependent RhoA and ROCK activation, followed by downstream actomyosin hy-
peractivation and apoptosis.23,24 Other environmental stresses (e.g. mechanical forces 
11,29and redox conditions5) can also impact their function. 

To support cell viability and growth, a number of conditions were required. RI 
was necessary during the entire culture period to prevent the dissociationinduced cell 
death for single cultured hPSCs. In addition, physically associated and soft hydro-
gels may enable the force generated by the expanding hPSCs to deform the scaffold 
to create sufficient space for the growing cells. Furthermore, the hydrogel should be 
sufficiently porous to support efficient transport of nutrients, O2, and protein factors. 
Finally, the welldefined E8 medium may be favorable for expansion, as b-mercapto-
ethanol in mTeSR medium may negatively interact with 3D growth in the scaffold via 
unknown mechanisms, resulting in additional stresses that inhibit hPSC survival and 
proliferation.17

The reported system demonstrates promising results for the large-scale hPSC ex-
pansion and differentiation. In addition, future work will enable further enhancement 
of hPSC expansion and differentiation at various scales. First, characterization of the 
molecular mechanisms by which the 3D culture system enhances hPSC survival and 
rapid growth may enable additional improvement. Second, the system was shown to 
support the expansion and differentiation of 4 hPSC lines,17 and additional work will 
extend its utility to further lines such as patient-specific iPSCs and potentially also 
adult stem cells. Also, numerous protocols are being developed for the directed dif-
ferentiation of hPSCs into various cell types, and these can potentially be adapted to 
3D culture. Third, enhancing cell culture economics will further benefit the system. 
hPSC expansion and differentiation media contain multiple, costly recombinant pro-
tein factors, and identifying small molecule substitutes or engineering systems for 
higher potency protein factor presentation can be pursued to reduce the cost. Fourth, 
processing thermoreversible hydrogels into formats that can be suspended in a liquid 
medium—such as spheres or fibers—will be necessary to incorporate these hydrogels 
into various types of existing or new bioreactors for the large-scale production of 
hPSCs or their derivatives, including automated bioreactors with hydrogels. Finally, 
hPSC biology is a rapidly evolving field, and this modular system (the material and 
the medium) can evolve in parallel to harness this new knowledge.9 We thus antici-
pate that thermoreversible hydrogel systems can contribute to resolving significant 
challenges that currently limit the use of hPSCs in many biomedical applications. 



Lei et aL .                                   13

Acknowledgments
This work was supported by California Institute of Regenerative Medicine Grant RT2-
02022, a California Institute for Regenerative Medicine training grant T1-00007 fellowship 
(to Y. L.), and NIH 1R01ES020 903-01. 

Conflict of Interest
Yuguo Lei, Daeun Jeong, Jifang Xiao and David V. Schaffer declare that they have no con-
flicts of interest. 

Ethical Standards
All animal studies were carried out in accordance with NIH and University of California, 
Berkeley guidelines, and approved by the Animal Care and Use Committee of the Uni-
versity of California, Berkeley. No human studies were carried out by the authors for this 
article. 

Refrences

1. Amit, M., I. Laevsky, Y. Miropolsky, K. Shariki, M. Peri, and J. Itskovitz-Eldor. Dynamic 
suspension culture for scalable expansion of undifferentiated human pluripotent stem 
cells. Nat. Protoc. 6:572–579, 2011. 

2. Badylak, S. F., D. Taylor, and K. Uygun. Whole-organ tissue engineering: decellulariza-
tion and recellularization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. 
Eng. 13:27–53, 2011. 

3. Chayosumrit, M., B. Tuch, and K. Sidhu. Biomaterials Alginate microcapsule for prop-
agation and directed differentiation of hESCs to definitive endoderm. Biomaterials 
31:505–514, 2010. 

4. Chen, A. K., et al. Critical microcarrier properties affecting the expansion of undifferenti-
ated human embryonic stem cells. Stem Cell Res. 7:97–111, 2011. 

5. Chen, G., et al. Chemically defined conditions for human iPSC derivation and culture. 
Nat. Methods 8:424–429, 2011. 

6. Chen, V. C., et al. Scalable GMP compliant suspension culture system for human ES cells. 
Stem Cell Res. 8:388– 402, 2012. 

7. Desbordes, S. C., and L. Studer. Adapting human pluripotent stem cells to high-through-
put and high-content screening. Nat. Protoc. 8:111–130, 2012. 

8. Fok, E. Y. L., and P. W. Zandstra. Shear-controlled singlestep mouse embryonic stem cell 
expansion and embryoid body-based differentiation. Stem Cells 23:1333–1342, 2005. 

9. Gafni, O., et al. Derivation of novel human ground state naive pluripotent stem cells. 
Nature 504:282–286, 2013. 

10. Gerecht, S., J. A. Burdick, L. S. Ferreira, S. A. Townsend, R. Langer, and G. Vunjak-
Novakovic. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of 
human embryonic stem cells. Proc. Natl Acad. Sci. U.S.A. 104:11298–11303, 2007. 

11. Hsieh, M. H., and H. T. Nguyen. Molecular mechanism of apoptosis induced by me-
chanical forces. Int. Rev. Cytol. 245:45–90, 2005. 

12. James, D., A. J. Levine, D. Besser, and A. Hemmati Brivanlou. TGFbeta/activin/nodal 
signaling is necessary for the maintenance of pluripotency in human embryonic stem 
cells. Development 132:1273–1282, 2005. 

13. Kehoe, D. E., D. Jing, L. T. Lock, and E. S. Tzanakakis. Scalable stirred-suspension bio-
reactor culture of human pluripotent stem cells. Tissue Eng. Part A 16, 2010. 



14 Cellular  and MoleCular  B ioengineering , Vol. 7, no . 2, June 2014  

14. Kriks, S., et al. Dopamine neurons derived from human ES cells efficiently engraft in 
animal models of Parkinson’s disease. Nature 480:547–551, 2011. 

15. Laflamme, M. A., and C. E. Murry. Regenerating the heart. Nat. Biotechnol. 23:845–856, 
2005. 

16. Lei, Y., S. Gojgini, J. Lam, and T. Segura. The spreading, migration and proliferation of 
mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials 
32:39–47, 2011. 

17. Lei, Y., and D. V. Schaffer. A fully defined and scalable 3D culture system for human 
pluripotent stem cell expansion and differentiation. Proc. Natl Acad. Sci. U.S.A. 1–10, 
2013. 

18. Lindvall, O., Z. Kokaia, and A. Martinez-Serrano. Stem cell therapy for human neuro-
degenerative disorders-how to make it work. Nat. Med. 10:S42–S50, 2004. 

19. McDevitt, T. C., and S. P. Palecek. Innovation in the culture and derivation of pluripo-
tent human stem cells. Curr. Opin. Biotechnol. 19:527–533, 2008. 

20. McNeish, J. Embryonic stem cells in drug discovery. Nat. Rev. Drug Discov. 3:70–80, 
2004. 

21. Mohamet, L., M. L. Lea, and C. M. Ward. Abrogation of E-cadherin-mediated cellular 
aggregation allows proliferation of pluripotent mouse embryonic stem cells in shake 
flask bioreactors. PLoS One 5:e12921, 2010. 

22. Nie, Y., V. Bergendahl, D. J. Hei, and J. M. Jones. P.S. scalable culture and cryopreserva-
tion of human embryonic stem cells on microcarriers. Biotechnol. Prog. 25:20–31, 2009. 

23. Ohgushi, M., and Y. Sasai. Lonely death dance of human pluripotent stem cells: ROCK-
ing between metastable cell states. Trends Cell Biol. 21:274–282, 2011. 

24. Ohgushi, M., et al. Molecular pathway and cell state responsible for dissociation-in-
duced apoptosis in human pluripotent stem cells. Cell Stem Cell 7:225–239, 2010. 

25. Park, I.-H., et al. Reprogramming of human somatic cells to pluripotency with defined 
factors. Nature 451:141–146, 2008. 

26. Peerani, R., et al. Niche-mediated control of human embryonic stem cell self-renewal 
and differentiation. EMBO J. 26:4744–4755, 2007. 

27. Roger, V. L., et al. Heart disease and stroke statistics-2012 update: a report from the 
American Heart Association. Circulation 125:e2–e220, 2012. 

28. Schulz, T. C., et al. A scalable system for production of functional pancreatic progenitors 
from human embryonic stem cells. PLoS One 7:e37004, 2012. 

29. Serra, M., C. Brito, C. Correia, and P. M. Alves. Process engineering of human pluripo-
tent stem cells for clinical application. Trends Biotechnol. 30:350–358, 2012. 

30. Serra, M., et al. Microencapsulation technology: a powerful tool for integrating expan-
sion and cryopreservation of human embryonic stem cells. PLoS One 6:e23212, 2011. 

31. Singh, H., P. Mok, T. Balakrishnan, S. N. B. Rahmat, and R. Zweigerdt. Up-scaling sin-
gle cell-inoculated suspension culture of human embryonic stem cells. Stem Cell Res. 
4:165–179, 2010. 

32. Steiner, D., et al. Derivation, propagation and controlled differentiation of human em-
bryonic stem cells in suspension. Nat. Biotechnol. 28:361–364, 2010. 

33. Stenberg, J., M. Elovsson, R. Strehl, E. Kilmare, J. Hyllner, and A. Lindahl. Sustained 
embryoid body formation and culture in a non-laborious three dimensional culture sys-
tem for human embryonic stem cells. Cytotechnology 63:227– 237, 2011. 

34. Takahashi, K., et al. Induction of pluripotent stem cells from adult human fibroblasts by 
defined factors. Cell 131:861–872, 2007. 

35. Thomson, J. A. Embryonic stem cell lines derived from human blastocysts. Science 



Lei et aL .                                   15

282:1145–1147, 1998. 
36. Unger, C., H. Skottman, P. Blomberg, M. S. Dilber, and O. Hovatta. Good manufac-

turing practice and clinical-grade human embryonic stem cell lines. Hum. Mol. Genet. 
17:R48–R53, 2008. 

37. Vallier, L., M. Alexander, and R. A. Pedersen. Activin/Nodal and FGF pathways coop-
erate to maintain pluripotency of human embryonic stem cells. J. Cell Sci. 118:4495–509, 
2005. 

38. Villa-Diaz, L. G., A. M. Ross, J. Lahann, and P. H. Krebsbach. The evolution of human 
pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells 31:1–7, 
2012. 

39. Xu, R.-H., et al. NANOG is a direct target of TGFbeta/ activin-mediated SMAD signal-
ing in human ESCs. Cell Stem Cell 3:196–206, 2008. 

40. Xu, Y., et al. Revealing a core signaling regulatory mechanism for pluripotent stem cell 
survival and self-renewal by small molecules. Proc. Natl. Acad. Sci. U.S.A. 107:8129– 
8134, 2010. 

41. Zang, R., D. Li, I. Tang, J. Wang, and S. Yang. Cell-based assays in high-throughput 
screening for drug discovery. Int. J. Biotechnol. 1:31–51, 2012. 

42. Zweigerdt, R., R. Olmer, H. Singh, A. Haverich, and U. Martin. Scalable expansion of 
human pluripotent stem cells in suspension culture. Nat. Protoc. 6:689–700, 2011. 


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	6-2014

	Developing Defined and Scalable 3D Culture Systems for Culturing Human Pluripotent Stem Cells at High Densities
	Yuguo Lei
	Daeun Jeong
	Jifang Xiao
	David V. Schaffer

	tmp.1472239866.pdf.IBRHu

