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Abstract

In this paper we introduce the concept of mathematical modelling com-
petence, by which we mean being able to carry through a whole mathe-
matical modelling process in a certain context. Analysing the structure
of this process, six sub-competences are identified. Mathematical model-
ling competence cannot be reduced to these six sub-competences, but
they are necessary elements in the development of mathematical model-
ling competence. Experience from the development of a modelling course
is used to illustrate how the different nature of the sub-competences can
be used as a tool for finding the balance between different kinds of activ-
ities in a particular educational setting. Obstacles of social, cognitive and
affective nature for the students’ development of mathematical modelling
competence are reported and discussed in relation to the sub-compe-
tences.

. Introduction

Consider the formulation of the following two tasks in relation to a mathematical
modelling course at university level:

1. How should anaesthetic be administered during surgery?

2. Anaesthetic is given during surgery to keep the patient unconscious and relaxed.
Typically the drug is given by injection or drip (an intravenous line) into the
bloodstream, or by inhalation. The drug spreads into the brain and muscle tissue
where it functions, and with time is decomposed and eliminated. The graph in
Fig. 1 shows the logarithm of the bloodstream concentration of pancuronium (an
anaesthetic) as a function of time after injection of 4mg into a person with an
estimated blood volume of 5.2 1. During surgery the concentration of pancuronium
in the muscle tissue must be between 250 and 300 pg/l. Build a model that describes
the interchange of pancuronium between the blood and the tissue, and use the
model to find a way to drug the patient so that the condition is fulfilled duringa 2h
time slot.
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Fig 1. Concentration of pancuronium in the blood [log(pg/1)] as function of time since injection
of 4mg. The measured data are represented by the stars.

We use these two tasks when expanding on the following synopsis:

During the last few years we, together with two other colleagues (Johnny Ottesen
and Tinne Hoff Kjeldsen, IMFUFA, Roskilde University), have developed and
taught a course for freshmen at Roskilde University (see Blomhej er al., 2001 for a
thorough characterisation and evaluation of the 1999/2000 course). The main
objective of the course is to support the development of the students’ mathematical
modelling competence, which is a developmental parallel to one of our core research
interests.

In this paper we concentrate on one aspect of the symbiosis; the interaction
between conceptual clarification, dealt with in Section 2, and the characterization
and weighing of different types of tasks as part of curriculum design, which we discuss
in Section 3, first in general terms and then with explicit reference to our experiences
from the developmental work. In Section 4 we briefly sum up our findings.

2. Conceptual clarification

In the two next sections we clarify our conceptual understanding of mathematical
modelling and of mathematical modelling competence.

2.1. Mathematical modelling

In our work we refer to a description of the creation and use of a mathematical
model consisting of the following six sub-processes (see Niss, 1989; Blomhgj, 1993;
Gregersen and Jensen, 1998):
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(a) Formulation of a task (more or less explicit) that guides you to identify the
characteristics of the perceived reality that is to be modelled.

(b) Selection of the relevant objects, relations etc. from the resulting domain of
inquiry, and idealisation of these in order to make possible a mathematical
representation.

(¢) Translation of these objects and relations from their initial mode of appearance
to mathematics.

(d) Use of mathematical methods to achieve mathematical results and conclusions.

(e) Interpretation of these as results and conclusions regarding the initiating domain
of inquiry.

(f) Evaluation of the validity of the model by comparison with observed or predicted
data or with theoretically based knowledge.

Figure 2 is a depiction of this process. It contains a labelling of the sub-processes as
well as an attempt to evaluate the six stages framing these. The sub-processes and
stages can be illustrated with reference to the context of anaesthetic:

The ‘perceived reality’ could be a phenomenological understanding of the fact that
drugging a patient during surgery is a dynamic process which must be balanced
between what is needed in order to conduct the surgery without causing pain and in
order not to overdose the patient. Formulation of a task, process (a), such as
answering the question ‘What dose gives an optimal drug concentration during
surgery’ narrows the focus on the perceived reality, thus guiding the mathematical
modelling process. In this context the ‘domain of inquiry’ may be framed by the
question: “What may possibly influence the concentration of drug in the patient
during surgery?’. The process of systematization, process (b), should identify what is
really the essential mechanism of the diffusion and elimination of drug in the human
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Fig 2. A graphic model of a mathematical modelling process.
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body. In order to keep it simple the patient could then be described as a two (or more)
compartment ‘system’, e.g. the blood volume and the volume of tissue, in which
exchange of drugs can take place. A simple mathematisation, process (c), of this
system would lead to a ‘mathematical system’ consisting of a pair of coupled linear
differential equations. Analysing this ‘mathematical system’, process (d), could give
rise to ideas about how to estimate model parameters and subsequently produce
‘model results’ in the form of numerical solutions showing the model responses—as
graphs of drug concentration during surgery—to different anaesthetic strategies. The
result must be interpreted and validated against empirical data, process (e), in order
to support certain ‘actions’, e.g. a proposal for an anaesthetic strategy to, or the
formulation of new insights into, the phenomena of anaesthetics. Last but not least,
the validity of the entire mathematical modelling process should be evaluated, process
(f). This includes questioning the extent and the validity of using the model (and the
parameters) for other patients and/or with other drugs. New empirical data are
needed for this process.

It must be emphasised that this is a model of an ideal mathematical modelling
process focusing primarily on the structural aspects of the process. The model can be
used both as a tool for analysing mathematical models and the mathematical
modelling processes behind them, and, as shown in this paper, as a tool for
normatively defining and analyzing ‘mathematical modelling competence’, see Fig. 2.

By ‘mathematical modelling’ we mean going through the entire process described
above. Not necessarily as a ‘one-way tour’ from beginning to end; in fact it will often
make more sense to go backwards and repeat some of the phases, or to go through all
of them several times, as indicated by the arrows to the right hand side of Fig. 2. This
is done not necessarily in a conscious and controlled manner; the better and more
experienced you are at mathematical modelling, the more you do this automatically.
But for us mathematical modelling means working with all aspects mentioned, one
way or the other.

2.2. Mathematical modelling competence

By mathematical modelling competence we mean being able to autonomously and
insightfully carry through all aspects of a mathematical modelling process in a certain
context (cf. Fig. 2).

This phrasing coheres with our understanding of the concept competence, which we
will define as someone’s insightful readiness to act in a way that meets the challenges
of a given situation (Jergensen, 1999).

Several characteristics of this definition must be mentioned in order to prepare
ourselves for the discussion to come. Firstly, competence is headed for action. We use
‘action’ in a broad sense, as the term ‘readiness to act’ in our definition of competence
could imply a positive decision to refrain from performing a physical act, or indirectly
being guided by one’s awareness of certain features in a given situation. But no
competence follows from being immensely insightful, if this insight cannot be
activated in this broad interpretation of the word action.

Secondly, all competences have a sphere of exertion, i.e. a domain within which the
competence can be brought to maturity. This does not mean that a competence is
contextually tied to the use of a specific method for solving a given task. If this was



TEACHING MATHEMATICS AND iTS APPLICATIONS Volume 22, No. 3, 2003 127

the case, our attempt to define general competences would have no meaning.
Competences are only contextual in the sense that they are framed by the historical,
social, psychological etc. circumstances of the ‘given situation’ mentioned in our
definition of competence (cf. Wedege. 1999).

Thirdly, competence is an analytic concept with an inherent duality between a
subjective and a social/cultural side (Wedege. 2000). Subjective because a competence
always belongs to someone; competences do not exist by themselves—what exists are
competent people. Social/cultural because the degree to which some actions ‘meet the
challenges’ (cf. our definition of competence) is always relative to the surroundings.
adding meaning and legitimacy to the actions (Jergensen, 1999).

3. Educational planning and the development of mathematical
modelling competence

3.1. A necessary balance

We now return to the tasks mentioned in the introduction in order to characterise
these in the light of the given description of a mathematical modelling process.

The first task challenges the subject to work with all the mathematical modelling
sub-processes, and we will therefore label it an invitation to mathematical modelling.
As such the task is inherently ‘underdetermined” and open-ended, which—we will
argue—is the key characteristic of the challenge experienced by the subject when
facing this kind of task. One is left with a feeling that can be characterized as
‘perplexity due to too many roads to take and no compass given’.

Contrary to the above, we will argue that the second task only challenges the
subject to work with sub-processes (c), (d) and (e). The delimitation of the context and
task in sub-processes (a) and (b) is already dealt with in the formulation of the task.
and the inclination to work with sub-process (f) comes from having worked with sub-
processes (a) and (b). Tasks like this challenge the subject’s ability to mathematise a
more or less well-defined problem of a non-mathematical character, and therefore
often give the subject a feeling of ‘knowing what the goal is without knowing how to
achieve it’. These characteristics make it relevant to turn to research done in the field
of mathematical problem solving. The vast majority of this research approaches
learning from the perspective of cognitive science (see e.g. Schoenfeld, 1987). Based
on this one would expect mathematising and analysing mathematical models to be
cognitively demanding activities for students—even in situations where the involved
mathematical concepts are well known to them.

From a teaching point of view it is therefore reasonable to focus on sub-
competences (c) and (d) of the mathematical modelling process. In doing so, the
teacher will have to face the challenge of constructing teaching situations that enable
the students to engage actively in mathematising and analysing models. Guided by the
intention of working with problems that are realistic and representative in relation to
mathematical modelling in general, the problems should therefore reflect the students’
mathematical knowledge as well as their experience and knowledge about the contexts
of the problems. With such problems at hand, some research demonstrates that it is
difficult, but indeed possible, to carry out teaching that enables the students to
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improve significantly in their ability to perform mathematical problem solving (see
Arcavi et al., 1998).

However, full scale mathematical modelling also includes competences related to
sub-processes (a). (b), (e) and (f). Teaching and learning difficulties connected to the
development of these sub-competences cannot be fully analysed within the same
theoretical framework as used in relation to processes (c) and (d). Formulation of
problems. structuring complex situations and advancing critique of a mathematical
modelling process and of the possible uses of a mathematical model bring forward
another type of obstacle of a more social nature. This has to do with the students’
difficulties in learning ‘the game of mathematical modelling’, so to speak. It can be
illustrated by some of the students’ questions: “What is the meaning of this modelling
business?’, ‘What kind of knowledge comes out of it?’, ‘What are we supposed to
learn?’, ‘How do you know when you are on thin ice or on the right track?”’, "How can
one disregard important aspects just because one cannot describe them mathemati-
cally?”, *‘What makes one model better than the other?’, and ‘How can you put
forward critique of your own model?. This domain of obstacles could be analysed
under the perspectives of the strong socialisation provided by the students’ previous
mathematics education. We find this very interesting and we want to investigate
further how the problem of socialising the students into mathematical modelling as a
special form of activity can be understood using the theory of situated learning (Lave
and Wenger, 1991).

In this sense the two tasks mentioned in the introduction are basically different in
nature. The two tasks may contribute in different but important ways to the
development of mathematical modelling competence, and the connected learning
problems may be analysed from different theoretical perspectives. In relation to
teaching practice this leads to the question of how the two types of tasks are balanced
against each other in a given educational setting and with certain educational goals in
mind.

3.3. Two extreme positions

With the objective of developing the students’ mathematical modelling competence
through course teaching, two extreme positions seem possible. One argument—the
holistic approach—could be that all available resources must be used in working with
full-scale mathematical modelling processes. By definition mathematical modelling
includes the processes (a)—(f) illustrated in Fig. 2, and therefore the students must
have the opportunity to work with all these processes. If some processes are not
apparent in the students’ activities, one might expect that they will miss important
sub-competences when it comes to mathematical modelling in new contexts. If the
students always work with pre-structured problems, they cannot be expected to
develop competences in structuring a complex domain of enquiry. Moreover, full-
scale mathematical modelling may give authenticity to the students’ work and this
might be a motivating factor.

At the other extreme position—the atomistic approach—the argument could be
that a course aimed at developing students’ mathematical modelling competence must
be concentrated on the processes of mathematising and analysing models mathema-
tically. To support this position, one can point to the fact that activities connected to
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these elements of the mathematical modelling process can be seen as a way of learning
mathematics. Through such activities the mathematical concepts in play gain new
meaning for the students (Ottesen, 2000).

Moreover, working with full-scale mathematical modelling is a very time consum-
ing way of learning. Due to both affective factors and lack of factual knowledge,
insignificant experience with the real life phenomena often constitutes obstacles for
the students’ engagement in mathematical modelling activities. It takes time to
develop the necessary common understanding of the phenomena among students.
Full scale mathematical modelling therefore limits the time and effort spent on
mathematisation and analysis of the mathematical system compared with the time
spent on investigating the real-life problem at hand and on structuring the real life
complexity into an object of mathematical modelling. Knowing that mathematisation
is often experienced as cognitively demanding and frustrating, priority must be given
to the students’ work with this aspect of mathematical modelling.

3.3. Finding the balance in a particular educational setting

Coming back to the developmental project mentioned in the introduction, the course
we are referring to, called BASE, is part of a 2 year introductory study programme in
mathematics and natural science, which is the entrance to further studies in science
and mathematics at Roskilde University, Denmark. As all other programmes at
Roskilde University, this programme is project organised, meaning that half of the
students’ study activity is devoted to project work [see Legge (1997) for a visitor’s
reflections after 6 months of investigating this way of studying, and Niss (2000) for an
introduction to the basic ideas of the introductory study programme in mathematics
and natural science and the consecutive programme for those specialising in mathe-
matics]. The other half is devoted to more or less traditional coursework.

Every semester each student participates in a project where a group, typically
between four and six students, work together with a problem of their own choice
under certain thematic limitations for about 3 months. Mathematical modelling plays
a central role in the project work. For most students, building and/or analysing a
mathematical model is a crucial part of two of their four projects.

The project work is conducted under the guidance of a supervisor, and it is
documented with a written report. typically 50-100 pages. The report and the project
are defended by the group at an oral exam.

The basis of the development of BASE in this context is the observation that many
students experience severe difficulties when using mathematics as a tool for building
and analysing mathematical models in their project work. This also counts for
situations where the relevant mathematical concepts and methods are well known
by the students. In particular, the competences related to sub-processes (c), (d) and (e)
in the mathematical modelling process seem to require more learning effort and
pedagogical support for most students than is possible to activate as an integrated
part of the project work.

From a theoretical point of view this observation is not surprising. As pointed out,
sub-competences connected to the ‘inner parts’ of mathematical modelling are
cognitively demanding and therefore suitable for development through systematic
course teaching rather than through project work. But from a theoretical point of
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view it is also clear that a course focusing on sub-processes (c), (d) and (e) would not
be sufficient for the development of mathematical modelling competence. Therefore,
the idea behind the developmental project was to design a course supplementing the
students’ project work regarding the development of mathematical modelling com-
petence. The course was to give the students numerous experiences with mathema-
tisation and with analysing mathematical models in meaningful contexts.

3.4. Course structure

The course is taught in classes of ~40 students and includes two sessions of 2.5 hours
every week. A total of 50 sessions during the two semesters. The course is structured
around six mini-projects, generally intended to make the students work on sub-
process (c), (d) and (e) of the mathematical modelling process. The mini-project-
groups (two or three students) work for 2 weeks (four course sessions), with building,
analysing and discussing a mathematical model. The students produce written reports
(~10 pages) for each mini-project. Two of these are evaluated at an individual oral
exam.

Between the mini-projects, mathematical concepts and methods are treated more
systematically through regular lectures and (group) work with applied mathematical
problem solving—partly computer based.

The balance between these two types of activities is an important part of the design
and further development of the course. Parallel to the development of the mathema-
tical content, progression in relation to this balance is built into the course. At the
beginning of the course, most time is spent on closed and well-arranged problems of
mathematisation and analysis of simple, given models, while by the end of the course
nearly all the students’ work is concentrated on mini-projects with broader mathe-
matical modelling perspectives.

Right from the start we emphasise that mathematical modelling is a complex
process which draws on different kinds of competences. This is done by discussing the
process of mathematical modelling in general, and in particular, by discussing how
different versions of the same task challenge different elements of mathematical
modelling competence—as illustrated in the Introduction. This, however, is by no
means a simple task. Our experience from the course is that most students need
extensive personal experience with the mathematical modelling process in order to
develop a sound perception of the concept of mathematical modelling. However,
discussing the nature of the different competences involved in mathematical modelling
has a positive influence on the students’ enthusiasm and on their ability to see and
express the meaning of their study activities.

3.5. Modelling the dynamics of an anaesthetic drug—an example

The second task from the introductory section is used to initiate the students’” work
with one of the last mini-projects in the course. The task is designed to challenge the
students to build a model on the basis of given empirical (authentic) data, and to use
the model to control the concentration of an anaesthetic drug during surgery and,
finally, to make it possible to discuss the validity of the model.
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3.5.1. A first structuring of the work: working ‘backwards’ in a cyclic process

By the formulation of the task, the domain of enquiry is already defined [process (a) in
Fig. 2]. Moreover, an important help for the structuring of the system to be modelled
[process (b) in Fig. 2] is given indirectly by supplying the graph illustrated in Fig. 1
(which could be an authentic point of departure for modelling the dynamics of
anaesthetic drugs).

Working with the task as a mini-project, the students notice that after 1.5 hours the
graph seems to be a straight line in the semi-logarithmic plot (cf. Fig. 1). They argue
that from that moment the decrease in the blood concentration of pancuronium can
be described by a simple exponential function. Building on previous experience the
students estimate the two parameters, describing the exponential decrease by means
of linear regression.

During the process of analysing the graph in Fig. 1 some groups develop the
hypothesis that the entire graph can be modelled by the sum of two exponential
functions. Therefore, they continue analysing the remaining parts of the data after
having subtracted the contribution from the estimated exponential function.
Applying linear regression on the remaining parts of the data supports the hypothesis
and gives estimates of the parameters for the other exponential function.

Reaching this stage, the groups are usually able to reformulate their task and build
a model of the interchange between blood and tissue, which has bi-exponential
solutions. Drawing on their recent experience it is not too difficult for the students to
think of a two-compartment model with linear rates, corresponding to two coupled
linear differential equations, as a possible mathematical model.

In this first phase the students are working backwards in the mathematical
modelling process from the supposedly bi-exponential function (considered as the
mathematical system) to the sub-processes of mathematising and systematising
[processes (c) and (b) in Fig. 2].

3.5.2. Moving forwards

After the first phase of analysing the given data the students are now ready to move
forward in the mathematical modelling process by trying to describe the interchange
of pancuronium between blood and tissue as a two-compartment system. In this
process of describing the system that is to be mathematised the students may use their
previous experience with compartment modelling. First of all it must be decided to
use the amount or concentration of pancuronium in the blood and in the tissue as the
two compartment variables. Furthermore, it must be considered how the decomposi-
tion of the drug is represented. Even though the students are aware of the fact that
they are looking for a linear model, the representation of the rates of the interchange
of pancuronium is not at all a trivial task.

Supported by dialogue with the teacher, a typical first outcome of the students’
modelling is a compartment diagram (see Fig. 3) and a description stating that the
interchange of drug between blood and tissue can be described as simple diffusion,
meaning that the flow from a compartment is proportional with the concentration in
the compartment (cf. Ficks law). In addition to this, the drug is supposedly eliminated
at a rate proportional to the drug concentration in the bloodstream.
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Fig 3. A model of the dynamic interchange of pancuronium between two compartments.

M, and M, are the amount of drug in the bloodstream and in one aggregated pole of tissue

respectively. Vi, and V, are the volume of blood and tissue respectively. k; and k» are constant

rates of diffusion between blood and tissue, and kj is the constant rate of elimination from the
bloodstream due to urination etc.

Determining the initial conditions of the system is another question that often
provokes some discussion among the students, starting with questions such as “When
should the model be started—before or after the injection of the 4mg of pancur-
onium? and ‘If we want to give some more during surgery, what then?. My(0) =
4mg and M,(0) = 0, where My, and M, are the amounts of drug in the blood and
tissue, respectively (the patient is assumed not to be drugged initially), is the obvious
choice.

3.5.3. Mathematising the system

As can be seen from the description, the student activities in this phase are to do with
both processes (b) and (c) of the modelling process as illustrated in Fig. 2. Setting up a
compartment diagram typically involves both defining and mathematising the system.
This could, on the one hand, give course to pedagogical difficulties when challenging
the students to consider alternative mathematisations of the flows in a compartment
diagram that is already mathematised. But on the other hand, the fact that compart-
ment diagrams can be translated directly into differential equations using the principle
of ‘rate of change equals rate of inflow minus rate of outflow’ is a great support for
the students in the difficult process of writing up a set of differential equations as a
mathematical representation of a system.

In fact, the students easily translate the compartment diagram in Fig. 3 into two
coupled linear homogenous differential equations. However, this model does not
directly give a solution for the concentration in blood and tissue. One way to
overcome this problem is to divide the two equations with V,, and V, (volumes of
blood and tissue), respectively, which again provokes discussions among the students
of how to estimate the parameters. Vy, can be estimated directly from the data, since
the concentration in the blood immediately after injection of 4 mg of pancuronium is
known from the data. V, cannot be estimated directly and some simplifications have
to be made in order to reduce the number of parameters. One possibility is to assume
that V. and V, are of the same magnitude. This yields the following system of
differential equations:

ey (t) = —(a; + a;)cb(t) + azc(t)
ce(t) = ajcp(t) — asce(t)

where t denotes the time, ¢y, and ¢, the concentration of pancuronium in blood and tissue
respectively (given by My/Vy, and M/Vy,). The a’s correspond to the k’s in Fig. 3: a,
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describes the rate of flow from the bloodstream into the muscle tissue, a, the reverse
rate and as the elimination of the drug from the bloodstream.

Together with the initial conditions [c,(0) = 4mg/Vy, and c(0) = 0] these differ-
ential equations form a mathematical system that becomes the object of the students’
mathematical analysis [process (d) in Fig. 2].

From here it is natural for the students to ask if and how the parameters can be
estimated from the empirical data and to what extent the model can reproduce these
data. Building on their knowledge about the form of the general solution to a system
of two coupled first order linear differential equations and their previous analysis of
the empirical data, the students are well prepared to look for the eigenvalues of the
system. It turns out that the system has two negative eigenvalues of a different
magnitude (say 5 < «), and that they relate simply to the parameters of the model
through the following two equations:

Oz,@ = apaj

a+ﬁ:~(a1+a2+a3)

Since « and 3 are already estimated from analysing the data by means of linear
regression, this leaves the students with only one free parameter. Using MatLab to
solve the system numerically for different values of az the students are given the
possibility of trying to fit solutions of ¢, to the empirical graph in Fig. 1. Of course the
students also have access to the data in numerical form and it is quite easy for them to
obtain a very nice match between the model result and the empirical graph. In fact,
the curve shown in Fig. 1 is obtained in this way.

In general the students are quite excited about the fact that this is possible, but at
the same time they are also quite uncertain about the legitimacy of this process. This
experience, therefore, gives a basis for discussing the validity of the model with the
students.

During the process of estimating the parameters the students’ work can be
described as a cyclic process between (d) and (e) in the mathematical modelling
process. These activities build on and further develop the students’ conceptual
understanding of the relation between ‘the system of differential equations’, ‘the
eigenvalues of the system’, ‘the parameters of the model’, ‘the form of the (numerical)
solutions’ and ‘the empirical data’. These relations are depicted in Fig. 5.

3.5.4. Using the model

Having reached this far in the working process, it is now meaningful for the students
to ask how the patient is drugged in order to fulfill the condition given the
pancuronium concentration in the tissue. First of all they draw the solution curve
for ¢, that corresponds to the blood concentration, shown as a dashed curve in Fig. 4.

As can be seen, the concentration in the tissue reaches a level of 250 pg/l after
~25min. Maximum is reached ~30min after the injection and the concentration
already drops below 250 pg/l only 1 hour after surgery. Observing this, the students
think of ways to maintain the level of ¢, between 250 and 300 pg/l as prescribed in the
formulation of the modelling task. Different suggestions are put forward: a larger
dose in the initial injection, a second injection with a smaller dose after 30 min or
giving the patient a drip with a continuous supply of drug.
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Fig 4. Shows two different model results for the tissue concentration, ¢, The dashed curve
shows the correct match of ¢y, to the empirical data, i.e. 4 mg of pancuronium given by injection
at t = 0. The same goes for the solid curve, except for the fact that the patient is given an
additional drip, which gives close to 262 pug/l/min during the time slot from 30 min to 2 houss.
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Fig 5. The diagram shows the conceptual relations of the students® modelling work.

The first idea is very easy for the students to investigate and reject because trying to
keep the concentration above 250 pg/l during a 2 hour timeslot results in considerable
excess.

Technically it is harder for the students to investigate the second option, as this
requires further programming in MatLab in order to include a break before the
second injection in the mathematical representation of the system. This gives rise to
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discussions of how the mathematical model is actually constituted. It becomes clear to
the students that it is not merely a system of differential equations with parameters
and initial values; a description of how to use the model and for what purpose is
also an important part of the model. Following the strategy of two injections it is
possible to stay within the given boundaries for 2 hours, even though c, oscillates
somewhat.

The third option forces the students to reconsider part of the mathematical
modelling by changing the system to include an inflow to the compartment of the
amount of pancuronium in the bloodstream. Eventually this leads to the addition of
an inhomogeneous term, I(t), in the differential equation for c,. Assuming I(t) is
constant it is in fact possible for the students to control the equilibrium of the model
by choosing the right value; I(t) = Ip. Solving the equations ¢;, = 0 and ¢/ = 0 in the
extended model yields the equation

Io = (aa2/a3)c¢0

where ¢ is the decidable level of concentration in the tissue. Referring to the
formulation of the task, cio could be the mean of the boundaries; 275 pg/l/min.

Extending the model to include a drip (an intravenous line), it is quite natural for
the students to analyse the equilibrium of the model. They often find it difficult to
decide on the level of ¢, and therefore need to be challenged by the teacher in order
to use the calculated value of I(t) to design and test different drug programmes. One
idea is of course only to use the drip with constant inflow of I, during the surgery.
This is easily tested by a numerical analysis of the mathematical system. However,
using this programme, ¢, only reaches the minimum level after 6 hours which
obviously is not optimal either for the patient or for the hospital system.

Working with the model and discussing the results, the students gradually take
control of the process of designing and testing different drug programmes. Some
groups develop quite sophisticated programmes. Figure 4 is the result of one of them,
where the students argued that the drip is only to be used when cy, starts decreasing
after the initial injection, and that it should be turned off just before surgery is over.

In general the students become quite enthusiastic when attempting to alternate
between using the model and subsequently making alterations, i.e. working with sub-
processes (d) and (e) in the mathematical modelling process which takes them back to
(b) again (cf. Fig. 2). They find ways to implement their drug programmes in their
MatLab programme, and they become quite thoughtful and precise in their argu-
mentation pro and contra the different solutions suggested.

3.5.5. Validating the model

Using the students’ experience with this work, it is now possible to challenge the
students on the question of validity of the model they used for designing the drug
programme, i.e. to work with process (f) in Fig. 2. One way of initiating such
reflections is to ask the students if they recommend their drug programme for general
use, or if it is only applicable for the patient from whom the empirical data is
measured. This question often starts a discussion about the generality of the model
parameters. After some considerations the students are able to defend the argument
that parameters must be based on personal characteristics such as body volume
and metabolic rate. This implies that a model applicable for practical work
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with anaesthetics must estimate different sets of parameters for different types of
persons, and this can only be done on the basis of a very large number of empirical
time series.

3.6. Reflections on task guidance versus dialogue-based guidance

The learning potential of working with sub-processes (¢), (d) and (e) in relation to the
mini-project on anaesthetics is illustrated by the diagram in Fig. 5. After working with
the mini-project the students can ideally formulate in words the relations represented
by the arrows in the diagram.

Only a few groups of students on our course will carry through the ways of
reasoning described above. Most of the groups need substantial guidance. We want to
emphasise that in the example, and during the course, the guidance given to the
students in order to make them work with all the relations in Fig. 5 is not
communicated directly by the formulation of the task itself. Whether or not the
students meet these challenges depends very much on the dialogue between the
teacher and the students during their work, and the ongoing discussion between the
students in a group.

It is our experience that dialogue is much better than the use of more elaborate
formulations of the mathematical modelling task with a lot of guiding questions. The
students must accept the challenge to model the phenomena presented to them in
order to develop their mathematical modelling competence (cf. our definition of this
term). It is, therefore, important that the formulation of the task invites the students
to accept this challenge and that the necessary indirect support is given through the
teacher’s dialogue with the students during their work. Having paid so much
attention to this aspect is probably the main reason for the successful outcome of
our course: at the end of the course it is possible to create situations where the
students actually work with and investigate all the relations depicted in Fig. 5.

Recapping this experience we talk about the fruitfulness—possibly even the
necessity—of replacing task guidance with dialogue-based guidance when attempting
to assist the development of mathematical modelling competence.

3.7. Findings concerning the students’ learning

On the basis of our experiences from teaching the course, the student evaluations of
the course, the assessments of the students’ learning—particularly the oral examina-
tions—and from the close observations of, and interviews with, eight students (of the
74 students finishing the course in 2000), we emphasise the following aspects of the
students’ development of mathematical modelling competence in relation to con-
ceptual clarification and course planning:

e In accordance with our conceptual analysis of the mathematical modelling process
the challenge that the students met did in fact change as we varied the degree of pre-
structuring the tasks. It is necessary to spend some time on developing the students
competences related to the inner parts of the mathematical modelling process [i.e.
sub-processes (c), (d) and (e)]. Pre-structured tasks that give the students the feeling
of ‘knowing what the goal is without knowing how to achieve it’ are appropriate
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for this purpose. In order to develop mathematical modelling competence it is also
necessary to challenge the students on the outer sub-processes, and for this purpose
one needs open-ended tasks placing the students in a situation where they feel
‘perplexity due to too many roads to take and no compass given’. The balancing of
tasks within this framework was, and still is, a major theme of discussion among
the group of teachers involved in our mathematical modelling course.

e During the course the students needed help to see their activities as parts of the
mathematical modelling processes. Consequently, specific modelling-related activ-
ities had to be reflected in a comprehensive mathematical modelling process.

e The students’ knowledge of the different competences of mathematical modelling
seemed to be important for the structuring of their experiences and for their
development of mathematical modelling competence. Consequently, we attempted
to pay much attention to the development of metacognitive awareness as part of
the entire learning experience that we aimed at providing for the students. An
important part hereof was the strong emphasis placed on dialogue-based guidance
instead of task guidance.

4. Perspectives

Seen from a research perspective we believe our work has two indications. The first
is that in relation to analysing mathematical modelling competence, it is beneficial to
make a conceptual clarification. In general, acknowledgement of the complexity and
ambition of the concept of competence in relation to education may inspire a
discussion of the potentials and limitations of different ways of organising teaching.
More specifically, the progress in and obstacles for developing of mathematical
modelling competence may be understood with reference to a description of the
sub-processes in mathematical modelling.

The second indication is that more research is needed on the integration of different
theoretical approaches to learning. In the specific analysis of the development of
mathematical modelling competence we have experienced a need for integrating
approaches based on findings from cognitive psychology and sociology. However,
we also believe that there is a more general need for research looking at mathematics
education with a holistic approach to learning.

Seen from a developmental perspective, we believe that one aspect in particular
should be lifted out of the present context: a balance between the holistic approach
and the atomistic approach is necessary when considering the design of an entire
educational programme aiming at (among other things) developing the students’
mathematical modelling competence. Neither of the two approaches alone is
adequate. Special attention must be paid to the inadequacy of the atomistic approach
since this is tempting to adopt due to its conformity with traditional teaching
strategies in mathematics education.
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