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Abstract

In this article, we discuss efforts to design and empirically test measures of teachers’

content knowledge for teaching elementary mathematics. We begin by reviewing the

literature on teacher knowledge, taking special note of how scholars have organized such

knowledge.  Next we describe survey items we wrote to represent knowledge for teaching

mathematics and results from factor analysis and scaling work with these items.  We

found that teachers’ knowledge for teaching elementary mathematics is

multidimensional, and includes knowledge of various mathematical topics (e.g., number

and operations, algebra) and domains (e.g., knowledge of content; knowledge of students

and content). The constructs indicated by factor analysis form psychometrically

acceptable scales.
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In the past two decades, teachers’ knowledge of mathematics has become an object of

concern.  New theoretical and empirical insights into the work of teaching (e.g., Shulman,

1986, 1987; Wilson, Shulman, & Richert, 1987) have spurred greater attention to the role

played by such knowledge in teacher education and the quality of teaching itself (e.g.,

NCTAF, 1996).  Other studies have documented the mean and variation in teachers’

knowledge of mathematics for teaching (e.g., Ball 1990; Ma 1999). Results of these

efforts have been reflected in teaching standards published by Interstate New Teacher

Assessment and Support Consortium (INTASC), the National Board for Professional

Teaching Standards, as well as by many other states, localities, and professional teaching

organizations (e.g., NCTM).  Concerns that teachers possess necessary knowledge and

skills for teaching mathematics have also led to the development and use of teacher

licensing exams, such as PRAXIS, an assessment developed by the Educational Testing

Service and now administered in 38 states.  Other states and testing firms have developed

and administer similar assessments.

Given the development of such standards and assessments, one might conjecture

that there is substantial agreement around the knowledge needed for teaching children

mathematics. However, a closer look at released items from the elementary mathematics

portion of these teacher licensure exams suggests lack of agreement over what teachers

actually need to know to teach this subject. Some exams assess individuals’ capability in

solving middle-school level mathematics problems (California’s CBEST; PRAXIS),

others the ability to construct mathematical questions and tasks for students (Texas’

EXCET), and still others the ability to understand and apply particular mathematics
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content areas to teaching (Massachusetts’ MTEL).   This implicit disagreement over the

content and nature of teachers’ professional knowledge of mathematics can be traced

backwards, through the theoretical and empirical literature on teaching knowledge, where

different authors propose divergent elements and organizations for such knowledge. It

can also be traced forward through current debates about the mathematics teachers need

to know to teach.   Some argue, for instance, that individual capability in general

mathematics is the most important qualification for teaching this subject (U.S.

Department of Education, 2002). Others take the view that general mathematical ability

must be complemented by additional professional knowledge, such as knowledge of

student thinking about content, or mathematical tasks specific to the work of teaching.

To date, however, little empirical data has been publicly available to help judge the

validity of either claim.

We seek to shed light on this debate by analyzing data collected in the service of

constructing an assessment of teachers’ content knowledge for teaching mathematics. To

construct this assessment, we used elements from existing theories about teacher

knowledge (e.g., Ball & Bass, 2001; Grossman, 1990; Shulman et al, 1987) to write a set

of survey-based teaching problems thought to represent various components of the

knowledge of mathematics needed for teaching.  We then factor analyzed teachers’

responses to this item set to determine the structure of the knowledge we tried to

represent.  The principal question guiding our work is: Is there one construct which can

be called "mathematics knowledge for teaching" and which explains patterns of teachers'

responses, or do these items represent multiple constructs, and thus several distinct

mathematical competencies held by practicing elementary mathematics teachers? A
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second question is: Given the structure of teachers’ mathematical knowledge for

teaching, can we construct scales which measure such knowledge reliably?

In this paper we describe this effort and its results.  We begin with an overview of

the original literature about content knowledge for teaching.  Next we shift to a

discussion of our own efforts to write items that represent such knowledge, with an

emphasis on the potential constructs that might emerge from the items.  Finally, we

describe initial results from a field-test of these items, including factor analyses and

attempts to scale these items for use in statistical work.

Literature Review

In the mid-1980s, Lee Shulman and his colleagues introduced the notion of

"pedagogical content knowledge" to refer to the special nature of the subject matter

knowledge required for teaching (Shulman, 1986, 1987; Wilson, Shulman, & Richert,

1987).  Conceived as complementary to general pedagogical knowledge and general

knowledge of subject matter, the concept of pedagogical content knowledge was thought

to include familiarity with topics children find interesting or difficult, the representations

most useful for teaching a specific content idea, and learners’ typical errors and

misconceptions.  Labeling this as “pedagogical content knowledge” not only underscored

the importance of understanding subject matter in teaching, but it also suggested that

personal knowledge of the subject  –– that is, what an educated adult would know of the

subject –– was insufficient for teaching that subject.  This distinction represented an

important contribution to the puzzles about qualities and resources needed for effective

teaching.
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This line of research focused on subject matter knowledge, and conceived of such

knowledge as particular, rooted in the details of school subject matter and of what is

involved in  helping others understand it.  Working in depth within different subject

areas, scholars probed the nature of the content knowledge entailed by teaching;

comparisons across fields were also generative.  Grossman (1990), for example,

articulated how teachers’ orientations to literature shaped the ways in which they

approached particular texts with their students.  And Wilson and Wineburg (1987)

illuminated ways in which social studies teachers’ disciplinary backgrounds shaped the

ways in which they represented historical knowledge for high school students.  In

mathematics, scholars showed that what teachers would need to understand about

fractions, place value, or slope, for instance, would be substantially different from what

would suffice for other adults (Ball, 1988,  1990, 1991; Borko, Eisenhart, et al., 1990;

Leinhardt & Smith, 1985).

Despite this wealth of research, we argue the actual mathematical content that

teachers must know to teach has yet to be precisely mapped.  Most of the foundational

work in this area has relied principally on single-teacher case studies, expert-novice

comparisons, cross-national comparisons, and studies of new teachers.  While such

methods have been critical in beginning to articulate the content of subject matter

knowledge for teaching, these methods lack the power to propose and test hypotheses

regarding the organization, composition and characteristics of content knowledge for

teaching.

Researchers have, however, conjectured about the potential organization of such

knowledge, and these conjectures prove useful starting points for this investigation.
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Shulman (1986) originally proposed three categories of subject matter knowledge for

teaching.  His first category, content knowledge, “refers to the amount and organization

of knowledge per se in the mind of teachers”  (p.9).  Content knowledge, according to

Shulman, included both facts and concepts in a domain, but also why facts and concepts

are true, and how knowledge is generated and structured in the discipline (Bruner, 1960;

Schwab, 1961/1974). The second category advanced by Shulman and his colleagues

(Shulman, 1986; Wilson, Shulman, & Richert, 1987), pedagogical content knowledge,

“goes beyond knowledge of subject matter per se to the dimension of subject matter

knowledge for teaching” (p. 9).  This category of subject matter knowledge for teaching

has become of central interest to researchers and teacher educators alike.  Included here

are representations of specific content ideas, as well as an understanding of what makes

the learning of a specific topic difficult or easy for students.  Shulman’s third category of

subject matter knowledge for teaching, curriculum knowledge, involved awareness of

how topics are arranged both within a school year and over time and ways of using

curriculum resources, such as textbooks, to organize a program of study for students.

Shulman’s theory of teacher knowledge listed also general pedagogical

knowledge (classroom management techniques and strategies), knowledge of learners

and their characteristics, knowledge of educational contexts (e.g., school board politics,

communities), and knowledge of educational ends, purposes, and values.

Leinhardt & Smith (1985) proposed a different organization of teacher knowledge

in their study of expert-novice differences in mathematics teaching.  Working from a

psychological/cognitive perspective, they identified two aspects of knowledge for

teaching: lesson structure knowledge – which includes planning and running a lesson
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smoothly and providing clear explanations – and subject matter knowledge.  They

include in the latter “concepts, algorithmic operations, the connections among different

algorithmic procedures, the subset of the number systems being drawn upon, the

understanding of classes of student errors, and curriculum presentation” (p.247).

Other ways of dividing up the terrain have been advanced as well. Grossman

(1990) reorganized Shulman and colleagues’ categories into four, and extended them

slightly: subject matter knowledge, general pedagogical knowledge, pedagogical content

knowledge (knowledge of students’ understanding, curriculum knowledge, knowledge of

instructional strategies) and knowledge of context.  Ball (1990) described differences

between teachers’ ability to execute an operation (division by a fraction) and their ability

to represent that operation accurately for students, demarcating clearly two dimensions in

teachers’ content knowledge –the ability to calculate a division involving fractions, and

the kind of understanding of that operation needed for teaching.  And, based on analyses

of classroom lessons, Ball proposed a distinction between knowledge of mathematics and

knowledge about mathematics, corresponding roughly to knowledge of concepts, ideas,

and procedures and how they work, on one hand, and knowledge about “doing

mathematics” –– for example, how one decides that a claim is true, a solution complete,

or a representation accurate.  In more recent work, Ma (1999) used comparisons of U.S.

and Chinese elementary teachers to describe “profound understanding of fundamental

mathematics” as instantiated in the connectedness, multiple perspectives, basic

(fundamental) ideas, and longitudinal coherence which occur during their teaching.

By posing these potential maps of content knowledge for teaching, researchers

have contributed to the development of theory about the content knowledge needed for
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teaching. One contribution has been to refocus the attention of the educational research

community on the centrality of subject matter and subject matter knowledge in teaching.

A second was to draw attention back to disciplines and their structures as a basis for

theorizing about what teachers should know. A third has been to focus attention on what

expert teachers know about content and how they use or report using this knowledge of

subject matter in their teaching.

While this work has contributed to the field, much remains to be done.   For

example, there is still much to be understood about the organization and structure of

subject matter knowledge within different disciplines and what these structures suggest

for teaching.  Little is known yet about whether and how content knowledge for teaching

relates to the knowledge of the content held by other professionals or by ordinary

educated adults. And to date, scholars have not attempted to measure teachers’

knowledge for teaching in a rigorous manner, and thus cannot track its development or

contribution to student achievement.

Method

To learn more about these issues, we began in 2001 to write, and later pilot, large

numbers of multiple-choice items intended to represent the mathematical knowledge used

in teaching elementary mathematics.  Item-writing served several purposes: at the most

practical level, we hoped to develop measures by which we could gauge growth in

teachers’ content knowledge for teaching, and learn more about how such knowledge

contributes to student achievement.  Item-writing also served as another way to explore

the nature and composition of subject matter knowledge for teaching. During the process

of examining materials and student work, writing and refining items, and thinking about
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what items represented, we sharpened and defined our ideas about the mathematical

knowledge and skill needed for teaching mathematics.  Finally, piloting these items

served an intermediate purpose, allowing us to use factor analyses and scaling techniques

to learn about the organization and characteristics of mathematical knowledge for

teaching. Before describing the results of our analyses and efforts to build scales, we

recount the process by which we developed survey items, and describe the possible ways

these items might be categorized.

Developing survey items.  Our approach to studying content knowledge for

teaching was grounded in a theory of instruction, taking as a starting point the work of

enacting high quality instruction (Ball & Bass, 2000; Ball & Cohen, 1999; Cohen & Ball,

2000).   From that perspective, we asked, “What mathematical knowledge is needed help

students learn mathematics?”  Our interest was in identifying what and how subject

matter knowledge is required for the work of teaching.  Using this theoretical perspective

as well as the research base, analyses of curriculum materials, examples of student work,

and personal experience, researchers at [name of project] developed 138 mathematics

items in the spring of 2001.

Table 1 about here

Researchers wrote mathematics items to reflect categories shown in Table 1.  Two

of the mathematical content areas – number concepts and operations – were selected

because they comprise a significant portion of the K-6 curriculum and because important

and useful work existed on the teaching and learning of these topics.  Patterns, functions,

and algebra was chosen because it represents a newer strand of the K-6 curriculum, and

thus allows insight into what and how teachers know about this topic now, and perhaps
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how knowledge increases over time, as better curriculum and professional development

becomes available, and as teachers gain experience with teaching this topic. Initial item-

writing efforts also focused on two kinds of teacher knowledge:  knowledge of content

itself and combined knowledge of students and content.  By demarcating the domains in

this way, writers intended to reflect elements contained in Shulman and others’

typologies of content knowledge for teaching. Crossing the three content areas with the

two domains of teacher knowledge yielded six cells.  However, the lack of research and

other specific resources on students’ learning of patterns, functions, and algebra led us to

conclude we could not develop items in this cell during these initial item-writing efforts

(see Table 1).

The constructs, or underlying organizing principles, indicated by factor analyses

with these items might reflect the five existing domains exactly.  Yet a post-hoc analysis

of the items revealed other potential hypotheses about the organizational structure.  To

start, there may be only one construct that explains the patterns in teachers’ responses to

items in all five cells.  If this were so, we might conjecture that this single construct could

be described as “general mathematical ability,” and might conclude that there is little

need to specifically identify specialized knowledge for teaching, or that this specialized

knowledge is so strongly related to the knowledge held by other educated adults so as to

be functionally the equivalent, at least for measurement purposes.   At the other end of

the spectrum, however, we might find that items are differentiated at a much finer grain

size than that reflected in Table 1. For instance, teachers’ knowledge might be

differentiated at the level of particular topics in the elementary curriculum – e.g.. whole

numbers, fractions, decimals, operations (e.g., addition) with whole numbers, etc.   If this



12

were the case, we might conjecture that teachers have highly particularized knowledge of

the material they teach, and we would study these knowledge clusters in more depth.

Mathematical content areas are not the only potential organization of items. These

items were situated in yet another possible categorization system, what we would call

tasks of teaching. This way of categorizing items is based on the idea that teachers’

mathematical knowledge is used in the course of different sorts of tasks  –– choosing

representations, explaining, interpreting student responses, assessing student

understanding, analyzing student difficulties, evaluating the correctness and adequacy of

curriculum materials.  These are tasks teachers might face in any subject matter and they

provide another potential organization of teachers’ content knowledge for teaching

mathematics.

Finally, items may differentiate themselves within the cells shown in Table 1.  For

instance, some items appear to require respondents to draw on common knowledge of

content (CKC) – for instance, items that ask teachers to find the decimal halfway between

1.1 and 1.11, or to find the eighty-third shape in a sequence. As Shulman and others point

out, such mathematics knowledge is used in the course of teaching, as teachers must

compute, make correct mathematical statements, and solve problems.   Other items,

however, appear to be based on the particular ways mathematics arises in elementary

classrooms, or what we call specialized knowledge of content (SKC), including building

or examining alternative representations, providing explanations, and evaluating

unconventional student methods. One way to illustrate this distinction is by imagining

how someone who has not taught children but who is otherwise knowledgeable in

mathematics might interpret and respond to these items.  This test population would not
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find the items that tap ordinary subject matter knowledge difficult.  By contrast, however,

these mathematics experts might be surprised, slowed, or even halted by the

mathematics-as-used-in-teaching-items; they would not have had access to or experience

with opportunities to see, learn about, unpack and understand mathematics as it is used at

the elementary level.

Two of the mathematics items included in Appendix A illustrate this distinction.

In the first item, about powers of ten, teachers must draw on their knowledge of

properties of numbers – in this case, place value as represented within exponential

notation—to answer the problem. This content knowledge is used in teaching; students

learn about exponential notation in the middle to late elementary grades, and thus it

follows that teachers must have adequate knowledge to develop this topic.  However,

many adults, and certainly all mathematicians, would know enough to answer this item

correctly. The next item illustrates a special kind of content knowledge, one that arises

through the teaching of content to young children.  In the second item, teachers must

inspect three different solutions to the same two-digit multiplication problem – 35 x 25 –

and assess whether approaches used for each solution would generalize to all whole

number multiplication.  To respond in such situations, teachers must draw on their

mathematics knowledge – inspecting the solution to understand what was done at each

step, then gauging whether the method makes sense and would work in all cases.

Analyzing procedures and justifying their validity is a mathematical process. However,

doing it in this way and in this context (i.e., appraising different student solutions to a

computation problem) is a task that arises regularly in teaching, and not necessarily in

other arenas.  Hence, it is a specific form of and context for mathematical reasoning in
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which teachers must engage and it appears to draw on a specialized form of mathematical

knowledge, one that makes it possible to analyze and make sense of a range of methods

and approaches to a particular computation.

The knowledge of students and content (KSC) category also contained subtle

distinctions.  As we (and mathematicians associated with this project) reviewed items, we

saw that some such items required knowledge of students and their ways of thinking

about mathematics – typical errors, reasons for those errors, developmental sequences,

strategies for solving problems.  Teachers may need to know, for instance, what errors

students make as they learn about the place value system, or strategies students might use

to remember the answer to 8 x 9.  In other cases, knowledge of students and content items

might draw on student thinking and/or mathematics content knowledge.  For instance,

teachers may use both types of knowledge in order to interpret student statements about

the commutative property, analyzing what students have said about this topic to assess

understanding and depth of knowledge.

The third and fourth problems in Appendix A illustrate distinctions within our knowledge

of students and content (KSC) category. The third item asks teachers to consider which of

three lists of decimal numbers would be best to assign to discriminate students’

understanding of and skill with ordering decimal numbers, or whether any of the three

lists would be equally useful for teachers to use for this purpose.  Two of the three lists

would allow students to respond correctly without paying any attention to the decimal

point at all.  In interviews, we have seen that many people who have never taught this

topic, including mathematicians, see no difference among the three lists; teachers with

knowledge of decimals for teaching are more likely to see the differences immediately.
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Thus knowledge of students, and typical mistakes on this item, is necessary to correctly

answer this problem.  The next item, on buggy algorithms, requires either knowledge of

typical student mistakes or the ability to perform a detailed mathematical analysis to

arrive at a correct answer.

Data collection and analysis.  Items were piloted in California’s Mathematics

Professional Development Institutes.  These institutes were publicly funded, large-scale

efforts to boost California teachers’ knowledge of subject matter in mathematics. The

institutes had over 40 sites, cost roughly $65 million, and served 23,000 K-12 teachers in

the first three years of the program.  Piloting took place with only elementary teachers

enrolled in Number and Operations institutes. At a typical Number and Operations

institute site, teachers were paid up to $1500 to attend summer sessions ranging from one

to three weeks in length.   Academic mathematicians and mathematics educators were the

instructors in these institutes; the content was mathematics –– number and operations.

While MPDI sites were selected on the basis of their willingness to partner with low-

performing/high poverty districts and schools, teachers were not identified for

recruitment on the basis of pre-existing mathematical knowledge or other characteristics

(Madfes, Montell & Rosen, 2002). As a condition of funding, each institute was required

to administer an evaluation designed to gauge growth in teacher content knowledge.  By

supplying these measures, (name of authors’ project) and officials at California’s MPDIs

formed a mutually beneficial partnership, allowing both the piloting of items and,

potentially, an evaluation of the institutes’ effectiveness. Items and forms, however, were

not written or constructed to align with any particular MPDI, since content varied across
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the 21 institutes included in this analysis, and since we wanted to design measures that

could be appropriately used beyond the MPDI setting.

By combining the summer pre/post assessments given to teachers, we were able

to obtain enough responses to each of three pilot forms: 640 cases for form A, 535 for

form  B, and 377 cases for form C, to conduct statistical analyses.  Each form was

constructed such that roughly 7 stems and 11-15 items represented each cell in Table 1.

Within each cell, three “linking items” were constant across all three forms; these linking

items allow for form equating in the evaluation portion of this project, but also allow us

to test and confirm hypotheses about particular items across the three different forms.

The remaining items within a cell differed between forms, but still followed the general

themes and topics for items outlined above.  Thus factor analyses done on each of the

three forms could return consistent results broadly (e.g., finding the same number of

factors, interpreting factors in the same way) and for a small number of linking items.  To

perform factor analyses, we used a program written to accommodate items linked by

common stems or scenarios such as item 2 in Appendix A (ORDFAC; [author] 2002). To

learn more about other item characteristics, we used BILOG (Mislevy & Bock, 1997), a

program which enables item response theory analyses (Hambleton, Swaminathan, Rogers

1991).

Results

In this analysis, we answer two questions: how teachers’ mathematical knowledge

for teaching is organized within mathematics; and whether we can, with these items,

reliably measure teachers’ mathematical knowledge for teaching. The results we present

here draw on the descriptions of data analysis presented in [author] (2002); readers who
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wish a more thorough and technical version of the factor analysis story should refer to

this manuscript.

How might content knowledge for teaching be organized conceptually? As we described

above, the items used in the MPDIs have multiple potential organizations. By putting all

items on each form into ORDFAC, we can determine which items relate to the same

underlying constructs, how many such constructs exist, and with what certainty we can

identify this structure.

This task is complicated by the limitations of the analytic method of item factor

analysis. Item factor analysis identifies patterns of association between items for a

particular sample answering a particular survey instrument. A pattern of association is a

necessary but not sufficient condition for identification of a unidimensional construct.

Items measuring conceptually different constructs can also show a pattern of association

in item factor analysis because of a strong correlation between the underlying constructs

in that sample. Another sample, in which the same constructs do not exhibit as strong a

correlation, will often show a different pattern of association, differentiating the two

conceptually distinct constructs. As discussed below, this phenomenon was exhibited in

two of our forms, where the patterns, functions, and algebra content items loaded on the

same factor as the knowledge of students and content items in number concepts and

operations. A related question is, assuming a number of conceptually distinct but related

constructs for a set of items, the extent to which a single “general” factor can account for

the covariation between items compared to the amount of covariation accounted by

specific factors. Addressing this issue provides insight to the meaning that might be

attached to the use of a simple total score for our instruments. In order to address these
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concerns, we chose to examine the data using three types of analysis:  a) exploratory

factor analyses of the three forms; b) factor analyses with patterns, functions, and algebra

items removed, to seek additional clarity of results;  c) bi-factor analyses, to further

assess the issue of multidimensionality and to resolve questions regarding knowledge of

students and content items.

Exploratory factor analysis of all items on form A suggested that there were three

underlying dimensions:  a) knowledge of content in number concepts and operations; b)

knowledge of content in patterns, functions, and algebra; and c) knowledge of students

and content in number concepts and operations. This is illustrated in Table 2, which

presents Promax rotated factor loadings for all items. Note that all of the knowledge of

number concepts and operations items, with one exception, load strongly on the first

factor and all the knowledge of patterns, functions and algebra items load on the third

factor. The situation for the knowledge of students and content items is more

complicated. Most of these items (9 out of 14) load primarily on the second factor, but a

significant minority load primarily on the first factor. This suggests either knowledge of

content or knowledge of students and content might alternatively be critical for answering

these types of items correctly. However, inspection of the wording of each item failed to

reveal any noticeable difference between the items loading on the first factor and items

loading on the second factor.

We also ran factor analyses on all items for forms B and C. The results of these

analyses were consistent with form A with respect to the knowledge of number concepts

and operations items loading almost exclusively on the first factor and the knowledge of

patterns, functions, and algebra items loading exclusively on the third factor. However,
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the results for knowledge of students and content items differed across the three forms. In

forms B and C these items loaded most often on the first (content) and third (algebra)

factors – the second factor had only a few items with strong loadings on both forms.

Conceptually, there was little reason to believe that the student thinking and

patterns functions and algebra items should be combined to form a scale. Instead, it is

likely that these two constructs are correlated in the form B and C samples, as described

above. This combined with the results of the analysis of form A suggested that the

presence of the patterns, functions, and algebra items might be obscuring the

relationships between the student thinking items. Therefore we omitted these items from

subsequent analyses and focused on whether knowledge of content and knowledge of

students and content are distinguishable factors.

Results suggest that we can make such a differentiation. To start, we fit

exploratory factor models of increasing complexity (number of factors) to these items.

The results of these successive fits for each form are presented in Table 3. Schilling and

Bock (2003) recommend that a model of increasing complexity only be accepted if the

chi-square statistic for a model is two times the difference in the degrees of freedom

between the two models. This heuristic is also employed in the Akaike Information

Criterion (AIC) (Agresti, 1990) were a low value indicates better fit. By both criterion, a

two factor model provided the best fit for form A, while three factor models provided the

best fit for forms B and C. Table 4 presents the loadings for the two factor models for all

three forms while Table 5 presents the loadings of the three factor models for form C.

Examination of the factor loadings for the two and three factor models for form B

revealed the two models to be essentially the same, with the exception that three of the
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items for the knowledge of students and content in operations items comprised a third

factor for the latter model. The two and three factor models for form C differed in that

none of the knowledge of students and content in number concepts items had substantial

loadings on the second factor for the two factor model, but four of the eight items loaded

on a third factor for the three factor model.

Taken together, these exploratory analyses, in the main, suggested at least three

dimensions across all the items reflecting the following constructs:

•  Knowledge of content (KC) in elementary number and operations

•  Knowledge of students and content (KSC) in elementary number and

operations

•  Knowledge of content (KC) in patterns, functions, and algebra

Although results differ across forms in the area of knowledge of students and content,

these results correspond to the categorization system shown in Table 1, assuming the

combining of number and operations.

After these analyses suggested this general shape to our data, we ran a five-factor

bi-factor model.  This model specifies the number of factors (five), and allows each item

to load in two places: on a general factor which explains teachers’ responses to all items,

and on a specific factor representing its place in the categorization scheme described in

Table 1 – although because exploratory factor analysis soundly showed no difference

between number and operations content items, we assigned both sets of items to only one

factor. We tested this bi-factor model for three reasons. First, results will assist us in

determining to what extent a general factor vs. specific factors explain patterns in

teachers’ responses to these items. Second, results will allow us to better assess our
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hypothesis that there is a difference between common and specialized knowledge of

content. Here we might expect that items that tap common knowledge should load on the

general factor, items that tap specialized knowledge would load on a specific factor.

Finally, results will allow us to better understand the multidimensionality within the

knowledge of students and content items.

Results from this bi-factor analysis are informative.  First, the general factor

explained between 67-77% of the overall variation in teachers’ responses to items on

each of the three forms (see Table 6). This factor explained variation in a substantial

number of content knowledge items, suggesting that this factor can be interpreted as

common knowledge of content (CKC), and suggesting an influence of general grasp of

mathematics in patterning teachers’ responses to items.  However, multi-dimensionality

is also apparent here, as the factors specifically describing knowledge of students and

content (KSC) and knowledge of content (KC) in patterns, functions, and algebra

typically account for between 25-47% of the communality in items written to represent

these areas. Further, the specialized content knowledge (SKC) factor explained between

5-30% of the communality of items written to represent knowledge of content in number

and operations.

Similar to results from the exploratory analysis, some knowledge of students and

content items continued to load on the common knowledge of content (CKC) factor,

others loaded on their own factor, and many loaded on both. There were no firm patterns

among items in how they loaded; both the CKC and KSC factors included items that

referenced student errors, common strategies, similar subject matter content, and a range

of item difficulties. Whatever the cause of these loading patterns, it makes sense to think
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that mathematical content knowledge and knowledge of student and mathematics should

be intertwined, for it is difficult to imagine teachers having strong knowledge of students’

learning without some basic knowledge of the mathematics they study.

Multi-dimensionality is also apparent in the items written to represent knowledge

of content in elementary number and operations. To a large extent, items representing

common knowledge of content (CKC) tended to appear on the general factor, suggesting

again that this factor represents overall mathematical ability.  However, variation in

teachers’ responses to items written to represent specialized knowledge of content (SKC)

was much more likely to be explained, at least in part, by the “specific” content

knowledge factor. Finding this factor supports the conjecture that there is content

knowledge used in teaching that is specific to key tasks teachers must engage.  Inspecting

the items which comprise this factor further support this hypothesis, and suggest some

basic outlines to this knowledge.  These items included those that engage teachers in:

•  Analyzing alternative algorithms or procedures

•  Showing or representing numbers (e.g., 10.05) or operations (e.g., 1/2 x

2/3) using manipulatives

•  Providing explanations for common mathematical rules (e.g., why any

number can be divided by 4 if the last two digits are divisible by 4)

These correspond closely to our initial ideas about the constituent parts of specialized

knowledge of content, with one exception: items which asked teachers to match fractions

number sentences to stories (e.g., represent 1 1/4 ÷ 1/2 with a story) appeared on the

general factor. Nevertheless, finding this specific factor supports the idea of specialized

knowledge of content.



23

Evidence that supports the existence of the specialized content knowledge for

teaching is important. From a measurement standpoint, these results suggest that common

and specialized mathematical ability are related, yet are not completely equivalent; the

possibility exists that individuals might have well-developed common knowledge, yet

lack the specific kinds of knowledge needed to teach.  It also suggests that individuals

might develop the specialized knowledge for teaching mathematics – perhaps from

teacher preparation, professional development, working with students or curriculum

materials – without having otherwise expert knowledge of mathematical content.   This

finding has implications for theory, policy, teacher preparation, and measurement.  We

discuss some of these below.

Apart from the major structure of the data, there are several things to note about

these findings. First, these items did not organize themselves around generic tasks of

teaching (e.g., evaluating curriculum materials, interpreting students’ work).  Instead,

these results suggest the organization of teachers’ knowledge is at least somewhat

content-specific.   Yet these constructs were not highly particular, either:  instead of

finding highly specific factors that represent either content (e.g., fractions, whole number

computation) or very specific tasks of teaching mathematics (e.g., representing numbers

and operations, analyzing student errors), we found broader groupings of items.  Finally,

the items that appear on all three forms tended to perform consistently across those forms

in our factor analyses, with only minor exceptions (see Author, 2002).

Overall, results from these factor analyses suggest that teachers’ content

knowledge for teaching is at least somewhat domain-specific, and that scholars who have

hypothesized about the categories around which teacher knowledge might organize are at
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least partially correct.  Subject matter content does play a role; so do the different ways

mathematical knowledge is used in classrooms.  Including additional content areas

(geometry, data and statistics) and a fuller array of knowledge of students and content

items (e.g., in algebra, geometry) would allow for further testing of this finding. In the

meantime, we consider these findings’ implication for constructing measures of teacher

knowledge.

Can we measure content knowledge for teaching?  Given the results from the factor

analysis, can we construct reliable measures that accurately represent teachers’ ability in

these areas? This was a major goal of our work, for these measures are needed to gauge

the effectiveness of various forms of professional development and teacher learning, and

to estimate the contribution of teacher knowledge to student achievement.

We used BILOG to fit initial item response theory (IRT) models to the data

(Hambleton, Swaminathan, & Rogers 1991). We present results for scales for a) each cell

in Table 1, b) for combined number concepts/operations knowledge of content and

knowledge of students and content scales, and c) for an overall measure of mathematical

knowledge for teaching. Table 7 provides descriptive statistics for these scales on each of

the three forms – coefficient alpha for a classical test theory measure of reliability, IRT

reliabilities computed using BILOG, and points of maximum test information. The

reliabilities for patterns, functions, and algebra scales, as well as scales that combine

number and operations items within each domain, are good to excellent, ranging from

0.71 to 0.84. However, the points of maximum information reveal how each scale could

be improved. The lowest reliability of 0.71 occurs for the knowledge of students and

content scale on form A where the maximum information was 1.9 standard deviations
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below the population mean. In contrast, the number concepts/operations content

knowledge scale for form A has point of maximum information at 0.36 standard

deviations below the population mean. This means that this scale is better targeted to the

skill level of the population, hence the scale has a higher reliability – 0.81.

There are several things to note about these efforts to build measures that reflect

individuals’ content knowledge for teaching mathematics.  First, measures representing

teachers’ knowledge of content had higher reliability than those composed of items meant

to measure familiarity with students and content.  Second, for most measures, the test

provided the most information (test information curve maximum) at abilities below the

average teacher; that is, items were, on average, too easy, yielding the best measurement

(lowest standard errors) for teachers who fell between .5 and 2.0 standard deviations

below average. This trend was most pronounced in the knowledge of students and content

measures.  Third, there remain some significant problems with multidimensionality with

these items, particularly in the areas of knowledge of students and content and, for those

who choose to use this construct, the specialized knowledge of content.  For more on

potential solutions to this problem, see [author], (2002).

Finally, any appraisal of the utility of a particular measure must include an

examination of the relationship between individuals’ performance on the instrument and

those individuals’ real skill or ability – i.e., validity. For these measures, a best-case

investigation of validity would include comparing teachers’ measure score with an

assessment of their use of mathematics content in actual classroom teaching. This work is

currently under way at (name of project). Less convincing, although more often done in

the field of test construction, is cognitive tracing interviews, in which individuals talk
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through their thinking and answers to particular items. If individuals’ thinking does not

reflect their answers, problems of validity are likely. An analysis conducted with similar

items to these suggested that for knowledge of content items, teachers’ answers did in

fact represent their underlying reasoning process; results were not so sanguine for student

thinking items, where more problems pertained (see author, 2002). This suggests the

more varied factor analysis results and lower reliabilities for this second set of items may

be grounded in problems with measurement in this domain.

Conclusion

By developing measures of teacher knowledge for teaching mathematics, we hope

to contribute to a number of ongoing efforts in educational research to answer policy-

relevant questions: identifying the effect of teacher knowledge on student achievement,

explaining how teacher knowledge develops (via experience, professional training,

professional development), and answering other key policy questions (e.g., the effects of

certification on teacher knowledge). However, we believe developing such measures can

also contribute to a renewal of interest in the theoretical aspects of professional

knowledge for teaching.  By allowing insight into how knowledge is held by teachers,

how that knowledge relates to common subject-matter knowledge, and perhaps even

(through open-ended interviews) how teachers, non-teachers, and subject matter experts

deploy knowledge.

We see the analyses above as a first step in the measures development process.

The dataset was less than ideal, since teachers were non-randomly sampled and MPDI

pre- and post-tests were combined for this analysis. Because different subjects answered



27

different forms on the pretest and posttest, this did not present significant problems for

our use of IRT, other than perhaps producing a non-normal distribution of ability in the

sample for a particular form. Fortunately, IRT models are generally robust to non-normal

distributions of ability (Bock and Aitken, 1981) We also measured typical, rather than

expert, teachers, and this may further constrain our results: if typical teachers do not have

or have less specialized knowledge for teaching mathematics, we bias our results toward

a null finding for this hypothesis. And these findings should also be replicated, both

through additional studies similar to the one reported here, but also through the use of

multiple methods, including interviews and observations of classroom instruction.

However, our analyses suggest some tentative results can be reported now.  First,

repeated analyses across three different forms found evidence for multi-dimensionality in

these measures, suggesting that teachers’ knowledge of mathematics for teaching is at

least partly domain-specific, rather than simply related to a general factor such as overall

intelligence, mathematical or teaching ability.  While results from the bi-factor analysis

suggest such a general factor does operate, additional communality is explained by

specific dimensions; this supports Shulman and others’ claims that knowledge for

teaching consists of both general knowledge of content and more specific domains.

The domains identified in the factor analyses are themselves interesting. Our data

suggest that in addition to a general factor, specific factors represent knowledge of

content in number and operations, knowledge of students and content in number and

operations, and the relatively newer area (for elementary school) of knowledge of content

in patterns, functions, and algebra.  The data also suggest a specialized knowledge of

content (SKC) measure made up of several types of items: representing numbers and
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operations, analyzing unusual procedures or algorithms, and providing explanations for

rules.  Writing items which represent more content areas, more specialized tasks (e.g.,

using mathematical definitions in teaching) and possibly more domains (e.g., knowledge

of teaching and content), will allow us to assess the extent to which content and task

continue to play a role in defining domains of teacher thinking.

Our findings suggest lessons for theory, policy, and measurement.  First, these

results provide evidence for the conjecture that content knowledge for teaching

mathematics consists of more than the knowledge of mathematics held by any well-

educated adult. While it appears that such knowledge of mathematics is an important

component of the knowledge needed for teaching, there may be more mathematical depth

to teaching elementary school, in other words, than simply the content of a third, fifth, or

even eighth grade textbook.  We cannot definitively say that teachers must know these

specific areas in order to help students learn – such a statement must wait for the results

of analyses that compare the effects of these different kinds of knowledge on growth in

classrooms.  But it does hint that rather than focusing simply on how much mathematics

an individual knows, as has historically been the case (see Shulman, 1986), we must also

ask how that knowledge is held and used by the individual – whether they can use their

mathematical knowledge to generate representations, interpret student work, or analyze

student mistakes.   It also suggests the utility of continuing to identify the content, so to

speak, of our specialized knowledge of content category, and thus extending our notions

of the knowledge needed to teach.

If our results hold, these findings also bear on current policy debates regarding the

recruitment and preparation of teachers.  Strong knowledge of basic mathematical content



29

does matter; however, policy-makers must take seriously the idea that additional

capabilities may be layered atop that foundation.  Until we can replicate these results, we

cannot definitively say teachers should learn this information in pre-service or in-service

preparation. Yet finding evidence for these multiple dimensions lends support for a

curriculum that goes into depth, and that is highly specific to the work of teaching.

Teachers may need to know why mathematical statements are true, how to represent

mathematical ideas in multiple ways, what is involved in an appropriate definition of a

term or a concept, and methods for appraising and evaluating  mathematical methods,

representations, or solutions.   By helping teachers develop knowledge of mathematics

that goes beyond the sort of understanding needed for everyday non-professional

functioning, faculty and professional developers may assist teachers in preparing for the

tasks they will encounter on the job.

From a policy perspective, our research suggests supporting professional

development and teacher preparation programs which enable this kind of learning.

However, it also carries a lesson for those in business of constructing teacher licensure

exams, at least at the elementary level; reviews of several currently used exams suggest

the majority of problems simply ask teachers to compute, rather than to use knowledge

more classroom-authentic ways.  If we find that the more specific kinds of expertise

identified here affect student achievement -- or even if we simply decide, based on

normative arguments, that teachers should possess this knowledge – licensure exams

should reflect this emphasis.

From a measurement perspective, these results suggest constructing separate

scales to represent knowledge for teaching mathematics. This is an important point for
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researchers, who aim to devise measures that are sensitive to differences in individuals’

unique combinations of knowledge and skills in order to explore relationship between

such measures and others like student achievement. The presence of multi-dimensionality

also changes way we might model teacher development and contribution to student

achievement; rather than using one catch-all variable, we can contrast impact of growth

in various domains on student achievement, and predict the impact of growth in various

domains from various “treatments,” such as the effect of the first years of teaching on

knowledge of student strategies, mistakes, and methods.
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 Table 1: Mathematics content areas and domains

              Domains

Knowledge of

content

Knowledge of

students and

content

Number concepts

Operations

Patterns, functions,

algebra

NOTE: Shaded area represents construct for which no items were developed
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Table 2: Promax rotated factor loadings, Form A

Item F1 F2 F3

NCKC1 0.512 0.138 0.063

NCKC2 0.473 0.113 -0.059

NCKC3 0.260 -0.132 0.165

NCKC4 0.219 0.062 -0.180

NCKC5 0.444 0.158 -0.133

NCKC6 0.228 0.097 0.086

NCKC7 0.139 -0.039 0.295

OPKC1 0.732 0.068 -0.203

OPKC2 0.246 0.084 0.136

OPKC3 0.637 -0.210 0.101

OPKC4 0.643 0.042 0.036

OPKC5 0.704 -0.292 -0.023

OPKC6 0.511 -0.143 -0.052

PFAKC1 -0.290 -0.111 0.773

PFAKC2 0.259 -0.038 0.403

PFAKC3 0.015 -0.016 0.675

PFAKC4 0.156 0.175 0.314

PFACK5 0.337 -0.047 0.419

PFACK6 0.039 -0.113 0.639
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NCSC1 0.061 0.275 0.121

NCSC2 0.263 0.327 0.158

NCSC3 0.311 0.149 -0.021

NCSC4 0.002 0.365 0.010

NCSC5 -0.109 0.248 0.212

NCSC6 0.180 0.386 0.047

NCSC7 0.352 -0.041 0.019

OPSC1 -0.055 0.946 -0.098

OPSC2 0.466 0.181 -0.058

OPSC3 0.018 0.249 0.130

OPSC4 0.493 -0.022 0.017

OPSC5 -0.125 0.699 -0.124

OPSC6 -0.012 0.417 -0.022

OPSC7 -0.015 0.149 0.151
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Table 3: Exploratory Factor Analyses Number Concepts/Operations

Form A Exploratory chi-sq df AIC

1 FACTOR   25345

2 FACTOR 96.96 26 25300

3 FACTOR 44.82 25 25305

4 FACTOR 43.34 24 25310

Form B Exploratory    

1 FACTOR   22506

2 FACTOR 72.76 28 22489

3 FACTOR 66.20 27 22477

4 FACTOR 47.76 26 22481

Form C Exploratory    

1 FACTOR 16219

2 FACTOR 111.98 29 16165

3 FACTOR 69.46 28 16152

4 FACTOR 37.56 27 16168
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Table 4: Number Concepts & Operations Promax Rotated Factor Loadings - Two Factor
Models

 Form A Form B Form C

Item F1 F2 F1 F2 F1 F2

NCKC1 0.546 0.159 0.253 0.491 0.641 -0.067

NCKC2 0.456 0.059 0.192 0.342 0.473 0.026

NCKC3 0.373 -0.126 0.174 0.238 0.222 0.027

NCKC4 0.126 0.016 0.408 -0.012 0.193 0.267

NCKC5 0.357 0.130 0.353 0.191 0.616 -0.118

NCKC6 0.273 0.110 0.591 0.269 0.551 -0.181

NCKC7 0.328 0.004 0.327 0.457 0.697 -0.090

NCKC8   -0.126 0.517  

NCKC9   0.594 0.068  

NCKC10   0.454 0.247   

OPKC1 0.606 0.031 0.844 -0.084 0.691 -0.005

OPKC2 0.338 0.090 0.395 0.098 0.411 0.012

OPKC3 0.761 -0.250 0.552 -0.140 0.415 0.043

OPKC4 0.681 0.027 0.291 0.402 0.234 0.326

OPKC5 0.699 -0.304 0.321 0.230 0.386 0.101

OPKC6 0.503 -0.176   0.659 0.004

OPKC7     0.492 -0.071

OPKC8     0.295 0.366

NCSC1 0.164 0.264 0.052 0.217 0.128 0.188

NCSC2 0.360 0.342 0.195 0.474 0.647 -0.107

NCSC3 0.285 0.147 -0.040 0.426 0.580 -0.086

NCSC4 0.018 0.356 0.311 0.271 -0.007 0.060

NCSC5 0.029 0.270 0.187 0.423 0.579 -0.081
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NCSC6 0.208 0.396   0.578 -0.008

NCSC7 0.359 -0.042   0.213 0.152

NCSC8     0.201 0.079

OPSC1 -0.176 1.006 -0.103 0.431 -0.264 0.919

OPSC2 0.427 0.168 0.077 0.473 0.302 0.388

OPSC3 0.097 0.265 -0.411 0.719 -0.190 0.659

OPSC4 0.500 -0.012 0.310 -0.041 0.210 0.372

OPSC5 -0.195 0.669 0.124 0.150 -0.045 0.700

OPSC6 -0.047 0.441 0.062 0.464 0.174 0.552

OPSC7 0.057 0.182 0.137 0.316 0.035 0.518

OPSC8   0.071 0.224  

OPSC9   -0.036 0.551   
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Table 5: Promax Rotated Factor Loadings Number Concepts/Operations – Three Factor
Solution, Form C

 Form C

Item F1 F2 F3

NCKC1 0.625 -0.066 0.018

NCKC2 0.355 -0.062 0.284

NCKC3 0.240 0.041 -0.038

NCKC4 0.242 0.316 -0.097

NCKC5 0.558 -0.137 0.102

NCKC6 0.614 -0.096 -0.201

NCKC7 0.783 0.021 -0.250

OPKC1 0.725 0.046 -0.103

OPKC2 0.355 -0.010 0.112

OPKC3 0.393 0.041 0.044

OPKC4 -0.131 0.046 0.894

OPKC5 0.344 0.064 0.112

OPKC6 0.702 0.067 -0.124

OPKC7 0.571 0.009 -0.211

OPKC8 0.299 0.352 0.045

NCSC1 -0.074 -0.008 0.543

NCSC2 0.624 -0.098 0.016

NCSC3 0.462 -0.200 0.304

NCSC4 -0.276 -0.177 0.661

NCSC5 0.526 -0.097 0.091

NCSC6 0.499 -0.072 0.197
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NCSC7 0.098 0.046 0.302

NCSC8 0.167 0.044 0.096

OPSC1 -0.095 0.899 -0.129

OPSC2 0.271 0.320 0.157

OPSC3 -0.092 0.655 -0.070

OPSC4 0.243 0.363 -0.004

OPSC5 -0.107 0.564 0.303

OPSC6 0.131 0.462 0.210

OPSC7 0.003 0.439 0.183
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Table 6: Percent communality explained by general and specific factors

Percent of Communality Explained

Form A Scale NC-KC OP-KC PFA-KC NC-SC OP-SC TOTAL

General 94.06% 76.23% 54.27% 67.96% 53.17% 66.98%

Specific 5.94% 23.77% 45.73% 32.04% 46.83% 33.02%

Form B

General 87.33% 75.62% 72.88% 90.06% 60.13% 77.53%

Specific 12.67% 24.38% 27.12% 9.94% 39.87% 22.47%

Form C

General 71.00% 80.61% 74.99% 62.52% 60.53% 70.37%

Specific 29.00% 19.39% 25.01% 37.48% 39.47% 29.63%
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Table 7: Reliabilities and Points of Maximum Information

Form A - Scale

N

Items Alpha

IRT

reliability

Max

Info

Number Concepts – Knowledge of

Content 13 0.536 0.654 -0.51

Operations – Knowledge of Content 13 0.617 0.709 -0.21

Patterns, Function, Algebra –

Knowledge of Content 12 0.740 0.771 -0.79

Number Concepts – Students and

Content 10 0.494 0.576 -0.67

Operations – Students and Content 10 0.450 0.534 -1.97

Combined Number and Operations

Knowledge of Content 26 0.719 0.810 -0.36

Combined Number and Operations

Knowledge of Students and Content 20 0.622 0.709 -1.90

Total 58 0.845 0.907 -0.76

Form B - Scale

N

Items Alpha

IRT

reliability.

Max

Info

Number Concepts – Knowledge of

Content 13 0.670 0.741 -1.45

Operations – Knowledge of Content 11 0.568 0.655 -0.76

Patterns, Function, Algebra –

Knowledge of Content 12 0.793 0.805 -1.21

Number Concepts – Students and

Content 8 0.507 0.578 -0.50

Operations – Students and Content 11 0.544 0.610 -1.29
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Combined Number and Operations

Knowledge of content 24 0.766 0.831 -1.27

Combined Number and Operations

Knowledge of Student Thinking 19 0.657 0.727 -1.16

Total 55 0.878 0.916 -1.33

Form C Scale

N

Items Alpha

IRT

reliability

Max

Info

Number Concepts – knowledge of

content 11 0.653 0.742 -0.95

Operations – knowledge of content 12 0.675 0.758 0.21

Patterns, Function, Algebra –

knowledge of content 10 0.824 0.801 -0.81

Number Concepts – students and

content 11 0.552 0.655 -0.43

Operations – students and content 10 0.649 0.689 -1.51

Combined Number and Operations

Knowledge of Content 23 0.784 0.839 -0.17

Combined Number and Operations

Knowledge of Student and Content 21 0.698 0.781 -1.11

Total 54 0.888 0.931 -0.92
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Appendix A

ITEMS

1. Mr. Allen found himself a bit confused one morning as he prepared to teach.
Realizing that ten to the second power equals one hundred (102 = 100 ), he puzzled
about what power of 10 equals 1.  He asked Ms. Berry, next door.  What should she
tell him? (Mark (X) ONE answer.)

a) 0

b) 1

c) Ten cannot be raised to any power such that ten to that power equals 1.

d) -1

e) I’m not sure.

NOTE: Items copyright 2002 (name of project). Not for reproduction or use without
consent of authors.
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2. Imagine that you are working with your class on multiplying large numbers.  Among
your students’ papers, you notice that some have displayed their work in the following
ways:

Student A Student B Student C

x
3
2

5
5 x

3
2

5
5 x

3
2

5
5

+
1
7

2
5

5
+

1
7

7
0

5
0 1

2
5

5
0

87 5
+

1
6

0
0

0
0

8 7 5

8 75

Which of these students would you judge to be using a method that could be used to
multiply any two whole numbers?

Method would
work for all

whole numbers

Method would
NOT work for all
whole numbers

I’m not sure

a) Method A 1 2 3

b) Method B 1 2 3

c) Method C 1 2 3
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3. Mr. Fitzgerald has been helping his students learn how to compare decimals.  He is
trying to devise an assignment that shows him whether his students know how to
correctly put a list of decimals in order of size.  Which of the following sets of numbers
will best suit that purpose?   

a) .5     7    .01    11.4

b) .60    2.53    3.14    .45

c) .6     4.25    .565    2.5

d) Any of these would work well for this purpose. They all require the students to read
and interpret decimals.

4.  Mrs. Jackson is getting ready for the state assessment, and is planning mini-lessons for
students focused on particular difficulties that they are having with adding columns of
numbers.  To target her instruction more effectively, she wants to work with groups of
students who are making the same kind of error, so she looks at a recent quiz to see what
they tend to do.  She sees the following three student mistakes:

Which have the same kind of error?  (Mark ONE answer.)

a) I and II

b) I and III

c) II and III

d) I, II, and III


