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Abstract. To ensure dependability of on-board satellite systems, the
designers should, in particular, guarantee correct implementation of the
mode transition scheme, i.e., ensure that the states of the system compo-
nents are consistent with the global system mode. However, there is still
a lack of scalable approaches to formal verification of correctness of com-
plex mode transitions. In this paper we present a formal development of
an Attitude and Orbit Control System (AOCS) undertaken within the
ICT DEPLOY project. AOCS is a complex mode-rich system, which has
an intricate mode-transition scheme. We show that refinement in Event
B provides the engineers with a scalable formal technique that enables
both development of mode-rich systems and proof-based verification of
their mode consistency.

1 Introduction

Currently the use of formal methods in the industrial practice is getting a new
momentum. For instance, in the EU FP7 Integrated Project Deploy [13] the
project partners work on advancing methods and tools for refinement based-
development and verification. The goal of the project is to enable deployment of
these techniques in the industrial practice. Recently, Space Systems Finland in
cooperation with the academic partners has undertaken a formal development of
the Attitude and Orbit Control System within the Event B framework. In this
paper we present this development and discuss the lessons learnt.

The Attitude and Orbit Control System (AOCS) [6] is a generic component
of satellite onboard software. The main purpose of AOCS is to achieve and main-
tain optimal attitude of a satellite. While achieving it, the system components
and the overall system correspondingly go through several stages, called opera-

tional modes . These modes are mutually exclusive sets of the system behaviour
[9, 14], and form a useful structuring concept that facilitates design of depend-
able systems in various domains. AOCS is a typical example of a mode-rich
system with a complex mode transition scheme. There are two distinctive char-
acteristics that make AOCS development and verification challenging. The first



one is long running (i.e., non-instantaneous) mode transitions that are caused
by slow dynamics of the involved electro-mechanical components. The second
characteristic is an integration of error recovery with mode transition scheme,
i.e., error recovery is implemented as rollbacking to certain degraded modes.
Together, these two features may lead to cascading mode transitions, i.e., the
situations when a system transition to one mode is preempted by a transition
to another (degraded) mode due to failure occurrence(s). It has been noted that
testing and model checking of the systems with such cascading mode transitions
is difficult and suffers from poor scalability [18].

In this paper we demonstrate how to employ a correct-by-construction devel-
opment approach to circumvent this problem. We use the Event B framework [2,
16] (extended with modularisation capabilities [11]) as our modelling language.
The Rodin platform [20] and its modularisation plug-in [17] provide us with an
automated modelling and verification environment. We define a generic mod-
ule interface for mode-rich components and demonstrate how to create different
mode-managing AOCS components by instantiating the generic module. We de-
velop the system in a layered fashion, i.e., by gradually unfolding system archi-
tectural layers while proving consistency between mode transitions on adjacent
layers. This approach allows us to cope with complexity of AOCS.

We argue that the AOCS development presented in this paper is a successful
experiment in formal refinement-based development of a complex industrial size
system. Hence we believe that Event B extended with modularisation facilities
shows good potential for the use in the industrial practice.

2 Event B

We start by briefly describing our development framework. The Event B formal-
ism [2, 16] is an extension of the B Method [1], a state-based formal approach that
promotes the correct-by-construction development paradigm and formal verifi-
cation by theorem proving. Event B enables modelling of event-based (reactive)
systems by incorporating the ideas of the Action Systems formalism [3] into the
B Method. Event B is actively used within the FP7 ICT project DEPLOY to
develop dependable systems from various domains.

2.1 Modelling and Refinement in Event B

The Event B development starts from creating a formal system specification. A
simple Event B specification has the following general form:



Such a specification encapsulates a local state (program variables) and provides
operations on the state. The operations (called events) can be defined as

ANY vl WHERE g THEN S END

where vl is a list of new local variables (parameters), the guard g is a state
predicate, and the action S is a statement (assignment). In case when vl is
empty, the event syntax becomes WHEN g THEN S END. If g is always true,
the syntax can be further simplified to BEGIN S END. The guard g defines the
conditions for the statement to be executed, i.e., when the event is enabled.

The statement S can be either a deterministic assignment to the variables
or a non-deterministic assignment from a given set or according to a given post-
condition. One way to denote a non-deterministic assignment is v :∈ Set, where
Set is an non-empty set (or type) of possible values that can be assigned to v.

The INVARIANT clause contains the properties of the system (expressed
as state predicates) that should be preserved during system execution. The data
types and constants needed for modelling the system are defined in a separate
component called Context.

To check consistency of an Event B machine, we should verify two properties:
event feasibility and invariant preservation. Formally, for each event e,

Inv(v) ∧ ge(v) ⇒ ∃v′. BAe(v, v
′)

Inv(v) ∧ ge(v) ∧BAe(v, v
′) ⇒ Inv(v′)

where BAe is a before-after predicate relating the variable values before and
after the event e. The semantic for each concrete B statement is given in the
form of a predefined before-after predicate.

The main development methodology of Event B is refinement – the process
of transforming an abstract specification by gradually introducing implementa-
tion details while preserving correctness. Refinement allows us to reduce non-
determinism present in an abstract model. It can also introduce new variables
and events. The connection between the newly introduced variables and the
abstract variables that they replace is formally defined in the invariant of the
refined model. For a refinement step to be valid, every possible execution of the
refined machine must correspond to some execution of the abstract machine.

The consistency of Event B models as well as correctness of refinement steps
should be formally demonstrated by discharging proof obligations. The Rodin
platform [20], a tool supporting Event B, automatically generates the required
proof obligations and attempts to automatically prove them. Sometimes it re-
quires user assistance by invoking its interactive prover. However, in general the
tool achieves high level of automation (usually over 80%) in proving.

2.2 Modelling Modular Systems in Event B

Recently the Event B language and tool support have been extended with a
possibility to define modules [11, 17] – components containing groups of callable
operations. Modules can have their own (external and internal) state and the
invariant properties. The important characteristic of modules is that they can
be developed separately and, when needed, composed with the main system.



A module description consists of two parts – module interface and module

body. Let M be a module. A module interface MI is a separate Event B compo-
nent. It allows the user of module M to invoke its operations and observe the
external variables of M without having to inspect the module implementation
details. MI consists of external module variables w, constants c, and sets s, the
external module invariant M Inv(c, s, w), and a collection of module operations,
characterised by their pre- and postconditions, as shown below.

INTERFACE MI =

SEES MI Context
VARIABLES w
INVARIANT M Inv(c, s, w)
OPERATIONS

res ← op1 =
ANY par
PRE M Guard1(c, s, par, w)
POST M Post1(c, s, par, w, w’, res’)
END

... END

Fig. 1. Interface Component

The primed variables in the operation postcondition stand for the final variable
values after operation execution. If some primed variables are not mentioned,
this means that the corresponding variables are unchanged by an operation.

A module development always starts with the design of an interface. After
an interface is defined, it cannot be altered in any manner. This ensures correct
relationships between a module interface and its body. A module body is an
Event B machine, which implements each interface operation by a separate group
of Event B events. Additional proof obligations guarantee that each event group
faithfully implement the corresponding pre- and postconditions.

When the module M is ”included” into another Event B machine, the includ-
ing machine can invoke the operations of M and read the external variables of M.
To make a specification of a module generic, in MI Context we can define some
constants and sets (types) as parameters. The properties over these sets and
constants define the constraints to be verified when the module is instantiated.

Module instantiation allows us to create several instances of the same mod-
ule. Different instances of a module operate on disjoint state spaces. Via different
instantiation of generic parameters the designers can easily accommodate the re-
quired variations when developing components with similar functionality. Hence
module instantiation provides us with a powerful mechanism for reuse.

In the next section we demonstrate the use of Event B extended with mod-
ularisation capabilities in the development of AOCS.

3 Attitude and Orbit Control System

The Attitude and Orbit Control System (AOCS) is a generic component of satel-
lite onboard software, the main function of which is to control the attitude and
the orbit of a satellite. Due to a tendency of a satellite to change its orientation
because of disturbances of the environment, the attitude needs to be continu-
ously monitored and adjusted. An optimal attitude is required to support the
needs of payload instruments and to fulfill the mission of the satellite.
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Fig. 2. AOCS Development Hierachy

In general, the behaviour of AOCS is cyclic. At each iteration the sensors pro-
vide the control algorithms with various measurements. They are used to gener-
ate the commands to the actuators that adjust the positioning of the spacecraft
to ensure correct pointing of the payload instrument. AOCS consists of seven
physical units: four sensors, two actuators and the payload instrument.

We formally develop the AOCS system as follows. Our initial specification
models the overall system in an abstract way. The following refinements intro-
duce implementation details in a structured manner, by unfolding system compo-
nents and gradually delegating part of system functionality to them. Moreover,
we identify a generic template for such components in the form of a generic
module interface. Actual components will be introduced by instantiating this
template, thus formally decomposing the overall system in a structured and
well-defined way. The general development structure is presented in Figure 2.

On the architectural level, such a refinement strategy corresponds to gradual
unfolding of system layers. The control logic of the system components residing
on different layers is expressed in the terms of operational modes and their
transitions. One of the main objectives of the AOCS formal development is
ensure mode consistency of different layer components. The case study presented
below is based on our previous work on formalisation of mode-rich systems [12].

3.1 Abstract Model

The purpose of the system is to position a satellite so that scientific instruments
are oriented towards a particular region of Earth. At the most abstract level, we
capture this as a succession of two atomic steps: the preparation step, orienting
the satellite, and the activation step, initiating the instrument operation. Each
step is associated with a boolean flag. The system is in the preparation stage



when pr = FALSE, is in the activation stage when pr = TRUE ∧ act = FALSE

and, finally, it has activated the instrument when act = TRUE.
Whenever a non-recoverable error occurs (err = TRUE), the system enters

a permanently disabled state (until the underlying hardware platform is reset).
It is possible for the preparation step to be interrupted by a recoverable error.
In such a situation, the preparation is restarted. In this abstract model this is
depicted by a non-deterministic assignment pr :∈ BOOL.

machine aocs

variables pr, act, err

invariant

pr ∈ BOOL ∧ act ∈ BOOL ∧ err ∈ BOOL

pr = FALSE ⇒ act = FALSE

err = TRUE ⇒ pr = FALSE ∧ act = FALSE

initialisation

pr, act, err := FALSE, FALSE,FALSE

events

preparation = when err = FALSE ∧ pr = FALSE then pr :∈ BOOL end

activation = when

err = FALSE ∧ pr = TRUE ∧ act = FALSE

then

act := TRUE

end

recovery = when err = FALSE then pr, act := FALSE,FALSE end

error = begin err, pr, act := TRUE,FALSE,FALSE end

end

The model at this stage is just a simple state transition system. This is done to
portray the high-level properties of the system in clear and concise terms.

At some point, the AOCS development is decomposed into two independent
strands. One focuses on unfolding of the functionality abstracted by the prepa-

ration event. The other deals with activation of the scientific instruments by
expanding the activity event of the abstract model. To obtain two independent
developments, we show how to refine a machine into the composition of a refined
machine and a module. The composition with a module, while being a part of
the refinement process, is also a formal proof of a model decomposition. As a
result, we decompose the overall AOCS specification into a top level component
(a refinement of the aocs machine) and a subsystem in charge of the initialisa-
tion and control of the positioning hardware. The subsystem is responsible for
the positioning of the satellite and the execution of necessary corrective actions.

3.2 Modal Component

To single out the preparation subsystem into a separate development, we start
by defining a module interface specifying the contract between the subsystem
and the environment. Let us note that derivations of this generic interface will
be used several times to structure the development into subsystems.

Our structuring strategy is to identify subsystems that are components of a
cyclic control system. As any control system, it observes environment changes
and controls the actuators. The control logic, though, is fragmented. Each such
fragment deals with a specific class of environment and subsystem conditions.
In our previous research, we have proposed to apply the notion of operational



interface ModalComponent

variables last, prev, next, error

sees ModalContext

invariant

inv1 : last ∈ MODE ∧ next ∈ MODE ∧ prev ∈ MODE ∧ error ∈ ERROR
inv2 : next = prev =⇒ next = last

inv3 : next 6= prev ⇒ next 7→ prev ∈ ORDER ∨ prev 7→ next ∈ ORDER
inv4 : {last 7→ prev, last 7→ next} ⊆ ORDER ∪ORDER−1

initialisation

last, prev, next := InitMode, InitMode, InitMode
error := NoError

operations

r← ToMode = any m pre

error = NoError ∧m ∈ MODE
m 6= next ∧m 7→ next ∈ ORDER ∪ORDER−1

post

r′ = last ∧ prev′ = next ∧ next′ = m

end

r← ResetError = pre error 6= NoError post r′ = last ∧ error′ = NoError end

r← Mode Advance = pre

next = prev ∧ error = NoError
post

r′ = last ∧ error′ ∈ ERROR ∧ prev 7→ next′ ∈ ORDER
end

r← Continuation = pre

next 6= prev ∧ error = NoError
post

r′ = last′ ∧ error′ ∈ ERROR ∧
last′ 7→ next ∈ ORDER ∪ORDER−1∧
((last′ 6= next ∧ prev′ = prev) ∨ (last′ = next ∧ prev′ = last′))

end

end

Fig. 3. Generic Modal Component Interface.

modes in the formal development of such systems [12]. The essential idea is that
a mode-rich control system evolves in two dimensions: as a conventional control
system and as a mode transition system.

A mode can be seen as an encapsulation of a piece of the control logic. Hence,
a mode transition is a change in the set of control laws. In such class of systems, it
is typical to have a mode comparing relation such that a ’better’ mode satisfies
stronger constraints. While attending to its sensor/control/actuator duties, a
mode-rich control system also tries to progress towards a more advanced mode.
In the process of this it may encounter adverse environment conditions and
switch to a more basic (i.e., degraded) mode.

In this section we give the definition of a generic module interface (see
Figure 3) for mode-rich control systems. It is essentially a template that we will
use several times in our development. The interface declares four variables. The
detected component errors are modelled by the variable error. The remaining
three variables characterize the mode transitioning part of the component:

– last signifies the last successfully reached mode;
– next signifies the target mode a component is currently in transition to;
– prev signifies the previous mode that a component was in transition to

(though it has not necessarily reached it).

These variables describe the actual mode of a component and also the mode
transition dynamics. Based on their values, an environment is able to tell whether
the component has settled in a stable mode (last = prev∧next = prev), is working



towards a more advanced mode (last = prev ∧ prev 7→ next ∈ ORDER), or is
degrading its mode due to error recovery (prev 7→ next ∈ ORDER−1).

The operation ToMode can be called by an upper layer component to set
a new target mode. The operation ResetError is to clear the raised error flag
when the detected error is being handled. Finally, the operations Preparation
and Continuation model the component behaviour when it receives the control
while being correspondingly in a stable or a mode transitional state.

The interface constants MODE, InitMode,ORDER,ERROR,NoError, which
are defined in a separate context component, contribute to abstract character-
ization of the mode logic. MODE is a set of possible modes of a component,
ORDER is a relation containing all the allowed mode transitions, InitMode is a
predefined initial mode, ERROR is a set of component errors, and NoError is a
special value denoting the absence of errors.

context ModalContext

constants MODE, InitMode,ORDER,ERROR,NoError

axioms

axm1 : InitMode ∈ MODE

axm2 : ORDER ∈ MODE↔MODE

axm3 : id ⊆ ORDER

axm4 : ORDER ∩ORDER−1 ⊆ id

axm5 : ORDER;ORDER ⊆ ORDER

axm6 : NoError ∈ ERROR

axm7 : ERROR \NoError 6= ⊘
end

where id is an identity relation and ”;” stands for relational composition.
The relation ORDER also defines a partial order on modes (axm3, axm4, and

axm5 express, correspondingly, the reflexivity, antisymmetry and transitivity
properties). For any two modes, it states whether the modes are comparable
and, if they are, which one of them is closer to the top mode.

3.3 Mode Manager Interface

The new subsystem introduced in the development is called Mode Manager. It
is a control system with its own set of modes and an internal mode transition
scenario. The Mode Manager interface is the product of extending (instantiating)
the generic module interface.

interface ModeManager extends ModalComponent

sees ModeManagerContext

More specifically, the set of modes and the mode ordering relation are given
concrete definitions at the interface level. The following is the definition of the
Mode Manager context.

context ModeManagerContext

. . .

axioms

iaxm1 : MODE = {OFF, STANDBY, SAFE,NOMINAL,PREPARATION, SCIENCE}
iaxm2 : Scenario = {OFF 7→ STANDBY, STANDBY 7→ SAFE, SAFE 7→ NOMINAL,

NOMINAL 7→ PREPARATION,PREPARATION 7→ SCIENCE}
iaxm3 : ORDER = closure(Scenario)
iaxm4 : OFF = InitMode
iaxm5 : partition(ERROR,RecovErrors,UnrecovErrors, {NoError}}
iaxm6 : RecovErrors 6= ⊘ ∧UnrecovErrors 6= ⊘



In the above, Scenario defines the sequence of steps needed to bring the
system to the mode where the scientific payload instrument is ready to perform
its tasks. This sequence consists of the following modes: OFF - the satellite is in
this mode right after system (re)booting; STANDBY - this mode is maintained
until the separation from the launcher; SAFE - a stable attitude is acquired,
which allows the coarse pointing control; NOMINAL - the satellite is trying to
reach the fine pointing control, which is needed to use the payload instrument;
PREPARATION - the payload instrument is getting ready; SCIENCE - the
payload instrument is ready to perform its tasks. The mission goal is to reach
this mode and stay in it as long as it is needed.

Let us note that Scenario is merely a helper construct used to constrain
the ORDER relation. Specifically, ORDER is defined as relational closure of
Scenario. Moreover, the abstract set ERROR is now partitioned into the disjoint
parts RecovErrors, UnrecovErrors, and the predefined constant NoError.

First Refinement To integrate Mode Manager with the main development,
the (instantiated) Mode Manager interface is included into a refinement of the
abstract aocs machine. The refined machine aocs1 imports the module
ModeManager and thus has the read access to the module interface variables.
The first step in decomposition refinement is to link the aocs1 state with that
of the imported module. In our case, the link is quite strong. In fact, we are able
to replace the abstract variable pr with an expression on the module variables.

refinement aocs1

refines aocs

uses ModeManager

invariant

inv1 : error /∈ UnrecovErrors ⇒ err = FALSE
inv2 : pr = TRUE ⇔ (next = last ∧ last = SCIENCE)

. . .

In the model fragment above, inv1 expresses the connection between global
and local errors. Intuitively, it means that the Mode Manager component is
currently the only source of errors (though some errors may be tolerated). inv2
expresses a connection between the mode logic of Mode Manager and the state
of preparedness of the abstract model. Here we simply state that the preparation
is complete once Mode Manager has reached the SCIENCE mode.

The second step of decomposition is the integration of the Mode Manager
operations into the functionality of the top-level component. The abstract event
preparation is refined into a pair of events.

mode advance ref preparation = when

error = NoError ∧ last 6= SCIENCE

last = prev

then

Mode Advance

end

intermediate ref preparation = when

error = NoError ∧ last 6= SCIENCE

last 6= prev

then

Continuation

end



HereMode Advance and Continuation use a shortcut notation for an operation
call where the return value is ignored. Both events refine preparation and use
subsystem operations to advance the model state. The events try to accomplish
the same goal – reach the mode SCIENCE. The first one is enabled when Mode
Manager is in a stable mode, while the second addresses the case when a mode
transition is on its way. These events do not assign to the aocs variables and thus
this part of the system functionality is completely delegated to Mode Manager.

The other group of events deals with error conditions. Mode Manager dis-
tinguishes unrecoverable and recoverable errors. Sometimes, the system would
simply remove an error, treating it as recoverable one. This is an abstraction
of the error handling activity at this level. In other cases, to recover from an
error, it may be necessary to reconfigure Mode Manager. This happens when
there is a malfunction in some hardware unit and, as a result, the unit must be
switched off to put the system into a healthy state. Since the failed unit is no
longer available, the Mode Manager mode is downgraded to the one where the
system does not need the failed unit. Since the system is cyclic, once the error is
cleared, the preparation would restart and attempt to switch on the failed unit.

recovery = any m where

m 7→ next ∈ ORDER−1

error ∈ RecovErrors
then

ResetError

ToMode(m)
act := FALSE

end

error = when error ∈ UnrecovErrors then err, act := TRUE,FALSE end

3.4 Mode Manager

Let us now consider the Mode Manager development. It starts with an Event B
machine implementing the Mode Manager interface. For each interface operation,
there is one event group realising the operation. Some groups events are final

designating the group exit point – the terminal events returning the control to
the calling environment. An event that is not final must pass control to another
event in the same event group. The following is an excerpt from the abstract
machine of the Mode Manager development.

machine MMBody

implements ModeManager

. . .

group Continuation begin

final adv skip = when next 6= prev then error :∈ ERROR end

final adv partial = any m where

next 6= prev

m ∈ MODE ∧m 6= next

m 7→ next ∈ ORDER ∪ORDER
−1

then

last := m ‖ error :∈ ERROR

end

final adv comp = when

next 6= prev

then

error :∈ ERROR ‖ last := next ‖ prev := next

end

... end



The Continuation operation is realised by a group containing three events. The
event adv skip models the behaviour when no mode change happens during the
call. This is needed to model mode transitions that take substantial time and thus
are spread over several control cycles. A transition to some intermediate mode is
modelled by adv partial. Intermediate modes are observed when a component is
progressing to some mode that is not reachable directly from the current mode.
Finally, adv comp specifies when the system successfully reached the target mode
(and thus arrived to a stable state).

Mode Manager does not directly control the satellite hardware. Instead it
relies on a special subsystem, called Unit Manager. The purpose of Unit Manager
is to abstract the specifics of a hardware configuration and provide a simple
common control interface to the hardware. We approach Unit Manager design
as another instance of a mode-rich control system.

Unit Manager Interface The Unit Manager interface is a specialisation of
the generic interface defined in Figure 3. Like Mode Manager, it defines its own
set of modes and a mode transition scenario.

interface UnitManager extends ModalComponent

sees UnitManagerContext

The Unit Manager modes define the positioning algorithms and are closely re-
lated to the set of hardware units involved in computing the positioning com-
mands. The modes NAV EARTH and NAV SUN use crude algorithms based on
the input from the Earth and Sun sensors. NAV ADV and NAV FINE use the
GPS unit to compute the satellite position in respect to the Earth surface. The
mode NAV INSTR is the final target mode meaning that the scientific instru-
ment hardware is enabled.

context UnitManagerContext

. . .

axioms

uaxm1 : MODE = {OFF,NAV EARTH,NAV SUN,NAV ADV,

NAV FINE,NAV INSTR}
uaxm2 : Scenario = {OFF 7→ NAV EARTH,OFF 7→ NAV SUN,

NAV EARTH 7→ NAV ADV,NAV SUN 7→ NAV ADV,

NAV ADV 7→ NAV FINE,NAV FINE 7→ NAV INSTR}
end

Unit Manager Integration After a number of refinement steps, the Mode
Manager development is decomposed to separate the Unit Manager development.
The link between the two developments is quite tight. Mode Manager relies on
Unit Manager in most of its operations as Mode Manager does not have a direct
access to the controlled hardware. The required mode consistency between these
components is defined as a a relation linking the modes of Mode Manager and
Unit Manager. Moreover, the added invariant properties (in the Mode Manager
model) guarantee that the modes of two components are always in agreement
with each other. A model excerpt specifying this is given in Figure 4.

The mode mapping relation is defined as the constant um mode under the
USES clause. To avoid name clashes, the Unit Manager module is instantiated
with the prefix um. Consequently, all the names imported from the module
appear with the prefix.



machine MMBody3

. . .

uses um : UnitManager

constants um mode

axioms

um mode = {OFF 7→ um InitMode, STANDBY 7→ um InitMode,

SAFE 7→ um NAV EARTH, SAFE 7→ um NAV SUN,

NOMINAL 7→ um NAV ADV,PREPARATION 7→ um NAV FINE,

SCIENCE 7→ um NAV INSTR}
. . .

invariant

. . .

gi1 : next = prev ⇒ last 7→ um last ∈ um mode

gi2 : next = prev ⇒ next 7→ um next ∈ um mode

gi3 : next = prev ⇒ prev 7→ um prev ∈ um mode

gi4 : async = FALSE ∧ um error 6= um NoError =⇒ error 6= NoError

. . .

end

Fig. 4. Unit Manager Integration

The gluing invariants, gi1, ..., g4, define the correspondence between the Mode
Manager and Unit Manager modes and errors. All the events of Mode Manager
must maintain this correspondence. As a result, an update of the Unit Manager
mode often necessitates an update of the Mode Manager mode.

The Unit Manager development, in its turn, is split into the main control
part and a number of subsystems modelling individual hardware units. Each
such subsystem follows the same modelling pattern and starts with a version
of the generic Modal Component interface. However, unlike Mode Manager and
Unit Manager, the hardware units are not a part of the control logic we are
developing. Collectively, the units define the environment of the system and
thus are only characterised by their interfaces.

3.5 Unit Interface

The hardware unit subsystems differ by their set of modes and mode transition
rules. Each one also define its own set of error conditions. Instead of defining
an extended interface for each individual unit we use a single parameterised
interface. Consequently, unit modes and mode transitions are specified at the
point of module integration.

interface UnitComponent extends ModalComponent

parameters MODE, InitMode,ORDER,ERROR,NoError

In the specific hardware configuration that we are modelling there are six hard-
ware units. To construct a faithful model close to the executable program, we
explicitly introduce each unit subsystem by importing the (correspondingly in-
stantiated) generic module interface.

4 Lessons Learnt

The AOCS system described here is a modified (due to confidentiality reasons)
version of a realistic AOCS. The real system was developed by Space Systems
Finland some time ago using traditional development approaches. The company
has observed that verification of the AOCS mode transitions via testing was quite



difficult and time consuming. This has prompted the idea of experimenting with
a formal AOCS development to ensure correctness of mode transitions.

The initial attempt [21] to formally develop a system was rather unsuccess-
ful. This modelling was significantly influenced by the code that was developed
for the real AOCS. It started from modelling the overall control cycle that con-
sisted of a sequence of events abstractly modelling the entire system structure
and functionality – the mode manager, the unit manager and fault tolerance
mechanisms. Then, in the further refinement steps, we had to introduce a large
number of variables and events (modelling program counters and procedure calls)
to continue representing interdependencies between the system components and
functions. Moreover, at the time of this development, Event B was still lacking
modularisation support. As a result, fairly soon the developed monolithic model
became unreadable for the developers and unmanageable for the Rodin platform.
We concluded that further development would be quite problematic.

Apart from some technical issues that had to be resolved in the Rodin plat-
form, we have learnt the following main lessons:

– Extensive support for modularisation is absolutely necessary to enable scal-
able formal development of complex industrial systems in Event B;

– The development should support architectural-level modelling and allow us
to express logical interdependencies between different level components;

– It is important to maintain readability of models.

This second development attempt [10] was preceded by a preparatory work that
aimed at alleviating discovered problems. We have developed a modularisation
plug-in [17] implementing the modularisation extension for Event B that we have
proposed previously [11]. Moreover, while formalizing reasoning about mode-rich
systems [12], we developed a pattern for specifying mode-managing components.
However, probably most importantly, before starting the development as such,
we drafted a refinement strategy. Our strategy was to build the system model in
a hierarchical layered fashion via instantiation of generic modules. This approach
indeed demonstrated its viability.

The second development attempt – the one which is described in this paper
– achieved the desired goal. We succeeded in building a detailed AOCS model
and verified (by proofs) that it correctly implements the desired mode transition
scheme. The development was performed in a structured way, where the levels of
abstraction corresponded to the architectural layers. While performing a refine-
ment step, we unfolded the architectural layers and established the consistency
of mode transitions between adjacent layers as a part of refinement verification.
The specifications of components were produced as a result of instantiating the
generic module interface that is common for mode managing components on
different layers of abstractions.

Refinement by instantiating the generic components significantly simplified
the development and proof activity. As a result, we have alleviated the prob-
lem of manipulating large monolithic models. The produced models of modules
(components) are much smaller. They are also easier to understand and verify.
The overall system model is also rather compact and can be easily maintained
because it includes only references to the components visible state and interface.



In our development we have made a smooth transition from the architectural
modelling to modelling the detailed behaviour of each particular component. The
properties of generic module parameters determine the constraints on concrete
data structures that should be proved during module instantiation. Our mecha-
nism of module instantiation and then subsequent development (refinement) of
a module ensures that these constraints are satisfied by module implementation.

The layered development has also facilitated modelling and verification of the
system fault tolerance mechanisms. The hierarchical architecture allowed us to
distribute the responsibilities of error handling across the different layers, which
resulted in a well-structured implementation of the fault tolerance mechanisms.

The main lessons that we have learnt from this development are the following

– It is important to have a strategy of the development - a certain refinement
plan that is drafted before the real development commences;

– It is beneficial to refrain from modelling major design decisions in the initial
specification since it can significantly complicate the later development;

– Modularisation support is paramount in modelling large scale systems;
– Without a mature tool support a formal development of industrial systems

is infeasible.

5 Related Work

Formal validation of the mode logic and, in particular, fault tolerance mecha-
nisms of satellite software has been undertaken by Rugina et al [18]. They have
investigated different combinations of simulation and model checking. In gen-
eral, simulation does not allow the designers to check all execution paths, while
model checking often runs into the state explosion problem. To cope with these
problems, the authors had to experiment with combination of these techniques
as well as heavily rely on abstractions. Our approach is free from these problems.
First, it allows the developers to systematically design the system and formally
check mode consistency within the same framework. Second, it enables exhaus-
tive check of the system behaviour, yet avoiding the state explosion problem.

The mode-rich systems have been studied to investigate the problem of mode
confusion and automation surprises. These studies conducted retrospective anal-
ysis of mode-rich systems to spot the discrepancies between the actual system
mode logic and the user mental picture of the mode logic. Most of the approaches
relied on model-checking [4, 9, 19], while [5] relied on theorem proving in PVS.
Our approach focuses on designing fully automatic systems and ensuring their
mode consistency. Unlike [9], in our approach we also emphasize the complex
relationships between system fault tolerance and the mode logic.

In our previous work [7], we have studied a problem of specifying mode-rich
systems from the contract-based rely-guarantee perspective. These ideas have
been further applied for fault tolerance modes [15]. According to this approach,
a mode-centric specification of the system neither defines how the system oper-
ates in some specific mode nor how mode transitions occur. It rather imposes
restrictions on concrete implementations. In this paper we have demonstrated
how to combine reasoning about the system mode logic and its functioning.



6 Conclusions

In this paper we described formal development of the AOCS system by re-
finement in Event B. The attempted case study has shown that the Event B
framework and the supporting RODIN platform have promising scalability. Our
approach facilitated creating a clean system architecture and also allowed us to
make a smooth transition from the architectural-level system modelling to spec-
ification and refinement of each particular component. Moreover, refinement-
based development techniques coped well with modelling the complex mode
transition scheme and verification of its correctness.

Verification of all possible mode transitions (including complex cascading ef-
fects) was done by proofs and did not require any simplifications. Currently that
level of assurance cannot be delivered neither by model-checking, simulation or
testing alone nor by combination of these techniques. The proposed modularisa-
tion and stepwise development style allowed us to keep manual proof efforts at a
reasonable level (about 17 percent of proofs had to be carried out interactively).
Hence formal verification by theorem proving has become more accessible for
industry practitioners.

In the presented work we aimed at not merely experimenting with modelling
a particular industrial-size system in Event B, but rather at creating a generic
solution facilitating development of AOCS-like systems. Indeed, our approach
to modelling mode-rich components using generic instantiation supports both
reuse and composition. Such reuse is safe, since while developing a component
by refinement we formally ensure its conformance to the instantiated specifica-
tion of its interface. Moreover, it becomes manageable to verify composition of
components whose state and behaviour are succinctly and formally modelled.

Our work can be seen as a step towards creating a formal approaches for
model-driven development and establishing the reference architecture for the
space sector – the two recent initiatives of European Space Agency [8]. As a
future work it would be interesting to connect our approach to the languages
specifically dedicated to architectural modelling. Moreover, it would be useful to
continue experimenting with formal modelling of various types of architectures of
mode-rich systems as well as address the problem of ensuring mode consistency
in the presence of dynamic reconfiguration.
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