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Abstract: In this paper, we describe the device developed to control the deposition parameters to
manage the glancing angle deposition (GLAD) process of metal-oxide thin films for gas-sensing
applications. The GLAD technique is based on a set of parameters such as the tilt, rotation, and sub-
strate temperature. All parameters are crucial to control the deposition of nanostructured thin films.
Therefore, the developed GLAD controller enables the control of all parameters by the scientist during
the deposition. Additionally, commercially available vacuum components were used, including a
three-axis manipulator. High-precision readings were tested, where the relative errors calculated
using the parameters provided by the manufacturer were 1.5% and 1.9% for left and right directions,
respectively. However, thanks to the formula developed by our team, the values were decreased to
0.8% and 0.69%, respectively.

Keywords: glancing angle deposition; magnetron sputtering; thin films; metal oxides; gas sensors

1. Introduction

The next industrial revolution would not be possible without developments in nan-
otechnology, including both the design and fabrication process of thin films. Of the various
techniques, glancing angle deposition (GLAD) offers the possibility to fabricate nanostruc-
tured columnar thin films such as metallic films, metal oxides, and metal nitrides and,
therefore, GLAD can be applied in every fabrication process where the nanocolumnar
shape is needed. In addition, GLAD does not require any demanding conditions in the
vacuum system, and it could be applied to physical vapor deposition processes such as
sputtering and evaporation. The minimal set of parameters, such as the tilt, rotation,
and substrate temperature, offers high precision in the fabrication of nanoscale thin films
for various applications.

Our work focuses on the fabrication of metal oxides such as TiO2 [1], WO3 [2],
and CuO [3] using GLAD. These are used in manufacturing gas-sensing materials for
the detection of several gases such as ammonia [4], acetone [4], and ozone [5]; they are
also used in humidity sensors [6–9]. This is part of an attempt to improve the safety and
quality of life of people. A good example is monitoring for diabetics, whose blood glucose
measurements can be replaced by a sensor that detects diabetes biomarkers in exhaled
air. Another application is the attempt to provide the public with a sense of security by
installing fire-detection sensors [10]. Another example of compounds used in GLAD are
metal sulphides, such as CdS, for which the properties of the obtained film are used in pho-
tovoltaics, due to them having a wide band gap, and in optical sensors as a photoconductive
material [11].

Gas sensors are defined by important features, such as the selectivity and sensitiv-
ity [12–14]. Since selectivity is mostly related to the chemical structure of the gas-sensing
materials and its capability to selectively detect target gas molecules, sensitivity relies on
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the physical structure described as the surface–volume ratio [15]. Therefore, the possibility
to deposit a gas-sensing layer of a nanocolumnar shape under controlled conditions is
a powerful tool. Moreover, physical vapor deposition can be easily adapted to comple-
mentary metal-oxide semiconductor (CMOS) technology; therefore, front-end electronics
compounds can be realized by using the same technology [16–18]. Stability is also an
important feature of gas sensors; however, more aspects than the gas-sensing layer itself
are responsible for a suitable stability, e.g., gas-sensor substrate, electrodes, front-end
electronic circuits.

As mentioned above, GLAD is controlled by a set of three parameters—the tilt, rotation,
and substrate temperature. The general concept of the GLAD technique is shown in
Figure 1a, where the manipulator rotates with substrates with velocity ϕ at angle α and the
source of thin films, for example, magnetron targets.
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on the substrate with shadowing effect.

The principle of this method is based on the deposition of the film at various angles,
assuming that the path of the vapour with respect to the substrate is not parallel. The di-
mensions of the resulting column, as well as the thickness of the material, are controlled
by varying the rate of rotation and the angle of inclination of the substrate. The basic
principles of the various deposition methods can be found elsewhere, for example, in the
works of Diederik et al. [19], Schultz et al. [20], and Mintonette et al. [21], where magnetron
sputtering, e-beam, and thermal evaporation are presented, respectively. Regardless of
the deposition method, the GLAD technique is characterised by several steps. At the
beginning, the particles disperse randomly on the substrate, resulting in a rough surface.
The growth of the columns is then ordered by ballistic shadowing effects and adatom
diffusion (Figure 1b). In the final stage of the process, the columns increase in thickness,
resulting in a very high solid filling factor [4,12].

Depending on the designed deposition process, the fabrication may require a slight
change, for example, a small tilt correction or radical tilt change (e.g., for zig-zag structures
as presented in Figure 2 [22–24]); therefore, the system should enable such a modification.
Lee et al. [10] developed a deposition system based on the GLAD technique combined
with e-beam evaporation for highly sensitive fire detectors. Butt et al. [25] fabricated
fibre-to-chip coupling with slanted binary grating by applying certain modifications to the
PhiSweep GLAD method. The authors tested the system for the deposition of a variety of
columnar nanostructures, including nanorods, nanozigzags, and nanohelixes. Additionally,
the number of sensors on a 100 mm wafer was 732, which proves the possibility for the mass
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production of such detectors. However, there is a lack of information about the process
control system, which reduces the possibility of other researchers implementing a similar
system. Similarly, Sakkas et al. [23] presented the tuning of the optical properties of WO3
films deposited by custom-made magnetron sputtering technology coupled with the GLAD
technique. The authors deposited zigzag columnar microstructures that exhibited various
transmissions and refractive indexes in the 400–1000 nm wavelengths. The GLAD technique
was also used to deposit ZnO and low-doped ZnO:Ag films that exhibited improved room-
temperature ferromagnetism effects. Such experiments were conducted by Correa et al. [26]
and Santos et al. [24]. However, the authors did not mention the controlling system for the
GLAD system. Recently, Limwichean et al. [27] presented a very interesting approach for
the GLAD technology, where regardless of the above-mentioned parameters such as the
tilt, rotation, and temperature, the additional parameter of the substrate position relative
to the magnetron source was investigated in the 10–50 mm range. The authors compared
the deposition rates, roughness, work functions, transmittance, and current density of the
WO3. The obtained results showed that the substrate position should also be included
for the set of the GLAD parameters. Additionally, Mendoza-Rincon et al. [28] recently
presented how the substrate rotation affects the roughness in Zr thin films grown using the
GLAD technique. However, in the vast majority of papers, homemade or custom-made
GLAD systems are presented [29–37]. In these cases, the possibility of being widely used in
industrial processes is lowered. Therefore, we designed the GLAD process based on the
commercially available components from Kurt J. Lesker Company (described in detail in
the Materials and Methods Section) with dedicated software designed by our team.
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In this paper, the GLAD controller is described, including both hardware and software com-
ponents for managing the GLAD deposition of metal oxide thin films for gas-sensing applications.

2. Materials and Methods

Within this study, a commercially available physical vapour deposition (PVD) system
was used, based on components from the Kurt J. Lesker Company (Jefferson Hills, PA, USA).
The crucial components are illustrated in Figure 3, including an ultra-high vacuum chamber,
magnetron sources, GLAD manipulator, and pumping system.
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Table 1. Description of the elements listed.

Letter Description

(a) Chamber

(b) Manipulator

(c) Magnetrons

(d) Vacuum pump

M1 DC motor

M2 Stepper motor

2.1. Commercially Supplied: Deposition Chamber

A photograph of the UHV chamber is provided in Figure 4a. The chamber
(640 mm × 640 mm × 780 mm) was manufactured from 304 stainless steel and was
equipped with an O-ring sealed door made from 6061-T6 aluminium. The door was sealed
via a dovetail groove and O-ring, which included a rectangular viewport with safety cover.
All these properties allowed us to reach ultra-high vacuum levels.
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Figure 4. Photos of modules from the Kurt J. Lesker Company. (a) The ultra-high vacuum cham-
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2.2. Commercially Supplied: Manipulator

As mentioned above, the GLAD technique was based on the control of three param-
eters: rotation speed-ϕ, angle-α, and temperature. The system was based on the ECR
(ECR-UHV-20532-001) manipulator (Figure 4b). To enable a high-precision deposition
with repeatable conditions, the parameters were controlled by a controller, including both
hardware and software elements; this is discussed below in detail.

The first element was responsible for rotation. It consisted of a brushless DC motor
with a STM32 NUCLEO-H745ZI-Q (STMicroelectronics, Geneva, Switzerland) as the con-
troller. The BLDC58-35LEB Series engine (Allied Motion Technologies, Amherst, NY, USA)
was 24 (V) DC powered, and had integrated drive electronics that could be easily controlled
with two parameters. It featured up to 50 watts of continuous output power, variable
speed proportional to the control signal, and different directions of rotation. In accordance
with the use of brushless technology, it was characterised by a long working life and small
failure rate. The maximum speed was 3650 rpm and the minimum regulated speed was
1000 rpm. This speed range was too high for the GLAD process, so there was a reduction
gear added, which allowed us to reduce velocity at a ratio of 50:1.

To enable keeping a constant rpm (ϕ), a BLDC58 DC motor was used. This engine
was controlled by two parameters. The first was the digital signal LOW/HIGH to set the
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direction of rotation. To set the required speed, the engine was controlled by voltage in
the range of 0 to 5 (V). To control the speed, the engine had an integrated encoder. Using
the STM32 Nucleo microcontroller, which had built-in timers, we could count the real rpm
from the output rectangular signal. With the digital-to-analogue converter (DAC) module,
which was communicated by I2C, we could precisely set the required voltage. The DAC
module resolution was set to 12 bit, which enabled a high level of accuracy.

The connection diagram of these elements is presented in Figure 5.
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Figure 5. Rotation speed controller connection.

The motor was controlled by STM32 NUCLEO-H745ZI-Q. This microcontroller was
a series of boards with STM32 microcontrollers in LQFP144 packages. The boards were
equipped with an ST Zio connector, which was a development of the connector known from
Arduino boards. Nucleo-144 boards were equipped with a built-in STLINK-V3 program-
mer/debugger; libraries and examples were available for them. The STM32 Nucleo-144
provides users with an affordable and flexible way to test new concepts and build pro-
totypes with a choice of various combinations of performance and power consumption
features provided by the STM32 microcontroller. It contains two cores: ARM Cortex M7
32-bit with clock frequency 480 (MHz) and ARM Cortex M4 240 MHz, 2 (MB) flash program
memory, 1 (MB) RAM, 16/32-bit timers and quartz resonator 32,768 (MHz).

Using built-in timers, the module could convert the rectangular signal from the
BLDC58 into frequency and, further, it was processed to calculate the RPM of the mo-
tor. Unfortunately, the digital-to-analogue converter of the microcontroller was of no use in
the control of rpm because the maximum voltage it could generate was 3.3 (V). This was not
enough for the engine and we needed an additional DAC module where we could obtain
values up to 5 (V). The solution was MCP4725 and a logic level converter of 3.3/5 (V).
The last module that extended microcontroller capacities was the RS232 to UART converter
with the SP3232 controller. The connection scheme is shown in Figure 6. The module was
developed by our team.

The second part of the manipulator was angle α controller. It contained two elements,
a Sim-Step controller and a stepper motor, both from McLennan Servo Supplies (Aldershot, UK).

Sim-Step is a system solution for programmable positioning. It has an integrated high-
efficiency Bi-polar drive stage, a 400 step/rev. motor resolution which provides increased
smoothness, an internally adjustable phase current from 0.5 to 3.5 amps, and an integrated
motion controller.
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In order to precisely set up the required angle α, a stepper motor was used. This is
a brushless DC electric motor that divides a full rotation into a number of equal steps.
The motor’s position could be commanded to move and hold at one of these steps without
any position sensor for feedback, as long as the motor was correctly sized to the application
with respect to torque and speed. The stator had ten magnetic poles with small teeth, each
pole being provided with a winding. Each winding was connected to the winding of the
opposite pole so that both poles were magnetised in the same polarity when a current was
sent through the pair of windings, as shown in Figure 7. A Nanotec ST5918 device was
mounted in the manipulator, which was characterised by hybrid construction featuring
high-energy magnets, 400 step/rev resolution using a packaged drive, and optimised for
high-torque output.
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In this configuration (Figure 7), the controlled application developed by our team was
directly connected to the stepper motor adjuster. The accuracy of the positioning was very
important to obtain a proper structure. Using this type of engine allowed the angle to be
precisely set.

The third important parameter was the temperature of the substrate; herein, the
substrates could be heated up to 850 ◦C. The temperature needed to keep stable during the
deposition process. In this case, a commercial Eurotherm 32H8 device was used (Eurotherm,
Worthing, UK). The parameter could be configured directly from the application developed
by our team, as shown in Figure 8.
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2.3. Commercially Supplied: Magnetrons

In this study, TRS2 magnetron sputtering sources from the Kurt J. Lesker Company
were used. The magnetrons were indirect-cooled with an integral anode shielding; such
design is optimal for carrying out scientific and industrial research. The magnetrons were
equipped with sputter cathodes (2 inches in diameter) that are functional with virtually
any material, and have a wide pressure range operating up to 1.33·10−8 (mbar), and have
low outgassing.

2.4. Commercially Supplied: Vacuum Pump

There were two vacuum pumps: a YTP1100-4F16A rotary pump (Eurovacuum B.V.,
Reeuwijk, The Netherlands) and a TURBOVAC 360C turbomolecular pump (Leybold GmbH,
Cologne, Germany). The TURBOVAC is a pump featuring grease-lubricated bearings.

A set of two vacuum probes was used to control the pressures before and after the
turbomolecular pump (Figure 9); these were a Pirani Capacitance Diaphragm Gauge
PCG550 and a Bayard–Alpert Pirani Gauge BPG400, both from INFICON (Bad Ragaz,
Switzerland). The first had two sensors: a piranha sensor and a membrane capacitive
sensor. The measuring range was from 5 × 10−5 to 1500 (mbar). The second used the
Bayard–Alpert measurement system and the Pirani measurement system. It had a much
more accurate measuring range from 5 × 10−5 to 1500 (mbar).
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2.5. Developed by Our Team: App-Based System

This dedicated application, which was developed by our team, was written in the
Python programming language. It was configured to serve as a GUI (graphical user
interface) for the operator. In the application, parameters such as rotation speed ϕ rpm,
rotation direction L/R (which refers to: L—left; R—right), angle α and the temperature
of the substrate could be set. The application also provided information about the actual
measured rpm, angle, and temperature. The connection of all components to the application
is shown in Figure 10.
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3. Experimental Details

The metal-oxide-based gas-sensing materials were obtained in the above-mentioned
magnetron sputtering system which was equipped with three magnetron sources that
enabled deposition in a single or parallel mode when multilayer oxides were required.
The system was pumped down to 5 × 10−6 mbar for base pressure and the deposition was
conducted at 2 × 10−2 mbar, which was previously confirmed. During these experiments,
copper and tungsten targets (both from Kurt J. Lesker Company) of 50 mm diameter (5N
purity) were employed for reactive sputtering at 80%Ar/20%O2 gas mixture. The flows of
argon and oxygen were controlled by mass flow controllers (1179B from MKS Instruments,
Andover, MA, USA). The substrate tilt angle varied from 75◦ to 85◦, and the sample rota-
tion at a speed of 0, 10, and 20 RPM was stabilized with the utilization of the developed
algorithm. The deposition power was kept constant at 50 W, and deposition time varied
depending on the material, i.e., 40 min and 90 min for CuO and WO3, respectively. The dis-
tance between magnetron targets and substrate holder was constant and it was 200 mm.
The layers were deposited onto silicon substrates (Si-Mat, Kaufering, Germany), quart
JGS-2 (Continental Trade, Warsaw, Poland), and DRP sensors with electrodes (Metrohm,
Oviedo, Spain). As was already mentioned, the deposition temperature is one of the crucial
parameters when nanostructures such as nanocolumns and nanopillars are planned. In our
works, we based our work on the model proposed by Movchan and Demchishin, which was
based on the morphological characterization of several vacuum-deposited materials [40].
Within this model, three zones I, II, and III (structure zone models) related the film mi-
crostructure to the homologous temperature Ts/Tm, where Ts is the substrate temperature
and Tm is the melting point of the deposited material. Most relevant to GLAD was the
low-temperature zone I regime, corresponding to Ts/Tm < 0.3, and more can be found in
reference [40].
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4. Results and Discussions

The stability of the process parameters directly affected the parameters of the sputtered
layers. Unstable conditions during the GLAD process could result in an uneven build-
up of material as the tallest columns grew at the expense of the smaller elements [41].
Previously, we tested the impact of various argon–oxygen mixtures on copper/copper
oxide growth [42], the impact of GLAD sputtering parameters on the crystal structure,
morphology, and gas-sensing properties of the tungsten trioxide films [12], the influence of
the GLAD nuclei process to ultra-thin copper oxide films [3], as well as to the gas-sensing
properties of the copper oxide–tin oxide heterostructures [43]. Herein, a brief report on the
deposition system and further improvements was proposed and the given sensing results
are shown to confirm the previously obtained results.

In the presented system, a controller for the brushless motor was used to control the
rotation of the substrate table. The engine was coupled with a manipulator through a
gearbox, reducing the speed by a 50:1 ratio. This induced the engine to work in a relatively
high-speed range. An optical encoder generating 36 pulses per revolution was a source
of information about the rotor speed. The signal, thus, obtained was not stable and may
have caused some fluctuations during the sputtering process. In order to eliminate this
effect, a controller was used that acquired information from both the encoder connected
to the STM32 microcontroller timer and an oscilloscope. The feedback obtained in this
way corrected the control signal; thus, reducing the instability of rotation. Figure 11 shows
the results of tests of layers obtained in a similar process, with and without the use of
additional stabilisation. The sensor layers were placed in the test chamber, where gas
(nitrogen dioxide) was dosed in a variable concentration, as previously presented [43].
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Figure 11. The sensor layers obtained in stabilised rpm conditions (black trace) and not-stabilised
(red trace) exposed to variable NO2 concentrations and atmospheric air.

As can be observed, the layers exhibited a similar electrical resistance. After the gas-
dosing (30,000 s), the sensors were exposed to the atmospheric air to simulate real working
conditions. In the case of a sensor deposited at the constant rotation value, the signal was
characterised by a much more stable reading of the baseline. Furthermore, the reading of
the resistance change as a function of the variable gas concentration on the stabilised sample
was much higher, and, therefore, exhibited a higher stability in the practical application.

As mentioned above, the controlling of the deposition parameters was a crucial part
of the developed system. Thus, reference measurements were conducted to analyse the
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readings delivered by the STM32 microcontroller. In this case, the oscilloscope was set to
measure the frequency of the rectangular signal output. The read-out from both devices
was recorded. The rotation speed was set in multiples of five, and the rotation direction was
set in both clockwise and anticlockwise revolutions. Example results from the oscilloscope
are presented in Figure 12, and example data from both devices are given in Table 2.
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Figure 12. Example results of experiments: (a) 20 (rpm), clockwise revolutions; (b) 20 (rpm), anti-
clockwise revolutions; (c) 60 (rpm), clockwise revolutions; (d) 60 (rpm), anticlockwise revolutions.

Table 2. Comparison of frequency value.

Rotation
Speed (rpm)

Encoder Frequency (HZ),
Clockwise Revolutions

Oscilloscope Frequency (HZ),
Clockwise Revolutions

Encoder Frequency (HZ),
Anticlockwise

Revolutions

Oscilloscope
Frequency (HZ),
Anticlockwise

Revolutions

20 611.61 629.60 604.11 621.50

60 1793.19 1827.00 1771.59 1855.00

Figure 13 presents a graph of the results, split by rotation direction.
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Figure 13. Plots with curves representing encoder and oscilloscope measurement values of rotation frequency.

According to the data presented in Figure 14 and Table 3, it could be conducted that
the utilisation of the STM32 microcontroller as a major element of the device enabled
measurements with high precision. The error level was approximately 3% and this was
acceptable, taking into account the measurement environments, such as high vibration.
Additionally, the engine did not spin evenly at each stage of rotation. This effect was
observed during the experiment. In Figure 12, the oscilloscope provides information
about the frequency of the plot in the single mode (the value shown in the chart area) and
instantaneous frequency (the value shown in the bottom right corner of oscilloscope screen).
The differences in frequency values for the same revolutions could be up to 100 (Hz).
However, our results confirmed that the rotation speed was calculated correctly with the
utilisation of microcontrollers. To set the revolutions, the relevant formula was derived on
the basis of the engine documentation and theoretical calculations. The next experiment
was designed to investigate the dependency of set and actual rotation speeds. To make it
accurate, 10 values of actual rpm in the range of 5 to 80 were recorded within a one-second
period. The engine was stopped between each rpm value.

Table 3. Values of absolute and relative error; oscilloscope was used as a reference.

Absolute Error Relative Error

Clockwise directions 33.66 Hz 2.62%

Anticlockwise directions 39.89 Hz 3.11%

Figure 15 shows that the actual rotation could not be used as for setting the rotation
value (without calibration) and after 50 rpm, a significant leap could be seen. The anti-
clockwise rotation was subject to a greater error between the assumed and actual value
than the clockwise rotation. Using the actual rotation speed data obtained from the test,
the coefficients of the fourth-degree polynomial, which was the correction function for the
previously calculated formula, were calculated with the help of the approximation function
separately for both directions. The new formula was tested in the experiment.
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The results presented in Figure 16 showed that the correction function had served its
purpose. The difference chart was flattened and values were more concentrated on one
level. To check the impact of the algorithm, the absolute and relative errors were calculated
and compared in Table 4.
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Table 4. Absolute and relative errors of the differences between set and actual rpm before and
after correction.

Absolute Error Relative Error

Before After Before After

Clockwise directions 0.2813 RPM 0.2862 rpm 1.5% 0.80%

Anticlockwise directions 0.6475 RPM 0.2419 rpm 1.93% 0.69%

The calculated errors showed a significant improvement in the stability and repeata-
bility of the rotation speed. It could be observed that the absolute error in the clockwise
direction had not changed, opposite to the anticlockwise rotation, where we could observe
a significant decrease. The relative error for both directions was far superior after correction.
It can be seen from Figure 16 that the points were not scattered. The most important
problem in this experiment was the non-repeatability of the tests due to the inaccuracy of
the engine. However, the average error did not exceed 0.5 rpm, and the maximum error
values in this test did not exceed 1 rpm, which was a satisfactory result.

In Figure 11, an example of the effect on the rotation stabilization for resistance changes
of the CuO-based sensor for outdoor nitrogen dioxide changes is presented. Although,
the gas-sensing applications required a stable sensor response in various conditions, for ex-
ample, for volatile organic compound (VOCs) detection. Such applications attract more
attention nowadays due to the possible application in medical diagnosis. Recently, a num-
ber of papers was published, where VOC detection was suggested as a supplementary tool
for medical diagnosis and screening, including acetone detection in the exhaled human
breath [44–53]. It is worth mentioning that medical applications require high standards
for sensor quality, and in terms of screening tests, a number of devices with repeatable
responses would be required. Therefore, the stabilization of deposition parameters was
more than crucial. Figure 17 presents the gas-sensing characteristics of the WO3-based
gas sensor deposited in GLAD deposition (a deposition angle of 80◦ was chosen based
on the previous experiments [54]), with 10 and 20 rpm with stabilization. The sensor
was tested under exposure to acetone at 2.5 ppm, 5 ppm, 10 ppm, 15 ppm, and 20 ppm.
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The measurement conditions were kept constant during the measurements, i.e., 300 ◦C
and 55% relative humidity (RH). Interestingly, the sensor deposited at a lower rotation
(10 rpm) exhibited a lower base resistance and further lower responses in comparison
to the sensor deposited at the maximum rotation (20 rpm). It can be explained by the
effects resulting from the GLAD deposition, where shadowing effects occurred. Explained
previously in [5], the optimal rotation could be estimated taking into account the base
material (in this case, tungsten deposited in the reactive mode), dimensions of the chamber,
deposition temperature, and power. Furthermore, the sensors deposited without rotation
exhibited no response to acetone in the above-mentioned range; the range covered acetone
concentrations in the exhaled human breath [54].
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In 2016, Rydosz et al. [55] showed that WO3-based gas sensors deposited with the
utilization of the GLAD technique exhibited the highest responses when deposited and
measured at 300 ◦C, and an additional increasing or decreasing deposition temperature
did not improve the gas-sensing responses. A similar effect was observed during this
study, where an increasing measurement temperature resulted in decreased responses.
Interestingly, below 300 ◦C, the sensors did not respond to acetone. The differences between
these studies rely on the deposition equipment, as in [55] a home-made system was used,
while, herein, we used a commercially available system with additional stabilization.
The obtained results confirmed that the optimal deposition temperature for the WO3-based
gas sensors (deposited in the form of nanostructures) to acetone was around 300 ◦C, while
the optimal measurement temperature depended on the gas sensor substrates, and for
WO3-based sensors, it usually was in the 300–400 ◦C range. Figure 18 shows the gas-
sensing characteristics of the WO3-based gas sensors deposited with various rotations with
stabilization under exposure to acetone in the range of 2.5–20 ppm, at 350 ◦C/400 ◦C and
55% RH. The responses were higher when sensors were heated up to 350 ◦C. Additionally,
the measurements were conducted in the same gas-sensing setup; therefore, there was
no bias from the various systems/methods used during the measurements. It has to be
underlined that to open the commercialization road from research outcomes to practical
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application, the technology should be scalable and repeatable. If not, obtained results will
never pass the obstacle called the valley of death.
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5. Conclusions

Developments in nanotechnology have paved the way for the industrial revolution in
many fields, although in electronics, the progress has been obvious. The crucial element of
nanotechnology is the deposition of the thin and ultra-thin films of metals, metal oxides,
and metal nitrides. The controlling of the deposition has to be performed with high
precision in order to obtain a high-quality film. The problem increases when nanostructured
films need to be deposited. As a solution, the glancing angle deposition technique was
developed. GLAD offers the possibility to fabricate nanostructured columnar thin films
without using any templates and which can be applied in various deposition systems.
GLAD requires a minimal set of parameters with regard to the tilt, rotation, and substrate
temperature. In this study, we showed an easy and cheap realisation of a microcontroller-
based system that enabled the high-precision control of the GLAD parameters. The obtained
results confirmed that films deposited with the utilisation of such a controller exhibited a
higher stability. Further tests are planned with various conditions to obtain films with more
sophisticated structures that would not be possible to obtain without high-precision control.
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