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Abstract 

Background: Significant reductions in malaria transmission have been achieved over the last 15 years with elimina-

tion occurring in a small number of countries, however, increasing drug and insecticide resistance threatens these 

gains. Insecticide resistance has decreased the observed mortality to the most commonly used insecticide class, the 

pyrethroids, and the number of alternative classes approved for use in public health is limited. Disease prevention 

and elimination relies on operational control of Anopheles malaria vectors, which requires the deployment of effec-

tive insecticides. Resistance is a rapidly evolving phenomena and the resources and human capacity to continuously 

monitor vast numbers of mosquito populations in numerous locations simultaneously are not available.

Methods: Resistance data are obtained from published articles, by contacting authors and custodians of unpub-

lished data sets. Where possible data is disaggregated to single sites and collection periods to give a fine spatial 

resolution.

Results: Currently the data set includes data from 1955 to October 2016 from 71 malaria endemic countries and 74 

anopheline species. This includes data for all four classes of insecticides and associated resistance mechanisms.

Conclusions: Resistance is a rapidly evolving phenomena and the resources and human capacity to continuously 

monitor vast numbers of mosquito populations in numerous locations simultaneously are not available. The Malaria 

Atlas Project-Insecticide Resistance (MAP-IR) venture has been established to develop tools that will use available data 

to provide best estimates of the spatial distribution of insecticide resistance and help guide control programmes on 

this serious issue.
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Background
Since the beginning of the century the number of annual 

deaths attributed to malaria has more than halved due to 

significant investment in improved case treatment, and 

insecticide-based vector control [1]. Only through this 

multifaceted approach will malaria control and elimina-

tion succeed. Effective vector control is a key component 

of this strategy with insecticides playing a central role 

in most malaria control programmes. �e main focus of 

prevention relies on long-lasting insecticide-treated nets 

(LLINs) or indoor residual spraying (IRS), with LLINs 

alone contributing to 68% of all averted cases over the 

last 15  years [2]. In Africa over 60% of the population 

at risk are estimated to sleep under a net while 5% are 

protected by IRS [1]. �e efficacy of these interventions 

may be compromised by both behavioural avoidance and 

physiological resistance in malaria vectors. Previously 

the Malaria Atlas Project (MAP) has collated what data 

is available for vector bionomics, including behaviour 

[3] for the dominant vectors of human malaria and now 

MAP aims to address physiological insecticide resistance.

Currently the only insecticides recommended for use 

on LLINs by the World Health Organization (WHO) are 
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pyrethroids [4], as they have low mammalian toxicity and 

high insecticidal activity [5]. In 2013 nearly two thirds of 

IRS programmes world-wide also relied on pyrethroids. 

�is, along with pyrethroid use in agriculture, has 

resulted in a high selection pressure for pyrethroid resist-

ance [6–8]. �e pressure has been sufficiently severe that 

there is increasing evidence of pyrethroid failure, particu-

larly for IRS. Since 2015 the more expensive organophos-

phate pirimiphos methyl has largely replaced pyrethroids 

for IRS.

�e history of insecticide resistance detection has been 

reviewed elsewhere [6, 7], as have the tools and methods 

used in detecting resistance [9, 10]. Of greater concern 

are the increased reports on the ineffectiveness of current 

malaria prevention tools [11–15]. Risk in public health 

is defined as; ‘the potential for realization of unwanted, 

adverse consequences to human life health, property or 

the environment’ [16]. Applying this here, insecticide 

resistance poses a serious risk to current malaria preven-

tion activities.

In 2012, WHO published the Global Plan for Insecti-

cide Resistance Management (GPIRM) [17] with the aim 

of raising awareness of insecticide resistance. �e goal 

is that this plan will be supplemented with guidelines, 

enabling control programmes to develop individually 

tailored insecticide resistance management strategies. 

One acute operational difficulty is the lack of nationally 

representative spatial and temporal comparable data that 

concurrently measures insecticide resistance and associ-

ated mechanisms. �is can be attributed to the shortfall 

of entomologists, lack of appropriate infrastructure and 

available funding [18].

To date information on the increase in insecticide 

resistance is rooted in national reporting systems, pre-

dominantly driven by the locality of researchers [1, 7]. 

Previously, two global insecticide resistance databases 

have been established, IR Mapper collated 4,084 sus-

ceptibility data points by 2014 [19] and VectorBase cur-

rently provides 5,656 corrected mortality values [20], and 

WHO has now created a third [21]. �ese databases all 

contain differing amounts of resistance data with infor-

mation, displayed as single points on maps. �e online 

tools provided by each database allow users to visual-

ise information about each data point, such as the spe-

cies tested or the sample size, but they do not attempt to 

take account of any of the potential confounding factors 

within these datasets or the sampling biases that are pre-

sent. �is, combined with under reporting, for example 

less than half of the malaria endemic countries reported 

any entomological data last year, highlights the need to 

take account of potential confounders and biases to pro-

duce robust, consistent and comprehensive estimates of 

resistance that fill the current gaps in the data.

A new global mapping project

MAP-IR will first collate and assess the available field 

data on insecticide resistance, then develop a modelling 

framework to analyse spatiotemporal patterns of resist-

ance. Here the dataset collated so far from published 

and unpublished sources is described and assessed. �e 

strengths and weaknesses of the available data are dis-

cussed and an analytical plan is outlined that mitigates 

the issues associated with using collated data that was 

not generated from a single, systematic, global sampling 

design. �e ultimate aim of this work is to provide resist-

ance data that can be combined with information on 

vector species and disease prevalence to increase our 

understanding of the impact that resistance has on dis-

ease control. Future work based on the data and princi-

ples outlined here will generate the tools to help better 

target interventions and aid with the development of 

insecticide resistance management plans [21, 22] on a 

global scale.

Methods
Resistance data are obtained from three sources; through 

published articles, by contacting authors, and by contact-

ing the custodians of unpublished datasets. Published 

articles are identified using the search terms “insecticide 

resistance” and “anopheles” in the Web of Science data-

base with no date or language restrictions. Currently all 

articles published up to the end of 2015 that could be 

obtained have been reviewed and 684 articles containing 

bioassay results identified. Of the groups contacted, 15 

have so far provided unpublished data.

Where possible received data is disaggregated to single 

sites and collection periods to provide a fine resolution 

spatial and temporal dataset. Records reporting less than 

100% mortality in the susceptible strain were excluded 

as were records with control mortality above 20% and 

results from samples that had been through more than 

one generation in the laboratory. �e data fields extracted 

cover: mosquito collection methods; mosquito identifi-

cation methods; bioassay conditions including protocol 

followed, insecticide concentration, exposure period, 

mosquito generation tested (wild caught, F1 or mixed), 

and whether a synergist was used; information about the 

collection site, and information about the data source. 

Further details on the exact data fields recorded are 

given in Additional file 1. Sites covering an area less than 

25 km2 are assigned coordinates in digital degrees using 

either the coordinates provided with the data, or using 

contextual information provided about the site to locate 

it in online gazetteers such as GeoNames and Google 

Maps. If mosquitoes from multiple sites were pooled for 

the bioassay, each site is recorded in the database. If an 

area greater than 25  km2 is given and it is not possible 
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to disaggregate this further, the borders of the area are 

defined using GIS software such as ArcMap or QGIS. In 

circumstances where the area given is an administrative 

unit then the borders are taken from the FAO’s Global 

Administrative Unit Layers [23]. In addition, when resist-

ance mechanism data are provided, such as kdr allele fre-

quencies and P450/mixed function oxidase (MFO) test 

results, this information is linked to the mosquito collec-

tion fields and when relevant also to the bioassay fields.

Site coordinates linked to each dataset are checked 

using GIS software to ensure the coordinates fall on land, 

in the right country, and that the location of sites matches 

the description given by the data source. All other fields 

are checked to ensure each value falls within the expected 

range and to identify any missing data, which are then 

requested from the data source.

�is data collation is still in process but data has been 

extracted from all available articles published up to the 

end of 2015 that met the inclusion criteria. �e current 

dataset has been assessed to inform the next stage of the 

planned analyses.

In order to visualise apparent trends for the most 

important class of insecticides, the full dataset was fil-

tered to extract all bioassay records that used a pyrethroid 

insecticide. �e current dataset was examined over three 

time periods which were chosen based on data avail-

ability and the introduction of pyrethroids in agriculture 

and public health. Each location linked to these bioas-

says was assigned to the first order administrative divi-

sion, as defined by the Global Administrative Units Layer 

for 2013, that the coordinates or polygon fell within. Any 

locations that spanned more than one administrative unit 

were excluded. Where the collection date was missing, 

the date was assumed to be two years before the article 

publication year, based on the trend seen for records that 

have a collection date. For the purposes of this exercise, 

if the number of mosquitoes tested was missing then the 

number was assumed to be 60, which is the lower quar-

tile value from the full set of records that did report the 

number tested.

Data from each first order administrative unit for each 

of the three time periods was then combined to obtain 

the first and last years that mosquitoes were collected in, 

the total number of bioassay records (each record repre-

sents a unique collection site and period from a unique 

study), the total number of mosquitoes tested, and the 

average reported mortality across all of the records. �e 

average mortality was then plotted on a map, and the full 

data fields are given in Additional file 2.

Results
Data availability for standard metrics linked to insecticide 

resistance

�e full current dataset as of October 2016 is sum-

marized in Table  1 and includes insecticide resistance 

data from 1955 from 71 malaria endemic countries and 

74 anopheline species or species complexes. �e data 

includes 1018 survey locations reporting carbamate 

resistance, 1655 reporting organochlorine resistance, 

1056 locations reporting organophosphate resistance 

and 3127 reporting pyrethroid resistance. �ese data also 

cover different insecticides within each class, specifically 

three carbamates, five organochlorines, eight organo-

phosphates and eight pyrethroids. �e methods used to 

generate these data included CDC bottle assays and ten 

versions of the WHO bioassay. Figure  1 shows that the 

data for each of the major insecticide classes are highly 

clustered, indicating that any analysis of this data needs 

to account of the clear biases in the location sampled. 

Temporal bias can also be seen with more data available 

in more recent years for each class of insecticide.

Mapping of pyrethroid resistance over time

�e apparent trends of pyrethroid resistance (Fig. 2) were 

mapped. �e base map layers used show malaria ende-

micity for each time period. Specifically, the 1980–99 map 

used the 1990 data from the Malaria Elimination Initia-

tive’s time series [24], the 2000–07 map used the WHO’s 

2004 data [25] and the 2008–15 map used the 2011 data 

from the WHO’s 2012 world malaria report [26].

�e purpose of the map presented in Fig.  2 was to 

assess whether there are apparent trends of potential 

interest that justify a full analysis. �e data visualiza-

tion presented in Fig.  2 should be treated with caution. 

�is map simply displays the raw data without any cor-

rection for spatial bias within administrative divisions or 

Table 1 The number of records collated to-date

A record is de�ned as either susceptibility to a speci�c insecticide or the results of a test for a speci�c mechanism of resistance, linked to a �eld-collected species or 

complex from a de�ned place and time

Data type No. records No. point locations No. polygons

Insecticide resistance data from bioassays 14,951 2057 333

kdr allele frequencies 1475 882 25

P450 enzyme activity and gene expression 104 34 1

Esterase enzyme activity 222 123 4
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temporal bias within each time period. �e values shown 

also combine data from multiple species, insecticides and 

protocols as noted above. �e trend of increased report-

ing of resistance to pyrethroids over the last 25 years is 

evident, with areas of Africa that traditionally had no 

data now reporting.

It is important to note that although the colour scale 

used in Fig.  2 highlights the thresholds defined by the 

WHO, the full range of mortality values from 0 to 100% 

are available for the proposed analyses.

Data availability for the mechanisms of resistance

In addition to bioassay data, mechanism data linked to 

field collections were also extracted. �e target site for 

pyrethroid insecticides is the sodium channel and modi-

fication of this, known as kdr, can lead to resistance [27]. 

Fig. 1 Distribution of the 13,514 insecticide resistance mortality points collected and geopositioned to date
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�e full current dataset was filtered to extract all records 

reporting kdr allele data including full genotype frequen-

cies (e.g. the number of homozygotes and heterozygotes), 

individual allele frequencies and resistant/susceptible 

allele frequencies. Studies that only provided allele fre-

quencies for a non-representative subset of the popula-

tion (e.g. bioassay survivors only) were excluded. If data 

for different species were provided separately, these were 

Fig. 2 Apparent trends in pyrethroid resistance for the Anopheles
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combined to give a single value for that site and period. 

If data for bioassay survivors and dead were provided 

separately these were combined and weighted by the 

proportion that had died in the bioassay, to give a sin-

gle representative value for that site and period. Finally, 

the susceptible allele frequency was calculated for each 

record. All frequency values derived from less than 20 

mosquitoes tested were excluded. �e final dataset cur-

rent contains 1471 data points at 876 unique locations as 

shown in Fig. 3.

Mixed function oxidase is one of the key resistance 

mechanisms for pyrethroids [27] and has been associated 

with malaria programme failure [17]. �e full current 

dataset was filtered for all records reporting evidence 

on cytochrome P450/MFO enzyme activity or gene 

expression. Each record was classified as either show-

ing significantly higher enzyme activity compared to an 

appropriate control, not showing significantly higher 

activity, showing significant overexpression of one or 

more relevant genes, or not showing overexpression. �e 

current dataset provides 331 P450/MFO data points. �e 

locations of each report of overexpression was then plot-

ted on a map layered on top of reports of high enzyme 

activity, on top of an absence of overexpression, on top of 

an absence of high activity. �at is, evidence for a ramp-

ing up of the P450/MFO enzymes was displayed prefer-

entially over a lack of evidence if both classes of evidence 

were found at the same location in Fig. 4. Unlike the data 

for insecticide susceptibility and for kdr alleles, it was not 

possible to derive a single metric for P450/MFO upregu-

lation. �e gene expression data covers multiple alleles 

and the enzyme activity data was recorded using a range 

of different methods that are difficult to compare.

Addressing the limitations of the data

�e maps presented here allow us to visualize the avail-

ability of data and start to see apparent trends, however, 

an analysis that addresses multiple potential confound-

ing factors (Table  2) is required to elucidate real trends 

and relationships. It is clear that the only universal met-

ric with the high global data volumes needed to produce 

comprehensive maps of resistance is phenotypic sus-

ceptibility data from standard bioassays. �e bioassays 

methods used include CDC bottle assays [28] and WHO 

bioassays linked to ten protocol updates [29, 30] meaning 

any analysis of this dataset needs to incorporate the pro-

tocol used as a variable or standardize these data.

Data volumes available for kdr alleles are much lower 

and this factor is not strongly linked to the variable of 

most interest, the efficacy of insecticides. Other mecha-

nisms such as P450/MFO upregulation are more strongly 

linked to insecticide efficacy, or mosquito mortality, but 

the volumes of data are currently very low. It may be 

possible to analyse relationships between mechanism 

data and the spatiotemporal patterns generated using 

the bioassay data, especially as mechanism data volumes 

increase, but these data are insufficient to form the main-

stay of the currently planned spatiotemporal analyses.

An initial assessment of the data reveals that spa-

tial variation appears to exist and, as expected, tempo-

ral trends are apparent. Sampling intensity is, however, 

biased in both time and space. To understand these 

trends it will be important to incorporate both spatial 

and temporal factors in the analysis to avoid one con-

founding the other. Insecticide resistance appears to be 

patchy in space. Spatial patchiness is also seen in malaria 

prevalence and geostatistical methods incorporating 

Fig. 3 Geographical distribution of kdr reports the susceptible allele frequencies
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spatial dependence have been shown to provide a robust 

approach to model these data [31]. �ese methods have 

been developed further to incorporate temporal trends 

and covariates [2], both of which it is expected will to 

play an important role in insecticide resistance. Specifi-

cally, potential drivers of selection such as ITN and IRS 

use, environmental variables and agricultural use of pes-

ticides will be used as covariates in the model proposed.

�e analysis is further complicated by the fact that 

large numbers of species are represented. Individual 

anopheline species differ in the likelihood that resist-

ance mechanisms will arise and alleles spread within and 

between populations so species needs to be included as a 

factor in the spatiotemporal analyses. �e composition of 

malaria vector species globally forms distinct zones [32] 

and patterns of resistance may differ among these zones. 

�e planned analysis will therefore consider insecticide 

resistance within each zone rather than treating this as a 

single global dataset. Current data volumes are adequate 

for India, Africa and the Mekong Basin but more data for 

these areas, particularly historical datasets, will improve 

the planned analysis and more data for other regions is 

needed before they can be considered for analysis.

Discussion
�e extent of global insecticide resistance reporting 

has improved over time (Fig. 1). However, there are still 

extensive malaria endemic areas for which there are 

no data yet these data are essential for the selection of 

appropriate tools for vector control and management of 

the limited number of insecticides available.

Pyrethroids are a key insecticide class in the fight 

against malaria as they are still the only class recom-

mended for use on LLINs. �e expected impact of a high 

Fig. 4 Location of P450/MFO expression reports

Table 2 Potential confounders, factors and covariates expected to have the largest e�ect on observed insecticide suscep-

tibility

Variable Notes

Sampling bias (spatial) The dataset was not generated using a single systematic sampling design; the data are highly clustered in geographical 
space

Sampling bias (temporal) The dataset did not come from a time series that sampled the same locations at regular intervals; each time period 
incorporates a different set of sites and much higher data volumes are available for more recent years

Species The full dataset is linked to 74 malaria vector species and species complexes, however, over half of the bioassay records 
are linked to members of the An. gambiae species complex

Insecticide Within each insecticide class, different insecticides were tested (6 carbamates, 5 organochlorines, 16 organophosphates, 
and 8 pyrethroids)

Protocol variation Corrected mortality values were derived from a mixture of WHO bioassays (using 9 updated protocols) and CDC bottle 
assays

Exposure dose and duration The exposure dose and duration used in the bioassays varied although the majority of bioassays used standard doses 
and times

Generation tested Population samples were maintained in the laboratory for differing periods, however, only results from bioassays using 
F0 and F1 generations were included
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coverage of LLINs on malaria cases can be lost if efficacy 

of treated nets on killing resistant mosquitoes is reduced 

[33]. It has already been noted that the introduction of 

pyrethroids into South Africa’s IRS control programme 

had a detrimental effect as pyrethroid resistant Anopheles 

funestus were reintroduced and malaria cases increased 

[14]. Whereas in the Bioko Island Malaria Control Pro-

gramme, an initial swap from pyrethroids to carbamates 

was reversed when it was shown that the kdr resistance 

mechanism alone was not having an operational impact 

and pyrethroids could still be used to control malaria 

[34]. �is trend is also being observed in LLINs, for 

example, in Burkina Faso, where local vectors are now 

1000 fold resistant to pyrethroids, the personal and com-

munity impact of ITNs has been lost [11].

Most programmes rely on a combination of vector con-

trol tools. However, countries are now reporting resist-

ance to two or more classes of insecticide with differing 

resistance mechanisms in different vectors [35, 36]. �is 

makes the development of insecticide resistance manage-

ment plans challenging and there is a need to potentially 

target different tools and insecticides to different areas 

of a country, all of which requires spatial maps of vector 

species and their insecticide resistance profiles at a gran-

ular scale.

Alteration of the pyrethroid target site, kdr, is widely 

distributed but has arisen multiple times in all the vector 

species tested, with the exception of An. funestus, where 

kdr has still to be recorded. �e 2000–07 data collected 

here shows that kdr is widespread and corresponds to the 

period shortly after the scale up of pyrethroid impreg-

nated LLINs, but resistance levels conferred are low. �e 

numbers of reports of kdr appear to be declining in recent 

years, but this is probably because it is less easy to get this 

information published rather than any evidence that kdr 

testing is declining. �is highlights the need for a reposi-

tory that is able to house both published and unpublished 

data. GPIRM [17] stresses that metabolic resistance to 

pyrethroids is probably more important in mosquitoes, 

however, Fig. 3 shows that this is less well studied. �is 

reflects the difficulty in monitoring metabolic resistance 

directly in the field, when simple PCR based diagnostics 

are not available.

Map discussion

�is work has shown that the data volumes of insecticide 

susceptibility bioassay results are sufficient to allow an 

analysis of spatiotemporal trends that will yield regional 

maps and provide modelled predictions for all locations, 

at a high resolution. �e aim while compiling this dataset 

is to capture the potential confounding factors in addi-

tion to the core measures of resistance, linked to location 

and time data, in order to incorporate these factors into 

a robust analysis of spatiotemporal trends. �e planned 

Bayesian geostatistical method has been successfully 

used to model spatiotemporal variation in the preva-

lence of Plasmodium falciparum infections in malaria 

[2]. Modelling resistance across the vectors that transmit 

P. falciparum and the other human malaria parasites is 

potentially more complicated and the data requirements 

for a Bayesian geostatistical model are high. Progress in 

building a database to feed into this analysis is well under 

way as presented here but it is noticeable that not all 

regions are currently well represented and the decision 

on which regions to include in the model will depend on 

data availability.

Data sharing is a cornerstone of this work. MAP-IR and 

VectorBase regularly share non-confidential datasets to 

maximize the content of both databases. MAP-IR data is 

also shared with the WHO providing either (i) the data 

have previously been published, or (ii) the data own-

ers have provided permission for the data to be shared. 

MAP-IR will utilize the MAP platform [37, 38], allowing 

users to obtain modelled insecticide resistance risk maps 

online. MAP-IR differs from previous attempts at map-

ping insecticide resistance as it is a global initiative that 

aims to share data from the outset and the largest dataset 

available is being assembled. In addition to the modelled 

maps and data, the database of input data (the bioassay 

and mechanism records described here) will be released 

into the public domain via the MAP platform. �e 

expected release date for the input data is 1st September 

2017, with data being continuously added post-release.

Conclusions
Insecticide resistance threatens the gains made in malaria 

control to date. �ere are currently neither the data nor 

the resources to generate the information required for 

control programmes to generate informed decisions 

regarding vector control policy and insecticide choice. 

�is project will fill some of these gaps which will trans-

late into prolonging the life of old and new insecticides, 

reduce costs and maintain the gains made in reducing 

morbidity and mortality in malaria.

Additional �les

Additional �le 1. Database fields for bioassay records; the data types 

extracted from each sources are given within a simplified version of the 

database structure.

Additional �le 2. Pyrethroid resistance by subnational area for three time 

periods; the number of bioassay records for each first order administra-

tive division is given for 1980–1999, 2000–2007, and 2008–2015 together 

with the actual year range for which data are available in each instance, 

the number of mosquitoes assayed, and the average mortality as shown 

in Fig. 2.
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