
  

  

Abstract—The complex moduli relationship related mixture 
moduli to temperature and time rate of loading has been an 
integral part of several mechanistic-empirical (M-E) design 
procedures used throughout of the world. Seven asphalt 
concrete mixtures of different types of polymer modified 
binders (PMB) were produced in a laboratory to modify 
performance of asphalt mixture. The main role of this research 
is to evaluate the influence of these polymer modifiers on the 
pavement performance of asphalt mixture with the dynamic 
modulus, |E*| of hot-mix asphalt (HMA) mixture indicator in a 
laboratory test for Mainroad Western Australia and Fulton 
Hogan. In this study, the influence of temperature, loading 
frequency, and confining pressure on the dynamic 
characteristic of asphalt mixture were analysis, master curves 
of dynamic modulus of HMA mixtures were developed and 
data’s were interpreted. Results showed that AC10 5.7% A35P 
(EVA) M7 B5, AC10 5.7% C450 M10 B5 and AC10 Multi 
600/700 M5 B4 mixes method were the more efficient and 
effective in all categories of asphalt performance measures for 
strength and durability of HMA as compared to others polymer 
modifiers. A very good correlation (R2 = 1) was found for each 
polymer modifier. This suggested that laboratory test using a 
various temperatures and loading frequencies can improve 
pavement mix design, lab and field control and assurance. A 
strong correlation between binder viscosity and temperature 
[R2 = 1] for polymer modified asphalt mixture. 

 
Index Terms—Polymer modifier, dynamic modulus, master 

curve; viscosity, temperature, asphalt mixture, western 
Australia.   

 

I. INTRODUCTION 

The new American Association of State Highway and 

Transportation Officials (AASHTO) Mechanistic-Empirical 

Pavement Design Guide (MEPDG) based on the National 

Cooperative Highway Research Program (NCHRP) 1-37A 

study uses the dynamic modulus of asphalt mixture, |E*|, as 

the asphalt material input in its pavement analysis [1], [2]. 

The concept of a dynamic modulus protocol was originally 

developed by Coffman and Pagen at Ohio State University in 

the 1960s [3] and this test was not implemented for payment 

design and analysis until recently [4]. The test can be applied 

in a uniaxial (triaxial) condition either compression or 
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tension. Most of the test results obtained over the past 30 

years have been in compression and are generally denoted as 

E*. The E* test was adopted as the “Modulus Test of Choice” 

by the Asphalt Institute in the late 1960s by Kallas, Shook 

and Witczak [3]. It subsequently became an American 

Society of Testing and Materials (ASTM) standard in early 

1970 under ASTM designation D3496 [5]. 

The dynamic modulus of hot-mix asphalt (HMA) is an 

important input parameter in asphalt pavement design. The 

mechanistic-empirical pavement design guide (MEPDG) 

recommends determining dynamic modulus at three levels: 

Level 1, Level 2, and Level 3 of analysis for predicting the 

performance of flexible pavement as discussed by NCHRP 

[2]. The use of a particular hierarchal input Level 1 of 

analysis depends on the amount of information available to 

the designer and the critically of the project. For example, at 

Level 1, the asphalt binder and the HMA are tested in the 

laboratory to measure dynamic modulus. However, the 

measurement of dynamic modulus in the laboratory is not 

always feasible because of the tedious experiments and it 

may also take several days to develop a single master curve 

[6]-[8]. 

To overcome these difficult, the MEPDG recommends 

estimating the dynamic modulus without conducting actual 

modulus tests in the laboratory for Level 2 and Level 3 design 

[8]. Several prediction models are available in the literature 

for estimating the dynamic modulus of HMA. These models 

use the volumetric properties of mix, aggregate graduation, 

loading frequency and viscosity of an asphalt binder to 

predict dynamics as discussed on literature by [8]-[13]. 
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Fig. 1. Dynamic (complex) modulus. 

 

Dynamic modulus testing characterizes asphalt mixture as 

a linear viscos-elastic material over a wide range of 

temperature and loading frequency. In the MEPDG, dynamic 

modulus testing results are used to generate a master curve 

for each mixture by the time-temperature superposition 

methodology [2]-[4]. The dynamic modulus is a fundamental 

asphalt mixture property and it can be used to investigate the 
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temperature and loading frequency of hot-mix asphalt 

pavement because of its main application MEPDG in the 

form of a master curve.  

The goal of this study is to evaluate the influence of 

polymer modified binders (PMB) on the pavement 

performance of asphalt mixtures for Western Australia Main 

Roads. Results from this research will be of great guidance in 

selecting modifier material for Western Australia.  

 

II. METHODS AND MATERIALS 

A. Methods 

For linear visco-elastic material such as HMA mixture, the 

stress-strain relationship under a continuous sinusoidal 

loading is defined as by its complex dynamic modulus (E*). 

This is a complex number that relates stress to strain for linear 

visco-elastic material subjected to continuously applied 

sinusoidal loading in frequency domain [3]. The complex 

modulus is defined as the ratio of the amplitudes of the 

sinusoidal stress at any given time, t and angular loading 

frequency, ω, δ = δo sin (ωt) and the amplitude of sinusoidal 

strain, φ  = δo sin (ωt -φ ), at the same time and frequency, 

that result in the steady response is shown in Fig. 1.  

The dynamic (complex) modulus equation can 

mathematically be expressed as: 

 

 
( ) ( )

* 0 0

00
sin

i t

i t

e sin t
E

te

ω

ω ϕ

δ δ ωδ

ε ε ω ϕε −
= = =

−
      (1) 

 

where, 0δ peak (maximum) stress; 0ε peak (maximum) 

strain;  φ = phase angle degree; ω = angular velocity; i = 

imaginary component of the complex modulus and t = time. 

Mathematically, the dynamic modulus is defined as the 

absolute values of the complex modulus and the equation (1) 

can be written as 
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The primary output variable of the test is the dynamic 

modulus
* E and the phase angle ( φ ), which is a direct 

indicator of the elastic-viscous properties of the mix or binder 

material. The dynamic modulus in the compression 
*E  of 

the mix is similar in principle to the
* G complex shear 

modulus of the binder developed in the SHRP and SuperPave 

programs at the University of California, Berkley, and Penn 

State University [3]. The two moduli, 
*E and 

*G are 

theoretically related through engineering mechanics by the 

relationships: 

 

 ( )* *2 1E Gµ= +        (3) 

 

In the proposed “2002 Guide for the Design of Pavement 

System”, currently under development in NCHRP project 

1-37A, the modulus of the asphalt concrete-at all analysis 

level of temperature and time rate of load-is determined from 

the a master curve constructed at a reference temperature, 

generally 21.1oC (70F) [2], [3], [14]-[16]. Master curves are 

constructed using the principle of time-temperature 

superposition. The data at various temperatures should be 

shifted with respected to log of time until the curves merge in 

to a single smooth function. The resulting master curve of the 

modulus, as a function of time, formed in this manner 

describes the time depending of the material [3]. The amount 

of shift required at each temperature to form the master curve 

describes the temperature depending of the material. In 

general, the master modulus curve can be mathematically 

modeled by a sigmoidal function described as:  
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where, tr = time of loading at reference temperature; δ =  

minimum value of
*;E δ + α  maximum value of 

sigmoidal; ,β γ =  parameters describing the shape of 

sigmoidal function; and  α  variable which is function of 

gradation. The shift factor can be shown in the following 

form: 
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where, ( )Tα  shift factor as a function of temperature; t = 

time of loading during test, s; rt time of loading at reference 

usually (70 oC) and T = temperature of loading cycle. The 

equation can be re-arranged in term of the reduced time 

( )rt of the loading at the reference temperature as: 
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where, f is the loading frequency at desired temperature, Hz. 

For the sake of accuracy, a second-order polynomial 

relationship between the logarithm of shift factor, 

( )log Tα and the temperature is used. The relationship can 

be expressed as follows: 
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where, ( )iTα  a shift factor as the function of temperature 

;iT iT is temperature of interest; a and b are a coefficient of 

the second-order polynomial. The dynamic modulus, 
*E f 
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the mix and the complex shear modulus of binder, 
*G relationship that is described in equation (3) can be 

re-arranged as: 
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Asphalt technicians have used the viscosity – temperature 

relationship or viscosity – temperature susceptibility (VTS) 

method of binder temperature susceptibility classification for 

decades [17], [18], although it has not been used as a popular 

index values for this purpose. One basic definition of VTS 

[19] :  
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where, T2 and T1 is a temperature of the binder at two known 

points (R = degree Rankine) and 2Tη and 1Tη re viscosities of 

the binder at the same two point (cp). The larger the 

magnitude of the VTS value is found to be, the more 

susceptible the binder is to change in viscosity with 

temperature. In 1967, Puzinauskas derived the VTS for over 

50 binders commonly used in the United States at that time, 

and found the VTS value to range [based on Eq. (11)] from 

-3.36 to -.3.98 [17]. 

Fonseca and Witczak [20] presented a new model for 

prediction of the dynamic modulus of hot-mix asphalt (HMA) 

that included the binder viscosity as an input variable. The 

model include a calculation of methods for binder viscosity at 

a function of temperature and age [19]. These formulations 

were based on the VTS formula, as well as a second 

parameter, A. The ‘A’ parameter is the y – axis intercept of 

the log [log (viscosity)] and log (temperature) curves. The A 

parameter cannot be measure directly, but it can be derived 

from least – squares fit of viscosity – temperature data from a 

given binders. The basic formula for viscosity of binder can 

be described as [3]: 
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The basic formula for VTS and A is: 

 

( )log[log ] log( )RA VTS Tη = + ×       (13) 

  

where φ  is viscosity of binder, (cp); 
*G s complex shear 

modulus of binder, Pa; bδ s phase angle of binder associate 

with 
*G degree; A is binder (intercept) parameter and VTS 

is slope parameter and RT s temperature, oRankine.  

B. Materials 

Types of hot-mix asphalt used on the Mainroads Western 

Australia network are dense graded asphalt (DGA), open 

graded asphalt (OGA) and stone mastic asphalt (SMA). DGA, 

the most common type of asphalt, provides optimal structure 

strength and generally good resistance to deformation. OGA 

is designed to drain water through the asphalt to remove 

excess water from the tyre/road surface. SMA is similar to 

OGA but has a high proportion of dust and high binder 

contents to achieve an improved fatigue life. SMA has a 

texture surface but does not drain water through its layer as 

does OGA [21]-[23]. All Materials selected for this project 

were from local sources and are originally of Western 

Australian pavement materials used in the industry. 

In order to assess the master curve development and 

predict the dynamic modulus of polymer modified of hot-mix 

asphalt mixture, it is necessary to obtain laboratory data of 

different types of modifiers and characteristic of asphalt 

mixes. The properties of asphalt AH-70 Grade are listed on 

Table I. Seven modifiers were selected for this study and the 

mixes descriptions for developing master curves and 

predicting dynamic modulus of polymer modified asphalt 

mixtures were: C320 M1 B3; A10E M2 B4; A15E M3 B4; 

Multi 600/170 M5 B4; A20E M6 B7; A35P (EVA) M7 B5; 

and C450 M10 B5. Each asphalt mixture consists 10 mm 

dense graded granite (AC10) and binder of 5.7 percent. 
 

TABLE I: PROPERTIES OF ASPHALT AH-70 GRADE 

Mix Design Properties Specification Value

Penetration (25 oC, 100g, 5s, 0.1mm) 62.90

Ductility (5 cm/min, 15 oC) 160.00

Softening (ring and ball method) 52.40

Density (g/cm3, 15 oC) 1.04

Flash point (oC) 270.00

Wax content (%) 2.10

Solubility (%) 99.70

Spot test Negative

 

C. Specimen Preparation and Compaction of Mixes 

Sample preparation and compaction temperature were 

obtained to each asphalt mixes using consistence test results 

according Australian Standard Test Methods: AS2891 and 

AS2150. The hot-mix asphalt (HMA) mixtures were heated 

for 2 hr at 170 oC in oven before compaction. The Gyratory 

compaction pressure was 600 kPa. The test sample was then 

compacted with gyratory compaction using the Servopac into 

150 mm diameter 170 mm in height. The Servopac is a fully 

automated, servo-controlled, gyratory compactor designed to 

compact asphalt mixes by gyratory compaction. Compaction 

is achieved by the simultaneous actions of static compression 

and the shearing action resulting from the mould being 

gyrated through an angle about its longitudinal axis. Test 

specimen was cored from the center of the gyratory 

compacted sample. The specimen was sawn at approximately 

5 mm from each sample to have the final 110 mm diameter x 

160 mm height of E* test specimen. All the test specimens 

were compacted to about 5% air voids. The mix design for 

AC10 mm dense graded granite is shown in Table II was 

designed in according with Gyratory volumetric mix design 

procedures and it optimum asphalt bender content (Pb) is 

5.7%, air void is 4%, and void in mineral aggregate (VMA) 
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are 17.7%, voids filled with asphalt (VFA) are 75%; and effective binder content (Vbeff) is 12%. 
 

TABLE II: MIX DESIGN FOR AC10 MM DENSE GRADED GRANITE 
Mass percentage passing sieve size 

Gradation (mm) 19.0 13.2 9.5 6.7 4.75 2.36 1.18 0.6 0.3 0.15 0.075 

Percentage passing by weight 100 91 76 61 48 32 21 15 8 5 3 

Austroad Specification limit 100 100 100 85-100 30-63 20-35 16-28 14-24 12-20 10-16 8-12 

 

TABLE III:  MASTER CURVES AND SHIFT PARAMETERS 

Mix Description δ ɑ β γ a b %V SSD 

AC10 5.7% C320  M1 B3 0.736754 3.557723 -0.80766 0.657819 0.000819 -0.11304 5.24 

AC10 5.7% A10E M2 B4 1.013825 3.160096 -0.16244 0.625139 0.000637 -0.10007 4.79 

AC10 5.7% A15E  M3 B4 0.923342 3.309382 -0.56845 0.496263 0.000742 -0.11319 6.35 

AC10 5.7% Multi 600/170 M5 B4 1.413448 2.843524 -0.37136 0.504290 0.000723 -0.10783 6.92 

AC10 5.7% A20E M6 B7 0.858570 3.392841 -0.30221 0.614766 0.000801 -0.10642 7.54 

AC10 5.7% A35P (EVA) M7 B5 1.387350 2.880641 -0.74875 0.573965 0.000356 -0.11132 6.84 

AC10, 5.7% C450, M10 B5 1.003145 3.232011 -0.77564 0.690726 0.000374 -0.10312 6.35 

 
TABLE IV:  MASTER CURVES OF SEVEN DIFFERENT MIXTURES 

Mix Description log tr,(s) log |E*| (MPa) 

C320 M1 B3 -1.0 2.79473 2.38442 2.74092 2.83997 2.43913 3.05507 2.849 

A10E M2 B4 -0.3 2.64026 2.30052 2.6238 2.75591 2.33331 2.91509 2.7068 

A15E M3 B4 0.0 2.34737 2.09501 2.40515 2.58353 2.11167 2.63943 2.38452 

Multi600/170 M5 B4 0.7 2.38226 2.13106 2.4102 2.60249 2.16821 2.55879 2.3259 

A20E M6 B7 1.0 2.28145 2.0468 2.31411 2.53373 2.10829 2.35407 2.10125 

A35P (EVA) M7 B5 1.3 2.27536 2.01983 2.27816 2.51481 2.12642 2.19501 1.93154 

C450 M10 B5 1.4 2.24526 1.9613 2.22218 2.47662 2.12371 2.02297 1.71278 

 

D. Dynamic Modulus  

The dynamic modulus test was conducted using IPC test 

machine, and is capable of providing a constant pressure upto 

210 kPa and an environmental chamber to control testing 

temperatures (between -40 oC and +90 oC). Test specimens 

were accomplished using gluing gauge plugs onto the side of 

the specimen and attached a Linear Variable Differential 

Transducer (LVDT) to the plugs to measure the displacement. 

A haversine loading (Pdynamic) was adjusted in order to 

obtained axial strains between 75 and 125 microstrain to the 

specimen without impact in a cyclic manner. For each asphalt 

mix, 3 replicates were prepared. Since this paper is mainly 

focused on mixture performance at high temperature, each 

specimen in this study was tested at 30, 40, 50, 60, 70, 80, and 

90 oC without being at low temperature. The loading 

frequencies were 0.1, 0.5, 1, 5, 10, 20, and 25 Hz, 

respectively.   

 

III. RESULTS AND ANALYSIS 

A. Master Curve 

A summary of 
*E versus loading frequency for different 

types of polymer modifiers are shown in Fig. 2 As it has 

shown from the plot, the 
*E data are shifted using a 

nonlinear optimization and solve shift parameters. As the 

result of these seven parameters of master curves, models are 

fitted by almost least squares methods with matlab program 

in this study. From the data presented, it can be seen that all 

the modifiers have the same pattern and linear range to all 

asphalt mixes although they have a different
*E This 

showed that the stress to strain for linear visco-elastic 

materials subjected to continuously applied sinusoidal 

loading in frequency domain at the time and frequency results 

a steady response and reduce typical dynamic stress level 

based on the various temperature. Dougan et al., [3] 

discussed that the dynamic modulus that subjected to 

continuously applied sinusoidal loading in the frequency 

domain at the time and frequency results a steady response 

and reduce a friction at the bottom of the loading frame.  

Master curves and shift parameters are listed on Table III. 

The seven shift parameters which are listed in Table III are 

then used in (4) in order to calculate the 
*E of each mix at 

any given temperature and loading frequency within the same 

range that are used in the 
*E testing at reference 

temperature of 25 oC following the superposition.  

 

 
 

Fig. 2. Plot of loading frequency versus |E*|. 

 

The shift factor ( )Tα versus temperature is given in Fig.  

3. These seven parameters are then used in (4) to calculate 

*E of the particular asphalt mix at the temperature and 
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loading frequency within the range in 
*E testing. 

*E master curves of all mixtures were constructed at the 

reference 25 oC following the principle time-temperature 

superposition. The data at various temperatures were shifted 

in line with frequency until the curves merges into a single 

sigmoidal function which represent the master curve using a 

second-order polynomial relationship between the logarithm 

of the shift factor, ( )log Tα and temperature as it is shown 

in Fig. 3 and very good correlation (R2=1) between them 
*E and loading frequency with shift factor as function of 

temperature. Zhu et al., [24] developed a master curves and 

predicting dynamic modulus of polymer modified asphalt 

mixture for four types of polymer modifiers and plotted shift 

factor α (T) versus temperature with very good correlation 

[R2 = 0.9981]. 

 

 
Fig. 3. Plot of shift factor ( )Tα versus temperature. 

 
Fig. 4.  Master curves of seven different mixtures.  

 

B. Effect of Polymer Modifiers 

On the basis of this research, it is found that different 

polymer modifiers vary in their influences on the stiffness of 

mixture. Fig. 4 compares the effect of seven different 

polymer modifiers on the dynamic modulus
* E . As it can 

be seen from plot, each of them has similar results with a 

similar pattern and a linear range to all. As the result of this, it 

has only put one figure in order to avoid repeating same 

figures because of the similarity (refer to Table IV). These 

showed that the stress dependent asphalt mix master curve 

using compressive dynamic (complex) modulus test data is in 

a good correlation with temperature. Pellinen and Witczak 

[25] analyzed the use of stiffness of hot-mix asphalt using a 

simple performance test that limit the stiffness value because 

of the power law and sigmoidal function.  

The data at various temperature where shifted in line with 

frequency until the master curve merges in a single sigmoidal 

function, representing the master curve using a second-order 

polynomial relationship between the logarithm of the shift 

factor and the temperature (Fig. 4). Time–temperature 

superposition was done by simultaneously solve the four 

coefficients of sigmoidal function (δ, α, β, and γ) as described  

in (4). Equation (8) and (9) defined three coefficients of the 

second-order polynomial (a, b, and c; where c is the constant 

number) with least squares methods.   
 

 
(a)  

 
(b) 

 

Fig. 5. (a) .(b) Fitted master curves of AC10 C320 MI B3; AC10 A10E 

M2 B4; AC10 A15E M3 B4; AC10 Multi600/170; AC10 A20E M6 B7; 

AC10 A15E (EVA) M7 B5; AC10 450 M10 B7. 

 

Fitted master curves of AC10 C320 MI B3; AC10 A10E 

M2 B4; AC10 A15E M3 B4; AC10 Multi600/170; AC10 

A20E M6 B7; AC10 A15E (EVA) M7 B5; AC10 450 M10 

B7 are shown in Fig. 5. From the data demonstrated, it can be 

seen that all the asphalt mixtures have a similar patterns apart 

from Caption (a) is shown 
*log E whereas Caption (b) is 

*E f the fitted master curve. Asphalt mixtures have 

followed the linear range with the fitted master curve. These  

indicate the dynamic modulus master curves and shift factor 
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are in good agreement. Garcia and Thompson [26] concluded 

that good agreement and similar accuracy dynamic modulus 

obtained from laboratory test. Similarly, Kim, Seo and 

Momen [27] also reported a good agreement and similar 

accuracy of dynamic modulus master curves, and shift factor 

are obtained from laboratory test. 

C. Effect of Loading Frequency and Temperature 

1) Loading frequency   

Loading frequency versus dynamic modulus 
*E s shown 

in Fig. 6. From the data presented in the figure, it can be been 

that the dynamic modulus 
*E f the polymer modified 

mixture increase as the loading frequency increase. This 

shows that the dynamic modulus 
*E s small at high 

temperature and low frequency. However, it can be increase 

under the contrary condition according the principle of 

time-temperature superposition. For example, take the 

dynamic modulus at reference temperature as shown in the 

figure; it is obvious that the dynamic modulus of the mixture 

increase with the increase of loading frequency.    

 

 
Fig. 6. Plot of loading frequency versus |E*|. 

 

2) Temperature 

Temperature versus 
*E s shown in Fig. 7.  From the data 

presented, it can be seen that mixes with AC10 A35P (EVA) 

modifier generally had high dynamic modulus of 1337 MPa. 

AC10 C450 M10 B5 and AC10 Multi 600/170 MB B4 

modifiers were the second effective in performance of 
*E f 

706 and 691 MPa, respectively. These can be either lower or 

higher at the reduced time. This implies that the 
*E  these 

two modifiers are closer to AC10 A35P (EVA) modifier 

according the principle of time-temperature superposition. 

For example, the dynamic modulus at loading frequency of 5 

Hz that shows the increase in temperature will softened the 

asphalt binder, while the dynamic modulus 
*E s decreased. 

The dynamic modulus at low temperature of 30 oC is about 

twice as high temperature of 90 oC.  

However, AC10 A10E M2 B4 and AC10 A20E M6 B7 

modifiers had a very low of dynamic modulus. And this 

indicates the modifiers mixes might have exposed to rutting 

and then contribute low performance on structure.  While 

AC10 A10E M2 B4 and AC10 A20E M6 B7 modifiers are 

intermediate modifiers to the principle of time-temperature 

superposition. Although the modifiers can be improved to 

rich the second level with a good aggregate asphalt mixes.   

AC10 A35P (EVA), AC10 C450 M10 B5 and AC10 Multi 

600/170 MB B4 polymer modifiers extremely huge with their 

pavement performance compared to the other asphalt mix 

modifiers. Especially, when both are at high temperature, low 

frequency, and low reduced time, these three polymer 

modifiers including the two intermediate modifiers can 

strength and stable the mixture of stiffness, and also 

improved the rutting resistance pavement performance as 

mentioned  on several literatures [2], [14], [24], [26], 

[28]-[31].   

 

 
Fig. 7. Plot of temperature versus |E*|. 

 

3) Binder viscosity – temperature susceptibility  

A summary of viscosity of binder and temperature 

susceptibility of asphalt mixtures are shown in Fig. 8 and 

Table V. The complex shear modulus (G*) of binder, 

viscosity (η ), A and VTS were concurrently solved using 

(10) to (13). From the data presented, it can be seen that a 

strong correlation between binder viscosity and temperature 

[R2 = 1] for polymer modified asphalt mixture. The stiffness 

modulus (at 2.82 TR and 0.1Hz) ranging from 251 to 1038 

MPa at phase angle of 60 degree, whereas binder ‘A’ 

(intercept) parameter, A = -3.5617 and the viscosity - 

temperature susceptibility, VTS = 10.652. Results shows 

increase in binder viscosity, and this larger increase in binder 

viscosity    implies to reducing asphalt failure temperature 

and improved low-temperature cracking resistance with 

asphalt pavement [19], [32], [33]. Since temperature 

susceptibility of asphalt is independent of the rate of cooling, 

it is deduced that failure occurs when the asphalt mixture 

attains a critical physical rate. 

The Connecticut Department of Transportation (CDOT) 

assessed the modulus, E*, as a test method to characterize 

hot-mix asphalt mix design as the part of 2002 Pavement 

Design Guide. Results has shown a good correlation [R2 = 

0.9997] between binder viscosity -temperature [3]. Similarly, 

Rasmussen, Lytton and Chang [19] has plotted VTS and 

found a  [R2 = 0.999]. [R2 = 1] between binder viscosity and 

temperature for asphalt mixture. 
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TABLE V: BINDER DATA (VISCOSITY –TEMPERATURE RELATIONSHIP) 

Temperature  

(oC) 

E*  

(MPa) 

G* 

 (MPa) 

δ Temperature  

(Rankine) 

Viscosity 

(cpoise) 

Log Temperature 

(Rankine) 

Log Log Viscosity 

(cpoise) 

30 601.77 1037.53 60 545.67 208.82 2.74 0.90 

40 453.44 781.79 60 563.67 157.35 2.75 0.85 

50 256.02 441.41 60 581.67 88.84 2.76 0.81 

60 250.02 431.07 60 599.67 86.76 2.78 0.76 

70 189.92 342.92 60 617.67 69.03 2.79 0.71 

80 169.43 281.78 60 635.67 56.71 2.80 0.67 

90 146.26 251.17 60 653.67 50.55 2.82 0.62 

 

 
Fig. 8. Viscosity of binder versus temperature for asphalt mixtures. 

 

IV. CONCLUSIONS 

All the asphalt polymers that are used in this research study 

can strength and stable the mixture stiffness of asphalt that is 

notable. The modification effect rank can be described as 

AC10 A35P (EVA) M7 B5 > AC10 450 M10 B5 > AC10 

Multi 600/170 M5 B4 > AC10 C320 M1 B3 > AC10 A15E 

M3 B4 > AC10 A20E M6 B7 > AC10 A10E M2 B4 in this 

research. 

The 
*E f AC10 A35P (EVA) M7 B5, AC10 450 M10 B5 

and AC10 Multi 600/170 M5 B4 had been generally higher 

compare to the others polymer modifiers because there were 

mixes with aggregates, and for that matter, modifiers were 

functioned at high temperature and at low frequency which 

reduced time loading.  

The good correlation (R2=1) for all the modifiers proved 

that the laboratory testing using various temperature can 

improved the rutting resistance. Dynamic modulus can be 

obtained as nearly as identical to the laboratory result using 

master curves and good correlation between the 
*E and the 

shifted factor as the function of temperature and time. In 

general, the predicting mixture performance of dynamic 

modulus using laboratory test with various temperature can 

improved the rutting and fatigue resistance of the pavement 

structure.  
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