
Developing Mobile Computing Applications with Lime

Gian Pietro Picco1, Amy L. Murphy2, Gruia-Catalin Roman2

1 Dipartimento di Elettronica e Informazione 2 Department of Computer Science

Politecnico di Milano Washington University in St. Louis

Piazza Leonardo da Vinci, 32 Campus Box 1045, One Brookings Drive

20133 Milano, Italy St. Louis, MO 63130-4899, USA

picco@elet.polimi.it {alm,roman}@cs.wustl.edu

ABSTRACT

Mobile computing defines a very dynamic and challeng-
ing scenario for which software engineering practices are
still largely in their initial developments. Lime is a mid-
dleware designed to enable the rapid development of de-
pendable applications in the mobile environment. The
model underlying Lime allows for coordination of phys-
ical and logical mobile units by exploiting a reactive,
transiently shared tuple space whose contents changes
according to connectivity. In this demonstration, we re-
port about initial experiences in developing applications
for physical mobility using Lime.

1 INTRODUCTION

Mobile computing is becoming increasingly popular,
partly due to the wealth of mobile devices that are
enabling untethered communication as people move
through physical space. Additionally, mobile code and
mobile agents which roam the logical space of network
hosts are being exploited as a new design paradigm for
distributed applications. Nevertheless, models, archi-
tectures, and technologies for mobile computing are still
in their early stages of development, and are only begin-
ning to define and address the complex challenges posed
by mobility. As mobile components migrate, they must
continuously adapt in order to access the newly avail-
able resources (e.g., data) and to interact with other
components (mobile or not) as connectivity becomes
available. Collectively, these environmental properties
form the context of a mobile component. Our goal is
to devise an abstraction of the context which provides
conceptually clean access to the changing environment,
thus allowing the mobile application programmer to fo-
cus on the application itself rather than the details of
the changing environment. This modeling goal is real-
ized as a mobile middleware called Lime (Linda in a
Mobile Environment). In this paper, the discussion of

two applications involving physical mobility is the op-
portunity to outline the Lime model and show how it
is exploited by each application. Finally, we briefly re-
port about the status of the current implementation and
draw some conclusions about this experience.

2 MOBILE COMPUTING APPLICATIONS

Applications for the mobile environment can be classi-
fied roughly into two typologies: those which focus on
data sharing and those that are concerned with tran-
sient interactions with other components as the context
changes. In this section, we present two mobile appli-
cation scenarios and challenges that must be addressed
for a successful implementation.

Figure 1: RoamingJigsaw. When a player is disconnected
(left), only the pieces previously selected can be assembled.
Upon reconnection (right), the assemblies made meanwhile
by other players become visible in the player’s workspace.

RoamingJigsaw: Accessing Shared Data

Our first application, RoamingJigsaw as shown in Fig-
ure 1, is a multi-player jigsaw assembly game. A group
of players cooperate to assemble a jigsaw puzzle in a
disconnected fashion. Play begins when a player opens
the box of puzzle pieces and makes them available to
other players. Players may connect, select the pieces
they want to own and work with, and then disconnect.
Thus, assemblies can be constructed independently and
intermediate results, together with previously hoarded
pieces, can be shared again when connectivity is reestab-
lished. Although disconnected players can work only
with the pieces they previously selected, the workspace
displays also the other pieces they have seen but are



currently owned by other players, who can manipulate
them independently. Hence, the perspective displayed
in each player’s workspace is only weakly consistent with
the global state, as it represents only the last known in-
formation about each puzzle piece. Full consistency is
prevented by disconnections in the mobile scenario. The
challenges that must be addressed to develop Roam-

ingJigsaw involve enabling the access to selected pieces
after disconnection, the propagation of assemblies and
selections when connectivity is available, and the rec-
onciliation of the workspace with the connected players
upon reconnection.

Although RoamingJigsaw is only a game, it neverthe-
less exhibits the characteristics of a more general class
of applications in which data sharing is the key element.
Thus, the design strategy of RoamingJigsaw may be
adapted easily to applications where the nature of data
is different, e.g., sections of a document in a collabo-
rative editing application or paper submissions to be
evaluated by a program committee, but the patterns of
shared interaction are the same.

Figure 2: RedRover. The main console of RedRover,
and the most recent camera image of a connected player.

RedRover: Detecting Changes in Context

Our second mobile application is a spatial game we re-
fer to as RedRover, where individuals equipped with
small mobile devices form teams and interact in a physi-
cal environment augmented with virtual elements. This
forces the participants to rely to a great extent on infor-
mation provided by the devices and not solely on what
is visible to the naked eye. The primary objective of
RedRover is to search for clues in an unknown envi-
ronment, discover the flag of the other team, and clus-
ter around the player who finds the flag. Each player is
equipped with a digital camera that can be used to share
a snapshot of the current environment with team mem-
bers who may be physically separated by walls or other
barriers, but still within communication range. Players
know their location in space, and sharing of this infor-
mation with all connected players allows maintenance
of an image of the playing field displaying the relative

location of all participants. This view is the dominant
element of the display, and maintaining its consistence
represents the biggest implementation challenge. The
application must know which other players are around,
and be able to take actions, namely update the screen,
as soon as mobile components arrive or depart.

Again, RedRover exhibits similarities to real world
scenarios, such as the exploration of an unknown area by
a group of people or robots. Our current efforts include
the incorporation of a mapping mechanism which will
allow users to recognize landmarks in their environment
and share this information as they meet other users.

3 LINDA IN A MOBILE ENVIRONMENT

The model fostered by Lime [3] aims at identifying a
coordination layer that can be exploited successfully
for developing applications that exhibit either logical or
physical mobility, including those presented above. To
achieve this goal, Lime borrows and adapts the commu-
nication model made popular by Linda [1].

In Linda, processes communicate through a shared tu-

ple space, a repository of elementary data structures,
called tuples, that can be accessed concurrently by sev-
eral processes. Each tuple is an ordered sequence of
typed data. Tuples are inserted using the out(t) opera-
tion on the tuple space, and can be removed by execut-
ing in(p), where p is a template used to identify tuples
based on pattern matching against their content. Tu-
ples can also be read from the tuple space using the
rd operation. Both in and rd are blocking. A typical
extension to this synchronous model is the provision of
the asynchronous primitives inp and rdp, called probes,
that allow non-blocking access to the tuple space.

Linda characteristics resonate well with the mobile set-
ting. Communication in Linda is decoupled in time and
space, i.e., senders and receivers do not need to be avail-
able at the same time, and mutual knowledge of their
location is not necessary for data exchange. Decoupling
is of paramount importance in mobility, where the par-
ties involved in communication change dynamically due
to their migration.

Nevertheless, when mobility is fully exploited, as with
ad hoc networks, there is no predefined, static, global
context for the computation, as assumed by Linda.
Rather, the current global context is defined by the
transient community of mobile units that are currently
present, to which each unit is contributing its own in-
dividual context. Since these communities are dynami-
cally changing according to connectivity and migration,
the context changes as well. This observation alone
leads to the model underlying Lime. Although still
based on the Linda notion of a tuple space, Lime ex-
ploits it in a radically different way.



The Core Idea: Transiently Shared Tuple Spaces

In the model underlying Lime, the shift from a fixed
context to a dynamically changing one is accomplished
by breaking up the Linda tuple space into many tuple
spaces, each permanently associated to a mobile unit,
and by introducing rules for transient sharing of the
individual tuple spaces based on connectivity.

One way to visualize this concept is by imagining a
global, virtual tuple space containing the individual tu-
ple spaces of all mobile units. Based on current connec-
tivity among sets of mobile components, different pro-
jections of this global space are available to the mobile
components, forming what we refer to as federated tuple

spaces. For example, in RoamingJigsaw, the global
virtual tuple space contains all puzzle pieces, but only
the pieces selected by players in contact are part of the
federation and can be manipulated. As players arrive
and depart, the set of available puzzle pieces changes.

From the perspective of the mobile unit, access to data is
uniform regardless of the current connectivity. In other
words, while the available contents may change, the mo-
bile unit’s style of interaction does not. In fact, basic
interactions occur using the same primitives as in Linda
but they operate over the federated tuple space. The
process of growing the shared data when connectivity is
established is referred to as engagement and occurs as
a transaction. When components disengage, the acces-
sible portion of the data space shrinks to remove those
tuples and reflect the new sharing.

This idea of transient sharing of tuple spaces is a very
powerful abstraction. It provides a mobile unit with the
illusion of a local tuple space that contains all the tuples
coming from all the units belonging to the community,
without any need to identify explicitly each one.

Degrees of Context Awareness

Thus far, Lime appears to foster a coordination style
that reduces the details of distribution and mobility to
changes in what it is perceived as a local tuple space.
This view is very powerful for simplifying applications
such as RoamingJigsaw, where data is accessed uni-
formly and independently of its location. Nevertheless,
this view may hide too much in cases where the designer
needs a more fine-grained control upon the portion of
the context to be accessed. For instance, in RedRover

a player can ask for the camera image from a given
player. This should be accomplished by looking into
that player’s tuple space, with no need to query other
tuple spaces for data whose location is known. Lime

provides this control by extending the Linda operations
with tuple location parameters that allow access to pro-
jections of the transiently shared tuple space.

The out[λ] operation extends out with a location pa-
rameter representing the identifier of the agent respon-

sible for holding the tuple. The semantics of out[λ] in-
volve two steps. The first step is equivalent to a conven-
tional out(t), the tuple t is inserted in the local tuple
space of the agent calling the operation, say ω. At this
point the tuple t has a current location ω, and a desti-

nation location λ. If the agent λ is currently connected,
i.e., either co-located or located on a connected mobile
host, the tuple t is moved to the destination location.
The combination of the two actions are performed as a
single atomic operation. On the other hand, if λ is not
currently connected, the tuple remains with ω. This
“misplaced” tuple, if not withdrawn, will remain such
unless λ becomes connected. In this case, the tuple will
migrate to the tuple space associated with λ as part
of the engagement transaction. Hence, using out[λ],
the caller can specify that the tuple, albeit shared, is
supposed to be placed within the tuple space of agent
λ. This way, the default policy of keeping the tuple
in the caller’s context until withdrawn can be overrid-
den, and more elaborate schemes for transient commu-
nication can be developed. Location parameters also
provide variants of the in and rd operations that allow
access to a slice of the current global context. In Lime,
these operations are annotated as in[ω, λ] and rd[ω, λ],
where the current and destination locations defined ear-
lier are used. Finally, disengagement utilizes tuple lo-
cation in order to separate the tuples owned by the de-
parting mobile unit from the remainder of the tuples
in the federated tuple space. It should be noted that,
in practice, no tuple transfers are needed during dis-
engagement as the tuples remain physically distributed
and co-located with the agents that own them.

It is interesting to note that the extension of Linda op-
erations with location parameters, as well as the other
operations discussed thus far, foster a model that hides
completely the details of the system (re)configuration
that generated those changes. For instance, if a rdp[ω, λ]
probe for a camera image fails, this gives no information
about whether the agent is not present, or it is present
and an image is not available. Without awareness of
the system configuration, only partial context aware-
ness can be accomplished. For example, RoamingJig-

saw maintains a weakly consistent view of the puzzle
pieces while the main display of RedRover requires
that all currently connected components be displayed
and all components that were once connected be repre-
sented as “ghost images”—a much stronger consistency
guarantee. Lime provides awareness of the system con-
figuration using the same set of tuple space abstractions
discussed thus far but through a separate LimeSystem

tuple space, a system-maintained, read-only tuple space
whose data represents the currently connected compo-
nents. The combination of the transiently shared tuple
spaces and the LimeSystem tuple space enable the defi-
nition of a fully context aware style of computing.



Reacting to Changes in Context

Mobility enables a highly dynamic environment, where
reaction to change constitutes a major fraction of the
application design. For example, RoamingJigsaw

must react to manipulation of a puzzle piece for both on-
line updates and state reconciliation, while RedRover

reacts to changes in system context to maintain the dis-
play of all mobile components. In principle, Linda’s in

provides some degree of reactivity by allowing an ap-
plication to wait for a tuple, and then perform an ac-
tion. Nevertheless, in practice this solution has a num-
ber of well-known drawbacks that are a consequence of
the Linda perspective that expects agents to poll proac-
tively and synchronously the context for new events,
rather than to specify the actions to be executed reac-
tively and asynchronously upon occurrence of an event.

Lime extends tuple spaces with a notion of reaction.
A reaction R(s, p) is defined by a code fragment s that
specifies the actions to be executed when a tuple match-
ing the pattern p is found in the tuple space. The se-
mantics of reactions are based on Mobile Unity reac-
tive statements, described in [2], in which all reactive
statements are grouped to form a single reactive pro-
gram. After each tuple space operation, the reactive
program is run to fixed point. When no more match-
ing tuples are found for any registered reaction, normal
processing of tuple space operations resumes. Thus, re-
actions are executed atomically after each non-reactive
statement. These semantics offer an adequate level of
reactivity because all registered reactions are executed
before the next regular tuple space operation executes.

Reactions are annotated with location parameters,
R[ω, λ](s, p), with the meaning previously defined for
in and rd. However, these so-called strong reactions are
not allowed over federated tuple spaces; in other words,
the current location field must always be specified and
must be local to the subscriber. The reason for this lies
in the constraints introduced by physical mobility. If
multiple hosts are present, the content of the federated
tuple space is physically distributed among them. Main-
taining the atomicity and serialization requirements of
reactive statements would require a distributed trans-
action encompassing several hosts for every tuple space
operation at any host—an impractical solution.

For these reasons, Lime provides also a notion of weak

reaction, which is the one actually used in RedRover

and RoamingJigsaw. Weak reactions are used primar-
ily to detect changes to portions of the global context
that involve remote tuple spaces, such as those over the
federated tuple space. In this case, the host where the
pattern p is successfully matched against a tuple, and
the host where the corresponding action s is executed
are different. Processing of a weak reaction proceeds as
in the case of strong reactions, except that the execution

of s does not happen synchronously with the detection
of a tuple matching p. Instead, it is guaranteed to take
place eventually, if connectivity is preserved. In both
applications, the ability to specify a weak reaction on
the whole federated tuple space turned out to be an ex-
tremely powerful programming tool, as it allows the pro-
grammer to describe once and for all the actions to be
performed in response to a given event, independently
of any changes in the system configuration.

4 CURRENT IMPLEMENTATION

Lime is fully implemented in Java, with support for
version 1.1 and higher. Communication is handled en-
tirely at the socket level—no support for RMI or other
additional communication mechanisms is needed or ex-
ploited in Lime. The lime package is about 5,000 non-
commented source statements, for about 100 Kbyte of
jar file. The companion lighTS package provides a
lightweight tuple space implementation plus an adapter
layer integrating other tuple space engines, for an addi-
tional 20 Kbyte. Thus far, Lime has been tested suc-
cessfully on mobile hosts running Windows9x/NT/CE
networked with WaveLAN wireless technology.

5 CONCLUSIONS

Our experiences with application design using Lime

have reinforced our initial premise that middleware tai-
lored to concepts in mobility and grounded in coordi-
nation simplifies the programming effort. The overall
development of Lime has been an interplay between the
development of the formal model, the implementation
task, and application design. The model provided us
with abstractions to conceptualize mobility in new ways
while the implementation forced a better understanding
of the physical constraints of mobility. Further, concur-
rent application design has given focus and validation
for the constructs we have added while expanding Linda.
Overall, the notion of transiently shared tuples spaces
and reactivity to changes in context have proven to be
useful design tools for mobile applications.

ACKNOWLEDGMENTS

The authors wish to acknowledge Jason Ginchereau,
Brian Mesh, and Bryan Payne for their outstanding
work on the implementation of the RoamingJigsaw

and RedRover applications.

REFERENCES

[1] D. Gelernter. Generative Communication in Linda. ACM

Computing Surveys, 7(1):80–112, Jan. 1985.

[2] P.J. McCann and G.-C. Roman. Compositional Pro-
gramming Abstractions for Mobile Computing. IEEE

Trans. on Software Engineering, 24(2), 1998.

[3] G.P. Picco, A.L. Murphy, and G.-C. Roman. Lime:
Linda Meets Mobility. In Proc. of the 21st Int. Conf.

on Software Engineering, pages 368–377, May 1999.


