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SUMMARY

Scalar and vector Intensity Measures are developed for the efficient estimation of limit-state capacities through
Incremental Dynamic Analysis (IDA) by exploiting the elastic spectral shape of individual records. IDA is a
powerful analysis method that involves subjecting a structural model to several ground motion records, each scaled
to multiple levels of intensity (measured by the Intensity Measure orIM ), thus producing curves of structural
response parameterized by theIM on top of which limit-states can be defined and corresponding capacities can
be calculated. When traditionalIM s are used, such as the peak ground acceleration or the first-mode spectral
acceleration, theIM -values of the capacities can display large record-to-record variability, forcing the use of
many records to achieve reliable results. By using single optimal spectral values as well as vectors and scalar
combinations of them on three multistory buildings significant dispersion reductions are realized. Furthermore,
IDA is extended to vectorIM s, resulting in intricate fractile IDA surfaces. The results reveal the most influential
spectral regions/periods for each limit-state and building, illustrating the evolution of such periods as the seismic
intensity and the structural response increase towards global collapse. The ordinates of the elastic spectrum and
the spectral shape of each individual record are found to significantly influence the seismic performance and they
are shown to provide promising candidates for highly efficientIM s. Copyright c© 2005 John Wiley & Sons, Ltd.

KEY WORDS: performance-based earthquake engineering; incremental dynamic analysis; capacity; intensity
measure; limit-state; nonlinear

1. INTRODUCTION

An important aspect of Performance-Based Earthquake Engineering (PBEE) is calculating, for a given
building, capacities for the limit-states of interest and their corresponding mean annual frequencies of
exceedance. A promising method that has been developed to meet these needs is Incremental Dynamic
Analysis (IDA). It involves performing nonlinear dynamic analyses of the structural model under a
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2 D. VAMVATSIKOS AND C. A. CORNELL

suite of ground motion records, each scaled to several intensity levels designed to force the structure
all the way from elasticity to final global dynamic instability (Vamvatsikos and Cornell [1]). Thus, we
can generate IDA curves of the structural response, as measured by an Engineering Demand Parameter
(EDP, e.g., the maximum peak interstory drift ratioθmax), versus the ground motion intensity level,
measured by an Intensity Measure (IM , e.g., peak ground acceleration, PGA, or the 5%-damped
first-mode spectral accelerationSa(T1,5%)). Subsequently, limit-states (e.g., Immediate Occupancy or
Collapse Prevention in FEMA [2]) can be defined on each IDA curve and the corresponding capacities
can be calculated. The resulting capacities are then summarized, for example into appropriate fractiles,
combined with probabilistic seismic hazard analysis results and integrated within a suitable PBEE
framework to allow the calculation of the mean annual frequencies of exceeding each limit-state
(Vamvatsikos and Cornell [3]).

It is an unavoidable fact that the IDA curves and, correspondingly, the limit-state capacities display
large record-to-record variability even for the simplest of structures, e.g., oscillators (Vamvatsikos and
Cornell [4]). This observed dispersion is closely connected to theIM used; someIM s are moreefficient
than others, better capturing and explaining the differences from record to record, thus bringing the
results from all records closer together. Compare, for example, Figures1(a)and1(b)where thirty IDA
curves for a 9-story steel moment-resisting frame are plotted using PGA andSa(T1,5%), respectively,
as the IM . In both cases the variability from record to record is indeed remarkable, especially
considering that the thirty records were chosen to represent a scenario earthquake and belong to a
narrow magnitude and distance bin (TableI). However, PGA (Figure1(a)) is proven to be deficient
relative toSa(T1,5%) (Figure1(b)) in expressing the limit-state capacities of the 9-story; it increases
the variability between the curves and, correspondingly, the dispersion of capacities everywhere on the
IDAs. On the other hand, even the improvement achieved bySa(T1,5%) still leaves something to be
desired, as dispersions remain in the order of 40% – 50%.
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(a) Thirty IDA curves versus PGA
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(b) Thirty IDA curves versusSa(T1,5%)

Figure 1. IDA curves for aT1 = 2.4 sec, 9-story steel moment-resisting frame with fracturing connections plotted
against (a) PGA and (b)Sa(T1,5%).

Why should we search for such a betterIM ? There is a clear computational advantage if we can
select ita priori, before the IDA is performed. By reducing the variability in the IDA curves we need
fewer records to achieve a given level of confidence in estimating the fractileIM -values of limit-state
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INTENSITY MEASURES WITH ELASTIC SPECTRAL SHAPE INFORMATION 3

capacities and the mean annual frequencies of limit-state exceedance. Typically, a reduction of theIM -
capacity dispersion by a factor of two means that we need four times fewer records to gain the same
confidence in the fractileIM -capacity results (e.g., Vamvatsikos and Cornell [3]): We could get same
quality results by using about eight instead of thirty records. Obviously, the computational savings
would be enormous.
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Figure 2. The 5%-damped elastic acceleration spectra for thirty scenario records, normalized to the first-mode
period of the 9-story building.

Additionally, it is speculated that increasing the efficiency of theIM may also lead to improved
sufficiencyas well. A sufficient IM produces the same distribution of demands and capacities
independently of the record selection, e.g., there is no bias in the fractileIM -capacities if we select
records with low rather than high magnitudes or if the records do or do not contain directivity pulses
(Luco [5]). The goals of efficiency and sufficiency are not necessarily tied together as the former
aims at reducing the variability in the IDA results while the latter at reducing (or eliminating) their
dependance on record characteristics other than theIM . Still, using a more efficientIM will bring
the results from all records closer, and similarly bring close the IDA curves of records coming from
different magnitudes or containing different directivity pulses, thus reducing the importance of any
magnitude or directivity dependance.

While Sa(T1,5%) is found to be both efficient and sufficient for first-mode-dominated, moderate
period structures when directivity is not present (Shome and Cornell [6]), it is not necessarily so for
other cases (Luco [5]). Therefore, it is important to try and improve ourIM s beyond the capabilities
of Sa(T1,5%). Figure2 may provide some clues; therein we have plotted the 5%-damped acceleration
spectra of the thirty records chosen to represent a scenario earthquake and appearing in TableI. The
spectra have been normalized bySa(2.4s,5%), i.e., the value ofSa(T1,5%) at the first-mode period
T1 = 2.4s of the 9-story building that we are using as an example. There is obviously much variability
in the individual spectra that cannot be captured by justSa(T1,5%). A structure is not always dominated
by a single frequency and even then, when the structure sustains damage its properties change. Thus,
spectral regions away from the elastic first-mode period,T1, may become more influential. By taking
the differences in the individual spectral shapes into account, we may be able to reduce the variability
in the IDA curves and come up with an overall betterIM .

Such information may be incorporated into theIM by using appropriate inelastic spectral values
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4 D. VAMVATSIKOS AND C. A. CORNELL

Table I. The suite of thirty ground motion records used.

No Event Station φ◦ ∗ Soil† M‡ R§ (km) PGA (g)

1 Loma Prieta, 1989 Agnews State Hospital 090 C,D 6.9 28.2 0.159
2 Northridge, 1994 LA, Baldwin Hills 090 B,B 6.7 31.3 0.239
3 Imperial Valley, 1979 Compuertas 285 C,D 6.5 32.6 0.147
4 Imperial Valley, 1979 Plaster City 135 C,D 6.5 31.7 0.057
5 Loma Prieta, 1989 Hollister Diff. Array 255 –,D 6.9 25.8 0.279
6 San Fernando, 1971 LA, Hollywood Stor. Lot 180 C,D 6.6 21.2 0.174
7 Loma Prieta, 1989 Anderson Dam Downstrm 270 B,D 6.9 21.4 0.244
8 Loma Prieta, 1989 Coyote Lake Dam Downstrm 285 B,D 6.9 22.3 0.179
9 Imperial Valley, 1979 El Centro Array #12 140 C,D 6.5 18.2 0.143
10 Imperial Valley, 1979 Cucapah 085 C,D 6.5 23.6 0.309
11 Northridge, 1994 LA, Hollywood Storage FF 360 C,D 6.7 25.5 0.358
12 Loma Prieta, 1989 Sunnyvale Colton Ave 270 C,D 6.9 28.8 0.207
13 Loma Prieta, 1989 Anderson Dam Downstrm 360 B,D 6.9 21.4 0.24
14 Imperial Valley, 1979 Chihuahua 012 C,D 6.5 28.7 0.27
15 Imperial Valley, 1979 El Centro Array #13 140 C,D 6.5 21.9 0.117
16 Imperial Valley, 1979 Westmoreland Fire Station 090 C,D 6.5 15.1 0.074
17 Loma Prieta, 1989 Hollister South & Pine 000 –,D 6.9 28.8 0.371
18 Loma Prieta, 1989 Sunnyvale Colton Ave 360 C,D 6.9 28.8 0.209
19 Superstition Hills, 1987 Wildlife Liquefaction Array 090 C,D 6.7 24.4 0.18
20 Imperial Valley, 1979 Chihuahua 282 C,D 6.5 28.7 0.254
21 Imperial Valley, 1979 El Centro Array #13 230 C,D 6.5 21.9 0.139
22 Imperial Valley, 1979 Westmoreland Fire Station 180 C,D 6.5 15.1 0.11
23 Loma Prieta, 1989 Halls Valley 090 C,C 6.9 31.6 0.103
24 Loma Prieta, 1989 WAHO 000 -,D 6.9 16.9 0.37
25 Superstition Hills, 1987 Wildlife Liquefaction Array 360 C,D 6.7 24.4 0.2
26 Imperial Valley, 1979 Compuertas 015 C,D 6.5 32.6 0.186
27 Imperial Valley, 1979 Plaster City 045 C,D 6.5 31.7 0.042
28 Loma Prieta, 1989 Hollister Diff. Array 165 –,D 6.9 25.8 0.269
29 San Fernando, 1971 LA, Hollywood Stor. Lot 090 C,D 6.6 21.2 0.21
30 Loma Prieta, 1989 WAHO 090 –,D 6.9 16.9 0.638

∗ Component † USGS, Geomatrix soil class ‡ moment magnitude §closest distance to fault rupture

(Luco [5]). This seems to be a promising method, as it directly incorporates the influence of the
record on an oscillator that can yield and experience damage in a way similar to the structure. Still,
in the context of PBEE, the use of inelastic spectral values requires new, custom-made attenuation
relationships. On the other hand, using the elastic spectral values allows the use of the attenuation laws
available in the literature. Therefore, there is still much to be gained from the use ofIM s based on
elastic spectra.

Actually, studies by Shome and Cornell [6], Carballo and Cornell [7], Mehanny and Deierlein [8]
and Cordovaet al. [9] have shown that the elastic spectral shape can be a useful tool in determining
an improvedIM . Shome and Cornell [6] found that the inclusion of spectral values at the second-
mode period (T2) and at the third-mode (T3), namelySa(T2,5%) andSa(T3,5%), significantly improved
the efficiency ofSa(T1,5%) for tall buildings. Carballo and Cornell [7] observed greatly reduced
variability in theEDP demands when spectral shape information was included by compatibilizing a
suite of records to their median elastic spectrum. In addition, Mehanny and Deierlein [8] and Cordova
et al. [9] observed an improvement in the efficiency ofSa(T1,5%) when an extra period, longer than
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the first-mode was included by employing anIM of the form Sa(T1,5%)1−β Sa(c · T1,5%)β (with
suggested valuesβ = 0.5, c = 2). They also presented some evidence suggesting that sufficiency may
be improved as well, since the newIM made the IDA curves of several near-fault records practically
indistinguishable, regardless of the directivity-pulse period. Motivated by such encouraging results
we are going to use the methodology and tools developed by Vamvatsikos and Cornell [1, 3] to
better investigate the potential of incorporating elastic spectral shape information inIM s to reduce
the dispersion in IDA results.

2. METHODOLOGY

We will employ three different structures for our investigation into the potential use of the elastic
acceleration spectrum. These will be aT1 = 1.8s 5-story steel chevron-braced frame and two steel
moment-resisting frames designed for Los Angeles: aT1 = 2.4s 9-story with fracturing connections
and aT1 = 4s 20-story with ductile connections. In all cases we used two-dimensional centerline
models. The 5-story model includes ductile members and connections but realistically buckling braces
(Bazzurro and Cornell [10]). The 9-story model incorporates ductile members, shear panels and
realistically fracturing reduced beam section connections, while it includes the influence of interior
gravity frames (Lee and Foutch [11]). The 20-story model (Luco and Cornell [12]) has ductile members
and connections and it also accounts for the influence of the interior gravity frames. Finally, all models
include a first-order treatment of global geometric nonlinearities (P-∆ effects).

To perform IDA we used the suite of thirty records representing a scenario earthquake that was
introduced earlier in TableI. These belong to a bin of relatively large magnitudes of 6.5 – 6.9 and
moderate distances, all recorded on firm soil and bearing no marks of directivity. Each of these records
was appropriately scaled to cover the entire range of structural response for each building, from
elasticity, to yielding, and finally global dynamic instability. At each scaling level a nonlinear dynamic
analysis was performed and a single scalar was used to describe the structural response, the Engineering
Demand ParameterEDP according to current Pacific Earthquake Engineering Research (PEER) Center
terminology (previously known as the Damage MeasureDM , e.g., Vamvatsikos and Cornell [1]) . This
will be θmax in our case. The scaling level and the associated ground motion intensity can be expressed
by the selectedIM , which will initially be Sa(T1,5%) for our investigation. By interpolating such pairs
of Sa(T1,5%) andθmax values for each individual record we get thirty continuous IDA curves for each
of the three buildings, shown as an example in Figure1(b) for the 9-story.

While usually only a handful of distinct limit-states of practical value would be defined on the IDA
curves (e.g., Immediate Occupancy or Collapse Prevention in FEMA [2]), we will proceed to define a
continuum of limit-states that completely cover the structural response: Each will be defined at a given
θmax value to represent the capacity of the structure at a specific damaged state and level of response.
Finally, the appropriateSc

a(T1,5%)-values will be calculated, i.e., the values ofSa(T1,5%)-capacity for
each record and each limit-state or value ofθmax (Vamvatsikos and Cornell [1]). Our ultimate goal is
to minimize the dispersion in theIM -values of capacities for each limit-stateindividually by selecting
appropriate spectral values or vectors and functions of spectral values to be theIM . As a measure of the
dispersion we will use the standard deviation of the logarithm of theIM -capacities, which is a natural
choice for values that are approximately lognormally distributed (e.g., Shome and Cornell [6]).

Fortunately, no further dynamic analyses are needed to change fromSa(T1,5%) to otherIM s and
perform this dispersion-minimization; all we need to do is to transform each limit-state’sSc

a(T1,5%)-
values in the coordinates of the trialIM s and calculate their new dispersion. For example, if we want
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6 D. VAMVATSIKOS AND C. A. CORNELL

the dispersion of the capacities in PGA terms, then for each unscaled record (or at a scale factor
of one) we know both the PGA andSa(T1,5%)-values and the former can be appropriately scaled
by the same factor that the value ofSc

a(T1,5%) implies; e.g., for the 9-story building, the unscaled
record #5 (TableI) hasSa(T1,5%) = 0.114g and PGA= 0.279g, while global instability occurs at
Sc

a(T1,5%) = 0.49g, representing a scale factor of0.49/0.114≈ 4.3. Hence, theIM -capacity at the
global instability limit-state in PGA terms is PGAc = 4.3·0.279= 1.20g. Similarly we can accomplish
such transformations for anyIM based on elastic spectral values. Thus, we are taking full advantage of
the observations in Vamvatsikos and Cornell [3], by appropriately postprocessing the existing dynamic
runs instead of performing new ones.

The adopted approach in evaluating the candidateIM s is very different from the one used by Shome
and Cornell [6], Mehanny and Deierlein [8], Cordovaet al. [9] and Luco [5]. There, the focus is on
demands, i.e.,EDP-values, all four studies looking for a single “broad-range”IM that will improve
efficiency for all damage levels of a given structure. On the other hand, our search will be more focused,
zeroing on each limit-state separately to develop a “narrow-range”IM that will better explain the given
limit-state rather than all of them. Thus, we are able to follow the evolution of suchIM s as damage
increases in the structure, hopefully gaining valuable intuition in the process. Still, since we use only
θmax to define the structural limit-states, our observations may or may not be applicable when limit-
states are defined on other structural response measures (e.g., peak floor accelerations).

The initial focus of our investigation will be on the efficiency gained by incorporating elastic
spectrum information in theIM . We will start by investigating single spectral coordinates. This does
not constitute an investigation of spectralshapeper se as it focuses on the use of just one value at one
period. Still, it will provide a useful basis as we expand our trialIM s to include vectors and scalar
combinations of several spectral values. Another important issue will be the robustness offered by
eachIM , i.e., how much efficiency it retains when the user selects spectral values other than those
chosen by the dispersion-minimization process. This is a key question when trying to identifya priori
an appropriateIM in order to take advantage of its efficiency and use fewer records in the analysis.
We are not aiming to provide the final answer for the besta priori IM , but rather to investigate the
efficiency and the potential for practical implementation offered by several promising candidates.

3. USING A SINGLE SPECTRAL VALUE

The use of a single spectral value, usually at the first-mode of the structure, i.e.,Sa(T1,5%), has
seen widespread use for IDAs, having being incorporated into the FEMA [2] guidelines and used
throughout most of the current research. Obviously, it is an accurate measure for SDOF systems or
first-mode-dominated structures in the elastic range. However, when higher modes are important or
the structure deforms into the nonlinear range, it may not be optimal. There seems to be a consensus
that when structures are damaged and move into the nonlinear region, period lengthening will occur
(e.g., Cordovaet al. [9]). In that sense, there may be some merit in looking for elastic spectral values at
longer or, in general, different periods than the first-mode. Therefore we will conduct a search across
all periods in the spectrum to determine the one that most reduces the variability in theIM -values of
limit-state capacities.

Some representative results are shown in Figure3 for the 5-story building, for limit-states at four
levels ofθmax (Figure4), namely 0.01% (elastic), 0.7% (early inelastic), 1% (highly nonlinear) and
+∞ (global instability). The structure has obviously insignificant higher modes, sinceSa(T1,5%)
produces practically zero dispersion for the capacities in the elastic region (Figure3, (a)-line). As the
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Figure 3.Dispersion of theSc
a(τ,5%)-values versus

periodτ for four limit-states for the 5-story building.
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Figure 4. The fractile IDA curves and capacities for
four limit-states (Figure3) of the 5-story building.
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Figure 6. The dispersion for the optimalSa(τ,5%)
compared toSa(T1,5%) and PGA, versus the limit-

state definition,θmax, for the 5-story building.

structure becomes progressively more damaged the optimal periodτ moves away fromT1, lengthening
to higher values as expected. Initially, only a narrow band of periods around the optimalτ display low
dispersions. When close to global collapse (Figure3, (d)-line), this band around the optimal period
increases so that any period from 2s to 4s will achieve low dispersion, at worst 30% compared to about
40% when usingSa(T1,5%). A summary of the results is shown in Figure5, where the optimal period
is shown versus theθmax-value of all the limit-states considered, while the best achieved dispersion is
presented in Figure6, compared against the dispersion when using PGA andSa(T1,5%). As observed
earlier, the optimal period increases after yielding, fromτ = T1 to τ = 2.4s. Similarly, the dispersion
increases for all threeIM s in Figure6, but with the use of the optimal period the efficiency is improved
at least by 40% compared toSa(T1,5%).

Similar results for the 9-story building are presented in Figure7, for the limit-states appearing in
Figure8 at θmax equal to 0.5% (elastic), 5% (inelastic), 10% (close to global collapse) and+∞ (global
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Figure 7.Dispersion of theSc
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periodτ for four limit-states for the 9-story building.
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Figure 8. The fractile IDA curves and capacities for
four limit-states (Figure7) of the 9-story building.

0 0.05 0.1 0.15 0.2
0

1

2

3

4

5

6

 T1

 T2
 T3

maximum interstory drift ratio, θ max

pe
rio

d,
 τ

 (
s)

Figure 9. The optimal periodτ as it evolves withθmax
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Figure 10. Dispersion for the optimalSa(τ,5%)
compared toSa(T1,5%) and PGA, versus the limit-

state definition,θmax, for the 9-story building.

instability). The building has significant higher modes, as evident in Figure7 [(a)-line], since the first
mode is not optimal even in the elastic region. While all three modes,T1, T2 andT3, seem to locally
produce some dispersion reduction, the overall best single period lies somewhere between theT1 and
T2, at τ ≈ 1.2s. As damage increases the optimal period lengthens to higher values, finally settling
close toT1 when global instability occurs (Figure7, (d)-line). In Figure9, the results are summarized
for all limit-states, showing the gradual lengthening of the optimal period. Similarly, in Figure10
the optimal dispersion thus achieved is compared versus the performance of PGA andSa(T1,5%).
Remarkably, only in the elastic and near-elastic region does this single optimal spectral value provide
some improvement overSa(T1,5%), in the order of 10%; close to global collapse no gains are realized.

For the 20-story structure the results for four limit-states are shown in Figure11, for θmax equal to
0.5% (elastic), 2% (near-elastic), 10% (close to global collapse) and+∞ (global instability); each limit-
state is shown versus the fractile IDAs in Figure12. This is a building where higher modes are even
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Figure 11. Dispersion of theSc
a(τ,5%)-values versus

periodτ for four limit-states of the 20-story building.
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Figure 12. The fractile IDA curves and capacities for
four limit-states (Figure11) of the 20-story building.
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more important, and by looking at Figure11 [(a)-line] it seems that, at least initially, the second-mode
periodT2 manages to explain more thanT1 in the dispersion of theIM capacity values. The limit-states
are defined onθmax, the maximum of the story drifts, which often appears in the upper stories at low
ductilities and is thus quite sensitive to the higher frequencies. As damage increases the optimal period
moves away fromT2 and at global collapse reaches a value somewhere in the middle ofT1 andT2,
at τ ≈ 2.5s. In Figure13 the summarized results confirm the above observations for all limit-states.
Similarly to the 9-story only small reductions in dispersion are realized with the use of one spectral
coordinate (Figure14). At least, in this case, using a single optimal period seems to achieve somewhat
better performance thanSa(T1,5%) close to global collapse.

Summarizing our observations, the use of a single optimal spectral value seems to offer some
benefits, but mostly to structures with insignificant higher modes. For such structures it seems relatively
easy to identify the optimal period, as it is invariably an appropriately lengthened value of the first-
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10 D. VAMVATSIKOS AND C. A. CORNELL

mode periodT1. One could almost say that practically any (reasonably) lengthened first-mode period
will work well. On the other hand, when higher modes are present, one spectral value is probably not
enough. There do exist specific periods that one can use to reduce the variability, but they appear in a
very narrow range and are difficult to pinpoint as damage increases. It would be difficult to picka priori
a single period for such structures as a slight miss will probably penalize the dispersion considerably.

Most probably, the reason behind this apparent difficulty is that even in the nonlinear range such
structures are sensitive to more than one frequency. Thus, our attempt to capture this effect with just
one period results in the selection of some arbitrary spectral coordinate that happens to provide the right
“mix” of spectral values at the significant frequencies. Looking at all the previous figures it becomes
obvious that missing by a little bit will again, in most cases, pump up the dispersion significantly.
Obviously, this one period is not a viable solution for any but the structures dominated by the first-
mode. On the other hand, the introduction of another spectral value, to form a vector or an appropriate
scalar combination of two periods, might prove better.

4. USING A VECTOR OF TWO SPECTRAL VALUES

The use of more than one discrete spectral value necessitates the development of a framework for the
use of vectorIM s. While the definitions set forth in Vamvatsikos and Cornell [1] do provide for a vector
IM , up to now no formal framework has been developed on how to postprocess and summarize such
IDAs. So, before we proceed with our spectral shape investigation, we will propose a methodology to
deal with vectorIM s.

4.1. Postprocessing IDAs with vectorIMs

The most important thing that we must keep in mind is that the IDA per se remains unchanged and
no need exists to rerun the results that we have acquired; this is all about postprocessing, as explained
in Vamvatsikos and Cornell [3]. On the other hand, there are some conceptual differences between a
scalar and a vector ofIM s. Since theIM must in both cases represent the scaling of the ground motion
record, the scalarIM has to be scalable, i.e., be a function of the scale factor of the record (Vamvatsikos
and Cornell [1]). However, for a vector ofIM s it would be redundant and often confusing if more than
one of the elements were scalable. Hence, we will focus on vectors where only one of the elements
can be scaled, while the others are scaling-independent. That is not to say, for example, that when we
haveSa(T1,5%) in a vector, other spectral values are not acceptable. Rather, we will replace such extra
spectral values by their ratio overSa(T1,5%) (and similarly normalize any other scalableIM ); thus,
we convey only the additional information that the new elements in the vector bring in with respect to
our primary scalable (scalar)IM . In this case it is quite precise to speak of this additional information
(one or more additional spectral ratios) as reflecting the influence of spectral shape (rather than the
amplitude of the record).

Following a similar procedure as for a single scalableIM , we will use splines to interpolate the
discrete IDA runs for each record versus the scalableIM from the vector (Vamvatsikos and Cornell
[1]). Then, we can plot the IDA curves for all records versus the elements of the vector, as in
Figure 15 for the 5-story braced frame and a vector ofSa(T1,5%) (scalable) and the spectral ratio
Rsa(1.5,T1) = Sa(1.5T1,5%)/Sa(T1,5%) (non-scalable). Contrary to the usual practice of plotting the
IM on the vertical axis, we will now plot bothIM s on the two horizontal axes and put theEDP on the
vertical one, to visually separate the “input” from the “output”. As a consequence the flatlines are now
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Figure 16. The median IDA surface for the 5-story
building in Sa(T1,5%) andRsa(1.5,T1) coordinates.
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Figure 18. The 16%, 50% and 84% capacity lines at
the limit-state ofθmax= 0.016for the 5-story building.

vertical lines, rather than horizontal ones.
Still, we are able to interpolate only along the scalableIM , while for the non-scalable one we are

left with separate, discrete curves. We need to take an extra step here and make the results continuous
in the otherIM as well, which is why we will introduce summarization at this point. However, we are
not able to use cross-sectional fractiles, as we did for singleIM s in Vamvatsikos and Cornell [3]. That
would require several values ofEDP at each level of the non-scalableIM , practically impossible with
a limited number of records. We can use instead the symmetric-neighborhood running fractiles (Hastie
and Tibshirani [13]) with a given window length to achieve the same purpose. The optimal window
length can be chosen, e.g., through cross-validation (Efron and Tibshirani [14]), or by adopting a
reasonable fraction of the sample size. In our case, we selected 30% of the sample size, i.e., used
the0.3×30= 9 symmetrically closest records to approximate the fractile value for each level of the
non-scalableIM . The resulting median IDAsurfaceappears in Figure16.

Now is the time to define limit-state capacities. It can be easily done usingEDP-based rules for all
limit-states, withθmax = +∞ resulting in the flatlines for global instability. Imagine horizontal planes,
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12 D. VAMVATSIKOS AND C. A. CORNELL

each for a givenEDP-value, cutting the IDA surface. The results can be easily visualized as contours
of the fractile IDA surface, seen in Figure17 for the median. Obviously, now the median capacity for
a given limit-state is not a single point, as for scalarIM s, rather a whole line, as the ones appearing in
Figure17. As an example, we are showing in Figure18 the 16%, 50% and 84% capacity lines for a
limit-state atθmax= 1.6%, close to the onset of global instability. These correspond to our best estimate
of the 16%, 50% and 84% vectorIM -value of the limit-state capacity. For example, if several records
hadRsa(1.5,T1) = 1.2, then if scaled toSa(T1,5%) ≈ 0.5g (to reach the 16% capacity line) only 16%
of them would cause the structure to violate the limit-state, and they would have to be scaled to only
Sa(T1,5%)≈ 0.6g for 84% of them to cause limit-state exceedance. On the other hand, if another set of
records were comparatively less rich in the longer periods, e.g., ifRsa(1.5,T1) = 0.5, they would have
to be scaled toSa(T1,5%)≈ 1g to cause 50% of the records to violate this same limit-state.

In retrospect, notice that we have slightly altered the “standard” IDA post-processing, as defined
by Vamvatsikos and Cornell [1, 3]. For scalarIM s we would first define limit-states points on each
IDA and then summarize, while for vectorIM s it is advantageous to reverse these steps. Keep in
mind though that if we are using onlyEDP-based rules for the definition of limit-states, as we do
here, then we can similarly reverse these steps for the scalarIM . The results will be exactly the same,
as explained in Vamvatsikos and Cornell [3]: The (100− x)%-fractile IDA limit-state capacities for
Immediate Occupancy and Global Instability (and all otherEDP-based limit-states) reside on thex%-
fractile IDAs. On the other hand, this is not the case for the FEMA-350 [2] definition of the Collapse
Prevention limit-state. It is partially based on the change of the slope of the IDA (Vamvatsikos and
Cornell [1]), therefore it is clearly not a simpleEDP-based limit-state.

As a final note, it is important to observe how we were forced to introduce summarization over
windows rather than stripes. By introducing an extraIM , we may have explained some of the variability
in the capacities but we have also increased the dimensionality of the sample space, thus the data is
more sparse. Where we used to have 30 points for each level (stripe) of the scalableIM , we now have
only a few points for whole regions of the unscalableIM . Obviously, we cannot keep introducing extra
dimensions, otherwise we will be facing extreme lack-of-data problems.

4.2. Investigating the vector of two spectral values

Clearly, for the 5-story building with negligible higher modes, using a vector instead of a scalarIM
produces very impressive results. The introduction ofRsa(1.5,T1) provides significant insight into the
seismic behavior of the 5-story, as seen in Figure17; for records withRsa(1.5,T1) > 1, as its period
lengthens the damaged structure falls in a more aggressive part of the spectrum and is forced to fail at
earlierSa(T1,5%) levels, exhibiting IDAs with rapid softening. On the other hand, ifRsa(1.5,T1) < 1
the period lengthening helps to relieve the structure allowing the IDA to harden and reach higher
flatlines in terms ofSa(T1,5%). Actually, the less aggressive the record is at longer periods (lower
Rsa(1.5,T1)) the more the IDA hardens. The introduction of the extraIM has helped explain some of
the record-to-record variability in theSa(T1,5%) capacities for almost any level ofEDP, i.e., for any
limit-state.

Additional studies show that such results are not very sensitive to the spectral ratio that we choose to
use. At least for the 5-story building almost any such lengthened period will provide some explanation
of the variability in capacity. On the other hand though, it may not be so for other buildings. As shown
for the 9-story and 20-story buildings in Figures19 and20 respectively, using a vector ofSa(T1,5%)
andRsa(1.5,T1) yields little or no additional information compared to justSa(T1,5%). These buildings
have significant higher-mode influence, hence we have to use a spectral coordinate at a periodlower
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than T1 to gain resolution. Still the shape of the contours may no longer be the simple, monotonic,
almost power-law shape that was observed for the 5-story. This happens, for example, in Figure21
for the 20-story whenRsa(0.5,T1) is used in addition toSa(T1,5%) (where0.5T1 ≈ 1.5T2 for this
building): the most aggressive records are the ones withRsa(0.5,T1)≈ 2, while lower or higher values
of the spectral ratio will both indicate more benign records. Still, even for these complex buildings,
there exist periods that explain well the variability and even show the familiar, power-law shape of the
contours, as shown for the 9-story when we useRsa(0.7,T1) (where0.7T1 ≈ 2T2 for the 9-story) in
Figure22, and even the 20-story when we introduceRsa(0.3,T1) in Figure23 (where0.3T1 ≈ T2 for
the 20-story). Clearly, there is great potential in using a vector of two spectral values, but the question
remains whether the appropriate periods for its use are easy to determine, especiallya priori.

5. USING A POWER-LAW FORM WITH TWO OR THREE SPECTRAL VALUES

By observing the power-law shape of the contours in Figures17, 22 and23 it becomes obvious that
they can be approximated for each of the three buildings by the equation

Sc
a(T1,5%)≈ αRsa(1.5,T1)−β (1)

whereα, β are the fitted coefficients. Even though for a given building theβ -value is not constant for
all limit-states, as the contours have higher curvature for higherEDP-values, we can still specify some
reasonableβ -value that will be adequate for most of them. In that case, we can rewrite Equation (1) as

α ≈ Sc
a(T1,5%)Rsa(1.5,T1)β (2)

and interpret it as follows: by multiplyingSc
a(T1,5%) capacity values byRsa(1.5,T1)β , we can bring

them closer, almost to an (arbitrary) constant. In other words,Sa(T1,5%)Rsa(1.5,T1)β is a scalarIM
that will retain much of the vectorIM ’s ability to reduce dispersion in limit-state capacities. How much
reduction it will achieve will depend on our ability to select a properβ -value and the goodness-of-fit
of Equation (1) to the contour.

Not surprisingly, it is such a form that Shome and Cornell [6], Mehanny and Deierlein [8] and
Cordovaet al. [9] have used to create a new, more effective scalarIM . While the idea there was mostly
driven by the need to be able to use existing attenuation laws to create hazard curves for the newIM
(Cordovaet al. [9]), they have come very close to an accurate approximation of the contour shape.

Motivated by the above results we intend to perform a search for the optimally efficientIM of the
form

IM ≡ Sa(τa,5%)1−β Sa(τb,5%)β

= Sa(τa,5%)
[

Sa(τb,5%)
Sa(τa,5%)

]β
(3)

whereτa andτb are arbitrary periods andβ ∈ [0,1]. Notice the difference with Shome and Cornell [6]
who constrain both periods to beT1 andT2 respectively, or Mehanny and Deierlein [8] and Cordova
et al. [9], who chose to constrain one of the periods to beT1. Instead, we intend to let the optimization
find the best values,τa, τb andβ .

Additionally, we will investigate a power-law form containing three spectral values or, equivalently,
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a single spectral value and two spectral ratios:

IM ≡ Sa(τa,5%)1−β−γ Sa(τb,5%)β Sa(τc,5%)γ

= Sa(τa,5%)
[

Sa(τb,5%)
Sa(τa,5%)

]β [
Sa(τc,5%)
Sa(τa,5%)

]γ
(4)

whereτa, τb andτc are arbitrary periods,β ,γ ∈ [0,1] andβ + γ ≤ 1.
The optimal two periods for the 5-story building appear in Figure24 over a range of limit-states

from elasticity to global collapse. At elasticity, the two periods converge to the first mode,T1, since the
structure has practically no higher mode effects. As damage increases one of the periods hovers close
to T1 while the other increases and fluctuates about 50% higher. The optimal value ofβ is always about
0.5, favoring equal weighting of the two periods. Comparing Figures6 and26 it becomes obvious that
the use of two spectral values reduces the capacity dispersion by a small amount relative to the use
of a single optimal value. WhileSa(T1,5%) would achieve about 40% dispersion and a single optimal
period would reduce this to 25%, the use of two periods only brings it down to 20%.

If we introduce a third spectral value for the 5-story through Equation4, then we come up with
the three optimal periods shown in Figure25 for a range of limit-states. Again, in elasticity, the three
periods start atT1 and then they slowly separate. One period stays at aboutT1 and the rest gradually
increase. When close to global collapse the second one is 50% higher and the third 100% higher
thanT1. Again, equal weighting seems to be the rule for all limit-states since the optimal values are
β ≈ γ ≈ 1/3. The dispersion reduction is even less spectacular than before (Figure26), reaching a level
of just 18% at global collapse compared to the 20% of the two spectral values. Clearly, we have reached
the limits of what the elastic spectral shape can do for this building. As expected, when higher modes
are insignificant, one, maybe two, periods will be enough to determine an improved, near-optimalIM ,
cutting down dispersion by a factor of two relative toSa(T1,5%). Adding more complexity to theIM
does not seem to help efficiency, as the system is not that complex itself.

When practically implementing suchIM s before the dynamic analyses are performed, it is important
that efficiency remains high even when not using the (unknowna priori) optimal periods. To investigate
the sensitivity of the proposed scalarIM s we have simulated random user choices for the period(s) used
for the single spectral value or the power-law combinations of two or three values. The user is supposed
to have picked periods uniformly distributed within±20% of the optimal values for eachIM and to
have selected equal weighting of spectral values in the power-law (i.e.,β = 1/2 or β = γ = 1/3). Such
simulations are repeated numerous times for each limit-state (i.e., value ofθmax) and the achieved
suboptimal dispersions are calculated for eachIM . In Figure27we are plotting the 84%-fractile of the
resulting sample of suboptimal dispersions for the single period and the two power-law combinations
versus theθmax definition of each limit-state; i.e., we are focusing on a worse-than-average scenario.
For comparison, the dispersion when usingSa(T1,5%) and when using the optimal three periods power-
law is also shown. Obviously, the largest effect for the 5-story is in the elastic region, where not usingT1

is a very bad choice in all cases. In the nonlinear range, missing the optimal period seriously degrades
the performance of a singleIM , bringing its dispersion to about 30%, a fact also observed in Figure3.
On the other hand, the two and three period combinations perform relatively well, managing to keep
a dispersion of about 25% and 20%. Again, just as when using a vector of two spectral values, the
power-law form is quite stable, even more so than using a single spectral value, since relatively large
changes away from the optimal periods do not influence significantly the dispersion reduction of the
power-lawIM . Practically, in the post-yield region, using the first mode plus e.g., a 50% increased
period, withβ = 0.5 (i.e., equal weight on both spectral values) will in general produce good results.
Actually these conclusions are quite in agreement with Cordovaet al. [9].
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Figure 24. The two optimal periodsτa, τb as they
evolve withθmax for the 5-story building.
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Figure 25.The three optimal periodsτa, τb, τc as they
evolve withθmax for the 5-story building.
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PGA andSa(T1,5%) versus the optimal one, two and

three periods scalarIM s.
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two or three periods for the 5-story building, shown
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optimal three-periods power-lawIM .

In the case of the 9-story building the two optimal periods appear in Figure28 and the three best in
Figure29. In the first case, the smaller period seems to stay atT2 while the higher one starts fromT1 and
increases to some higher value, only to return back toT1 again. For the three periods, the results seem
to favor one period atT1, another atT2 and a third at about twiceT1. Similarly to the 5-story, equal
weighting is the optimal strategy for bothIM s and almost all limit-states. With either two or three
periods, as seen in Figure30, the dispersion reduction is about the same. Actually, the dispersion drops
from 40% for one optimal period (or even for justSa(T1,5%)), to less than 25–30% when two or more
periods are used. Again, it seems that two spectral values are enough for this first-mode-dominated
building and clearly better than just one.

What is of more value though is that the efficiency of the two or three-elementIM is very stable
relative to the choices of the periods and theβ , γ weights. In Figure31 we plot the results of the
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Figure 28. The two optimal periodsτa, τb as they
evolve withθmax for the 9-story building.
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Figure 29.The three optimal periodsτa, τb, τc as they
evolve withθmax for the 9-story building.
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Figure 30.The dispersions for the 9-story building for
PGA andSa(T1,5%) versus the optimal one, two and

three periods scalarIM s.
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Figure 31. The 84% fractile of the suboptimal
dispersion for a single period and power-law forms of
two or three periods for the 9-story building, shown
versus the dispersion achieved bySa(T1,5%) and the

optimal three-periods power-lawIM .

previously described sensitivity analysis for the 9-story. Clearly, using only one (suboptimal) period
is often worse or at most as good as when usingSa(T1,5%), as observed in Figure7 as well. On the
other hand, with two or three periods, equally weighted in a power-law form, theIM is considerably
more robust and relatively reasonable efficiency is maintained. If we follow our observations and set
one value aroundT1, another at aboutT2 and maybe a third 50% or 100% higher thanT1, then weigh
them equally (β = 1/2 or β = γ = 1/3), a dispersion of about 30% is easily achieved in contrast to the
elusive single optimal period.

Figure32 shows the best two periods for the 20-story building. One seems to stay somewhere in
the middle ofT2 andT3 while the other is a lengthened version of the first mode, perhaps by 30–50%.
The picture is clearer for the three best periods in Figure33, where each seems to be a (roughly) 50%
lengthened version of one of the three elastic modes,T1, T2 andT3. The optimal weights are roughly
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Figure 32. The two optimal periodsτa, τb as they
evolve withθmax for the 20-story building.
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Figure 33.The three optimal periodsτa, τb, τc as they
evolve withθmax for the 20-story building.

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

maximum interstory drift ratio, θmax

di
sp

er
si

on
 o

f I
M

 c
ap

ac
iti

es

PGA
Sa(T1,5%)

1 best period
2 best periods
3 best periods

Figure 34. The dispersions for the 20-story building
for PGA andSa(T1,5%) versus the optimal one, two

and three periods scalarIM s.
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Figure 35. The 84% fractile of the suboptimal
dispersion for a single period and power-law forms of
two or three periods for the 20-story building, shown
versus the dispersion achieved bySa(T1,5%) and the

optimal three-periods power-lawIM .

equal for all two or three periods. The dispersion reduction is significant in both cases, reaching down
to 25% versus the 35% achieved by a single optimal period or the 40% ofSa(T1,5%) (Figure34). While
the use of three periods rather than two seems to offer little benefit, actually it makes theIM quite easier
to define. Additionally the results of the sensitivity analysis in Figure35suggest that efficiency remains
relatively high when three suboptimal periods are employed, versus two or one. Simply by increasing
all three elastic periods by some reasonable percentage and employing equal weights (β = γ = 1/3)
works fine for all limit-states, achieving dispersions in the order of 30%.

In conclusion, it seems that the use of the power-law form with two or three spectral values helps
even when the higher modes are significant. Actually, the more significant they are, the more periods we
might want to include. The benefit is not so much in the reduction of dispersion, rather in the robustness
of the IM and the ability to identify ita priori. The sensitivity of the power lawIM s to suboptimal
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user choices significantly decreases when more spectral values are included. Thus, it is not necessary
to propose a “magic set” of parameters for each structure: In the inelastic range any reasonably chosen
number of equally weighted periods that lie somewhat higher than the elastic ones will provide good
dispersion reduction for most cases. Further investigation of more structures is needed before some
concrete proposals are made, but the concept looks promising.

6. USING ALL SPECTRAL VALUES

The problems encountered with all previous attempts to use the spectral shape mainly stem from the
fact that we were looking for distinct “perfect” periods. This in part made the problem quite more
difficult, as we were trying to describe the full spectral shape with only one or two spectral ratios.
Using more spectral shape information will hopefully open up some easier paths. Still, visualizing an
IM vector with more than one spectral ratio would be hard and it would be equally difficult to create
enough data to fill the extra dimensions. On the other hand, the collapsed power-law form of the vector
to a scalar suggests an easier way to approach this problem. Including more spectral coordinates in
Equation (1) is relatively straightforward, while finding the right weight coefficients may be handled
by standard linear regression methods, penalized to reflect the sample size limitations.

Taking one step further, there exist methods in statistics that can treat each record’s spectrum as a
single, functional predictor, thus taking into consideration the shape of the full spectrum and use it as a
predictor for limit-state capacity. In formal terms we are proposing the use of a functional linear model
(Ramsay and Silverman [15]) that will use each record’s spectrum to predict a scalar response, i.e.,
its limit-stateSc,i

a (T1,5%)-capacity derived from the IDA curve of thati-th record. In essence, we are
proposing the use of the linear functional model

lnSc,i
a (T1,5%) = α +

∫ te

ts
β (τ) ln

[
Sa(τ,5%)
Sa(T1,5%)

]
dτ + εi (5)

whereα is the regression intercept,β (τ) is the regression coefficient function,ts andte are the starting
and ending periods that bound the spectral region of interest and, finally,εi are the independent and
normally distributed errors (with a mean of zero).

This can be thought as a conventional multivariate linear regression model, only we can have an
infinite number of predictors, or degrees of freedom, in our fitting. Of course, having infinite parameters
and only a finite number of responses allows such a model to actually interpolate the responses, if
we choose so. This would not provide a meaningful estimator, but can be remedied by sufficiently
smoothing the coefficient functionβ (τ) at a level easily found through cross-validation. We end up
with a model to predict limit-state capacities that can be easily imagined to be of the same power-law
form as the one we have introduced to collapse the vector of twoIM s into a scalar in Equation (1). If
we use a trapezoidal rule to perform the integration, then we can write Equation (5) as:

lnSc,i
a (T1,5%)≈ α +

n

∑
j=1

β (τi) ln

[
Sa(τi ,5%)
Sa(T1,5%)

]
∆τ ⇔

Sc,i
a (T1,5%)≈ eα

n

∏
j=1

[
Sa(τi ,5%)
Sa(T1,5%)

]β (τi)∆τ
⇔

eα ≈ Sc,i
a (T1,5%)

n

∏
j=1

[
Sa(τi ,5%)
Sa(T1,5%)

]−β (τi)∆τ
(6)
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Figure 36. The regression coefficient functionβ (τ) at global dynamic instability for the 20-story building.

Equation (6) allows us to define a newIM , of similar form to Equation (2), that now uses practically
the whole spectrum to explain (and reduce) the record-to-record variability. Similarly to the two-
periods power-law form, as described in Cordovaet al. [9], it is expected that hazard curves can be
easily determined for such anIM without the need for new attenuation relationships.

But why expand to such a complicatedIM ? We have performed such a functional linear fit for
the global instability capacities of the 20-story building, using as predictors the spectral coordinates
within ts = 0.1s andte = 6s, and have plotted the coefficient functionβ (τ) in Figure36; it precisely
explains the influence of every spectral coordinate on the flatline capacity. We can think ofβ (τ) as a
weight function, where its absolute value at each period provides us with the degree of the period’s
significance to capacity. The importance of spectral coordinates is highest for periods longer than the
first mode (high|β (τ)|-values), while it decreases rapidly for periods lower than the second mode
(low |β (τ)|-values). The simplicity of the shape suggests that we can probably provide some generala
priori suggestions for the coefficient function that will provide relatively efficientIM s. Note, that we
need not match the actual values of the coefficient function, only its shape, as we are not interested in
capacity-prediction, only in capacity dispersion reduction.

Again, the realized gains may not lie as much with dispersion reduction as with robustness. The
IM suggested by the fit reduces all capacity dispersions for all limit-states by approximately 50%
relative toSa(T1,5%), almost to similar amounts as the power-law form with three periods. Only further
investigations can prove whether this functional model will prove more useful or robust than the simpler
power-law form. Still, it may help us identify spectral regions of interest and characterize structures in
a very simple way.
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7. CONCLUSIONS

Providing more efficient Intensity Measures (IM s) is a useful exercise, both in reducing the number
of records needed for PBEE calculations but also in improving our understanding of the seismic
behavior of structures. The record-to-record dispersion in the limit-stateIM -capacities that is observed
with traditional IM s can be practically halved by taking advantage of elastic spectrum information.
Several methods exist to incorporate elastic spectral values inIM s. One could use a single optimally
selected spectral value, a vector of two or a power-law combination of several spectral values. While
the candidates often seem to achieve similar degrees of efficiency, not all of them are suitable for
usea priori; it may be quite difficult to select the appropriate periods (or spectral values) before we
complete our dynamic analyses. Using a single optimal spectral value is practical only for buildings
with insignificant higher modes; taking the spectral value at period higher than the first-mode period
provides us with good efficiency even close to global collapse. On the other hand, when the influence of
higher modes is significant, a single spectral value is not enough and spectralshapebecomes important.
Then, using two or even three spectral values seems to help both the efficiency and the robustness
of the IM against the suboptimal selection of periods. A novel method has also been presented that
can take advantage of the whole spectrum to provide us with efficient and potentially very robust
IM s. Additionally, the use of vectorIM s not only decreases dispersion but it results in summarized
IDA surfacesthat provide a direct visualization of the spectral shape’s influence on the capacities
for any limit-state. Still, before suchIM s are adopted significant work remains to be done; we need
to investigate more structures and more ground motion records, probably ones with important local
spectral features, e.g., soft soil or directivity influence. Thus we will be able to better select the
appropriateIM that will be both efficient and sufficient for a given structure and site.
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