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Abstract 

Introduction Digital twins, a form of artificial intelligence, are virtual representations of the physical world. In the 
past 20 years, digital twins have been utilized to track wind turbines’ operations, monitor spacecraft’s status, and even 
create a model of the Earth for climate research. While digital twins hold much promise for the neurocritical care unit, 
the question remains on how to best establish the rules that govern these models. This model will expand on our 
group’s existing digital twin model for the treatment of sepsis.

Methods The authors of this project collaborated to create a Direct Acyclic Graph (DAG) and an initial series of 20 DEL-
PHI statements, each with six accompanying sub-statements that captured the pathophysiology surrounding the man-
agement of acute ischemic strokes in the practice of Neurocritical Care (NCC). Agreement from a panel of 18 experts in 
the field of NCC was collected through a 7-point Likert scale with consensus defined a-priori by ≥ 80% selection of a 6 
(“agree”) or 7 (“strongly agree”). The endpoint of the study was defined as the completion of three separate rounds of 
DELPHI consensus. DELPHI statements that had met consensus would not be included in subsequent rounds of DEL-
PHI consensus. The authors refined DELPHI statements that did not reach consensus with the guidance of de-identified 
expert comments for subsequent rounds of DELPHI. All DELPHI statements that reached consensus by the end of three 
rounds of DELPHI consensus would go on to be used to inform the construction of the digital twin model.

Results After the completion of three rounds of DELPHI, 93 (77.5%) statements reached consensus, 11 (9.2%) state-
ments were excluded, and 16 (13.3%) statements did not reach a consensus of the original 120 DELPHI statements.

Conclusion This descriptive study demonstrates the use of the DELPHI process to generate consensus among experts 
and establish a set of rules for the development of a digital twin model for use in the neurologic ICU. Compared to 
associative models of AI, which develop rules based on finding associations in datasets, digital twin AI created by the 
DELPHI process are easily interpretable models based on a current understanding of underlying physiology.
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Background
Artificial intelligence is a broad term that encompasses 
any computational system that can perform the functions 
that make people seem intelligent [1]. Artificial intelli-
gence has become omnipresent in our daily lives through 
personal assistants, facial recognition, automated cars, 
and more [2]. This technology has also started to find 
its place in healthcare. In the field of cardiology, FDA-
cleared and clinically applied artificial intelligence models 
already exist to predict fractional flow reserve and map 
out electrical heart activity from body surface poten-
tials [3]. For diseases such as multiple sclerosis, which 
often has a heterogeneous course and where evaluation 
requires integration of multidimensional data including 
clinical assessment, imaging, electrophysiology, and bio-
markers, preliminary models are being developed to aid 
diagnosis and rehabilitation of these patients, leading to a 
new era of individualized healthcare [4].

Digital twins, a form of artificial intelligence, are vir-
tual representations of the physical world [5]. In the past 
20  years, the digital twin concept has been utilized in 
other fields to track wind turbines’ operations, monitor 
spacecraft’s status, and even create a model of the Earth 
for climate research [6, 7]. The Archimedes model paved 
the way for digital twins in health care by predicting 
individual diabetes risk, creating a representation of the 
physiology of diabetes, and modeling the effects of treat-
ments and complications [8, 9]. During the height of the 
COVID-19 pandemic, digital twins allowed healthcare 
providers to model the effects of various drugs on the 
individual level and model the spread of the disease on 
an organizational and population level [10]. Digital twins 
are also starting to play a role in educating the next gen-
eration of physicians through interactive simulation plat-
forms such as JustPhysiology and HumMod [11, 12].

In the neurocritical care unit, artificial intelligence 
has been used to help interpret continuous EEGs, mon-
itor ICP waveforms, triage CT scans, identify extracel-
lular proteins of cerebral ischemia, predict the risk of 
hemorrhagic transformation, and prognosticate recov-
ery [13–16]. With the rise of multimodal monitoring in 
the Neuro ICU, there is an increased demand for inter-
preting and making sense of the influx of multidimen-
sional data [17]. Despite the advances made in the field 
of NCC so far, little research has been done regarding 
the applications of digital twins to the neurocritical 
care unit. As we develop new ways to monitor patient 
physiology, healthcare is entering an era of "big data," 
and artificial intelligence, particularly digital twins, is 
an emerging technology that physicians are looking to 
make sense of this vast amount of data [18, 19].

While artificial intelligence holds much promise for 
clinicians working in Neurocritical Care (NCC), the 

question remains on how to build these models best. 
Associative AI models rely on drawing associations and 
identifying patterns from large data sets to make recom-
mendations. As evidenced by the failure of IBM’s Wat-
son, these models are limited by the data sets they are 
trained on, and how these models reach their conclu-
sions often needs to be more apparent to clinicians [20].

Compared to associative AI models, causal AI models 
are based on understanding underlying physiological 
variables and causal pathways [21]. Creating a causal 
AI requires a foundation of expert rules that define 
the interaction between variables, connect concepts 
through Bayesian networks, and model how different 
interventions and interactions affect changes in vari-
ous organ systems as reflected by clinical markers such 
as vitals, physiological signs, and biomarkers [22]. This 
foundational model is subsequently trained and refined 
on prospective clinical data.

DELPHI is a method used particularly in healthcare 
to systematically bring together knowledge, creating 
consensus amongst experts within a field, and is one 
way to establish these expert rules [23]. During the 
COVID-19 pandemic, a DELPHI process was used to 
gain expert consensus for the best management prac-
tices of patients with COVID-related acute respiratory 
failure [24]. Key points to consider when develop-
ing DELPHI consensus include defining a-priori, the 
threshold for consensus, how consensus will be defined, 
and the criteria for concluding the DELPHI process, 
such as after a certain number of rounds [25–27].

Our group has previously created a digital twin model 
to predict acute response to the treatment of sepsis. It 
has identified the potential for applying such models 
to augment clinical education and potentially clinical 
decision-making in the field of NCC [28, 29]. This pro-
ject expands on our previous work by demonstrating 
the methodical use of DELPHI consensus to establish 
a foundational set of expert rules for use in developing 
a similar causal digital twin model of acute ischemic 
stroke in the Neuro Critical Care unit that will be based 
on a transparent mechanistic understanding of under-
lying pathophysiology. Similar work has been done for 
other organ systems [30, 31].

Methods
Model conception
An initial steering committee of clinicians from the fields 
of neurology, neurocritical care (NCC), emergency medi-
cine, and pulmonary critical care medicine drafted an 
initial model of the pathophysiology and management of 
acute ischemic stroke through a Directed Acyclic Graph 
(DAG) with concepts being connected by Bayesian net-
works (Fig.  1). This conceptual model was iteratively 
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revised and refined by the steering committee until 
deemed ready to be translated into DELPHI consensus 
statements. From the DAG, 20 main DELPHI consensus 
statements, each with six sub-statements, were created 
and further refined for use in the first round of DELPHI 
consensus (Fig. 2).

Surveys
This is a descriptive study where experts were invited 
to participate in this DELPHI process keeping in mind 
the requisites of diversity in sex (males and females), 
years of experience (ranging from 1 to 30 years of expe-
rience), varied topics of interest within the subspecialty, 
and geographical area of clinical practice. Upon accept-
ance, a modified Delphi panel of 23 NCC experts was 
established. These NCC experts were invited by email to 
participate in three rounds of DELPHI consensus state-
ments. Three experts did not respond to the initial call 
to participate in the DELPHI process, and two provided 
incomplete responses to the initial survey round (and 
therefore excluded). In total, 18 Neuro Critical Care 
experts participated and completed all three rounds of 
DELPHI consensus. The steering committee did not 
participate in the surveys but would meet between each 
round to revise DELPHI statements. Survey responses 
were collected through a secure REDCap form through 
the Mayo Clinic platform, and surveys were sent out 

through a secure email link. REDCap data were de-
identified and then analyzed in third-party spreadsheet 
software.

DELPHI statements
The initial DELPHI survey consisted of 20 main state-
ments, each with six sub-statements making for 120 
statements total. A 7-point balanced Likert scale meas-
ured agreement with each sub-statement. Sub-state-
ments included direction statements, generally defining 
how variables interacted; probability, timing, and inten-
sity statements, defining how likely, when, and how much 
variables interacted; and therapeutic impact and contin-
gency statements, clarifying the effects of the interven-
tion on the interactions and contingent situations where 
the interaction would occur differently if at all. Addition-
ally, each main statement had an optional free text area 
where experts could clarify their thought process and 
provide recommendations for further refining the DEL-
PHI statements in ways that a balanced Likert Scale could 
not capture.

Consensus
Consensus was defined as a-priori as greater than 
or equal to 80% of participants responding with a 6 
(“Agree”) or 7 (“Strongly Agree”) in a 7-point Lik-
ert scale for any given statement [25]. In between 

Fig. 1 Directed Acyclic Graph (DAG) providing a visual representation of connections between different concepts and variables. Modifiable 
variables are represented in green, semi-modifiable variables in yellow, intermediary states in gray, and end states in red. These nodes are connected 
by unidirectional black arrows depicting the flow of processes from one condition to the subsequent state
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each round of DELPHI consensus, statements were 
edited by the steering committee. Statements that had 
reached consensus on previous rounds of DELPHI 
were not included in later DELPHI rounds. Statements 
that did not reach consensus (< 80% agreement) were 
reviewed and revised by the steering committee, and 
expert comments were incorporated for the next round 
of DELPHI. The endpoint of the study was defined as 
the completion of three separate rounds of DELPHI 
consensus. All DELPHI statements that reached con-
sensus by the end of three rounds of DELPHI consen-
sus would go on to be used to inform the construction 
of the digital twin model.

From DELPHI statement to digital twin
DELPHI statements provide the core foundation of 
knowledge upon which the Digital Twin model will be 
constructed. This Digital Twin model, created with the 
assistance of a programmer, will consist of Bayesian net-
works, where nodes, representing quantities, variables, or 
states, are interconnected with other nodes [11, 32]. The 
probabilistic interactions between these nodes, based 
on causal effect and prior knowledge, can be visualized 
in a Directed Acyclic Graph (Fig.  1). These digital twin 
models are then refined through prospective observation 
in an actual critical care setting, where the predictions 
of the model are measured against patient outcomes to 
assess agreement between the model and what is seen in 
clinical practice [28].

Results
Three rounds of DELPHI consensus were completed 
from February 2022 to July 2022. Of the 18 experts par-
ticipating in the DELPHI consensus process, 14 (77.8%) 
were male and 4 (23.2%) were female. 17 (94.7%) were 
from the United States across nine different states, and 
1 (5.3%) was from Canada (Fig. 3). Experts ranged from 1 
to 30 years in practice with an average of 9.78 years and 
a standard deviation of 7.58  years. NCC experts identi-
fied additional interests in vascular neurology, trau-
matic brain injury, intracranial hemorrhage, and seizure, 
among others.

Of the original 120 DELPHI statements, 93 (77.5%) 
statements reached consensus, 11 (9.2%) statements 
were excluded, and 16 (13.3%) statements did not 
reach consensus after three rounds of DELPHI (Fig. 4). 
33 (27.5%) statements reached consensus after the 
first round of DELPHI, 25 (20.8%) statements reached 
consensus after the second round of DELPHI, and 35 
(29.2%) statements reached consensus after the third 
round of DELPHI (Table 1). Of the 33 statements that 
reached consensus in the first round, 10 (30.3%) state-
ments were direction or therapeutic impact statements 
each, 4 (12.1%) statements were intensity or contin-
gency statements each, 3 (9.0%) statements were timing 
statements, and 2 (6.1%) statements were probability 
statements. Of the 16 statements that did not reach 
consensus, 6 (37.5%) statements were probability state-
ments, 3 (18.8%) statements were intensity, timing, or 

Fig. 2 Flowchart providing an overview of the DELPHI consensus process. A foundational Directed Acyclic Graph (DAG) model is first constructed 
and refined. From this model, DELPHI statements are established, sent to Neurocritical Care (NCC) experts, and further refined before being deemed 
valid and sent to a programmers to incorporate into the Digital Twin AI Model
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contingency statements each, 1 (6.3%) statement was a 
therapeutic impact statement, and no statements were 
direction statements (Fig. 5).

Two sets of statements were excluded after the second 
round of DELPHI. One set of statements, “Decreased 
GCS leads to impairment of airway patency, ventilatory 
impairment, and respiratory failure.” was excluded due to 

redundancy to the statements preceding it, “Acute ischemic 
stroke impairs swallowing and compromises airways.”. The 
second set of statements, “Hypertension can increase risk 
of secondary (post-stroke) brain hemorrhage in patients 
who have received tPA or thrombectomy or who have a 
coagulopathy.” was excluded due to contention between 
experts regarding the mixed evidence on the topic.

Fig. 3 Map of the geographic distribution of Neurocritical Care Experts

Fig. 4 Flow chart of the DELPHI consensus process. After three rounds of DELPHI consensus, 93 statements reached consensus (green), 11 
statements were excluded (yellow), and 16 statements did not reach consensus (red)
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Table 1 Final table of DELPHI statements accompanied by which round of DELPHI reached consensus

Statement Rounds Until Consensus

Direction: Hypotension worsens acute ischemic stroke 1

 Intensity: High (Increased effect of hypotension on worsening of acute ischemic stroke with large vessel occlusion and 
increased penumbral size)

2

 Timing: Immediate (1–4 h) 2

 Probability: High 2

 Contingency: Hypotension will have a larger impact on worsening ischemic stroke size in large vessel occlusion than in 
small vessel/lacunar infarcts. Effect of hypotension is pronounced with increased stroke penumbra

2

 Therapeutic Impact: Providers should avoid iatrogenic hypotension in patients with acute ischemic stroke 2

Direction: Aspiration leads to chemical pneumonitis or bacterial pneumonia 1

 Intensity: Moderate (Modulated by severity of resulting pneumonia) 3

 Timing: Acute-Subacute (Hours to days. Clinical and radiographic evidence of pneumonia may be delayed.) 3

 Probability: Moderate (Probability modulated by volume and frequency of aspiration events as well as stroke type. 
Patients may still have micro-aspiration in the absence of macro-aspiration

3

 Contingencies: Increased risk of aspiration with impaired consciousness, speech or swallow 1

 Therapeutic Impact: Preventing large aspiration events can prevent chemical pneumonitis or pneumonia 2

Direction: Acute ischemic stroke impairs swallowing and compromises airways 1

 Intensity: High (Aspiration events and compromised airways can be life-threatening) 3

 Timing: Immediate-Subacute (Hours to Days) 3

 Probability: High (Depending on location of infarct and presence of oral-pharyngeal-laryngeal dysfunction) 3

 Contingencies: Stroke leading to impaired swallowing depending on which area of the CNS has been affected by the 
stroke

1

 Therapeutic Impact: Swallow studies before reinitiating a diet can prevent aspiration 1

Direction: Decreased GCS leads to impairment of airway patency, ventilatory impairment, and respiratory failure Excluded

 Intensity: High Excluded

 Timing: Subacute (12–24 h) Excluded

 Probability: High Excluded

 Contingencies: Increased risk of aspiration with neurologic diseases or impaired consciousness 1

 Therapeutic Impact: Preventing aspiration (oral care, feeding in semi recumbent position, swallow evaluations) reduces 
risk of compromised airway

Excluded

Direction: Reperfusion of ischemic stroke can lead to improvement of stroke 1

 Intensity: High 1

 Timing: Acute (4–12 h) 2

 Probability: High 2

 Contingencies: Patients should not receive thrombolytics or endovascular recanalization if contraindicated. Patients may 
still receive thrombolytics past the indicated time frame (3–4.5 h for thrombolysis and 24 h for endovascular recanalization 
since symptom onset) if benefits (based on perfusion studies and location/severity of stroke) outweigh the risks

3

 Therapeutic Impact: Timely administration of thrombolytics can lead to improvement of outcomes in ischemic stroke 1

Direction: Infection can lead to low blood pressures 3

 Intensity: Variable (Depends on severity of infection) 3

 Timing: Bimodal with Acute and Subacute Groups 2

 Probability: Moderate (Not every infection will lead to a systemic response) 3

 Contingencies: Higher incidence in infants and elderly as well as those predisposed to infections (i.e., immunocompro-
mised)

1

 Therapeutic Impact: Antibiotics and source control procedures can be used to treat infection and vasopressors can be 
used to maintain blood pressures

1

Direction: Opioid medications can decrease minute ventilation 1

 Intensity: High. Dose dependent. Increased effect with increasing dose 1

 Timing: Immediate-Acute (1–24 Hours to onset) 3

 Probability: Medium (Dose dependent) 2

 Contingencies: Opioids should be used with caution in patients with renal dysfunction, chronic hypercapnic respiratory 
failure, who are opioid naïve, and who are elderly

2
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Table 1 (continued)

Statement Rounds Until Consensus

 Therapeutic Impact: Careful administration of opioids can prevent respiratory depression. Naloxone can reverse the 
effects of opioid medications. Intubation and mechanical ventilation can maintain adequate minute ventilation

1

Direction: Hypertension can increase risk of secondary (post-stroke) brain hemorrhage in patients who have received tPA or 
thrombectomy or who have a coagulopathy

Excluded

 Intensity: High Excluded

 Timing: Subacute (12–24 h) Excluded

 Probability: High. (For patients who have received tPA, thrombectomy, or are coagulopathic) Excluded

 Contingencies: More common in patients with age-related vasculopathy or CAA and patients undergoing reperfusion Excluded

 Therapeutic Impact: Control of high blood pressure with medications can reduce risk of secondary brain hemorrhage Excluded

Direction: Administration of thrombolytics can lead to brain hemorrhage 2

 Intensity: High 2

 Timing: Immediate-Subacute (1–24 Hours. Highest risk in the acute period, but still possible in the subacute period.) 3

 Probability: Low (Increased with later time of onset and increased NIHSS severity) 3

 Contingencies: Use of thrombolytics even when indicated increases risk for brain hemorrhage 2

 Therapeutic Impact: While antithrombotics have a risk of brain hemorrhage, the benefits in treatment of acute ischemic 
stroke must be weighed against the risks of hemorrhage

1

Direction: Reperfusion can lead to potential reperfusion injury with secondary brain hemorrhage 3

 Intensity: High (Intensity depends on degree of brain hemorrhage and subsequent edema.) No Consensus

 Timing: Immediate-Acute (Onset within 24 Hours) 3

 Probability: Low (Depends on presence of contingency such as duration of vascular compromise, time to reperfusion, 
coagulopathy, degree of hypertension, and quality of collaterals)

No Consensus

 Contingencies: Degree of reperfusion injury depends on duration of vascular compromise, time to reperfusion, degree of 
hypertension, quality of collaterals

2

 Therapeutic Impact: Brain edema and secondary hemorrhage are complications after reperfusion of acute ischemic 
stroke and patients should be monitored for these complications

1

Direction: Secondary brain hemorrhage causes brain edema 1

 Intensity: High (Brain edema, when it occurs, can lead to subsequent brain herniation) 3

 Timing: Subacute 1

 Probability: High (Dependent on size of initial stroke and size of subsequent hemorrhage) No Consensus

 Contingencies: Level of inflammation and edema is dependent on size of initial stroke and size of subsequent hemor-
rhage. Other contingencies are being researched

3

 Therapeutic Impact: Brain edema must be properly managed with osmotherapy or decompressive surgery to prevent 
subsequent brain herniation

3

Direction: Secondary brain hemorrhage causes mass effect 1

 Intensity: High (Mass effect, when it occurs, can lead to subsequent brain herniation) 3

 Timing: Immediate—Subacute (Bimodal distribution with initial mass effect occurring immediately as well as subacutely 
from resulting edema after a few days.)

No Consensus

 Probability: Moderate (Dependent on hemorrhage size, location, and subsequent edema) 3

 Contingencies: Degree of mass effect depends on ICH volume and location as well as degree of subsequent edema. 
Degree of mass effect is decreased in patients with brain atrophy

3

 Therapeutic Impact: Mass effect must be properly managed with osmotherapy or decompressive surgery to prevent 
subsequent brain herniation

3

Direction: Brain edema and mass effect lead to brain herniation and coma 1

 Intensity: High 2

 Timing: Acute—Subacute (Hours to days for peak swelling) 3

 Probability: Moderate 2

 Contingencies: Brain edema and mass effect over a certain level lead to increased risk of brain herniation. Brain hernia-
tion may not necessarily be correlated with increased ICP. Degree of brain edema and mass effect is increased by increased 
mass lesion size, increased pressure gradient, and temporal location

2

 Therapeutic Impact: Brain edema and mass effect can cause subsequent brain herniation. Serial neurologic exams and 
neuroimaging may provide an early warning to clinicians. ICP and/or brain edema can be reduced by sedation (decreas-
ing brain metabolism), analgesia, elevating the head of the bed, hyperventilation, hypertonic saline, CSF drainage, and 
decompressive hemicraniectomy

3
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Table 1 (continued)

Statement Rounds Until Consensus

Direction: Fever can lead to worsening of acute ischemic stroke 1

 Intensity: Moderate 1

 Timing: Acute-Subacute (Hours to Days from onset) 3

 Probability: Moderate No Consensus

 Contingencies: Clinical worsening of acute ischemic stroke and level of neurologic deficit correlate with degree of fever No Consensus

 Therapeutic Impact: Preventing infection can curb the development of fever in patients with acute ischemic stroke. Fever 
is also a known phenomenon resulting from ischemic stroke and is thought to be a negative sign for prognosis. Hyperther-
mia should be identified and treated

1

Direction: Acute hyponatremia worsens brain edema 2

 Intensity: High (Degree of edema depends on magnitude and rate of change of serum sodium concentration.) 3

 Timing: Subacute (May be hours to days until edema is clinically significant) No Consensus

 Probability: High No Consensus

 Contingencies: Significance of hyponatremia on brain edema is mostly determined by severity/magnitude and rate of 
change of serum sodium concentration. Providers should identify the primary cause of hyponatremia

No Consensus

 Therapeutic Impact: Brain edema due to acute hyponatremia can be reduced with hypertonic saline. Relative reduction 
is serum sodium should be prevented in patients with chronic hyponatremia

2

Direction: Hypercapnia increases ICP 2

 Intensity: High 2

 Timing: Immediate 1

 Probability: High 3

 Contingencies: Degree of increased ICP usually correlates with increased with rate of and magnitude of CO2 increase. ICP 
increase may not be sustained. Effect of hypercapnia is modulated by baseline CO2 level of patient and may be modulated 
by presence of COPD, obesity, or hypoventilation syndrome

3

 Therapeutic Impact: Patients can be transiently hyperventilated to reduce elevatedCO2 and reduce brain edema. This 
is only a bridge to definitive treatment. Ventilation should be monitored by occasionally checking PCO2 in mechanically 
ventilated patients (especially with changes in sedation or with fever)

1

Direction: Ischemic stroke leads to cerebral edema 1

 Intensity: Moderate-High (Depends on severity of stroke) 1

 Timing: Subacute 1

 Probability: Moderate-High (Depends on severity of stroke) 1

 Contingencies: Degree of cerebral edema is dependent on severity of stroke. Subsequent mass effect and clinical effects 
are modulated by degree of cerebral atrophy

3

 Therapeutic Impact: Cerebral edema should be managed with osmotic therapy ± a brief period of hyperventilation to 
prevent devastating brain herniation. Decompressive surgery helps to relieve cerebral edema

No Consensus

Direction: Acute ischemic stroke can lead to secondary brain hemorrhage 2

 Intensity: Variable 2

 Timing: Variable 2

 Probability: Low 1

 Contingencies: Degree of secondary brain hemorrhage increases with increased size and severity of stroke, increased 
blood pressure, cardioembolic stroke, intrinsic coagulopathy, and early use of antithrombotics

No Consensus

 Therapeutic Impact: Acute ischemic stroke may undergo hemorrhagic transformation leading to secondary brain hemor-
rhage

1

Direction: Sepsis (Septic Shock) causes supply–demand mismatch in oxygenation 3

 Intensity: Moderate (Intensity of supply–demand mismatch depends on severity of sepsis.) No Consensus

 Timing: Subacute (Hours to days to onset) No Consensus

 Probability: Moderate (Probability of supply–demand mismatch depends on severity of sepsis.) No Consensus

 Contingencies: Degree of resulting supply–demand mismatch is modified by source and severity of infection as well as 
premorbid conditions of patients

3

 Therapeutic Impact: Treatment of infection with antibiotics can help manage resulting shock state and reduce supply–
demand mismatch. Supplemental oxygenation can help restore oxygenation

3

Direction: Decreased oxygenation levels can cause tissue hypoxia and lead to worsening of acute ischemic stroke 3

 Intensity: Moderate (Intensity of supply–demand mismatch depends on severity of sepsis.) No Consensus

 Timing: Acute-Subacute (Hours to Days to onset) 3
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Discussion
We report the application of a structured DELPHI pro-
cess with multiple iterative rounds to generate consensus 
among experts in the field of NCC on a series of expert 
rules that will act as a foundation for the creation of a dig-
ital twin artificial intelligence model specifically designed 
to simulate the acute clinical course of ischemic stroke 
in the critical care setting. Incorporating NCC experts’ 
knowledge and real-world clinical experience, this digi-
tal twin model will further be refined prospectively with 
real-time patient data [28]. This model will also be incor-
porated into an existing digital twin model of sepsis and 
future models of other organ systems under development 
by our research group.

In the first round of DELPHI, statements that gar-
nered the highest amount of agreement included 
“Stroke leads to impaired swallowing depending on 
which area of the CNS has been affected by the stroke.”, 
“Reperfusion of ischemic stroke can lead to improve-
ment of stroke.”, and “Antibiotics and source control 
procedures can be used to treat infection and vaso-
pressors can be used to maintain blood pressures.”, 
each with 100% consensus. Although these state-
ments appear relatively obvious, it was still essential to 
include these statements.

While NCC experts generally agreed on the overarch-
ing direction statements, there was significant disa-
greement regarding the nuances of these interactions’ 
intensity, timing, probability, and contingencies. For 
example, when the factors of large vessel occlusion and 
penumbral size were introduced to the intensity state-
ment of "Hypotension worsens acute ischemic stroke." 
consensus increased from 78 to 100%. Similarly, when the 
severity of infection was incorporated into the intensity 
statement of "Infection can lead to low blood pressure." 
consensus increased from 56 to 100%. While experts 
agreed with all main direction statements by the end 
of three rounds of DELPHI, areas of disagreement per-
sisted relating to the details of when these interactions 
occurred, how intense those interactions are, how likely 
those interactions are to happen, and the contingent 
situations where these interactions may not always be 
accurate.

Expert comments identified interactions that should 
have been considered during the initial creation of the 
DELPHI statements and highlighted the importance 
of clinical experience in developing these models. For 
example, when looking at the contingencies related to the 
effect of hypercapnia on ICP, the statement evolved from 
“None.” (56% Consensus) to “Degree of increased ICP is 

Table 1 (continued)

Statement Rounds Until Consensus

 Probability: Moderate (Probability of supply–demand mismatch depends on severity of sepsis.) No Consensus

 Contingencies: Worsening of acute ischemic stroke and neurologic deficits is modulated by the degree and duration of 
hypoxemia

3

 Therapeutic Impact: Supplemental oxygenation can help restore oxygenation. Intubation and mechanical ventilation 
may be necessary if respiratory drive or airways are compromised

1

Fig. 5 Stacked bar graph demonstrating how many rounds of DELPHI were needed to reach consensus by sub-statement type
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increased with a rate of and magnitude of CO2 increase.” 
(78% Consensus) to “Degree of increased ICP usually 
correlates with increased with a rate of and magnitude 
of CO2 increase. ICP increase may not be sustained. The 
effect of hypercapnia is modulated by the baseline CO2 
level of the patient and may be modulated by the pres-
ence of COPD, obesity, or hypoventilation syndrome.” 
(94% Consensus).

Some reasons for statements not reaching consensus 
included disagreement on particular words or phrasing, 
inability to capture the full nuance of clinical scenarios 
(particularly with intensity, timing, and probability state-
ments), and uncertainty in the literature. For example, 
when looking at the therapeutic impacts of cerebral 
edema, the statement evolved from “Elevated intracranial 
pressure secondary to edema should be managed with 
osmotic therapy ± a brief period of hyperventilation to 
prevent devastating brain herniation.” (50% consensus) 
to “Cerebral edema should be managed with osmotic 
therapy ± a brief period of hyperventilation to prevent 
devastating brain herniation. Hemicraniectomy acts as 
a definitive treatment to relieve cerebral edema.” (61% 
consensus) to “Cerebral edema should be managed with 
osmotic therapy ± a brief period of hyperventilation to 
prevent devastating brain herniation. Decompressive sur-
gery helps to relieve cerebral edema.” (78% consensus). 
Some expert comments that guided the refinement of 
this statement included “[Patients] may herniate despite 
normal ICPs.” and “Mass effect, not necessarily elevated 
ICP, is what is typically being managed. The most effec-
tive treatment is hemicraniectomy.” Comments on the 
statement in the final DELPHI round included, "Decom-
pressive surgery helps to prevent secondary injury caused 
by cerebral edema to the non-infarcted brain.” And 
“Edema may not always need to be treated medically.”

The results of this study demonstrated the applica-
tion of a DELPHI process to establish expert consensus 
on foundational rules to be used in developing a digital 
twin model of acute ischemic stroke. While models such 
as Archimedes have been developed for prognostication 
in the chronic disease and outpatient setting, no good 
model exists for use in the critical care unit, particularly 
the neurocritical care unit [8, 9]. While emerging artifi-
cial intelligence models are currently under development, 
these models can be limited by a lack of transparency and 
reliance on artificial intelligence drawing vague associa-
tions among large data sets rather than casual relation-
ships based on an understanding of underlying patient 
physiology [13].

Causal AI models, such as the one we propose, will lev-
erage the knowledge and experiences of leading neuro 
intensivists cultivated over years of studying disease 
pathophysiology and treating real-life patients. These 

models, with their interactions depicted through DAGs, 
allow for a higher level of transparency than existing 
associative AI models [32]. The subsequent aim and 
intention are to provide the end-users (learners, bed-
side clinicians, educators) with a model that can clearly 
demonstrate the interplay between various physiologic 
models while clearly displaying the expert consensus 
statements underlying the code. Such a model has never 
been established for use in the neurocritical care unit. 
Additionally, the expert rules created from this DELPHI 
process will contribute to a larger project integrating 
knowledge from various specialties within critical care, 
allowing us to integrate further physiologic variables not 
directly addressed in this DELPHI process.

Limitations of the study include the subjective nature 
of survey data, limited sample size, and language restric-
tions. The extensive nature of the initial round of 120 
DELPHI statements limited the participation of some 
experts and establishing consensus through DELPHI can 
be a time-intensive process. While a panel of 18 Neuro 
Critical experts is a sizable group, the study would bene-
fit from the input of more participants, particularly from 
outside of the US and Canada.

Artificial intelligence is not without its limitations 
[13]. IBM’s Watson had big visions of integrating artifi-
cial intelligence into the healthcare industry, but prom-
ises of new insights from large data sets soon turned into 
frustrations with the complexity and inflexibility of the 
system, struggling to decipher electronic medical record 
data, and wasted time wrestling with the new technology 
rather than taking care of patients [20]. While Watson 
performed superbly in the testing phase, the real-world 
experience was largely underwhelming.

The increasing integration of artificial intelligence and 
healthcare will also lead to more questions of govern-
ment regulation, privacy, bias, and ethics. The govern-
ment will need new regulatory frameworks to monitor 
these novel artificial intelligence models integrated into 
patient care as "Software as Medical Devices" to ensure 
these software are safe, valid, and efficacious and respect 
patient privacy [33–36]. Questions also remain about 
the liability and biases that could come with using this 
new technology.[13] In a world of increasing data, arti-
ficial intelligence and digital twins, in particular, hold the 
promise of integrating multidimensional clinical, labora-
tory, genomic, biochemical, protein, and metabolic data 
in the healthcare field, allowing for more efficient and 
personalized treatment of disease. However, we must 
remain cognizant of the technical limitations and ethical 
quandaries that come with this new technology [37, 38].

Future directions include creating a proof of concept 
that applies these expert rules to expand on our existing 
digital twin system for sepsis, developing similar systems 
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of expert rules in other organ systems (oxygenation and 
ventilation, inflammation, acute kidney injury, etc.), veri-
fying the model with prospective patient data, applica-
tion of the digital twin model for use in graduate medical 
education, and eventually integrating the technology into 
clinical practice. After the expert rules are incorporated 
into the current digital twin model, it will be essential to 
validate and adjust the model to real-time future itera-
tions using EHR data from real patients to ensure the 
model’s reliability. This digital twin model, once vali-
dated, will allow trainees to practice making decisions 
on an accurate and realistic model of patient physiol-
ogy without putting a real patient at risk. With further 
development, this artificial intelligence model has the 
potential to be integrated with similar models of differ-
ent organ systems to create a more realistic replica of a 
patient’s physiology and eventually develop into a clinical 
decision-making tool that changes how medicine will be 
practiced in the future.

Conclusion
This descriptive study demonstrates the application 
of the DELPHI process to generate consensus among 
experts for the development of a “digital twin” artificial 
intelligence model for use in NCC. After three rounds of 
DELPHI, we gained consensus on 93 (77.5%) of 120 initial 
DELPHI statements, with 100% consensus on all main 
direction statements. Compared to other models that 
rely on “black-box” associative artificial intelligence, this 
proposed digital twin model exploits the causal AI model 
based on a solid foundation of expert rules and causal 
mechanisms. This study demonstrates one method, the 
DELPHI consensus method, by which a foundation of 
expert rules can be established. In the future, this type of 
model can be used as a simulation tool in graduate medi-
cal education, and after extensive validation, it could also 
serve as a clinical decision aid, changing how medicine 
will be practiced in the future.
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