
96 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E

Editor: Editor Name
affi l iation
email@email.com

Editor: Editor Name
affi l iation
email@email.com

Editor: Tore Dybå
SINTEF
tore.dyba@sintef.no

Editor: Helen Sharp
The Open University, London
h.c.sharp@open.ac.uk

Developing Fault-
Prediction Models:
What the Research Can Show Industry

Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell

VOICE OF EVIDENCE

CODE FAULTS ARE a daily reality
for software development companies.
Finding and removing them costs the
industry billions of dollars each year.
The lure of potential cost savings
and quality improvements has moti-
vated considerable research on fault-
prediction models, which try to iden-
tify areas of code where faults are
most likely to lurk. Developers can
then focus their testing efforts on
these areas. Effectively focused test-
ing should reduce the overall cost of
finding faults, eliminate them earlier,
and improve the delivered system’s
quality. Problem solved.

So why do so few companies seem to
be developing fault-prediction models?

One reason is probably the sheer
number and complexity of studies in
this fi eld. Before companies can start to

develop the models, they must under-
stand questions such as which metrics
to include, which modeling techniques
perform best, and how context affects
fault prediction.

To answer these questions, we con-
ducted a systematic review of the pub-
lished studies of fault prediction in
code from the beginning of 2000 to
the end of 2010.1 On the basis of this
review and subsequent analysis of 206
models, we present key features of suc-
cessful models here.

Context Is Key
We found 208 studies published on

predicting code faults over the 11-year
period covered in our review. These
studies contain many hundreds of indi-
vidual models, whose construction var-
ies considerably.

Although it would be nice if com-
panies could simply select one of these
published models and use it in their
own environment, the evidence sug-
gests that fault-prediction models
perform less well when transferred to
different contexts.2 This means that
practitioners must understand how ex-
isting models might or might not relate
to their own model development. In
particular, they must understand the
specifi c context in which an existing
model was developed, so they can base
their own models on those that are
contextually compatible.

However, we found three challenges
to this apparently simple requirement.
First, many studies presented insuffi -
cient information about the develop-
ment context. Second, most studies re-
ported models built using open source
data, which can limit their compatibil-
ity with commercial systems. Third, it
remains unclear which context vari-
ables (application domain, program-
ming language, size, system maturity,
and so on) are tied to a fault-prediction
model’s performance.

Establishing Confi dence
in Existing Models
Practitioners need a basic level of con-
fi dence in an existing model’s perfor-
mance. Such confi dence is based on

Analysis of 206 fault-prediction models
reported in 19 mature research studies
reveals key features to help industry
developers build models suitable
to their speci� c contexts.

	 NOVEMBER/DECEMBER 2011 | IEEE SOFTWARE � 97

understanding how well the model has
been constructed, its development con-
text, and its performance relative to
other models.

Our review suggests that few of the
published models provide sufficient
information to adequately support
this understanding. We developed a
set of criteria based on research (for
example, see Kai Petersen and Claes
Wohlin3), to assess whether a fault-
prediction study reports the basic in-
formation to support confidence in
a model. Figure 1 shows a checklist
based on these criteria (details are
available elsewhere 1).

When we applied these criteria to
the 208 studies we reviewed, only 36
passed all criteria. Each of these 36
studies presents clear models and pro-
vides the information necessary to
understand the model’s relevance to a
particular context.

We quantitatively analyzed the per-
formance of the models presented in
19 of the 36 studies. These 19 studies
all report categorical predictions, such
as whether a code unit was likely to be
faulty or not (see the sidebar). Such pre-
dictions use performance measures that
usually stem from a confusion matrix
(see Figure 2). This matrix supports a
performance comparison across cate-
gorical studies.

We omitted 13 studies from further
analysis because they reported contin-
uous predictions, such as how many
faults are likely to occur in each code
unit. Such studies employ a wide va-
riety of performance measures that
are difficult to compare. Likewise, we
omitted four categorical studies that re-
ported performance data based on the
area under a curve.

The 19 studies reporting categorical
predictions contained 206 individual
models. For each model, we extracted
performance data for

•	 precision = TP/(TP + FP): propor-
tion of units predicted as faulty that

were faulty;
•	 recall = TP/(TP + FN): proportion of

faulty units correctly classified; and
•	 f-measure = (2 × recall × precision)/

(recall + precision): the harmonic
mean of precision and recall.

For studies that didn’t report these
measures, we recomputed them from the
available confusion-matrix-based data.
This let us compare the performance of
all 206 models across the 19 studies and
to draw quantitative conclusions.

Editor: Helen Sharp
The Open University, London
h.c.sharp@open.ac.uk

FIGURE 1. Checklist of criteria for establishing confidence in a model. Only 36 of 208 studies

from the systematic literature review met all criteria.

Phase One: Prediction Criteria

Is a prediction model reported?

Is the prediction model tested on unseen data?

Phase Two: Context Criteria

Is the source of data reported?

Is the maturity of data reported?

Is the size of data reported?

Is the application domain of data reported?

Is the programming language of data reported?

Phase Three: Model Criteria

Are the independent variables clearly reported?

Is the dependent variable clearly reported?

Is the granularity of the dependent variable reported?

Is the modeling technique used reported?

Phase Four: Data Criteria

Is the fault data acquisition process described?

Is the independent variables data acquisition process described?

Is the faulty/nonfaulty balance of data reported?

FIGURE 2. Confusion matrix. The two columns and two rows capture the ways in which a

prediction can be correct or incorrect.

Number of code units

Predicted faulty Predicted not faulty

Actually faulty True positive (TP) False negative (FN)

Actually not faulty False positive (FP) True negative (TN)

98 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

What Works in Existing Models
When compared with each other, most
of the 206 models peaked at about 70
percent recall—that is, they correctly
predict about 70 percent of actual real
faults. Some models performed consid-
erably higher (for example, see Shiv-
kumar Shivaji and his colleagues4),

while others performed considerably
lower (see Erik Arishholm and his
colleagues5).

Models based on techniques such
as naïve Bayes and logistic regression
seemed to perform best. Such tech-
niques are comparatively easy to under-
stand and simple to use.

Additionally, the models that per-
formed relatively well tended to com-
bine a wide range of metrics, typically
including metrics based on the source
code, change data, and data about de-
velopers (see Christian Bird and his
colleagues6). Often, the models per-
forming best had optimized this set of
metrics (for example, by using Prin-
cipal Component Analysis or Feature
Selection as in Shivaji4). Models using
source-code text directly as a predictor
yielded promising results (see Osamu
Mizuno and Tohru Kikuno7).Models
using static-code or change-based met-
rics alone performed least well. Models

using LOC metrics performed surpris-
ingly competitively.

O ur systematic literature re-
view suggests fi rst that suc-
cessful fault-prediction mod-

els are built or optimized to specifi c
contexts. The 36 mature studies we
identifi ed can support this task with
clearly defi ned models that include de-
velopment contexts and methodolo-
gies. Our quantitative analysis of the
19 categorical studies from this set
further suggests that successful mod-
els are based on both simple modeling
techniques and a wide combination of
metrics. Practitioners can use these re-
sults in developing their own fault-pre-
diction models.

Acknowledgments
We thank the UK’s Engineering and Physical
Science Research Council, which support-
ed this research at Brunel University under
grant EPSRC EP/E063039/1, and the Science
Foundation Ireland, which partially sup-
ported this work at Lero under grant 3/CE2/
I303_1. We are also grateful to Sue Black and
Paul Wernick for providing input to the early
stages of the work reported.

References
 1. T. Hall et al., “A Systematic Review of Fault

Prediction Performance in Software Engineer-
ing,” accepted for publication in IEEE	Trans.	
Software	Eng.; preprint available at http://
bura.brunel.ac.uk/handle/2438/5743.

 2. N. Nagappan, T. Ball, and A. Zeller, “Mining
Metrics to Predict Component Failures,” Proc.	
28th	Int’l	Conf.	Software	Eng., (ICSE 06),
ACM Press, 2006, pp. 452–461.

 3. K. Petersen and C. Wohlin, “Context in
Industrial Software Eng. Research,” Proc.	3rd	
Int’l	Symp.	Empirical	Software	Eng.	and	Mea-
surement (ESEM 09), IEEE CS Press, 2009,
pp. 401–404.

 4. S. Shivaji et al., “Reducing Features to Im-
prove Bug Prediction,” Proc.	24th	IEEE/ACM	
Int’l	Conf.	Automated	Software	Eng. (ASE
09), IEEE CS Press, 2009, pp. 600–604.

 5. E. Arisholm, L.C. Briand, and E.B. Johannes-
sen, “A Systematic and Comprehensive Investi-
gation of Methods to Build and Evaluate Fault
Prediction Models,” J.	Systems	and	Software,
vol. 83, no. 1, 2010, pp. 2–17.

 6. C. Bird et al., “Putting It All Together: Us-
ing Socio-Technical Networks to Predict

VOICE OF EVIDENCE

FAULT-PREDICTION MODEL ELEMENTS
There are three essential elements to a fault-prediction model.

PREDICTOR VARIABLES
These independent variables are usually metrics based on software artifacts, such
as static code or change data. Models have used a variety of metrics—from simple
LOC metrics to complex combinations of static-code features, previous fault data,
and information about developers.

OUTPUT VARIABLES
A model’s output, or independent variable, is a prediction of fault proneness in terms
of faulty versus nonfaulty code units. This output typically takes the form of either
categorical or continuous output variables.

Categorical outputs predict code units as either faulty or nonfaulty. Continuous
outputs usually predict the number of faults in a code unit. Predictions can address
varying units of code—from high-granularity units, such as plug-in level, to low-
granularity units, such as method level.

MODELING TECHNIQUES
Model developers can use one or more techniques to explore the relationship
between the predictor (or independent) variables and the output (or dependent)
variables. Among the many available techniques are statistically based regression
techniques and machine-learning techniques such as support vector machines.
Ian Witten and Eibe Frank provide an excellent guide to using machine-learning
techniques.1

Reference
 1. I.H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, Morgan

Kaufmann, 2005.

	 NOVEMBER/DECEMBER 2011 | IEEE SOFTWARE � 99

VOICE OF EVIDENCE

Failures,” Proc. 20th Int’l Symp. Software
Reliability Eng. (ISSRE 09), IEEE CS Press,
2009, pp. 109–119.

	 7.	 O. Mizuno and T. Kikuno, “Training on
Errors Experiment to Detect Fault-Prone
Software Modules by Spam Filter,” Proc. 6th
Joint Meeting European Software Eng. Conf.
and ACM SIGSOFT Symp. Foundations of
Software Eng. (ESEC-FSE 07), ACM Press,
2007, pp. 405–414.

TRACY HALL is a reader in software engineering
at Brunel University, UK. Contact her at tracy.hall@
brunel.ac.uk.

SARAH BEECHAM is a research fellow at Lero, the
Irish Software Engineering Research Centre. Contact
her at sarah.beecham@lero.ie.

DAVID BOWES is a senior lecturer at the University
of Hertfordshire, UK. Contact him at d.h.bowes@
herts.ac.uk.

DAVID GRAY is a PhD student at the University
of Hertfordshire, UK. Contact him at d.gray@herts.
ac.uk.

STEVE COUNSELL is a reader in software
engineering at Brunel University, UK. Contact him at
steve.counsell@brunel.ac.uk.

I E E E S O F T W A R E C A L L F O R P A P E R S

Lean Software Development
Submission deadline: 1 February 2012 • Publication: September/October 2012

The lean product development paradigm entails an end-to-end
focus on delivering to customer needs, minimized rework, efficient
work streams, empowered teams, and continuous improvement.

We are interested to learn from industry experiences and
academic empirical studies what principles deliver value and how
organizations introduce lean. This issue will emphasize lean issues
that influence software design, development, and management,
and thus the success or failure of software projects. Our target is
commercial and industry software, and issues of broad interest
across software products and services, embedded software, and
end-user-developed software.

We solicit articles in the following areas, among others:

•	 managing the transition from traditional development to lean;
•	 applying lean to critical (such as safety-critical) environments;
•	 experiences with combining lean and agile techniques;
•	 lean methods and experiences in commercial software, e.g.,

Kanban, value stream analysis, options thinking, queuing
theory, and pull systems;

•	 systems thinking;
•	 case studies of notable successes or failures;
•	 empirical studies on adoption and use of lean principles in

software engineering; and
•	 tool support for lean development.

Questions?
For more information about the special issue,
contact the corresponding guest editor:
•	 Christof Ebert, Vector Consulting Services;

Christof.Ebert@vector.com

Editorial team: Pekka Abrahamsson,
Christof Ebert, Nilay Oza, Mary Poppendieck

For full call for papers: www.computer.org/software/cfp5
For full author guidelines: www.computer.org/software/author.htm
For submission details: software@computer.org

Advertising Personnel

Marian Anderson: Sr. Advertising Coordinator
Email: manderson@computer.org; Phone: +1 714 816 2139 | Fax: +1 714 821 4010
Sandy Brown: Sr. Business Development Mgr.
Email: sbrown@computer.org; Phone: +1 714 816 2144 | Fax: +1 714 821 4010
IEEE Computer Society, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720 USA
www.computer.org

Advertising Sales Representatives
Central, Northwest, Far East: Eric Kincaid; Email: e.kincaid@computer.org;
Phone: +1 214 673 3742; Fax: +1 888 886 8599

Northeast, Midwest, Europe, Middle East: Ann & David Schissler; Email: a.schissler@computer.
org, d.schissler@computer.org; Phone: +1 508 394 4026; Fax: +1 508 394 1707

Southeast: Heather Buonadies, Email: h.bounadies@computer.org;
Phone: +1 973 585 7070; Fax: +1 973 585 7071

Southwest: Mike Hughes, Email: mikehughes@computer.org;
Phone: +1 805 529 6790; Fax: +1 941 966 2590

Advertising Sales Representative (Classified Line/Jobs Board)
Heather Buonadies, Email: h.bounadies@computer.org;
Phone: +1 973 585 7070; Fax: +1 973 585 7071

ADVERTISER INFORMATION • NOVEMBER/DECEMBER 2011

ADVERTISERS					 PAGE
Charter Communications-Business			 Cover 2
Qualcomm					 55
Saturn 2012					 8
Seapine Software, Inc.				 Cover 4

