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Developing Fault-
Prediction Models: 
What the Research Can Show Industry

Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell

VOICE OF EVIDENCE

CODE FAULTS ARE a daily reality 
for software development companies. 
Finding and removing them costs the 
industry billions of dollars each year. 
The lure of potential cost savings 
and quality improvements has moti-
vated considerable research on fault-
prediction models, which try to iden-
tify areas of code where faults are 
most likely to lurk. Developers can 
then focus their testing efforts on 
these areas. Effectively focused test-
ing should reduce the overall cost of 
finding faults, eliminate them earlier, 
and improve the delivered system’s 
quality. Problem solved.

So why do so few companies seem to 
be developing fault-prediction models?

One reason is probably the sheer 
number and complexity of studies in 
this fi eld. Before companies can start to 

develop the models, they must under-
stand questions such as which metrics 
to include, which modeling techniques 
perform best, and how context affects 
fault prediction. 

To answer these questions, we con-
ducted a systematic review of the pub-
lished studies of fault prediction in 
code from the beginning of 2000 to 
the end of 2010.1 On the basis of this 
review and subsequent analysis of 206 
models, we present key features of suc-
cessful models here.

Context Is Key
We found 208 studies published on 

predicting code faults over the 11-year 
period covered in our review. These 
studies contain many hundreds of indi-
vidual models, whose construction var-
ies considerably.

Although it would be nice if com-
panies could simply select one of these 
published models and use it in their 
own environment, the evidence sug-
gests that fault-prediction models 
perform less well when transferred to 
different contexts.2 This means that 
practitioners must understand how ex-
isting models might or might not relate 
to their own model development. In 
particular, they must understand the 
specifi c context in which an existing 
model was developed, so they can base 
their own models on those that are 
contextually compatible.

However, we found three challenges 
to this apparently simple requirement. 
First, many studies presented insuffi -
cient information about the develop-
ment context. Second, most studies re-
ported models built using open source 
data, which can limit their compatibil-
ity with commercial systems. Third, it 
remains unclear which context vari-
ables (application domain, program-
ming language, size, system maturity, 
and so on) are tied to a fault-prediction 
model’s performance.

Establishing Confi dence 
in Existing Models
Practitioners need a basic level of con-
fi dence in an existing model’s perfor-
mance. Such confi dence is based on 

Analysis of 206 fault-prediction models 
reported in 19 mature research studies 
reveals key features to help industry 
developers build models suitable 
to their speci� c contexts.
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understanding how well the model has 
been constructed, its development con-
text, and its performance relative to 
other models. 

Our review suggests that few of the 
published models provide sufficient 
information to adequately support 
this understanding. We developed a 
set of criteria based on research (for 
example, see Kai Petersen and Claes 
Wohlin3), to assess whether a fault-
prediction study reports the basic in-
formation to support confidence in 
a model. Figure 1 shows a checklist 
based on these criteria (details are 
available elsewhere 1).

When we applied these criteria to 
the 208 studies we reviewed, only 36 
passed all criteria. Each of these 36 
studies presents clear models and pro-
vides the information necessary to 
understand the model’s relevance to a 
particular context.

We quantitatively analyzed the per-
formance of the models presented in 
19 of the 36 studies. These 19 studies 
all report categorical predictions, such 
as whether a code unit was likely to be 
faulty or not (see the sidebar). Such pre-
dictions use performance measures that 
usually stem from a confusion matrix 
(see Figure 2). This matrix supports a 
performance comparison across cate-
gorical studies. 

We omitted 13 studies from further 
analysis because they reported contin-
uous predictions, such as how many 
faults are likely to occur in each code 
unit. Such studies employ a wide va-
riety of performance measures that 
are difficult to compare. Likewise, we 
omitted four categorical studies that re-
ported performance data based on the 
area under a curve.

The 19 studies reporting categorical 
predictions contained 206 individual 
models. For each model, we extracted 
performance data for

•	 precision = TP/(TP + FP): propor-
tion of units predicted as faulty that 

were faulty; 
•	 recall = TP/(TP + FN): proportion of 

faulty units correctly classified; and 
•	 f-measure = (2 × recall × precision)/

(recall + precision): the harmonic 
mean of precision and recall.

For studies that didn’t report these 
measures, we recomputed them from the 
available confusion-matrix-based data. 
This let us compare the performance of 
all 206 models across the 19 studies and 
to draw quantitative conclusions.
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FIGURE 1. Checklist of criteria for establishing confidence in a model. Only 36 of 208 studies 

from the systematic literature review met all criteria.

Phase One: Prediction Criteria

Is a prediction model reported?

Is the prediction model tested on unseen data?

Phase Two: Context Criteria

Is the source of data reported?

Is the maturity of data reported?

Is the size of data reported?

Is the application domain of data reported?

Is the programming language of data reported?

Phase Three: Model Criteria

Are the independent variables clearly reported?

Is the dependent variable clearly reported?

Is the granularity of the dependent variable reported?

Is the modeling technique used reported?

Phase Four: Data Criteria

Is the fault data acquisition process described?

Is the independent variables data acquisition process described?

Is the faulty/nonfaulty balance of data reported?

FIGURE 2. Confusion matrix. The two columns and two rows capture the ways in which a 

prediction can be correct or incorrect.

Number of code units

Predicted faulty Predicted not faulty

Actually faulty True positive (TP) False negative (FN)

Actually not faulty False positive (FP) True negative (TN)
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What Works in Existing Models
When compared with each other, most 
of the 206 models peaked at about 70 
percent recall—that is, they correctly 
predict about 70 percent of actual real 
faults. Some models performed consid-
erably higher (for example, see Shiv-
kumar Shivaji and his colleagues4), 

while others performed considerably 
lower (see Erik Arishholm and his 
colleagues5).

Models based on techniques such 
as naïve Bayes and logistic regression 
seemed to perform best. Such tech-
niques are comparatively easy to under-
stand and simple to use.

Additionally, the models that per-
formed relatively well tended to com-
bine a wide range of metrics, typically 
including metrics based on the source 
code, change data, and data about de-
velopers (see Christian Bird and his 
colleagues6). Often, the models per-
forming best had optimized this set of 
metrics (for example, by using Prin-
cipal Component Analysis or Feature 
Selection as in Shivaji4). Models using 
source-code text directly as a predictor 
yielded promising results (see Osamu 
Mizuno and Tohru Kikuno7).Models 
using static-code or change-based met-
rics alone performed least well. Models 

using LOC metrics performed surpris-
ingly competitively.

O ur systematic literature re-
view suggests fi rst that suc-
cessful fault-prediction mod-

els are built or optimized to specifi c 
contexts. The 36 mature studies we 
identifi ed can support this task with 
clearly defi ned models that include de-
velopment contexts and methodolo-
gies. Our quantitative analysis of the 
19 categorical studies from this set 
further suggests that successful mod-
els are based on both simple modeling 
techniques and a wide combination of 
metrics. Practitioners can use these re-
sults in developing their own fault-pre-
diction models.
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FAULT-PREDICTION MODEL ELEMENTS
There are three essential elements to a fault-prediction model.

PREDICTOR VARIABLES
These independent variables are usually metrics based on software artifacts, such 
as static code or change data. Models have used a variety of metrics—from simple 
LOC metrics to complex combinations of static-code features, previous fault data, 
and information about developers.

OUTPUT VARIABLES
A model’s output, or independent variable, is a prediction of fault proneness in terms 
of faulty versus nonfaulty code units. This output typically takes the form of either 
categorical or continuous output variables. 

Categorical outputs predict code units as either faulty or nonfaulty. Continuous 
outputs usually predict the number of faults in a code unit. Predictions can address 
varying units of code—from high-granularity units, such as plug-in level, to low-
granularity units, such as method level.

MODELING TECHNIQUES
Model developers can use one or more techniques to explore the relationship 
between the predictor (or independent) variables and the output (or dependent) 
variables. Among the many available techniques are statistically based regression 
techniques and machine-learning techniques such as support vector machines. 
Ian Witten and Eibe Frank provide an excellent guide to using machine-learning 
techniques.1
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Lean Software Development
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The lean product development paradigm entails an end-to-end 
focus on delivering to customer needs, minimized rework, efficient 
work streams, empowered teams, and continuous improvement. 

We are interested to learn from industry experiences and 
academic empirical studies what principles deliver value and how 
organizations introduce lean. This issue will emphasize lean issues 
that influence software design, development, and management, 
and thus the success or failure of software projects. Our target is 
commercial and industry software, and issues of broad interest 
across software products and services, embedded software, and 
end-user-developed software.

We solicit articles in the following areas, among others:

•	 managing the transition from traditional development to lean;
•	 applying lean to critical (such as safety-critical) environments;
•	 experiences with combining lean and agile techniques;
•	 lean methods and experiences in commercial software, e.g., 

Kanban, value stream analysis, options thinking, queuing 
theory, and pull systems;

•	 systems thinking;
•	 case studies of notable successes or failures;
•	 empirical studies on adoption and use of lean principles in 

software engineering; and
•	 tool support for lean development.

Questions?
For more information about the special issue,  
contact the corresponding guest editor:
•	 Christof Ebert, Vector Consulting Services;  

Christof.Ebert@vector.com 

Editorial team: Pekka Abrahamsson,  
Christof Ebert, Nilay Oza, Mary Poppendieck

For full call for papers: www.computer.org/software/cfp5  
For full author guidelines: www.computer.org/software/author.htm
For submission details: software@computer.org

Advertising Personnel 

Marian Anderson: Sr. Advertising Coordinator
Email: manderson@computer.org; Phone: +1 714 816 2139 | Fax: +1 714 821 4010
Sandy Brown: Sr. Business Development Mgr.
Email: sbrown@computer.org; Phone: +1 714 816 2144 | Fax: +1 714 821 4010
IEEE Computer Society, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720  USA
www.computer.org

Advertising Sales Representatives 
Central, Northwest, Far East: Eric Kincaid; Email: e.kincaid@computer.org; 
Phone: +1 214 673 3742; Fax: +1 888 886 8599

Northeast, Midwest, Europe, Middle East: Ann & David Schissler; Email: a.schissler@computer.
org, d.schissler@computer.org; Phone: +1 508 394 4026; Fax: +1 508 394 1707

Southeast: Heather Buonadies, Email: h.bounadies@computer.org; 
Phone: +1 973 585 7070; Fax: +1 973 585 7071

Southwest: Mike Hughes, Email: mikehughes@computer.org; 
Phone: +1 805 529 6790; Fax: +1 941 966 2590

Advertising Sales Representative (Classified Line/Jobs Board) 
Heather Buonadies, Email: h.bounadies@computer.org; 
Phone: +1 973 585 7070; Fax: +1 973 585 7071

ADVERTISER INFORMATION • NOVEMBER/DECEMBER 2011

ADVERTISERS					     PAGE 
Charter Communications-Business			   Cover 2
Qualcomm					     55
Saturn 2012					     8
Seapine Software, Inc.				    Cover 4


