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ABSTRACT

A CT-scan of lungs has become ubiquitous as a thoracic diagnostic tool. Thus, using

CT-scan images in developing predictive models for tumor types and survival time of pa-

tients afflicted with Non-Small Cell Lung Cancer (NSCLC) would provide a novel approach

to non-invasive tumor analysis. It can provide an alternative to histopathological techniques

such as needle biopsy. Two major tumor analysis problems were addressed in course of this

study, tumor type classification and survival time prediction. CT-scan images of 109 pa-

tients with NSCLC were used in this study. The first involved classifying tumor types into

two major classes of non-small cell lung tumors, Adenocarcinoma and Squamous-cell Car-

cinoma, each constituting 30% of all lung tumors. In a first of its kind investigation, a large

group of 2D and 3D image features, which were hypothesized to be useful, are evaluated

for effectiveness in classifying the tumors. Classifiers including decision trees and support

vector machines (SVM) were used along with feature selection techniques (wrappers and

relief-F) to build models for tumor classification. Results show that over the large feature

space for both 2D and 3D features it is possible to predict tumor classes with over 63%

accuracy, showing new features may be of help. The accuracy achieved using 2D and 3D

features is similar, with 3D easier to use. The tumor classification study was then extended

by introducing the Bronchioalveolar Carcinoma (BAC) tumor type. Following up on the

hypothesis that Bronchioalveolar Carcinoma is substantially different from other NSCLC

tumor types, a two-class problem was created, where an attempt was made to differentiate

BAC from the other two tumor types. To make a three-class problem a two-class problem,

misclassification amongst Adenocarcinoma and Squamous-cell Carcinoma were ignored. Us-

ing the same prediction models as the previous study and just 3D image features, tumor

classes were predicted with around 77% accuracy. The final study involved predicting two
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year survival time in patients suffering from NSCLC. Using a subset of the image features

and a handful of clinical features, predictive models were developed to predict two year

survival time in 95 NSCLC patients. A support vector machine classifier, naive Bayes clas-

sifier and decision tree classifier were used to develop the predictive models. Using the Area

Under the Curve (AUC) as a performance metric, different models were developed and an-

alyzed for their effectiveness in predicting survival time. A novel feature selection method

to group features based on a correlation measure has been proposed in this work along with

feature space reduction using principal component analysis. The parameters for the support

vector machine were tuned using grid search. A model based on a combination of image

and clinical features, achieved the best performance with an AUC of 0.69, using dimension-

ality reduction by means of principal component analysis along with grid search to tune the

parameters of the SVM classifier. The study showed the effectiveness of a predominantly

image feature space in predicting survival time. A comparison of the performance of the

models from different classifiers also indicate SVMs consistently outperformed or matched

the other two classifiers for this data.

vi



CHAPTER 1

INTRODUCTION AND RELATED WORK

A Computed Tomography (CT) scan is an extensively used imaging technique, vital in

the field of thoracic radiology [1]. Recent advances in both image acquisition and image

analysis techniques allow semi-automated tumor segmentation and extraction of numerous

features from images (e.g. texture). This falls under the broader category of techniques

termed “Radiomics”. Radiomics involve the high throughput extraction of quantitative

imaging features from radiological images with the intent of creating mineable data. The

data can then be used to build descriptive and predictive models relating image features to

phenotypes or gene-protein signatures. The core hypothesis of radiomics is that these mod-

els, which can include biological or medical data, can provide valuable diagnostic, prognostic

or predictive information.

The study being presented here is restricted to the analysis of Non-Small Cell Lung

Cancer (NSCLC). Of the possible analytical studies in Radiomics, this work concentrates

on two aspects of predictive models, tumor type classification and survival time prediction.

Identification of tumor type or class is essential in risk assessment and determining treatment

options. Classifying tumor based on CT-scan images could provide an opportunity for faster

diagnosis of tumor types without the need for invasive procedures. Predicting survival time

of a patient is also essential in terms of determining aggressiveness of a tumor along with

possible prognosis.

1.1 Related Work

In this section we will review some of the work that has already been done by using

image features for tumor analysis. This will provide an idea of the scope of this work and
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will also be helpful in the understanding of the different choices being made during the

study.

First, some of the work done in the realm of lung cancer analysis using CT-features

will be looked at. Then the focus will shift to the specific problem domains of tumor type

prediction and survival time analysis.

1.1.1 Image Based Tumor Analysis

Ganeshan et al. [2] has shown that features extracted from CT images of lung tumors

can be used to find a correlation with glucose metabolism and stage information. Extensive

work has been done in the study of pulmonary nodules in the lung. The work by Samala et

al. [3] looked at finding the optimum selection of image features to represent lung nodules.

Those features were then implemented into a classification module of a computer-aided

diagnosis system. Way et al. [4] wanted to distinguish benign nodules from malignant

ones based solely on texture based image features. Lee et al. [5] also performed a detailed

study on the usefulness of image features in the classification of pulmonary nodules based

on CT-scan images. The work by Zhu et al. [6] shows the effectiveness of a support vector

machine based classifier in classifying benign and malignant pulmonary nodules. Work has

also been done by Al-Kadi et al. [7] in differentiating between aggressive and non-aggressive

malignant lung tumors using texture analysis of Contrast Enhanced (CE) CT scan images.

The use of fractal image features in tumor analysis can be found in the work of Kido [8]. The

high level of information content within CT scans was highlighted by correlating imaging

features with global gene expression in hepatocellular carcinoma [9]. Segal et al [9] showed

that combinations of twenty-eight image features obtained from CT images of liver cancer

could reconstruct 78% of the global gene expression profiles.
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1.1.2 Survival Analysis

In terms of survival time prediction in cancer patients, Burke et al.[10] showed the

effectiveness of using Area Under the ROC Curve (AUC) as a performance measure by

means of 5 year survival prediction for breast and colorectal cancer patients.

Work on predicting survival time for patients suffering from NSCLC is being conducted

by Hugo Aerts et al. at MAASTRO, Netherlands. The work titled, “Using Advanced

Imaging Features for the Prediction of Survival in NSCLC” [11], dealt with building a

predictive model built on proximal support vector machine [12]. Three sets of features,

histogram, texture and shape features were used in developing the predictive model. These

features were used alongside clinical features. The experiment performed was to predict

two year survival in 412 patients with NSCLC, stage I-III, treated with either radiotherapy

or chemo-radiotherapy. Each patient had an CT scan for treatment planning. All the scans

have fixed resolution, with slice thickness of 3 mm and voxel size of 0.98x0.98 mm.

On the given dataset, a total of 101 features, from the three classes discussed earlier,

were extracted. The feature values formed the attributes for each patient instance. The

working of the predictive model can be looked upon as a blackbox as represented in Figure

1.1. The experiment performed was a 90% training and 10% test data split, with random

splits repeated over 1000 iterations. The combination of the clinical and image features

resulted in an average AUC of 0.70 over 1000 iterations.

Figure 1.1: Analysis Setup: Prediction of Two Year Survival
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1.2 Contributions

Review of existing literature has shown that studies have concentrated mostly on the

analysis of CT-scan images to detect tumors and other anomalies of the lungs. However,

minimal work has been done in attempting to classify tumor classes based on these images

for which new ground is broken here. The common practice to determine the tumor class

is to perform a histopathological analysis on tissue samples obtained by invasive techniques

such as a needle biopsy. As time and cost are crucial factors when it comes to the treatment

of a lung tumor, an automated image based classifier could act as a precursor to histopatho-

logical analysis, thus enabling the kick-starting of class specific treatment procedures. Based

on CT-scan images of 74 patients with Non-Small Cell Lung Cancer (NSCLC) the first task

was to develop an effective model to classify it into two subtypes, Adenocarcinoma and

Squamous-cell Carcinoma [13]. These two tumor types constitute 30% of all lung tumor

types [14]. This study made use of 4 different classifier algorithms along with relief-F and

wrapper feature selection methods. Building upon a vast number of image features, this

study helped to present a robust comparative analysis of the effectiveness of 2D and 3D

image features as a basis for developing classifier models.

The study was then extended to include Bronchioalveolar Carcinoma [15], and using

the same 3D feature set, the effectiveness as well as stability of the classifier models were

evaluated. As part of this experiment and later, in a modified manner, for survival time

prediction, a novel approach to feature selection based on feature correlation is presented.

The study on survival time analysis was carried out using AUC as the performance metric.

Though, working with a limited data-set, using a combination of feature space reduction

using principal component analysis and parameter tuning of an SVM using grid search, a

near comparable result was achieved to the work being conducted by Aerts et al. 1.1 on a

much larger and uniform data-set.
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1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 describes the methodology

followed, in processing the CT-scan images, including segmentation of the tumor object. In

the same chapter, the features used in the course of this study has been detailed. In Chap-

ter 3, we discuss the underlying algorithms upon which the various predictive models are

developed. Classification algorithms and feature selection techniques are described here. In

Chapter 4, the basic experimental setup followed by a detailed description of considerations,

implementation, and results for each problem are presented. Finally, Chapter 5 contains

the conclusions.
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CHAPTER 2

IMAGE PREPROCESSING AND FEATURE EXTRACTION

In this chapter we discuss preparation of the image data, followed by a detailed discussion

of the features that were extracted from the images. In Section 2.1 the process of image

segmentation, tumor identification and isolation of the tumor object is presented. Then in

Section 2.2 the vast range of image features which were analyzed for the study are presented.

The four major image feature sets and their component features are each briefly described.

The clinical features utilized in the survival time analysis are presented in Section 2.3. The

general workflow of the process of developing and using predictive models is represented in

Figure 2.1.

CT-scan 

Image

Lung-field 

Segmented 

Image

Segmented

Tumor

Object

Image 

Feature

Data

Clinical

Data

Predictive

Model

Classification

Results

Image

Pre-processing

Tumor 

Identification
and

Segmentation

Feature

Extraction

Figure 2.1: Schematic Representation of the Workflow Involved in Preparing Data for Pre-
dictive Models.
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2.1 Image Preprocessing

The initial segmentation of the CT-scan images which segments out the lung region from

the rest of the body was done using the built-in segmentation algorithm provided in the

Lung Tumor Analysis (LuTA) software suite of Definiens [16]. On completion of the lung

field segmentation, tumor identification was manually conducted by one of the radiologists

at the H. Lee Moffitt Cancer Center or a person with expertise in identifying lung tumors.

The tumor, upon identification, was segmented out using LuTA’s built-in region growing

algorithm. The initial seed point for the algorithm was provided by the expert. The

algorithm finds the tumor boundary across the image sequences. This boundary contains

the tumor objects in each slice of the CT-image sequence. Figures 2.2(a) and 2.2(b) show the

lung with tumor and with the tumor boundary outlined after region growing, respectively.

(a) Segmentation of CT image to define
the lung region

(b) Defining tumor boundary through re-
gion growing

Figure 2.2: Sample CT-Image Slice

2.2 Image Features

The image feature extraction algorithms were written in C++ using Visual Studio 2003

and the executables were embedded into the LuTA software. 102 2D features and 215 3D

features were developed for the study. The image feature extraction was done only on the

tumor objects. The major customized 2D/3D features types are the following,
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• Geometric features

• Morphological features

• Texture features

• Intensity based features/ Histogram features

In this section, each feature subtype and the individual features that belong to it are

discussed in brief. Some features have been developed for both 2D and 3D image spaces,

which is indicated in the feature description.

2.2.1 Geometric Features

The first set of features to be looked at are geometric features. Geometric features,

in both 2D and 3D provide vital structural information about the tumor object being

analyzed. The geometric features evaluated were deemed useful in analyzing and quantifying

biomedical images such as CT-scans [17].

• Area (2D, 3D)

The number of pixels forming an image object rescaled by using unit information. In

scenes that provide no unit information, the area of a single pixel is 1 unit. Conse-

quently, the area of an image object is the number of pixels forming it. If the image

data provides unit information, the area of an image object is the true area covered

by one pixel times the number of pixels forming the image object. Area is measured

as,

Av = #Pv ∗ u2

where, Av is the area of image object v; Pv is the set of pixels of the image object v;

#Pv is the total number of pixels contained in Pv; u is the pixel size in coordinate

system units. u=1, when unit is pixel.
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• Border Length/Surface Area (2D, 3D)

The border length of an image object is defined as the sum of edges of the image

object that are shared with other image objects or are situated on the edge of the

entire scene. For a torus and other image objects with holes the border length sums

the inner and outer border.

For a 3D image object the corresponding feature is the surface area. It is measured as

the sum of border lengths of all image object slices multiplied by the spatial distance

between the slices. For torus and image objects with holes the surface area is the sum

of the inner and outer surface areas, as in 2D. The expressions for border length in

2D and surface area in 3D are the following,

– 2D

bv = bo + bi

– 3D

sv = (

#(slices)
∑

n=1

bv(Slice))uslices + bv(Z)

where, bv is the border length of image object v; sv is the surfa area of the image

object v; bo is the length of outer border; bi is the length of inner border; bv(Slice)

is the border length of image object slice; bv(Z) is the border length of image object

in Z-direction; uslices is the spatial distance between slices in the coordinate system

unit.

• Length/Thickness (3D)

For this feature, the length-to-thickness ratio of the image object is measured.

• Length/Width (2D, 3D)

The length-to-width ratio of an image object is measured in both 2D and 3D space.

There are two methods to approximate the length/width ratio of an image object:
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– The ratio length/width is identical to the ratio of the eigenvalues of the covari-

ance matrix, with the larger eigenvalue being the numerator of the fraction:

γEV
v = λ1(V )

λ2(V )

– The ratio length/width can also be approximated using the bounding box:

γBB
v = Kbb

v

′

#Pv

where, λi represents the ith eigenvalue; Pv is the set of pixels of the image object v;

#Pv is the total number of voxels contained in Pv.

Both calculations are done and compared, with the smaller of the two results being

returned as the feature value.

• Length (2D, 3D)

The length of an image object in 2D is calculated using the length-to-width ratio. The

length of an image object is the largest of three eigenvalues of a rectangular 3D space

that is defined by the same volume as the image object and the same proportions

of eigenvalues as the image object. The length of an image object can be less than

or equal to the largest dimension of the smallest rectangular 3D space enclosing the

image object. Length is expressed as,

lv =
√
#Pv · γv

where, Pv is the set of pixels of the image object v; #Pv is the total number of pixels

contained in Pv; γv is the length/width ratio of an image object v.

• Thickness (3D)

The thickness of an image object is the smallest of the three eigenvalues of a rectan-

gular 3D space that is defined by the same volume as the image object and the same

proportions of eigenvalues as the image object.
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The thickness of an image object can be either smaller than or equal to the smallest

dimension of the smallest rectangular 3D space enclosing the image object.

• Width (2D, 3D)

The width of an image object is the middle of the three eigenvalues of a rectangular 3D

space that is defined by the same volume as the image object and the same proportions

of eigenvalues as the image object. The width of an image object can be smaller than

or equal to the middle dimension of the smallest rectangular 3D space enclosing the

image object.

The width of an image object is calculated using the length-to-width ratio.

wv = #Pv

γv

where, Pv is the set of pixels of the image object v; #Pv is the total number of voxels

contained in Pv; γv is the length/width ratio of an image object v.

• Number of Pixels (2D, 3D)

In case of 2D, the number of pixels forming the tumor object for the slice under

consideration is measured. In the 3D space, the number of pixels forming the entire

tumor object for the volume is measured.

• Volume (3D)

In 3D feature space, volume information provides substantial information regarding

the tumor size. The number of voxels forming an image object rescaled by using unit

information for the x and y coordinates and the distance information between slices.

Volume is measured as,

Vv = #Pv ∗ u2 ∗ uslices

where, Vv is the volume of image object v; Pv is the set of pixels of the image object v;

#Pv is the total number of voxels contained in Pv; u is the size of a slice pixel in the
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coordinate system unit; uslices is the spatial distance between slices in the coordinate

system unit.

• Asymmetry (2D, 3D)

The more elongated an image object, the more asymmetric it is. For an image object,

an ellipse is approximated. In the case of 2D image feature, asymmetry can be ex-

pressed by the ratio of the lengths of the minor and the major axis of this ellipse. In

the case of 3D features, asymmetry is calculated from the ratio between the smallest

and the largest eigenvalues of the image object. The feature value increases with the

asymmetry. The 2D and 3D measure for Asymmetry are,

– 2D

Asymmetry =

√
(V arX+V arY )2+(V arXY )2−V arX·V arY

V arX+V arY

– 3D

Asymmetry = 1−
√
λmin√
λmax

where, λ represents the corresponding eigenvalue; V arX and V arY represent the

variance of X and Y respectively.

• Compactness (2D, 3D)

In the 2D domain, this feature is similar to the border index feature, but instead of

the border, it is based on the area. However, the more compact an image object is, the

smaller its border appears to be. The compactness of an image object is calculated

by the product of the length and the width and divided by the number of its pixels.

The measure for the compactness of a 3D image object is calculated by a scaled

product of its three eigenvalues divided by the number of its pixel/voxel. A factor of

2 is included with each eigenvalue, since λi∗ eigenvectors represent otherwise half axes

of an ellipsoid defined by its covariance matrix. The chosen approach thus provides

an estimate of a cuboid occupied by the object. Compactness is measured as,
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– 2D

Compactness = lv∗wv

#Pv

– 3D

Compactness = 2λ1∗2λ2∗2λ3

Vv

where, λ represents the corresponding eigenvalue; lv is the length of the image object;

wv is the width of the image object; Pv is the set of pixels of the image object v; #Pv

is the total number of voxels contained in Pv.

• Density (2D, 3D)

A density feature describes the spatial distribution of the pixels of an image object.

In 2D, the ideal compact shape on a pixel raster is the square. The more an image

object is shaped like a square, the higher its density, while a filament like structure is

indicative of lower density. The density is calculated by the number of pixels forming

the image object divided by its approximated radius based on the covariance matrix.

In 3D, the ideal compact shape on a pixel raster is the cube. As in the case of 2D, the

more cuboid the shape, the higher the density and the more the object is shaped like

a filament, the lower is its density. It is calculated by the edge of the volume fitted

cube divided by the fitted sphere radius.

– 2D

Density =
√
#Pv

1+
√
V arX+V arY

– 3D

Density =
3
√
Vv√

V ar(X)+V ar(Y )+V ar(Z)

13



where, Pv is the set of pixels of the image object v;
√
#Pv is the diameter of a square

object with #Pv pixels;
√
V arX + V arY is the diameter of the ellipse; Vv is the

volume of the image object v; 3
√
Vv is the edge of the volume fitted cube; V arX and

V arY represent the variance of X and Y respectively;
√

V ar(X) + V ar(Y ) + V ar(Z)

is the radius of the fitted sphere.

• Shape Index (2D, 3D)

A shape index feature provides perceptual representation to the coverage of the shape

of an image object. The smoother the border of an image object, the lower is its shape

index. In 2D space it is calculated from the border length feature of the image object

divided by four times the square root of its area. In the 3D space it is measured by

dividing the border length feature by the volume of the image object.

– 2D

Shape Index = bv
4
√
#Pv

– 3D

Shape Index = bv
Vv

where, bv is the border length of the image object v; 4
√
#Pv is the border of the

square with area #Pv; Vv is the volume of the image object v.

• Border Index (2D, 3D)

The border index feature is similar to shape index feature, but it uses a rectangular

approximation instead of a square. The smallest rectangle enclosing the image object

is created. The border index is then calculated as the ratio of the Border length feature

of the image object to the border length of this smallest enclosing rectangle.The more

rough or jagged an image object is, the higher its border index.

Border Index = bv
2(lv+wv)
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where, bv is the border length of the image object v; lv is the length of the image

object; wv is the width of the image object.

• Elliptic Fit (2D, 3D)

Elliptic fit describes how well an image object fits into, an ellipse/ellipsoid (2D/3D),

of similar size and proportions. While 0 indicates no fit, 1 indicates a complete

fitting image object. The calculation is based on an ellipse/ellipsoid (2D/3D) with

the same area/volume (2D/3D) as the considered image object. The proportions of the

ellipses/ellipsoids (2D/3D) are equal to the proportions of the length-to-width/length-

to-width-to-thickness (2D/3D) of the image object. The area/volume (2D/3D)of the

image object outside the ellipse/ellipsoid (2D/3D) is compared with the area/volume

(2D/3D) inside the ellipse/ellipsoid (2D/3D) that is not filled out with the image

object.

– 2D

φ = 2 · #{(X,Y )∈Pv:ǫv(X,Y )≤1}
#Pv

− 1

– 3D

φ = 2 · #{(X,Y,Z)∈Pv:ǫv(X,Y,Z)≤1}
#Pv

− 1

where, φ is the elliptic fit; ǫv(X,Y ) is the elliptic distance at pixel (X,Y ); ǫv(X,Y,Z)

is the elliptic distance at pixel (X,Y,Z); Pv is the set of pixels of the image object v;

#Pv is the total number of pixels contained in Pv

• Main Direction (2D, 3D)

Main direction is defined as the direction of the eigenvector belonging to the larger of

the two eigenvalues derived from the covariance matrix of the spatial distribution of

the image object.

The main direction feature of a three-dimensional image object is computed as follows:
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– For each image object slice (a 2D pieces of the image object in a slice) the centers

of gravity are calculated.

– The coordinates of all centers of gravity are used to calculate a line of best fit,

according to the Weighted Least Square method.

– The angle α between the resulting line of best fit and the z-axis is returned as

feature value.

Main Direction = 180◦

π tan−1(V arX, λ1 − V arY ) + 90◦

where, VarX and VarY are the variance of X and Y respectively; λ1 is the eigenvalue.

• Radius of Largest Enclosed Ellipse (2D, 3D)

This feature describes how much the shape of an image object is similar to an el-

lipse/ellipsoid (2D/3D). The calculation is based on an ellipse/ellipsoid (2D/3D) with

the same area/volume (2D/3D) as the object and based on the covariance matrix.

This ellipse/ellipsoid (2D/3D) is scaled down until it is totally enclosed by the image

object. The ratio of the axis length of the largest enclosed ellipse/ellipsoid (2D/3D)

to the axis length of the original ellipse/ellipsoid (2D/3D) is returned as the feature

value. Calculations in 2D and 3D are the following,

– 2D

ǫv(X0, Y0) = min ǫv(X,Y ), (X,Y ) /∈ Pv

– 3D

ǫv(X0, Y0, Z0) = min ǫv(X,Y,Z), (X,Y,Z) /∈ Pv

where, ǫv is the elliptic distance; Pv is the set of pixels of the image object v.
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• Radius of Smallest Enclosing Ellipse (2D, 3D)

The calculation for this feature is based on an ellipse/ellipsoid (2D/3D) with the same

area/volume (2D/3D) as the image object and based on the covariance matrix. This

ellipse/ellipsoid (2D/3D) is enlarged until it entirely encloses the image object. The

ratio of the axis length of this smallest enclosing ellipse/ellipsoid (2D/3D) to the axis

length of the original ellipse/ellipsoid (2D/3D) is returned as feature value.

– 2D

ǫv(X0, Y0) = max ǫv(X,Y ), (X,Y ) ∈ σPv

– 3D

ǫv(X0, Y0, Z0) = max ǫv(X,Y,Z), (X,Y,Z) ∈ σPv

where, ǫv is the elliptic distance; Pv is the set of pixels of the image object v.

• Rectangular Fit (2D, 3D)

This feature describes how well an image object fits into a rectangle/cuboid (2D/3D)

of similar size and proportions. While 0 indicates no fit, 1 indicates a complete

fitting image object. The calculation is based on a rectangle/cuboid (2D/3D) with

the same area/volume (2D/3D) as the considered image object. The proportions of the

rectangle/cuboid (2D/3D) are equal to the proportions of the length-to-width/length-

to-width-to-thickness (2D/3D) of the image object. The area/volume (2D/3D) of the

image object outside the rectangle/cuboid (2D/3D) is compared with the area/volume

(2D/3D) inside the rectangle/cuboid (2D/3D) that is not filled out with the image

object.

– 2D

Rectangular F it = #{(X,Y )∈Pv:ρv(X,Y )≤1}
#Pv
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– 3D

Rectangular F it = #{(X,Y,Z)∈Pv:ρv(X,Y,Z)≤1}
#Pv

where, ρv is the elliptic distance; Pv is the set of pixels of the image object v.

• Roundness (2D, 3D)

Roundness quantifies how much the shape of an image object is similar to an el-

lipse/ellipsoid (2D/3D). The more the shape of an image object is similar to an el-

lipse/ellipsoid (2D/3D), the lower its roundness. It is calculated by the difference

of the enclosing ellipse/ellipsoid (2D/3D) and the enclosed ellipse/ellipsoid (2D/3D).

The axis length of the largest enclosed ellipse/ellipsoid (2D/3D) is subtracted from

the axis length of the smallest enclosing ellipse/ellipsoid (2D/3D).

Roundness = ǫmax
v − ǫmin

v

where, ǫmax
v is the axis length of the smallest enclosing ellipse/ellipsoid (2D/3D); ǫmin

v

is the axis length of the largest enclosed ellipse/ellipsoid (2D/3D).

• Sphericity (3D)

The sphericity feature is used to quantify how spherical a tumor object is. This feature

is useful in describing overall tumor geometry. The expression for sphericity is given

as,

Sphericity =
3
√

π(6V 2
v )

Av

where, Vv is the volume; Av is the total surface area of the image object.

• Number of Macrospiculations (3D)

This feature provides the number of countable spiculations of the tumor [18].
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• Distance of Center of Gravity to Border of Tumor (3D)

This feature set provides a measure for the distance from the center of gravity to

the border of the tumor. It is reported in terms of Average, Standard Deviation,

Minimum and Maximum.

• Attachment of Tumor to other Anatomical Structures (3D)

This feature set provides information regarding the attachment of the tumor to other

anatomical structures. It is reported in terms of Relative Border to Lung; Relative

Border to Pleural Wall; Ratio of Free to Attached Surface Areas.

• Fractional Anisotropy (3D)

This feature provides the measure for the Fractional Anisotropy of the long and the

short axes of the tumor object.

Fractional Anisotropy =
√

(lv−wv)2+(wv−tv)2+(tv−lv)2

l2v+w2
v+t2v

∗
√

1
2

where, lv, wv, tv are respectively, the length, width and thickness of the tumor object.

2.2.2 Morphological Features

The morphological features are all 2D features. This set of features help in identifying

vital image characteristics by accounting for the form and structure of the image object.

• Margin Gradient(2D)

Margin gradient measures the attenuation value from the centroid of the image object

to the background. It fits data to extract the gradient at the edge of the tumor (in

HU/mm). Then, every 1 degree from spokes emanating from the centroid is measured

and the slope is obtained for each degree. From these data, dimensionality is further

reduced to the mean and standard deviation.
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• Fractal Dimension(2D)

Fractal dimension is a useful measure of the morphology of complex patterns that are

seen in nature [19]. Fractal geometry is a way to quantify natural objects, with a

complex irregular structure, by regular Euclidean geometrical methods. The study of

fractals has been extended to biological structures in the past, such as in the study of

human retinal vessels [20] and cell structure [21]. The Fractal dimension was applied

to quantitatively characterize the complexity of the 2D boundary of the tumor.

Fractal dimension (FD) was measured as follows [8]. First, box counting method was

employed to the image objects. For a given length d, the number of boxes in the

grid required to cover the image object boundary was measured as N(d). For fractal

objects, N(d) is proportional to d−FD as,

N(d) = µd−FD

where µ is a constant. Fractal dimension (FD) is then measured as the slope of

the regression line generated by plotting ln(d) and lnN(d), using the least-squares

method. The expression for fractal dimension is given as,

FD = ln(µ)−lnN(d)
ln(d)

• Fourier Descriptor(2D)

A Fourier descriptor (FD) is another widely used shape descriptor [22]. The FD is

obtained by applying the Fourier transform on a shape contour, where each contour

pixel is represented by a complex number. On applying the Fourier transform, the

tumor region is broken up into four equally spaced annular regions in the Fourier

domain. For each region, the second moment or energy is measured. Five Fourier

descriptors were developed.

FDEnergy =
∑

i,j I
2(i, j)

where, i,j are within a specific annular region.
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2.2.3 Texture Features

The next set of image features used were texture features. Texture features are available

in both 2D and 3D domain. Texture features provide essential information about the

internal structure of an image object and have been previously shown to be useful in the

analysis of CT-scan images of Non-small Cell Lung Cancer as well [2].

• Co-occurrence Matrices (2D, 3D)

The co-occurrence matrix [23] is a matrix that contains the frequency of one gray level

intensity appearing in a specified spatial linear relationship with another gray level

intensity within a certain range. Computation of features requires first constructing

the co-occurrence matrix, then different measurements [24] can be calculated based

on the matrix. The measurements include: contrast, energy, homogeneity, entropy,

mean and maximum probability.

– Contrast

CMContrast =
∑

i,j |i− j|2 ∗ p(i, j)

– Energy

CMEnergy =
∑

i,j p(i, j) ∗ p(i, j)

– Homogeneity

CMHomogeneity =
∑

i,j
p(i,j)

1+|i−j|

– Entropy

CMEntropy = −∑

i,j p(i, j) ∗ log(p(i, j))

– Sum Mean

CMMean =
∑

i,j(i+ j) ∗ p(i, j)
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– Maximum Probability

CMMaxProb = max(p(i, j))

where p(i, j) is the element of the co-occurrence matrix and i,j are the gray level

intensities.

• Run-length Analysis (2D, 3D)

The run-length texture features [25] are created from runs of similar gray values in

an image. Runs may be labeled according to their length, gray value, and direction

(either horizontal or vertical). Long runs of the same gray value correspond to coarser

textures, whereas shorter runs correspond to finer textures. In this study, texture in-

formation was quantified through the computation of 11 features [26] derived from the

run-length distribution matrix. The measurement of Run-length analysis is conducted

as follows,

p(i, j) is the element of run-length matrix, let M be the number of gray levels, N be

the maximum run length, nr is the total number of runs, np is the number of pixels

in the image. Three new matrices are first defined,

pp(i, j) = p(i, j) ∗ j

pg(i) =
∑N

j=1 p(i, j)

pr(j) =
∑M

i=1 p(i, j).

The generated features are,

– Short Run Emphasis (SRE)

SRE = 1
nr

∑N
j=1

pr(j)
j2

– Long Run Emphasis (LRE)

LRE = 1
nr

∑N
j=1 pr(j) ∗ j2
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– Gray-Level Non-uniformity (GLN)

GLN = 1
nr

∑M
i=1 pg(i)

2

– Run Length Non-uniformity (RLN)

RLN = 1
nr

∑N
j=1 pr(j)

2

– Run Percentage (RP)

RP = nr

np

– Low Gray-Level Run Emphasis (LGRE)

LGRE = 1
nr

∑M
i=1

pg(i)
i2

– High Gray-Level Run Emphasis (HGRE)

HGRE = 1
nr

∑M
i=1 pg(i) ∗ i2

– Short Run Low Gray-Level Emphasis (SRLGE)

SRLGE = 1
nr

∑M
i=1

∑N
j=1

p(i,j)
i2∗j2

– Short Run High Gray-Level Emphasis (SRHGE)

SRHGE = 1
nr

∑M
i=1

∑N
j=1

p(i,j)∗i2
j2

– Long Run Low Gray-Level Emphasis (LRLGE)

LRLGE = 1
nr

∑M
i=1

∑N
j=1

p(i,j)∗j2
i2

– Long Run High Gray-Level Emphasis (LRHGE)

LGHGE = 1
nr

∑M
i=1

∑N
j=1 p(i, j) ∗ j2 ∗ i2
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Volume features are often calculated as a series of 2D images and 2D texture features

are usually computed for pixels in slices. However this kind of processing will result

in losing information across slices. As in [27], co-occurrence matrices and run-length

analysis features can be obtained in 3D, the features are calculated in 13 different

directions, with each direction processing is done by plane instead of slice. Hence,

information between slices is not ignored.

• Laws Features

The Laws features [28] were constructed from a set of five one-dimensional (1D) filters,

each designed to detect a different type of structure in the image. These 1D filters

are defined as E5 (edges), S5 (spots), R5 (ripples), W5 (waves), and L5 (low pass, or

average gray value). By using these 1D convolution filters, 2D filters are generated by

convolving pairs of these filters, such as L5L5, E5L5, S5L5, W5L5, R5L5, etc. Thus a

total of 25 different 2D filters can be generated. 3D Laws filters were constructed sim-

ilarly by convolving 3 types of 1D filter, such as L5L5L5, L5L5E5, L5L5S5, L5L5R5,

L5L5W5, etc. The total number of 3D filters is 125. After the convolution with their

respective filters, the energy [29] of the texture feature was computed by the following

equation:

– 2D

Laws2DEnergy = 1
R

I−N
∑

i=N+1

J−N
∑

j=N+1
h2(i, j)

– 3D

Laws3DEnergy =
1
R

I−N
∑

i=N+1

J−N
∑

j=N+1

K−N
∑

k=N+1

h2(i, j, k)

where R is a normalizing factor, I, J and K are image dimensions in the 3D space and

h(i,j,k) is derived from the convolution filters and original image.
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• Wavelet Decomposition

A wavelet transform decomposes an image into several components iteratively [30]

based on the frequency, content and orientation. The discrete wavelet transform can

iteratively decompose an image into four components. Each iteration splits the im-

age both horizontally and vertically into low-frequency (low pass) and high-frequency

(high pass) components. Thus, four components are generated: a high-pass/high-pass

component consisting of mostly diagonal structure, a high-pass/low-pass component

consisting mostly of vertical structures, a low-pass/high-pass component consisting

mostly of horizontal structure, and a low-pass/low-pass component that represents

a blurred version of the original image. Subsequent iterations then repeat the de-

composition on the low-pass/low-pass component from the previous iteration. These

subsequent iterations highlight broader diagonal, vertical, and horizontal textures.

And for each component, we calculated the energy feature. For each iteration, the

wavelet decomposition of a 2D image can be achieved by applying the 1D wavelet

decomposition along the rows and columns of the image separately, while for 3D, 1D

wavelet transform is applied along all the three directions (x,y,z).

– 2D

WD2D
Energy = 1

M×N

M
∑

i=1

N
∑

j=1
I2(i, j)

WD2D
Entropy =

−1
M×N

M
∑

i=1

N
∑

j=1

I2(i,j)
norm2 log(

I2(i,j)
norm2 )

– 3D

WD3D
Energy =

1
M×N×L

M
∑

i=1

N
∑

j=1

L
∑

k=1

I2(i, j, k)

WD3D
Entropy =

−1
M×N×L

M
∑

i=1

N
∑

j=1

L
∑

k=1

I2(i,j,k)
norm2 log( I

2(i,j,k)
norm2 )

where, I(j,k) and I(j,k,l) are the sub-block elements for 2D and 3D respectively. The

dimensions of each sub-block are represented by M, N and L as per 2D/3D. The
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number of features is dependent on the number of decomposition levels selected. A

single level generated 16 features while, 2 levels yielded 30 features.

2.2.4 Intensity Based Features/Histogram Features

The histogram features take into account the intensities of the pixels forming the im-

age. The intensity histogram h(a), of an image object, represents the number of pixels

for brightness level “a” plotted against their brightness level. The probability distribu-

tion of the brightness P(a) is also calculated. Six histogram features were developed. The

expression for each are briefly shown here.

• Mean

HFMean =
range
∑

i=1
i ∗ P (i)

• Standard Deviation

HFSD =

√

range
∑

i=1
(i−HFmean)2 ∗ P (i)

• Skewness

HFSkew =

range∑

i=1

(i−HFmean)3∗P (i)

(
range∑

i=1

(i−HFmean)2∗P (i))1.5

• Kurtosis

HFKurt =

range∑

i=1

(i−HFmean)4∗P (i)

(
range∑

i=1

(i−HFmean)2∗P (i))2

• Energy

HFEnergy =
range
∑

i=1
P (i) ∗ P (i)

• Entropy

HFEntropy = −
range
∑

i=1
P (i) ∗ log(P (i))

where, range indicates range of intensity (normalized), P (i) = h(i)∑
h(i) , h(i) is the fre-

quency of intensity i.
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2.3 Clinical Features

In addition to image features, two clinical features were used,

• Gender

• Tumor Location

The clinical features used, were obtained from the histopathological report for the pa-

tients.

• Gender

The gender information was simply represented by feature values 1 for female and −1

for male.

• Tumor Location

Determination of tumor location was done based on the clinical report rather than

on observation. The location information in the clinical report was represented using

the 3rd edition of the International Classification of Diseases for Oncology (ICD-O-3)

codes. The location of the tumor was split into the following categories:

– Lung Upper Lobe (C341)

– Lung Middle Lobe (C342)

– Lung Lower Lobe (C343)

– Lung Overlapping Lesion (C348)

– Lung NOS (C349).

NOS indicates not otherwise stated. Since the SVM classifier considers the distance

measure for each feature, it was not possible to represent location by a single attribute

with multiple values. Hence 5 attributes were created for representing the location

information as represented below,
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























C341 C342 C343 C348 C349

upper lobe 1 −1 −1 −1 −1

middle lobe −1 1 −1 −1 −1

lower lobe −1 −1 1 −1 −1

overlap −1 −1 −1 1 −1

NOS −1 −1 −1 −1 1

























This chapter thus presented the vast array of image features that were successfully

extracted from the CT images of the lung. The clinical features provided a brief glimpse of

the possibilities of expanding the feature space using histopathological reports. The scope

and use of these features in tumor analysis are described in Chapter 4.
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CHAPTER 3

PREDICTION MODELS

In this chapter a general description of the classification algorithms and the feature

selection techniques used for developing predictive models is presented. The classifier models

used in the study are presented in Section 3.1. Section 3.2 describes the feature selection

techniques. Tuning of the parameters of SVM is described in Section 3.3.

3.1 Classifier Models

Classifier models evaluated here are decision trees [31], random forests [32], nearest

neighbor [33], support vector machines (SVM) [34] and naive Bayes [35].

3.1.1 Decision Tree

The decision tree classifier [31] model consists of a structure that is either a leaf, indicat-

ing a class or a decision node, that specifies some test to be carried out on a single attribute

value, with one branch and subtree for each possible outcome of the test. The performance

measure used in these tests is gain-ratio. In a decision tree model a case is classified by

starting at the root of the tree and then traversing through it until a leaf is encountered. At

each of the non-leaf decision nodes, the outcome of the test at the node is determined and

it in turn becomes the root of the subtree that corresponds to this outcome. This continues

until a leaf node is reached and the class of the instance is predicted to be the class label

associated with the leaf. The decision tree used in the survival analysis study, described in

Section 4.5, was the C4.5 library, with release 8 patches, developed by J.R. Quinlan [36].

The decision tree used for the tumor type classification experiments described in Section
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4.2 was J48, a Java implementation of C4.5. The parameter, confidence factor, was set to

0.25.

3.1.2 Random Forests

Random forests [32] consist of an ensemble of decision trees. In this method, the training

data is bagged a specified number of times and then for each training set a decision tree

is built. At every decision tree node, a random set of attributes are chosen and the best

among them are used as a test. In this work, the forest contained 200 decision trees and

randomly chose log2(n)+1 features from n total features at each node. The class predicted

comes from a vote of the trees. The implementation of random forests used here is part of

the Weka-3.6 data mining tool [37].

3.1.3 Nearest Neighbor

The nearest neighbor algorithm [33] used was the IB-k Weka implementation. It is a

modified version of K nearest neighbors. The nearest neighbor search can be done employ-

ing brute force linear search or by using other data structures such as KD-trees. In this

work the simple linear search algorithm was used. The distance metric was the Euclidean

distance. Since the scale of the attributes determines the distance measure, attributes with

larger ranges would dominate. Hence, the weka implementation of the algorithm performs

normalization on the attributes before measuring the distance. The number of nearest

neighbors chosen for this particular set of experiments was 5.

3.1.4 Support Vector Machine

Support vector machines are based on statistical learning theory [38] and have been

shown to obtain high accuracy on a diverse range of application domains [39]. The idea

behind SVMs is to non-linearly map the input data to a higher dimensional feature space

and construct a hyper plane so as to maximize the margin between classes. In this feature

space a linear decision surface is constructed. The hyper plane construction can be reduced
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to a quadratic optimization problem which is determined by subsets of training patterns

that lie on the margin, termed support vectors [40]. Special properties of the decision

surface ensure high generalization ability of the learning machine. The hyper plane in the

input space is in the form of a decision surface, the shape of which is determined by the

chosen kernel. Figure 3.1 illustrates the choice of support vectors and the generation of the

hyper plane to separate class boundaries in a support vector machines. Different kernels can

be chosen for SVMs, such as, Linear Kernels, Radial Basis Function Kernel and Sigmoid

Kernel. The Radial Basis Function (RBF) Kernel was used here. The expression for the

RBF kernel is given by exp(−γ|u − v|2). All data was scaled to be in the range [−1, 1].

Support vector machines have previously been used efficiently on CT scan image data of

the lungs [41] in a Computer-Assisted Detection (CAD) system for automated pulmonary

nodules detection in thoracic CT-scan images. For the support vector machine, libSVM

[42] was used.

Figure 3.1: An Example of the Use of a Support Vector Machine for a Separable Problem
in a 2D Space. The Support Vectors Define the Margin of Largest Separation Between the
Two classes. (Based on figure by Vapnik and Cortes [40] pp. 275.)
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3.1.5 Naive Bayes

The naive Bayes [35] classifier is designed to be used when features are independent of

one another within each class. However, it has been shown in practice that it works well even

when the independence assumption is not valid. The naive Bayes classifier estimates the

parameters of a probability distribution, assuming features are conditionally independent

given the class using the training samples. It then computes the posterior probability of a

sample belonging to each class and classifies the test sample according the largest posterior

probability.

The class-conditional independence assumption greatly simplifies the training step since

it allows for an individual estimate of the one-dimensional class-conditional density for each

feature. Even though, the class-conditional independence between features does not hold

for most data sets, this optimistic assumption works well in practice. The assumption

of class independence allows the naive Bayes classifier to better estimate the parameters

required for accurate classification while using less training data. The implementation for

naive Bayes used for this work is from the Matlab Statistical Toolbox [43].

3.2 Feature Selection Methods

Given the large parameter space for both 2D and 3D features and limited number of

examples, it was necessary to perform feature selection. relief-F and wrapper methods were

used for tumor type classification, while feature correlation based feature selection and

principal component analysis were used in survival analysis study.

3.2.1 Relief-F

Relief-F [44], which stands for Recursive Elimination of Features, chooses instances at

random and changes the weights of the feature relevance based on the nearest neighbor.

The ranker search algorithm, used along with relief-F, assigns a rank to each individual

feature. The number of features to be chosen for evaluation can be done by means of a

parameter. For the tumor type classification study, 50 features were chosen at first and
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then the feature space was further reduced to 25 features. The choice of the feature space

was based on multiple trials to effect substantial changes in classification results.

3.2.2 Wrappers

The second feature selection technique employed was wrapper feature selection [45]. This

involves evaluating attribute subsets with an underlying classifier model. In this case, the

underlying model was the same as the classifier being evaluated. That is, if the classifier in

use was a support vector machine with an RBF kernel, the underlying classifier for wrappers

was also a support vector machine with an RBF kernel. Feature selection using wrappers

was done by using best-first forward selection search. Wrapper feature selection was not

used for random forests classifiers. The reason being, both approaches involve selecting of

subset of features for evaluation.

3.2.3 Feature Selection Based on Correlation

In his study of Test-Retest analysis on an independent, publicly available Reference

Image Database to Evaluate Response 1(RIDER) data set, Kumar et al. [46] evaluated

the reproducibility of the 3D image features we had developed. For imaging biomarkers

to be effective in prognostication, prediction or therapy response studies, standardization

and optimization of the feature space is necessary. One of the key steps in the qualification

process of potential biomarkers is to assess the intra-patient (test-retest) reproducibility

and biological ranges of these features. The importance of highly reproducible features is

that they are potentially the most informative. The more reproducible a feature, the higher

its ability to identify subtle changes with time, pathophysiology and response to therapy.

The RIDER data set consisted of 32 patients. The baseline scan was followed up, within 15

minutes, by a follow-up scan, acquired using the identical CT scanner and imaging protocol.

The reproducibility measure used was the concordance correlation coefficient (CCC) and

dynamic range (DR). The concordance correlation coefficient (CCC) was measured for each

1RIDER. Available from: https://wiki.nci.nih.gov/display/CIP/RIDER
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feature by comparing the feature values extracted for the two sets of scans. Dynamic range

(DR) was determined by comparison of the reproducibility to the entire biological range

available for a feature. The greater the dynamic range, the more useful is a feature. The

study determined that the reproducibility criteria of CCC > 0.85 and DR > 100 produced

useful features and that 33 of the 215 3D image features met the aforementioned thresholds.

Only this reduced feature set of 33 stable image features was used in the survival analysis

study described in Section 4.5.

One of the results of the Test-Retest study was the measure of correlation amongst

features. For the subset of 33 stable image features the meeting the correlation criteria,

Pearson’s correlation between the features of the subset was measured to generate correla-

tion matrices. In order to further reduce the number of features, it can be stated intuitively

that choosing a single representative feature from a group of highly correlated features

should reduce the redundancy. The goal is to identify a set of uncorrelated features that

can be used to analyze lung tumors. This is achieved through the setting of a threshold for

Pearson’s correlation measure. Features which correlate together (have Pearson correlation

values greater than a threshold) form a group. For this work, the threshold was set to

0.8. The threshold was chosen so that the groups formed were neither too large nor too

small. Each sub-group formed consisted of features that had a higher correlation measure

with others in the group than the threshold amongst each other. The grouping was done in

such a way that if a feature appeared in two groups, it was removed from the group with a

smaller number of features.

The features with very high correlation could be represented by a single feature, sig-

nificantly reducing the number of features needed. To perform feature selection based on

correlation measure, the features under consideration were ranked based on the relief-F al-

gorithm [44] making use of the training data. The ranker algorithm assigns a rank to each

individual feature. Now, based on the groups generated, the highest ranked feature from

each group is chosen for analysis on test data. The workflow can be represented using the

schematic shown in Figure 3.2.
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3.2.4 Principal Component Analysis

Principal component analysis (PCA) is a widely used multivariate statistical technique.

PCA is useful in analyzing data tables representing observations represented by dependent

and generally inter-correlated variables. The goal of PCA is to extract the important in-

formation for the data table and express it as a set of new orthogonal variables which are

termed principal components obtained as linear combinations of the original variables. The

first principal component essentially has the largest possible variance. The second compo-

nent is restricted to be orthogonal to the first principal component and have the largest

possible variance of the remaining set. Other principal components are computed similarly.

The values for the new variables for the observation are obtained through projections of the

observations onto the principal components.

3.3 Parameter Tuning

The performance of classifiers is often governed by the choice of parameters. In this

study, parameter tuning has been restricted to the SVM classifier, since the parameters

used for the other classifier models were often standard with not much room for variation.

The parameter tuning method used in this study is grid search.

3.3.1 Grid Search

For tuning the parameters of the SVM classifiers, grid search was used. The parameters

tuned were the cost (c) and gamma (γ) parameters of the radial basis function (RBF) kernel.

The cost parameter was evaluated in the range from -5 to 15, while γ was evaluated over

the range of 10−15 to 103. The optimization of the parameters was conducted by running a

5 fold cross validation over each training fold and optimized for the highest AUC. The AUC

reported is the average of the highest AUC for each fold. Thus cost and γ parameters are

optimized over each individual fold and no specific optimal parameter for the entire model

can be reported.
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Figure 3.2: Schematic Representation of Feature Selection Using Feature Correlation

36



CHAPTER 4

EXPERIMENTS AND RESULTS

In this chapter, the implementation and results for the experiments conducted are pre-

sented. First, the data sets used for the experiments are discussed. The class distribution

and basic filtering of the data set for different experiments are presented in 4.1. Section

4.2 presents a basic overview of the method used to generate predictive models for tumor

type classification. Results and analysis of the two-class classification problem are presented

in Section 4.3 followed by the results of introducing a third tumor class and analyzing it

as a 2 class problem in Section 4.4. Section 4.5 covers the results of 2 year survival time

prediction.

4.1 Data Set

The data used here are CT-scan images from the H. Lee Moffitt Cancer Center and

Research Institute, Tampa. The images are in the DICOM (Digital Imaging and Commu-

nications in Medicine) format. The slice thickness of the acquired CT-images ranged from

3mm to 6mm. However, the pixel spacing amongst the scanned images varied greatly, as

illustrated by Figure 4.1.

CT-scans of 109 patients were used for this study. The distribution of the tumor type

is given as,

• Adenocarcinoma = 38

• Squamous-cell Carcinoma = 36

• Bronchioalveolar Carcinoma = 35
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Figure 4.1: Representation of the Variability in Pixel-Spacing over 109 CT-Scan Images

In each of the cases only one tumor was present in the lung. All patient identification

information had been removed.

For the first set of experiments concerning classification of tumor types into Adenocarci-

noma and Squamous-cell Carcinoma, as per the class distribution of available data, CT-scan

images of 74 patients were used for analysis. CT-scans of all 109 patients were utilized when

the analysis was classifying Bronchioalveolar Carcinoma from the other tumor types.

For survival time analysis, the data-set consisted of patients across three tumor tumor

types, Adenocarcinoma, Bronchioalveolar Carcinoma, Squamous-cell Carcinoma. However

for two year survival analysis, patients alive but with survival time less than 24 months

had to be removed. That reduced the size of the dataset to 95. The class distribution of

survival time in months is as follows,

• patients with survival time ≥ 24 [Class 1] = 63

• patients with survival time < 24 [Class -1] = 32
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4.2 Tumor Type Classification Outline

The basic schematic of tumor classification is that, once the tumor objects have been

identified and segmented out in the CT-scan images, rulesets are run to extract the required

feature values from the tumor objects. In the case of the 2-class problem, the features

extracted were both 2D and 3D features. While for the remaining two experiments, only

the 3D features were used. These feature values formed the mineable data upon which the

classifier models were built. For the tumor classification problem, the classifiers used were,

J-48, random forests, IB5 and SVM. These classifiers were first run without any feature

selection being applied. Then these classifiers were run along with relief-F feature selection

algorithm which reduced the feature space to 50 and 25 features. The final feature selection

method used was wrapper. These feature selection algorithms were used in combination

with classifier algorithms to generate predictive models. The results and further discussion

about the two classification problems are given in the next section.

4.3 Tumor Classification for Adenocarcinoma and Squamous-cell Carcinoma

In this section, details of the experiment concerning classification of Adenocarcinoma

and Squamous-cell Carcinoma using 2D and 3D image features is presented.

4.3.1 Experimental Outline

The feature values acquired through feature extraction formed the base set from which

the tumors were classified. For the 2D slices, a certain amount of filtering was done before

the data was evaluated. For our study as stated earlier, only a single tumor volume was

identified for each patient. Thus a segmented tumor volume was represented by 2D tumor

objects over the sequence of slices containing the tumor. Observing the segmentation of the

tumor objects we found multiple very small tumor objects, in terms of pixels. These mainly

consisted of either tumor fragments or the objects identified in slices marking the beginning

of a sequence containing the tumor. Many feature extraction algorithms fail for such tumor
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objects. Hence, during feature extraction a threshold value of 30 pixels was set for tumor

objects. This threshold was identified based on observation. From the 74 volumes a total

of 710 (Adenocarcinoma: 347; Squamous-cell Carcinoma: 363) tumor objects from 672

(Adenocarcinoma: 324; Squamous-cell Carcinoma: 348) slices were identified and features

were extracted from them. Still, there were a few tumor objects for which one or many

of the feature extraction algorithms failed. It was observed that the size in terms of area

(measured as number of pixels in the object) for which the feature extraction process failed,

varied from one volume to another. Hence a definitive area threshold eludes us at the

moment.

However, it was observed that leaving out those objects for which feature extraction

was not possible did not result in a choice of random slices within a tumor, but instead

resulted in, a contiguous sequence of slices containing tumor objects in each of the volumes.

Thus successful feature extraction was done on the dataset as follows: for 74 volumes, 675

tumor objects (Adenocarcinoma: 323; Squamous-cell Carcinoma: 352) present in 592 (Ade-

nocarcinoma: 260; Squamous-cell Carcinoma: 332) slices. More filtering of the data was

done to select only one tumor object for each slice of the CT-image sequence. This filtering

was done by choosing the largest tumor object for each slice in terms of area in pixels. By

keeping only the largest tumor object, when there are multiple objects in a single slice, the

number of tumor objects under consideration was reduced to 592 (Adenocarcinoma: 260;

Squamous-cell Carcinoma: 332) for 74 volumes. Given the small number of volumes, the

evaluation of the classifier was done by performing a ’leave-one-volume-out’ experiment.

We also performed a 10-fold cross validation experiment for two reasons. It can give a

reasonable estimate of accuracy on unseen data when there is enough data and it avoids

potential pitfalls of leave one out.

There is a complication for 2D features. Each instance in a volume represents one tu-

mor object which will be the largest tumor object in a slice (rarely there will be fragments).

The prediction for the entire volume is more important than that for each individual tumor

object. The leave-one-volume-out experiment involves training the classifier model on ex-
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amples from all but one volume and testing on the remaining volume. Since each instance

in the test set represents a tumor object for the given volume, class prediction for the entire

volume is done by means of voting, where class prediction for the majority of objects is

taken to be the tumor class. In case of ties, tie breaking was explored using two methods.

First by choosing the class of the tumor object on the (n2 +1)th slice in the sequence, where

n is the number of slices having a tumor object (i.e. the middle slice). A second method

of tie-breaking involved choosing the class of the largest tumor object for the given vol-

ume. This mode of tie-breaking was employed since it is reasonable to believe that feature

extraction from the largest tumor object for a given volume would contain the maximum

possible information. Accuracy by volume for both tie-breaking techniques will be shown.

For each of 74 folds, the training set consisted of 73 tumor volumes and the trained model

was evaluated on the one remaining volume. For 10-fold cross validation on 2D features,

using the same distribution of volumes in each fold as for 3D features, individual volumes in

a single fold were tested against data from the remaining 9 folds. The average performance

for each fold is reported.

4.3.2 Feature Merit using F-test

It is of interest to determine whether there is statistically significant improvement if 3D

features are selected over 2D features. This is done by means of performing an F-test on

results obtained from a 5x2 fold cross validation. The effectiveness of combining 5x2 fold

cross validation with the F-test has been used to compare supervised learning algorithms

[47]. The goal here is to, using the same classifier models, compare classifier accuracy using

3D features with that of 2D features.

For comparison, 5x2 fold cross validation was first run for 3D features. Then making

use of the volumes in each fold, 2D feature evaluation was done on the same 10 folds. For

this evaluation only a single tie-breaking method, choosing the class of the largest tumor

object, was employed for 2D features.
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4.3.3 Results

A leave-one-volume-out (LOVO) experiment for 2D and 3D features using classifiers

with the previously described settings was done with the results shown in Table 4.1 for 2D

features and Table 4.2 for 3D features. The results of the 10-fold cross validation for 2D

and 3D features are shown in Tables 4.3 and 4.4 respectively.

Table 4.1: Performance of Classifier Models on 2D Features Performing Leave-One-Volume-
Out (The highest accuracy for each classifier is in bold)

Classifier Feature Accuracy Accuracy Accuracy
Selection (slice) (V olume1) (V olume2)

J48

None 49.32 45.94 47.30
Relief-F (50 features) 47.63 47.30 48.65
Relief-F (25 features) 47.47 43.24 45.95

Wrapper 56.92 56.76 56.76

Random Forests
None 49.32 52.70 50.00

Relief-F (50 features) 49.48 51.35 48.64
Relief-F (25 features) 47.30 44.59 47.29

IB5

None 49.59 47.30 48.65
Relief-F (50 features) 50.82 51.35 55.41
Relief-F (25 features) 56.09 58.11 56.76

Wrapper 53.27 56.76 56.76

SVM

None 53.48 48.64 51.35
Relief-F (50 features) 52.68 52.70 54.05
Relief-F (25 features) 58.47 54.05 52.70

Wrapper 53.29 59.46 60.81

In Table 4.1, the average accuracy over slices in the 74 volumes is shown in the first col-

umn. The next two columns show the percentage of volumes that were correctly identified.

This is the result of voting among the tumor objects that constitute each tumor volume.

The fourth column shows accuracy when the tie-breaking for voting is done by choosing

the class of the (n2 + 1)th slice in the sequence, where n is the number of slices having a

tumor object. The fifth column represents accuracy when the method of tie-breaking was

done choosing the class of the largest tumor object for the given volume. In the case of

2D features, the number objects of the two classes of tumor were, Adenocarcinoma: 260

1Breaking Tie by choosing the class of the middle slice
2Breaking Tie by choosing the class of the largest tumor object
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and Squamous-cell Carcinoma: 332. However, the majority class distribution in terms of

volume was 51.35%, with Adenocarcinoma being the majority class.

Table 4.2: Performance of Classifier Models for 3D features performing Leave-One-Volume-
Out (The highest accuracy for each classifier is in bold)

Classifier Feature Accuracy
Selection (L-O-O)

J48

None 67.57

Relief-F (50 features) 60.81
Relief-F (25 features) 48.65

Wrapper (forward selection) 45.95

Random Forests
None 59.46

Relief-F (50 features) 54.05
Relief-F (25 features) 60.81

IB5

None 51.35
Relief-F (50 features) 51.35
Relief-F (25 features) 51.35

Wrapper (forward selection) 51.35

SVM

None 52.70
Relief-F (50 features) 56.76
Relief-F (25 features) 56.76

Wrapper (forward selection) 66.22

4.3.3.1 Leave One Out

In Table 4.1, when the classifiers were run without any feature selection employed, SVM

had relatively higher accuracy than the rest of the models. We see that the most accurate

classifier was SVM after wrappers feature selection at 60.81% accuracy. Feature selection

usually improved accuracy for all but random forests. There is little difference in results

from the two tie-breaking approaches.

In Table 4.2, results when performing leave one volume out with 3D features are shown.

Without any feature selection being employed, J48 achieves an accuracy of 67.57%. With

an accuracy of 66.22%, SVM has the next highest accuracy using wrapper feature selection.

Feature selection improved the accuracy of SVM, but resulted in performance degradation

for J48. Random forests, achieved its highest accuracy of 60.81% with relief-F feature

selection using a subset of 25 features. IB5 achieves the same accuracy of 51.35% in each
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case, even though the misclassification of the minority class was observed to improve with

feature selection.

Table 4.3: Performance of Classifier Models on 2D Features Performing 10-Fold Cross
Validation (The highest accuracy for each classifier is in bold)

Classifier Feature Accuracy Accuracy
Selection (V olume1) (V olume2)

J48

None 52.70 48.65
Relief-F (50 features) 45.95 47.30
Relief-F (25 features) 47.30 48.65

Wrapper 47.30 49.32

Random Forests
None 49.32 48.65

Relief-F (50 features) 60.81 62.16

Relief-F (25 features) 55.41 56.76

IB5

None 54.05 56.76
Relief-F (50 features) 49.32 52.70
Relief-F (25 features) 56.76 56.76

Wrapper 59.46 58.11

SVM

None 56.76 56.76
Relief-F (50 features) 47.30 49.32
Relief-F (25 features) 45.95 48.64

Wrapper 49.32 48.64

4.3.3.2 10-Fold Cross Validation

The 10-fold cross validation result is shown for 2D features in Table 4.3 and for 3D

features in Table 4.4. In Table 4.3, without feature selection being applied, SVM had the

best result with an accuracy of 56.76%. Also, apart from IB5 all other classifier models

had fairly low accuracy on reduction of the feature pool from 50 to 25 with relief-F feature

selection. The highest accuracy of 62.16% was achieved with random forests with 50 features

selected using relief-F feature selection.

In Table 4.4 the 3D 10-fold CV results are reasonably consistent with the evaluation

for Leave One Out, with J-48 having the highest accuracy of 67.57%. Running classifiers

without feature selection seems to yield better accuracy in case of J48 and IB5, while feature

selection improves performance for random forest and SVM.

1Breaking Tie by choosing the class of the middle slice
2Breaking Tie by choosing the class of the largest tumor object
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Using the relief-F feature selection method to reduce the feature set to 50 features

reduced accuracy for J48 (around 6% less accuracy) but improved performance on SVM

(around 7% greater accuracy). It had no effect on the performance of random forests, while

for IB5 accuracy was vastly reduced (over 12% less accuracy) to 50%. When the feature set

was further reduced to 25 features using relief-F some increase in accuracy was obtained for

random forest, while all other classifiers had lower accuracy. Wrapper forward selection did

not have much of an effect in improving accuracy of the classifiers, except for SVM, which

achieved accuracy of 62.16% using this feature selection method.

Table 4.5 shows percentage accuracy from performing a 5x2 fold cross validation on

classifiers using 2D features, with the difference in accuracy of 3D features given within

parentheses. The results indicate that using 2D features provides higher average accuracy

over 3D features except for four instances, that have been highlighted in the table. Table

4.6 shows the result of performing an F-test on results of the 5x2 cross validation on each

classifier model, using 3D and 2D features respectively. An F-measure over 4.7351 indicates

statistical significance over 95%. This level was not reached. In the cases where the 2D

feature based classifiers had a higher F-value like J48 and wrappers, the overall accuracy is

less than achieved with J48 and 3D features (albeit with no feature selection).

4.4 Tumor Classification involving Bronchioalveolar Carcinoma

The results from the experiments in Section 4.3.3 indicated that using 3D image fea-

tures yielded performance on par if not better than 2D features all the while being much

easier to use. Next, to extend the work, a tumor type different to Adenocarcinoma and

Squamous-cell Carcinoma was introduced. Bronchioalveolar Carcinoma, though a sub class

of Adenocarcinoma, differs significantly in terms of structure and malignancy compared

to other Adenocarcinoma subtypes [48]. Hence, it can be considered a separate class for

classification.
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Table 4.4: Performance of Classifier Models for 3D Features Performing 10-Fold Cross
Validation. (The highest accuracy for each classifier is in bold)

Classifier Feature Accuracy
Selection (10-fold CV)

J48

None 67.57

Relief-F (50 features) 60.81
Relief-F (25 features) 52.70

Wrapper (forward selection) 55.41

Random Forests
None 55.41

Relief-F (50 features) 55.41
Relief-F (25 features) 58.11

IB5

None 62.16
Relief-F (50 features) 50.00
Relief-F (25 features) 54.05

Wrapper (forward selection) 45.96

SVM

None 55.41
Relief-F (50 features) 60.81
Relief-F (25 features) 58.11

Wrapper (forward selection) 62.16

4.4.1 Evaluating 3-class Problem as 2-class Problem

In the previous section, Section 4.3.3, experiments on Adenocarcinoma and Squamous-

cell Carcinoma yielded classifiers that could be improved for greater accuracy. It has been

hypothesized that Bronchioalveolar Carcinoma (BAC) is substantially different from other

classes of Non-small Cell Lung Cancer (NSCLC) classes. Hence a 2 class problem was cre-

ated, where an attempt was made to tell BAC (35 volumes) apart from the other two classes

(74 volumes). To treat this as a two-class problem, misclassification amongst Adenocarci-

noma and Squamous-cell Carcinoma was ignored.

4.4.2 Experimental Outline

The experiment conducted was similar to that done with 2 tumor types. Since BAC is

the tumor type of interest in this study and a significantly smaller class, apart from general

accuracy, recall on BAC is also considered. Recall can be expressed as follows,

Recall = true positive
true positive+true negative
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Table 4.5: Performance of Classifier Models Performing 5x2 Fold Cross Validation for 2D
Features. Difference for 3D features given within parentheses. (The case where 3D features
perform better has been highlighted)

Classifier Feature Accuracy
Selection (10-fold CV)

J48

None 53.11 (-6.35)
Relief-F (50 features) 51.75 (-0.14)
Relief-F (25 features) 52.57 (-0.13)

Wrapper (forward selection) 53.92 (+3.16)

Random Forests
None 52.84 (+3.92)

Relief-F (50 features) 52.30 (+1.76)
Relief-F (25 features) 52.57 (+0.95)

IB5

None 52.16 (+3.51)
Relief-F (50 features) 51.75 (+4.45)
Relief-F (25 features) 50.00 (+1.90)

Wrapper (forward selection) 53.65 (+5.26)

SVM

None 53.11 (-0.94)
Relief-F (50 features) 52.30 (+2.50)
Relief-F (25 features) 49.73 (+0.81)

Wrapper (forward selection) 50.00 (+1.61)

Table 4.6: F-test on 5x2 Cross Validation Results Between 2D Features and 3D Features.

Classifier None Relief-F Relief-F Wrapper
(50 features) (25 features)

J-48 3.89 2.43 3.79 3.18

Random Forests 3.25 2.43 2.08 X

IB5 2.43 2.20 1.73 2.63

SVM 1.53 3.26 3.21 3.44

4.4.3 Results

The results of performing classification to identify BAC from the other two tumor classes

is provided in this section. First we analyze the performance on classifiers in a 10-fold cross

validation. Then in the next subsection, the effectiveness of introducing a correlation based

feature selection procedure is evaluated.

4.4.3.1 10-Fold Cross Validation

Table 4.7, lists the results for the classifier models using the image features described

earlier.
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Table 4.7: Performance of Classifier Models Performing 10-Fold Cross Validation for the
BAC Study (The highest accuracy and the highest recall % on Bronchioalveolar carcinoma
for each classifier is in bold)

Classifier Feature Accuracy Recall On
Selection (10-fold CV) BAC

J48

None 69.37 54.00
Relief-F (50 features) 65.57 54.00
Relief-F (25 features) 69.37 51.00

Wrapper 70.27 63.00

Random Forests
None 70.27 63.00

Relief-F (50 features) 74.77 71.00
Relief-F (25 features) 72.97 63.00

IB5

None 65.77 23.00
Relief-F (50 features) 65.77 29.00
Relief-F (25 features) 69.34 40.00

Wrapper 74.77 51.00

SVM

None 71.17 66.00
Relief-F (50 features) 76.58 66.00
Relief-F (25 features) 71.17 63.00

Wrapper 71.17 74.00

J-48 with wrapper feature selection yields the best result for decision tree. Random

forests performs better for some feature selection criteria. IB5 produces relatively high

accuracy, but very low recall on BAC. SVM without feature selection has highest accuracy,

though when used along with wrapper has the highest recall measure for BAC.

4.4.3.2 Feature Selection using Concordance Correlation Coefficient

Given the large feature space it is important to find a suitable feature selection method.

The relief-F and wrapper feature selection techniques have been shown to allow for some

improvement but their performance has not been consistent. Feature correlations, specifi-

cally, the concordance correlation coefficient (CCC) measure can be used. CCC is useful in

finding the reproducibility amongst features. For feature selection, the CCC value for each

pair of 3D features was measured. The hypothesis is that high CCC values indicate features

that are highly correlated and hence one feature from each such group can be selected. The

CCC Heat Map of 3D features on 109 volumes in Fig 4.2 helps visualize the correlation
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amongst features. Features are grouped into those having CCC ≥ 0.85 amongst each other.

There is no overlap of features in a group. Feature selection is done by randomly selecting

one feature from each of the groups. Thus selecting one random feature from each group

gives 98 image features. The classifier performance based on those features is shown in Ta-

ble 4.8. Random forests without feature selection achieves highest accuracy along with the

joint highest recall on BAC. IB5 similar to previous results struggles to accurately classify

BAC.

Figure 4.2: Gray-Level Heatmap Representing Concordance Correlation Amongst 3D Image
Features Obtained Over 109 Volumes

4.5 Survival Time Prediction

In this section, the study involving 2 year survival time prediction of 95 patients is pre-

sented. The experimental outline details 10-fold cross validation and 90-10 split experiment

setups. The significance test used for the study is described next, followed by the results.
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Table 4.8: Performance of Classifier Models, Using 98 Features, Performing 10-Fold Cross
Validation for the BAC Study (The highest accuracy and the Highest Recall % on Bron-
chioalveolar Carcinoma for each classifier is in bold)

Classifier Feature Accuracy Recall On
Selection (10-fold CV) BAC

J48

None 73.87 60.00
Relief-F (50 features) 72.07 57.00
Relief-F (25 features) 71.17 57.00

Wrapper 70.27 63.00

Random Forests
None 77.48 74.00

Relief-F (50 features) 72.07 71.00
Relief-F (25 features) 65.77 51.00

IB5

None 76.58 51.00
Relief-F (50 features) 74.77 54.00
Relief-F (25 features) 71.17 40.00

Wrapper 74.77 51.00

SVM

None 71.17 63.00
Relief-F (50 features) 75.68 66.00
Relief-F (25 features) 70.27 57.00

Wrapper 71.17 74.00

4.5.1 Experimental Outline

Our experiments are designed to evaluate the effectiveness of image features and clinical

features in predicting two year survival. As stated earlier, the effectiveness is measured in

terms of the AUC. The experiments were conducted using two approaches. First, a 10-fold

cross validation (CV) was conducted on the data using the predictive model. The next

set of experiments involved a random 90%-10% split of training to test (90-10 split) data

repeated over 100 iterations. The intuition behind conducting 100 iterations of the 90-10

split was to test the stability of the predictive models on data.

The predictive models were built based on support vector machine, naive Bayes and

decision tree classifiers. The evaluation was first done exclusively using image features,

followed by introduction of clinical features.

For the predictive model using image features, a novel feature selection approach was

evaluated which involved the use of an analysis of feature correlation measured during

the Test-Retest analysis, as introduced in Section 3.2.3. Feature selection using principal
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component analysis (PCA) was applied to the stable features for both exclusively image

features and a combination of image and clinical features. Parameter tuning for SVMs

was conducted using grid search where the performance was optimized over the cost and γ

parameters. The experiments conducted are described in detail in this section.

As discussed earlier in Section 3.2.3, the Test-Retest study on the RIDER dataset,

helped reduce the feature space. Using a stricter reproducibility criteria of Concordance

Correlation Coefficient (CCC) > 0.85; Dynamic Range (DR) > 100, only 33 features

were available for analysis. The available features were then grouped according to their

correlation measure. A visual representation of the feature correlation is shown in Figure

4.3 by means of a heatmap. The lighter shade represents high correlation. For the 33 image

feature, the grouping was as follows,

• 8 features which were uncorrelated to the other features

• 4 features forming two separate highly correlated pairs.

• 4 features forming a single highly correlated group.

• 8 features forming a single highly correlated group.

• 9 features forming a single highly correlated group.

The 33 features and the groups to which they belong are shown in Table 4.9. Thus 13

groups of features were identified which were highly correlated within their individual group

but had low correlation among elements of different groups.

To analyze whether the choice of the highest ranked feature from each highly correlated

group was an effective technique, an experiment was also conducted by choosing a random

feature from each of the 13 resultant groups. Since the feature being selected was repeated

for each fold, the random selection of the features from each of the group was done 10 times

to get an average for each fold.

PCA, as described in Section 3.2.4, was conducted on the entire data for the two feature

sets, image features and the combination of image and clinical features. The number of
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Figure 4.3: Gray-Level Heatmap Representing Pearson’s Correlation Amongst Image Fea-
tures Obtained Through Test-Retest Analysis on RIDER Data Set

principal components to be chosen is determined by the following observations. Figure 4.4

represents the eigenvalue curve for the dataset involving two feature sets. In each case, a

drop in eigenvalues around the 10 principal components mark and the eigenvalues of the

principal components beyond 15 are almost negligible. Also, Figure 4.5(a) and Figure 4.5(b)

represent the variance covered by the principal Components in either case. Based on the

two observations, 10 and 15 principal Components were chosen to be used in developing

predictive models.

4.5.2 Results

In this section, the results from the experiments conducted are explained in detail. The

results are presented in two sections as the experiments were conducted. First presented is

the discussion of the results of the 10-fold cross validation followed by result from the 90-10

split.

4.5.2.1 10-Fold Cross Validation

The results from conducting a 10-fold cross validation using the predictive models de-

veloped are shown in Table 4.10. The first set of results represent the performance of

models built using just image features. The results indicate that a predictive model built

on image features using a support vector machine yields an average AUC of 0.67 thus out-
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Table 4.9: Features Meeting Reproducibility Criteria: CCC > 0.85 and DR > 100 (Grouped
based on Pearson’s Correlation > 0.80)

Number of Number of Features
Features in a Group Groups

1 8

Mean [HU]
Density

Rectangular Fit
Relative Border To Lung

Relative Border To Pleural Wall
Ratio Free To Attached

Av Volume Air Spaces [mm3]
Laws Feature S5W5L5

2 2
Volume [cm3], Area [mm2]

Laws Feature W5E5S5, Laws Feature W5S5S5

3 0
·
·

4 1
Avg. GLN, Avg. RLN, Avg. RP,

Avg. Coocurrence-contrast

· · ·
· · ·
· · ·

8 1

Laws Feature E5E5E5, Laws Feature E5S5E5,
Laws Feature E5W5E5, Laws Feature L5W5S5,
Laws Feature S5E5W5, Laws Feature S5R5W5,
Laws Feature S5S5E5, Laws Feature S5W5E5

9 1

Avg. Dist. COG To Border [mm], Length (Pxl),
Max Dist. COG To Border [mm], Thickness (Pxl),

Volume (Pxl),Width (Pxl), Compactness,
Longest Diameter [mm], Short Axis [mm]

performing both naive Bayes and decision tree which generated average AUC of 0.61 and

0.63 respectively. The feature selection technique proposed based on correlation does not

show improvement over the use of all the features in building the model. However, the

method of choosing the highest ranked feature from a group of highly correlated features

gives slightly improved performance over selecting random features from each group. This is

true for models developed using all the three classifiers. Implementing principal component

analysis for reduction of the feature space results in a slight improvement with AUC being

0.68. But, increasing the number of principal components from 10 to 15 does not further
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Figure 4.4: Eigvenvalue Plot for PCA

improve the performance of SVM and decision trees, but shows significant improvement in

the case of naive Bayes. SVM with an AUC of 0.68 is the highest.

The introduction of clinical features to the feature space has little effect on the average

AUC of the predictive models. Using all the features, the AUC remains the same at 0.67 for

SVM but improves slightly for naive Bayes and decision tree. The results show similar im-

provement as shown for only image features after performing principal component analysis.

The highest average AUC from a 10-fold CV remains 0.68 for a SVM.

4.5.2.2 90-10 Split

Table 4.11 represents the results from conducting 100 iterations of a random 90%-10%

split on the data and averaging the results. As discussed in the case of 10-fold CV, the

first set of experiments involved only image features, followed by the combination of image

and clinical features. The average AUC achieved using all 33 image features was 0.66 for

SVM. Decision tree comes in next with an AUC of 0.63 followed by naive Bayes at 0.62.

Unlike in the case of 10-fold CV, feature selection through correlation using feature ranking

did not result in a lower AUC for SVM, however, when random features were selected, the
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(a) Image Features (b) Image and Clinical Features

Figure 4.5: Variance Covered by Principal Components

AUC went down to 0.65. Naive Bayes and decision tree showed a noticeable decrease in the

AUC when subject to feature selection using correlation. PCA as in the previous case of

10-fold CV resulted in improved performance for SVM and naive Bayes, but not for decision

tree. However with an AUC of 0.68 with no variation in regards to the number of principal

components, SVM again was the better performing classifier.

For the 90%-10% split, the AUC for using all 39 features was 0.67 for SVM, 0.62 for

naive Bayes and 0.64 for decision tree. Unlike previous instances, a SVM model built on 10

principal components failed to show any improvement over using the entire feature space.

However, there was comparatively improved performance on introduction of 15 principal

components with average AUC of 0.69 in the case of SVM. This was the highest measured

AUC for this study. Decision tree shows a slight drop in performance on using 10 PCs but

then improves to 0.64 on selecting 15 PCs.

4.5.2.3 Significance Test

The resultant average AUC for 100 random splits for the different classifier models,

as shown in Table 4.11 do not vary a large amount. Thus to test whether the difference

in performance of each classifier model is statistically significant, Wilcoxon’s Signed Rank

Test [49] was performed. The signed rank test is a paired, two-sided test based on the
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observations for two samples. In this case two classifier models form the sample pair, while

the AUC in each of fold of the 100 random 90-10 split form the observations. The signed

rank test starts by measuring the difference between the observations for a pair of samples.

The differences were ranked without regard to the sign of the difference. All zero differences

were ignored. The original sign of the difference was then affixed to the rank numbers. All

pairs with equal absolute differences (ties) were assigned the same rank. This was done

by ranking them with the mean of the rank numbers that would have been assigned if

they would have been different. The sum of all the positive ranks (W+), the sum of all

the negative ranks (W−) and the total number of pairs (N) were determined. The level

of significance was calculated by dividing the number of all distributions of signs over the

ranks. These values were tabulated and the level of significance can be looked up. For

large values of N, (N ≥ 15), significance Z is considered to have an approximately standard

normal distribution with W , the larger of W+ and W−. It is calculated as,

Z = (W−0.5−N∗(N+1)/4)√
(N∗(N+1)∗(2∗N+1)/24

In this case a test hypothesis was also defined, that the difference between the matched

samples in the paired samples comes from a distribution, symmetric about its median.

For each pair of classifier models compared, a test is conducted to test whether the null

hypothesis (”median is zero”) can be rejected at the 5% level.

The test for statistical significance was carried out between the model with the best

average AUC (M1), and the two models which were tied for the next highest average AUC

(M2 and M3). The first model, M1, being SVM built on image and clinical features, using

15 principal components. The other two, M2 and M3, being SVM built on exclusively image

features, using 15 and 10 principal components respectively. The results are presented in

Table 4.12. In the table, the test for rejection of null hypothesis is represented by 0 and 1.

In case of successful rejection of the null hypothesis at the 5% level, H = 1, while a failure

at rejecting null hypothesis is represented by H = 0.

The results indicate, that the null hypothesis is rejected when comparing 100 random

runs of the model with the highest average AUC with the models with the next highest
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average AUC. Thus, even though the difference in the average AUC between the models is

not very high, there is significant statistical difference between them. Models, M2 and M3,

when compared fail to reject the null hypothesis. Observing the signed ranks of the three

comparisons also shed light on the fact M1 outperforms M2 and M3 at different folds of

the 100 runs, generating higher rankings.
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Table 4.10: AUC for 10-Fold Cross Validation

Feature Set Classifier Feature Selection
(Feature Space)

Parameter
Tuning

Average
AUC

Image

SVM

None (33 features)

Grid Search

0.67
Feature Correlation
Random (13 features)

0.65

Feature Correlation
Ranked (13 features)

0.66

PCA (10 PCs) 0.68
PCA (15 PCs) 0.68

Naive Bayes

None (33 features)

None

0.61
Feature Correlation
Random (13 features)

0.58

Feature Correlation
Ranked (13 features)

0.60

PCA (10 PCs) 0.63
PCA (15 PCs) 0.66

Decision Tree

None (33 features)

None

0.63
Feature Correlation
Random (13 features)

0.60

Feature Correlation
Ranked (13 features)

0.61

PCA (10 PCs) 0.63
PCA (15 PCs) 0.63

Image + Clinical

SVM
None (39 features)

Grid Search
0.67

PCA (10 PCs) 0.68
PCA (15 PCs) 0.68

Naive Bayes
None (39 features)

None
0.63

PCA (10 PCs) 0.66
PCA (15 PCs) 0.66

Decision Tree
None (39 features)

None
0.63

PCA (10 PCs) 0.64
PCA (15 PCs) 0.62
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Table 4.11: Average AUC over 100 Iterations of Random 90-10 Splits

Feature Set Classifier Feature Selection
(Feature Space)

Parameter
Tuning

Average
AUC

Image

SVM

None (33 features)

Grid Search

0.66
Feature Correlation
Random (13 features)

0.65

Feature Correlation
Ranked (13 features)

0.66

PCA (10 PCs) 0.68
PCA (15 PCs) 0.68

Naive Bayes

None (33 features)

None

0.62
Feature Correlation
Random (13 features)

0.61

Feature Correlation
Ranked (13 features)

0.60

PCA (10 PCs) 0.65
PCA (15 PCs) 0.66

Decision Tree

None (33 features)

None

0.63
Feature Correlation
Random (13 features)

0.58

Feature Correlation
Ranked (13 features)

0.60

PCA (10 PCs) 0.62
PCA (15 PCs) 0.62

Image + Clinical

SVM
None (39 features)

Grid Search
0.67

PCA (10 PCs) 0.67
PCA (15 PCs) 0.69

Naive Bayes
None (39 features)

None
0.62

PCA (10 PCs) 0.64
PCA (15 PCs) 0.66

Decision Tree
None (39 features)

None
0.64

PCA (10 PCs) 0.63
PCA (15 PCs) 0.64

Table 4.12: Wilcoxon’s Signed Rank Test on Top 3 Classifier Models

Classifier 1 Classifier 1 W+ W- W N Z p ≤ H

M1 M2 1906.50 -109.50 1797 63 6.15 7.89e-10 1

M1 M3 2535 -93 2442 72 6.85 7.48e-12 1

M2 M3 283 -663.50 -380 63 2.288 0.02213 0
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CHAPTER 5

SUMMARY AND DISCUSSION

In this chapter a summary of the observations made and the conclusions drawn from

the experiments performed in course of the study is presented. A short discussion regarding

future work is provided at the end.

5.1 Result Summary

To begin summarizing the study, first we discuss the experiments conducted to classify

lung tumors into Adenocarcinoma and Squamous-cell Carcinoma. The feature selection

approaches applied here were often ineffective for 3D features. It is likely that not all

features are needed and some selection seems likely to improve the process. There was some

improvement with 2D features. For support vector machines, finding the right parameter

combination is essential, but our one attempt with 2D features showed no performance

difference. Even though the number of 2D and 3D features is large, they are by no means

exhaustive. While there are other features that might be of use, we believe this work

generally covers the types of features needed to discriminate among lung tumor classes.

Clinical features like tumor location within the lung and others can be taken into account

along with image features to help uniquely identify tumors.

In the first set of experiments we tried two different simple approaches to feature selec-

tion, and both have advantages and disadvantages. Relief-F ignores feature dependencies,

but runs very fast. Relief-F was relatively ineffective in choosing a good set of features for

this data. Wrappers model feature dependencies, however they run the risk of over fitting.

The wrapper forward selection approach was better in selecting features, but the stopping
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criterion stops it too early, we believe. We can use backward best first search, but search

time then becomes a very significant cost.

Tumors are certainly 3D, but feature selection could potentially improve performance

in 2D. On the other hand, there are no ties to be broken with 3D features unlike the

case where different slices of a tumor may be classified into separate classes. The most

accurate classifiers often used 3D features. Feature selection improved accuracy more for

2D classifiers than 3D, however, it usually did not improve accuracy above that obtained

by using all 3D features. There is no clear advantage in accuracy between 2D and 3D

features, but 3D simplify classifier construction. Since a vast range of image features have

been investigated here, it may be hypothesized that the two classes of tumors chosen for

classification may require some specialized image features not developed here.

The attempt at classifying Bronchioalveolar Carcinoma against other NSCLC tumor

types was somewhat successful but the significance of that result can be doubted. The

attempt at using concordance correlation coefficient as a feature selection method, resulted

in somewhat improved performance by the classifier models.

Introducing the reproducibility criteria for features over an independent data set like

RIDER does help reduce the feature set and promises some stability in the features that

makes the cut. The results indicate that the different models evaluated, though not varying

by a large degree, are statistically significantly different from each other. In terms of per-

formance, the support vector machine has consistently outperformed both decision tree and

naive Bayes classifiers. It can also be inferred that applying principal component analysis

on the feature space does improve the performance of the predictive model. The conditions

of reproducibility of features seem to have restricted the performance of the models derived

from them to a local maxima that would require other pertinent features to increase the

AUC. The clinical features considered are just two, gender and tumor location. The effec-

tiveness of adding other clinical feature is something to be evaluated. But unavailability

of complete clinical data for patients for whom images are acquired is often a roadblock in

this form of analysis. And finally the variability of the imaging parameters as documented
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previously is a major hurdle when developing predictive models on predominantly image

features. We note that the AUC here is approximately the same as in another study that

had a homogeneous set of images in terms of slice thickness and field of view.

5.2 Future Work

Over the course of this work, one thing that has consistently been a sticking point is the

lack of uniformity in the data. Given the fact that there was not much previous work to

compare or build upon, the presence of a standardized data set as bench-mark would be of

immense help. Apart from that, when working with a substantially large feature space, the

amount of patient data should also be increased. Since a large image feature space and wide

range of feature selection tools have been examined it may be that the the focus should go

towards identifying features beyond the image domain.
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