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Introduction

Despite advances in mapping the geo-

graphical distribution and intensity of

malaria transmission [1,2], the ability to

provide strategic, evidence-based advice

for malaria control programmes remains

constrained by the lack of range maps of

the dominant Anopheles vectors of human

malaria. This is because appropriate

vector control depends on knowing both

the distribution and epidemiological sig-

nificance of Anopheles vectors [3]. Substan-

tial investments by major donors in the

distribution of long-lasting insecticide-

treated nets and indoor residual spraying

campaigns [4] are, therefore, not always

fully informed by the basic biology of local

anophelines.

Recent attempts to delineate Anopheles

distributions have been conducted in

Africa [5–11], the Americas [12–16],

Europe [17], Central and South East Asia

[18–22], and at the global scale [23–26].

The mapping techniques used in these

various studies range from those based on

expert opinion and simple interpolations to

those employing more sophisticated statis-

tical methods. Consequently, these studies

are difficult to compare and impossible to

synthesize globally. In addition, whereas in

some regions Anopheles species distributions

and their contribution to human malaria

transmission are well known, uncertainty

arises when suites of vectors contribute to

local transmission, when the margins of the

species ranges are poorly defined, and/or

when there is simply a lack of any, or

reliably identified, distribution records.

Furthermore, as many regions attempt to

maintain their malaria-free status against

imported malaria [27] and others consider

their prospects of malaria elimination

[28,29], contemporary maps of anophe-

lines that are competent vectors for malaria

are important in assessing local receptivity

to reintroduction [30].

To help address these needs, the Malaria

Atlas Project (MAP, http://www.map.ox.

ac.uk) [31] has extended its activities to

collate anopheline occurrence data to map

the contemporary geographic distributions

of the dominant mosquito vectors of human

malaria. The plans for, and progress of, this

initiative are described here.

Defining the Dominant
Anopheles Vectors of Human
Malaria

There are 462 formally named Anopheles

species, with a further 50 provisionally

designated and awaiting description

[32–34]. Of these, approximately 70 have

been shown to be competent vectors of

human malaria [35] and from this set, 52

candidate dominant vector species (DVS)

were initially chosen for inclusion in the

MAP vector distribution mapping project.

These DVS are species (or species com-

plexes) that transmit the majority of

human malaria parasites in an area by

virtue of their abundance, their propensity

for feeding on humans, their mean adult

longevity (only old individuals incubate the

parasite long enough to transmit the

disease), or any combination of these and

other factors that increase overall vectorial

capacity [36]. The DVS were the inclusive

set of those species identified as ‘‘main’’

[37,38], ‘‘dominant’’ [24], or ‘‘principal’’

[23,25] in major reviews of Anopheles

distribution and biology. The list was then

further refined by anopheline experts from

the Americas, Europe, Africa, Asia, and

the Pacific, who co-author this article, to

The Health in Action section is a forum for indi-
viduals or organizations to highlight their innovative
approaches to a particular health problem.

Citation: Hay SI, Sinka ME, Okara RM, Kabaria CW, Mbithi PM, et al. (2010) Developing Global Maps of the
Dominant Anopheles Vectors of Human Malaria. PLoS Med 7(2): e1000209. doi:10.1371/journal.pmed.1000209

Published February 9, 2010

Copyright: � 2010 Hay et al. This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Funding: SIH is funded by a Senior Research Fellowship from the Wellcome Trust (#079091) which also
supports PWG, APP, and WHT. MES, CWK, PMM, CCT, and REH are funded by a Wellcome Trust project grant
(#083534) to SIH. RMO is funded by a Wellcome Trust Masters Training Fellowship (#083124). This work forms
part of the output of the Malaria Atlas Project (MAP, http://www.map.ox.ac.uk), principally funded by the
Wellcome Trust, U.K. The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Abbreviations: DVS, dominant vector species; MAP, Malaria Atlas Project; MODIS, Moderate Resolution
Imaging Spectroradiometer.

* E-mail: simon.hay@zoo.ox.ac.uk.

Provenance: Not commissioned; externally peer-reviewed.

PLoS Medicine | www.plosmedicine.org 1 February 2010 | Volume 7 | Issue 2 | e1000209



exclude 11 species that were not consid-

ered important vectors either because few

recent data had implicated them in

transmission or because they acted as

vectors in only restricted geographical

areas (Text S1). Following the convention

of the major reviews in this area

[23–25,37,38], the DVS of the Anopheles

(Cellia) gambiae complex are listed separate-

ly. We hope also to map at species level

three other complexes, where examination

of the primary literature has indicated

sufficient species-specific data (the An.

(Nyssorhynchus) albitarsis, An. (Cellia) culicifa-

cies, and An. (Cellia) dirus complexes).

Further details are provided in the legend

of the maps of each complex in Text S3

(for the An. (Nyssorhynchus) albitarsis com-

plex) and Text S5 (for the An. (Cellia)

culicifacies and An. (Cellia) dirus complexes).

Comprehensive Literature
Searches

An exhaustive and systematic search of

formal and informal literature was con-

ducted, mirroring the approaches devel-

oped by the MAP in building a global

database of malaria parasite prevalence

[39]. Only information collected after 31

December 1984 was searched. This crite-

rion ensured that the data collected were

representative of the contemporary distri-

bution of the DVS and that the DVS

occurrence records included only data

collected using modern taxonomic species

concepts [32,33]. Following the introduc-

tion of cytological and then molecular

methods to mosquito systematics, the

taxonomy of the Anopheles changed radical-

ly, making many earlier species determina-

tions potentially unreliable [32,33,40–43].

This date restriction also served to focus

finite literature retrieval and abstracting

resources on newer references, that are

easier to retrieve from libraries, have sites

that are less problematic to geo-position,

and have authors that can often still be

contacted with queries.

Records of the presence or absence of a

DVS at a particular site and on a

particular date were entered into the

database so that information collected at

different times from a locality was docu-

mented. Because abundance data have not

been reported using methods that can be

readily standardized across entomological

surveys, only presence and absence data

were used to generate the maps. Although

the geographic distribution of the DVS in

malaria-endemic countries is the first

concern, data from any location was

recorded because, as previously noted,

information on DVS distribution is of

major importance in those areas seeking to

maintain their malaria-free status. More-

over, when modelling the fundamental

niche of a species [44] using climate-

envelope approaches [45], the aim is to be

inclusive geographically, in an attempt to

fully represent the environmental limits

encompassed by its range.

Once a relevant literature source was

identified, information was extracted using

a list of data fields specified by a detailed

pro forma (Text S2). Precise geo-position-

ing was conducted using established meth-

ods [39], so that any uncertainty associated

with the positioning could be estimated

[46–49]. Our strategy has been to first

target the formally published literature and

to use this base to direct further searches for

informal (‘‘grey’’) literature sources and

unpublished information held by relevant

individuals and organisations. The results

of this exercise were a total of 41,518

records with 22,249 spatially unique obser-

vations for all 41 DVS. These records are

shown in full in a series of maps in Text S3,

Text S4, and Text S5 for the American,

Europe Africa, and Middle East and Asia

Pacific region species, respectively. Short

legends are included with each map

indicating areas for which occurrence

records are not well documented in the

formal literature by comparison with digi-

tised expert opinion distributions for each

species. Informal searches are to be fo-

cussed on these areas of poor coverage and,

where not prohibited by taxonomic identi-

fication issues, the inclusion date will be

relaxed to the 31 December 1974. Ulti-

mately, all these data will be made available

in the public domain in accordance with

the open access data sharing principles of

the MAP [31].

Collaborative Online Databases

Many initiatives are being developed to

provide information on the geographical

distribution of disease vectors, including

the Anopheles (Table 1; for example surveys

of the geographical distribution of differ-

ent forms of insecticide resistance [50–

52]). These initiatives will be a significant

help in data acquisition. Duplication of

search effort will be minimized by ensur-

ing compatibility between different data

abstraction ontologies (e.g., [53] and Text

S2), so that where possible, data exchange

can be automated. Where this cannot be

achieved, data will be incorporated man-

ually into the MAP archives with its

provenance clearly recorded.

Table 1. Summary of the online resources for Anopheles.

Site URL Description

Anobase http://www.anobase.org Contains genomic/biological information for An. gambiae s.l.

Disease Vector Database http://www.diseasevectors.org Species occurrence data for 111 vectors including many Anopheles [10].

Lifemapper http://www.lifemapper.org Lifemapper correlates online geospatial species (plant, animal, and insect)
occurrence data with a number of environmental variables to create distribution
maps and total range predictions.

Malvecasia http://www.itg.be/malvecasia A multi-institutional European Union–funded project mapping insecticide
resistance of An. dirus, An. minimus, An. epiroticus, and An. vagus in South-east
Asia [52].

MARA http://www.mara.org.za The Mapping Malaria Risk in Africa site provides a spreadsheet documenting
species occurrence data for An. gambiae s.l. [6].

MosquitoMap http://www.mosquitomap.org Interactive map showing global sampling points of mosquitoes from a number
of genera, incorporating sampling details and full taxonomic descriptions [14].

VectorBase http://www.vectorbase.org Contains sequence and molecular vector-specific information for An. gambiae s.l.

WRBU http://www.wrbu.org The Walter Reed Biosystematics Unit has identification resources, images, and
limited distribution maps for a range of medically important arthropods.

doi:10.1371/journal.pmed.1000209.t001
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New Species Mapping
Techniques

Recent years have seen the develop-

ment of a number of new techniques to

predict species ranges [54–59], of which

the most promising include methods based

on boosted regression trees [60,61], gen-

eralised additive models [62], and maxi-

mum entropy approaches [63]. In addi-

tion, Bayesian statistical approaches

[64–66], which have been widely used in

mapping malaria prevalence [67–72],

have recently begun to be applied to

mapping the relative frequency of Anopheles

species [73]. Bayesian models are able to

integrate information from disparate

sources and allow the comprehensive

quantification of prediction uncertainty,

something that is often overlooked in

species mapping exercises [74].

An important input into the iterative

mapping process is expert advice from

entomologists and public health workers

with extensive experience of DVS in the

field. To facilitate this input, the DVS

have been split into three biogeographical

regions: the Americas (nine species);

Africa, Europe, and the Middle East (13

species); and the Asia-Pacific region (19

species) (Text S1). These experts have

helped refine the expert opinion distribu-

tions digitised from the literature for the

41 DVS. These are presented alongside

the species occurrence summaries in Text

S3, Text S4, and Text S5.

New Earth Observing Satellite
Data

The statistical techniques we shall

employ in future mapping efforts will

model species occurrence as a function of

environmental variables. We can then

predict species distributions as a function

of environmental conditions that can be

obtained from Earth-observing satellite

imagery [75]. During model formulation

and validation we shall use coarse spatial

resolution (,868 km) multitemporal re-

motely sensed imagery [76] to reduce

computational demand. Once the partic-

ular mapping technique is chosen, we will

move to more contemporary Moderate

Resolution Imaging Spectroradiometer

(MODIS) satellite imagery, available

globally at ,161 km spatial resolution

[77], to improve the spatial resolution of

the predictions. Adapting temporal Four-

ier analyses techniques, which ordinate

seasonal environmental data [78,79], to

cope with the irregular compositing

periods of MODIS data, has been

completed and the data has already been

made available in the public domain

[77].

New Bionomics Review

The usefulness of the species range

maps when available online [80], can be

improved by combining them with sum-

maries of the species-specific life history

characteristics or ‘‘bionomics’’ of the

DVS. Anopheline vector bionomics are

critical in defining the appropriate (and

inappropriate) modes of control at the

national and local level [81–83]. For

example, indoor residual spraying of

houses for the control of a vector that is

predominantly an outdoor resting species

and prefers biting animals (e.g., An. (Cellia)

arabiensis) is unlikely to be an optimal

control strategy [84]. Conversely, if the

vector feeds predominantly indoors and at

night (e.g., An. (Cellia) gambiae), insecticide-

treated nets are likely to be a very

appropriate intervention [85,86]. Infor-

mation on characteristics of specific larval

habitats and range will also be informa-

tive. Public health and education mea-

sures aimed at larval reduction may be

feasible across large parts of the Middle

East and Asia [87], where An. (Cellia)

stephensi is the major DVS. This species

readily breeds in urban areas, often using

human-made water containers as its

preferred larval habitat. Conversely, en-

vironmental management techniques

such as installing tidal gates or construct-

ing drainage systems are likely to be more

effective as a permanent means of reduc-

ing or eliminating suitable coastal habitats

of members of the An. (Cellia) sundaicus

complex across substantial areas of South

East Asia [88].

A systematic review of life-history char-

acteristics pertinent to control is also

timely as previous summaries become out

of date [3,89–97]. For example, as the

taxonomy of the genus is better under-

stood, it is evident that previous accounts

which do not separate the different

members of species complexes may omit

or confuse critical biological information

relevant for pest management. Examples

of this occur in the An. sundaicus [98] and

An. (Cellia) minimus complexes [99]. In

addition, it would be desirable to incorpo-

rate the latest information on the phylog-

eny of the Anopheles [33], so that modern

comparative methods [100] can be used to

infer species characteristics from evolu-

tionary relationships when no observations

are available. This assembled information

will be particularly useful for extending

models of malaria transmission beyond An.

gambiae, the species that has been the

subject of most [101–103], but not all

[104], attention. This will become increas-

ingly important as operational and re-

search communities alike continue to

model the impact of vector control on

malaria transmission [30].

Since abundance cannot be modelled

with these opportunistic data assemblies,

the bionomics review will also facilitate a

ranking of the importance in malaria

transmission of the different DVS in each

region. This ranking will enable multiple

species maps to be overlaid to obtain a

more accurate picture of the overall

epidemiological significance of the local

DVS community and thus provide a better

understanding of the complexity of trans-

mission in an area. It is clear that

subregional ecological diversity, coupled

with the behavioural plasticity of many

DVS, will require that any maps, and

associated bionomics information provid-

ed, be interpreted and acted on cautiously

with local expert knowledge.

Conclusions

The completed DVS databases and

predictive maps will be made available

online once generated, alongside the wider

portfolio of MAP products, including

spatial limits and endemicity maps for the

human malaria parasites [1,2]. This juxta-

position of information should represent an

important cartographic resource for those

engaged in malaria control and where

feasible, its elimination. The success and

long-term sustainability of this DVS map-

ping initiative depends critically on its

continued support, development, and re-

finement in the malaria vector control and

research communities. We hope that the

information on the aims and objectives

provided here, and the commitment to

providing data in an open access venue, will

help ensure that support.
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species complexes) of human malaria in
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1000209.s004 (3.02 MB PDF)
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