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ABSTRACT

The reservoir operational decision rule is an equation that can balance reservoir system parameters

in each period by considering previous experiences of the system. That equation includes variables

such as inflow, volume storage and released water from the reservoir that are commonly related to

each other by some constant coefficients in predefined linear and nonlinear patterns. Although

optimization tools have been extensively applied to develop an optimal operational decision rule,

only optimal constant coefficients have been derived and the operational patterns are assumed to be

fixed in that operational rule curve. Genetic programming (GP) is an evolutionary algorithm (EA),

based on genetic algorithm (GA), which is capable of calculating an operational rule curve by

considering optimal operational undefined patterns. In this paper, GP is used to extract optimal

operational decision rules in two case studies by meeting downstream water demands and

hydropower energy generation. The extracted rules are compared with common linear and nonlinear

decision rules, LDR and NLDR, determined by a software package for interactive general optimization

(LINGO) and GA. The GP rule improves the objective functions in the training and testing data sets by

2.48 and 8.53%, respectively, compared to the best rule by LINGO and GA in supplying downstream

demand. Similarly, the hydropower energy generation improves by 48.03 and 44.21% in the training

and testing data sets, respectively. Results show that the obtained objective function value is

enhanced significantly for both the training and testing data using GP. They also indicate that the

proposed rule, based on GP, is effective in determining optimal rule curves for reservoirs.
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INTRODUCTION

Reservoirs are important structures that can store and

release water based on decisions made by operators of the

system. Those decisions directly affect the purpose of the

operation, such as supplying downstream demands, generat-

ing hydropower energy and controlling floods. Prior

experience helps the operator to make an appropriate

decision to calculate how much (amount) and when (time)

to release water from the reservoir.

In recent decades, different types of rules have been

widely used to extract operational policies from long-term

operational experiences. Linear decision rules (LDRs), stan-

dard operation policy (SOP), hedging rules (HRs) and

nonlinear decision rules (NLDRs) are common rules that

use linear and nonlinear equations to identify operation pol-

icies. There are simulation and optimization techniques that

can be used to extract operation policies. Software packages

that can simulate reservoir conditions are used to extract

operation policies. Although less precise than software

packages, trial-and-error can be used to determine opti-

mal/near-optimal solutions. While it is possible to

calculate optimal/near-optimal solutions by trial-and-error,

the probability of success is directly related to the number

of times one executes trial-and-error calculations, which

can be time-consuming. Thus, use of an optimization

method together with a simulation model is recommended

to determine optimal reservoir operation policies. Linear
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programming (LP) and nonlinear programming (NLP) are

two general optimization techniques that can be used to cal-

culate optimal solutions (Fallah-Mehdipour et al. ) by

using software packages such as LINGO and a general alge-

braic modeling system (GAMS). However, those software

packages are sometimes not capable of calculating an opti-

mal solution in complex problems with a large number of

decision variables and linear and nonlinear constraints

(e.g. Bozorg Haddad et al. a, b). In recent years, evol-

utionary algorithms (EAs) have been used as optimization

tools in the determination of optimal solutions in complex

problems. Although the use of those algorithms does not

guarantee a global optimal solution, EAs are good candi-

dates to determine optimal/near-optimal solutions.

Various EAs have been extensively used to solve reservoir

operation problems, especially in the determination of an

operational decision rule. Genetic algorithm (GA) is a

random-based algorithm that searches the decision space by

using techniques inspired by natural evolution. First used by

Goldberg (), GA has been extensively applied in science

and engineering. In the water resources field, GA with its

modifications have been used in reservoir operation by Oli-

veira & Loucks (), Wardlaw & Sharif (), Sharif &

Wardlaw (), Cai et al. (), Chang & Chang (),

Reis et al. () and Chang et al. (a, b). In all the afore-

mentioned investigations, the decision variables are

numerical values. In those studies, formulation of operational

decision rules have been assigned and their coefficients deter-

mined by GA. For instance, released water from a reservoir is

related by linear or nonlinear equations to water storage and

inflow at each period of reservoir operation. Although the

coefficients of operational rule curves are optimized by GA,

the operational patterns are dictated to the system.

Genetic programming (GP) is one of the EAs based on

GA, in which mathematical operators and functions are

added to the numerical values as decision variables. Thus,

GP is capable of presenting a mathematical equation as a

result, which involves different variables. This equation has

been applied in many water resource problems to estimate or

predict a variable which is directly/indirectly dependent on

the other variable(s). Savic et al. () applied GP to flow pre-

diction for the Kirkton catchment in Scotland. The results

obtained were compared to optimally calibrated conceptual

models and an artificial neural network (ANN). Results

showed that data-driven approaches (GP and ANN) gave

acceptable predicted values, considering the relative size of

the models and the number of variables included. Khu et al.

() used GP to forecast runoff for the Orgeval catchment

in France. GP functions as an error-updating procedure com-

plemented the rainfall–runoff model, MIKE11/NAM. Results

indicated that the proposed methodology was able to forecast

accurate storm events for different updating intervals. Rabunal

et al. () determined the unit hydrograph of a typical urban

basin using GP and ANN. Results showed that there is no con-

siderable difference between a hydrograph of a conceptual

model and one resulting from GP and ANN. Sivapragasam

et al. () applied GP for flood routing in natural channels.

Results showed that hydrograph peaks are accurately pre-

dicted and there is no time lag in the occurrence of the peak,

unlike with the nonlinear Muskingum model. Guven &

Gunal () used GP for prediction of local scour down-

stream of hydraulic structures. The GP-based formulation

results were compared with experimental results and other

equations and were found to be more accurate. By using GP,

Sivapragasam et al. () modeled evaporation–seepage

losses for reservoir water balance in semi-arid regions. Results

of GP and Penman’s model for both evaporation loss esti-

mation and reservoir scheduling were compared. While GP

and Penman’s combination model performed equally well

for estimating evaporation losses, GP was also able to model

seepage losses (or other losses from a reservoir) to a much

better degree. Kisi & Guven () used linear GP (LGP) to

estimate evaporation using data from three climatology

stations in California. They compared results of the LGP

with ANN and support vector machine (SVR), with the LGP

showing to be a superior alternative to the SVRandANN tech-

niques. Guven & Kisi () successfully used LGP for the

estimation of suspended sediment yield in natural rivers. Izadi-

far & Elshorbagy () employed GP, ANN and statistical

regression models to estimate actual evapotranspiration

using meteorological variables. Results showed that GP and

regression models performed better than ANN in the esti-

mation of actual evapotranspiration.

In this paper, reservoir operational LDR and NLDR are

developed using LINGO as LP and NLP solvers and GA.

The applied rules have a specific linear and nonlinear form

which can affect the efficiency of the operation of a reservoir

system by applying the high-order equations. To compare the
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capability of these tools to determine reservoir operational

rules with an optimization technique, GP is then used to

extract a decision rule for the operation of a reservoir

system supplying downstream demands and generating

hydropower energy in two case studies. Results show the effi-

ciency of the GP rule compared to those of LINGO and GA

by applying traditional rules with a specified pattern.

RESERVOIR SYSTEM SIMULATION

Reservoirs are artificial lakes to balance the flow in highly

managed systems, taking in water during high flows and

releasing it during low flows. This system operates for sev-

eral purposes, such as supplying downstream demands,

generating hydropower energy and flood control. There

are several investigations in the short, long and integrating

short and long term (e.g. Batista Celeste et al. ) reservoir

operation without considering any operational decision

rules. In these studies, the main variable which is commonly

identified as the decision variable is released water. Oper-

ational decision rules help the operator to calculate the

value of release in each period of operation. To determine

an operational rule, a general mathematical equation is

usually presented in the model equations:

Rt ¼ f St, Qtð Þ (1)

in which Rt¼ release from the reservoir at period t; St¼ sto-

rage volume of the reservoir at the beginning of the tth

period; Qt¼ inflow to the reservoir during period t; and

f¼ linear or nonlinear function for transferring storage

volume and inflow to the released water from the reservoir.

The common pattern of Equation (1), which is a linear

decision rule, is identified as (e.g. Mousavi et al. ;

Bozorg Haddad et al. a)

Rt ¼ a ×Qt þ b × St þ c (2)

In Equation (2), a linear pattern is assumed for reservoir oper-

ation and the coefficient values (decision variables) are

calculated. Thus, it may be possible to determine a more

effective decision rule compared to those extracted by

Equation (2).

In this paper, a reservoir operational rule curve without

any assumed pattern will be extracted by GP and compared

with commonly used LDR and NLDR by LINGO and GA.

Thus, all the variables, mathematical operators and coeffi-

cient values comprise the decision variables. Because the

GP-developed rule is not bounded by a predefined set of

rules, GP is capable of yielding more flexible rules which

may help the operators to meet more targets. The capability

of the methodology will be tested by applying it to two reser-

voir systems with two purposes: supplying downstream

demands and generating hydropower energy. The capability

of the methodology in generating GP decision rules in

convex and non-convex problems is discussed.

Supplying downstream demand purpose

For the purpose of meeting downstream demand, the objec-

tive function is considered to be the minimization of the

total squared deviation of the released water:

Min: Z1 ¼
X

T

t¼1

Rt �Dt

Dt

� �2

(3)

in which Z1¼ objective function of the supplying down-

stream demand purpose; T¼ number of operating periods;

and Dt¼ downstream demand of reservoir at period t.

The main equation in the reservoir operation is the con-

tinuity equation:

Stþ1 ¼ St þQt � Rt � SPt � Losst (4)

in which Stþ1¼ storage volume of the reservoir at the begin-

ning of the (tþ 1)th period; SPt¼ volume of spilled water

from reservoir at period t; and Lossi¼ volume of water

lost from the reservoir at period t.

The model’s formulation is constrained by the following

relations:

Losst ¼ F1 Evt, At

� �

(5)

At ¼ At þAtþ1ð Þ=2 (6)

At ¼ F2 Stð Þ (7)
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RMin � Rt � RMax (8)

SMin � St � SMax (9)

where F1 ¼ function for calculating volume of lost water con-

sidering evaporation rate; Evt ¼ evaporation depth at period

t; At ¼ average surface at period t; At ¼water surface at the

start of period t; F2 ¼ linear function for transferring storage

volume to water surface; RMin, RMax ¼minimum and maxi-

mum allowable capacity for release from reservoir; and

SMax, SMax ¼minimum and maximum storage of reservoir.

Generating hydropower energy purpose

The objective of the generating hydropower energy purpose

is to make the power generation as close to the installed

capacity as possible. Mathematically, the objective function

may be written as

Min: Z2 ¼
X

T

t¼1

1� Pt

PPC

� �

(10)

in which Z2 ¼ objective function of the generating hydro-

power energy purpose; Pt ¼ generated power during period

t; and PPC¼ installed capacity of the power plant.

For hydropower energy generation, Equations (11)–(15)

are added to the optimization:

Pt ¼ F3 γ, e, RPt, PF, Ht, TWt

� �

(11)

Ht ¼ Ht þHtþ1ð Þ=2 (12)

Ht ¼ F4 Stð Þ3
h i

(13)

TWt ¼ F5 Rt

� �3
h i

(14)

RPSt ¼ Rt � RPt (15)

in which F3 ¼ function of hydropower energy generated; γ ¼
specific weight of water; e¼ efficiency of the power plant;

RPt ¼ release from power plant for generated power of the

reservoir at period t; PF¼ plant factor; Ht ¼ average head

of the reservoir during period t; Ht, Htþ1 ¼water elevation

at the start of period t and tþ 1; TWt ¼ tail water elevation

at period t; F4 ¼ nonlinear function for transferring storage

volume to water elevation; F5 ¼ nonlinear function for trans-

ferring hydropower release to tail water elevation; and

RPSt ¼ spilled water from power plant at period t.

In this paper, a dynamic penalty function, which is a

linear relation, is used to tackle constraints. This penalty

function is added to the minimization objective functions,

Equations (3) and (10), as follows:

DPF ¼ A Min: St � SMin:

� �

, SMax: � St
� �

, 0
� ��

�

�

�

	 


þ B Min: Rt � RMin:

� �

, RMax: � Rt

� �

, 0
� ��

�

�

�

	 


þ C (16)

where DPF¼ dynamic penalty function and A, B, and C¼
positive constants of the linear relation of the penalty

factor. Both Equations (8) and (9) are considered in

the DPF.

EVOLUTIONARY ALGORITHMS

In artificial intelligence, EAs are a subset of evolutionary

computations that can yield optimal/near-optimal solutions

in all types of problems such as: linear/nonlinear, discrete/

continuous and convex/nonconvex, using validated exper-

imental theories of biological evolution and natural

processes. In this paper, two EAs, GA and GP, are employed

to develop optimal operation decision rules.

Genetic algorithm

GA belongs to the larger class of EAs, which generates sol-

utions in optimization problems using techniques inspired

by natural evolution, such as: inheritance, selection,

mutation, and crossover. In GA, a population of strings

called chromosomes, which encode candidate solutions to

an optimization problem, evolves towards better solutions.

The evolution usually starts from a random population

of chromosomes. In each generation, the fitness of every

chromosome in the population is evaluated, multiple

chromosomes are stochastically selected and modified
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from the current population by considering their fitness to

form a new population. The new population is then used

in the next generation of the algorithm. Commonly, the

algorithm terminates when either a maximum number of

generations or iterations is reached. More information

about the GA is contained in Goldberg () and Deb

().

Genetic programming

As with GA, GP is an artificial intelligence method with a

random search basis to determine an optimal solution. In

GA, each decision variable is called a gene and a set of

genes is identified as a chromosome. Thus, all chromosomes

have the same length in each generation. However, in GP,

the chromosomes have a tree structure which can include

different numbers of decision variables and can produce

an expression as a solution. This expression with a tree

structure involves terminals as leaves and functions as

nodes. All the numerical and non-numerical variables are

assumed to be the terminal set. In contrast, the arithmetic

operators (±, ×, ÷), mathematical functions (e.g. sin, cos),

Boolean operators (e.g. and or), logical expressions (e.g. if–

then–else) and other user-defined functions are identified

as the function set. Figure 1 shows two examples of

tree-structure chromosomes in GP. As is shown, x, 1, 5f g
and x, 12f g are respectively the terminal sets of

y xð Þ ¼ x2 � xþ 5 and y xð Þ ¼ sin xð Þ þ 12 expressions. A

random set of trees is generated as the initial population in

the first generation of the GP searching process. The trees

are then compared by considering the calculated fitness

Figure 1 | Examples of GP expressions.

Figure 2 | Crossover between parents and creating children in GP.

Figure 3 | Tree structures (a) before and (b) after mutation.

Figure 4 | Schematic structure of solution for GA in (a) LDR, (b) NLDR and (c) GP.
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function for each tree. The trees with the better fitness

values are selected using techniques such as roulette

wheel, tournament or ranking method. The next generation

is prepared using two genetic operators: crossover and

mutation. In the GP crossover operator, two trees are

assigned as the parents and two children are produced by

Figure 5 | Location of first case study in the Karaj Basin.

Table 1 | Results and statistical measures of five runs of the GA rule curves for the first case study

Number of runs Statistical measures

Rule type 1 2 3 4 5 Minimum Average Maximum Standard deviation Coefficient of variation

LDR 35.763 35.769 36.110 36.327 36.328 35.763 36.059 36.328 0.282 0.008

NLDR 33.770 34.591 35.698 35.689 34.167 33.770 34.783 35.698 0.881 0.025
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swapping sub-trees from parents. Figure 2 illustrates cross-

over between parents and creating children in the GP. The

next genetic operator is mutation, which randomly

exchanges a decision variable in a node with another

random variable. Figure 3 shows the structure of two trees

before and after mutation. The produced trees using genetic

operators are the input for the next generation. This process

continues up to the maximum number of generations or

iterations.

APPLICATION

This paper considers two case studies to illustrate the capa-

bility of GP to extract reservoir operational decision rules

and compare the algorithm’s efficiency with common LDR

and NLDR developed by LINGO as LP and NLP solvers

and GA. The first and second case studies consider reservoir

operation for the purpose of supplying downstream

demands and generating hydropower energy, respectively.

Thus, the capabilities of different rules are compared in

convex and non-convex problems. Those rules have linear

and nonlinear forms which respectively coincide with the

first and second order of inflow and volume storage. Results

are then compared with the rule developed by GP in each

case study.

GA and GP were coded in the software package

Matlab7.0 and run on a PC/WindowsXP, 256 MB RAM,

2 GHz computer. The execution time of each run was less

than 1 minute. In addition, four arithmetic operators, includ-

ing ±, × and ÷ and four mathematical functions involving

sin, cos, power (xy) and square root ( ffip ) were considered

as the function set in GP. The schematic structure of the

chromosome and tree for the GA and GP rules are

Table 2 | Results of LINGO and GA rule curves for the first case study

Coefficient values

Rule type Rule curve formulation Method a b c d e Objective function

LDR Rt ¼ a ×Qt þ b × St þ c LINGO 2.1E–03 1.5E–01 1.4Eþ 01 – – 34.270

GA 7.6E–02 2.8E–01 9.6E–01 – – 35.763

NLDR Rt ¼ a ×Q2
t þ b × S2t þ c ×Qt þ d × St þ e LINGO 1.0E–05 1.2E–04 1.2E–01 1.5E–01 1.3Eþ 01 32.130

GA 2.8E–06 �3.9E–09 7.2E-02 2.4E–01 8.4Eþ 00 33.770

Figure 6 | Trend of minimum, average, and maximum of objective function in five runs

for (a) LDR and (b) NLDR by GA and (c) GP in the first case study.
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presented in Figure 4. As is shown in Figure 4(a), the LDR

has a linear equation for which GA finds three constant

coefficients. Thus, these coefficients are settled as the

genes in a GA chromosome. If a second-order NLDR is

extracted by GA, each chromosome would have five coeffi-

cients as the decision variables in each chromosome

Table 3 | Results and statistical measures of five runs of GP rule curve for the first case study

Number of runs Statistical measures

1 2 3 4 5 Minimum Average Maximum Standard deviation Coefficient of variation

31.333 32.234 31.930 31.833 31.948 31.333 31.859 32.234 0.329 0.010

Figure 7 | Volume of (a) storage and (b) released water for the training data of the first case study.
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(Figure 4(b)). In the GP developed rule, each tree shows a

mathematical equation without a predefined structure. In

this tree, each node has arithmetic operators, mathematical

functions and variables including inflow and volume sto-

rage. Figure 4(c) shows a schematic of tree structure for a

GP rule.

First case study

The first case study considers the Karaj reservoir, with an

active volume of 176 × 106m3, located on the Karaj River

with an annual average inflow of 415.23 × 106m3 in Iran

(Figure 5). The reservoir supplies part of the Karaj and

Tehran demands while the other part is supplied by ground-

water. Input data including inflow and demand were divided

into two training (9 years) and testing (3 years) sets.

LDR and NLDR by LINGO: first case study

As a first step, the optimal objective function was deter-

mined for the training data set without any rule. The best

(minimum) value of the obtained objective was 27.69 by

LINGO. The result of the long-term operation was only

determined for the applied time series. Thus, to operate a

reservoir system in real-time, an operational rule curve

should be used in reservoir modeling.

At the second step, the linear and nonlinear rules were

determined by LINGO. The best results (objective func-

tions) for LDR and NLDR were 34.27 and 32.13,

respectively. The best value of objective function without

any operation rules was respectively 19.20 and 13.82% smal-

ler (better) than the best results of LDR and NLDR.

LDR and NLDR by GA: first case study

To compare the GA tool as an EA with LINGO as a gradi-

ent-based optimization tool, the LDR and NLDR were

extracted by GA, using 50 chromosomes and 100 gener-

ations. Table 1 shows results of five different runs of the

random-based GA algorithm for LDR and NLDR and

their statistical measures. It should be noted that the greater

the number of runs conducted, the higher the probability to

obtain a better solution. According to the results, the coeffi-

cients of variation of both rules are acceptable (small value).

The minimum value of the NLDR objective function is

5.57% better (smaller) than the minimum value of the

LDR. This result shows that more precision is attained in

the estimation of released water in the NLDR than in the

linear one, even though the results of the different runs are

Figure 8 | The reliability percentage of meeting demand for the training data of the first case study.
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independent. The minimum value of the obtained objective

function for the linear and nonlinear rules is 1.56 and 5.40%

better than the maximum value of the obtained objective

functions, respectively. It shows that the range of results

obtained in different runs is not high using GA, although

GA search is an independent search process used in those

runs. The similar trend of minimum, average and maximum

of these independent objective functions at the end of each

generation indicates the high probability of obtaining a

better solution even by a single run. This trend of objective

function convergence was also experienced in other investi-

gations in which EAs were used as the optimization tool

(e.g. Bozorg Haddad et al. a, b). Figures 6(a) and (b)

show the convergence trends of the objective function for

the LDR and NLDR, respectively. As is shown, there is a

decreasing trend of the minimum, average and maximum

values of the objective function for five runs. For an appro-

priate comparison, the best values of objective functions

using LINGO and GA are presented in Table 2. As is

shown, the best (minimum) value of the objective function

Figure 9 | Volume of (a) storage and (b) released water for the test data of the first case study.
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using GA (33.77) is 4.86% better (smaller) than the corre-

sponding value using LINGO (32.13). Thus, GA is capable

of determining a near-optimal solution compared to

LINGO as the gradient-based solver.

Developed rule by GP: first case study

In EAs, the number of computational efforts needed to

achieve optimal/near-optimal solution is equal to the

number of function evaluations. This value in each gener-

ation or iteration of GA and GP is equal to the number of

chromosomes and trees, respectively. Thus, the total

number of function evaluations in the search process for

GA and GP is respectively equal to the number of chromo-

somes and trees which is multiplied by the number of

generations or iterations. At this step, GP was used for five

different runs involving 50 trees and 100 generations, the

same as the GA function evaluation (50 chromosomes ×

100 generations). Figure 6(c) illustrates the decreasing

trend of the objective function for GP, as in the case of the

GA trend. Table 3 shows objective function values and

their statistical measures for five different runs. The best

Figure 10 | Location of second case study in the Karoon Basin.
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(minimum) value of the objective function is 7.22% better

(smaller) than the best value obtained by GA. Table 3 also

shows that the coefficient of variation is equal to 0.01 for

five different runs. Thus, the deviation of calculated objective

functions compared to their average value is small. It follows

that there is a good probability to determine an appropriate

solution even by one run. Equation (17) is the developed

rule with a minimum value of the objective function:

Rt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11:351Qt þ 8:693þ sin Stð Þð ÞSt þ 6:7042
p

(17)

This equation has a nonlinear form, including both

arithmetic operators and mathematical functions.

To further compare the results, Figure 7 shows the

volume storage and releasedwater of the long-term operation

by LINGO as the best possible result, NLDR by LINGO as

the best result of traditional rules and the GP rule. As is

shown, the volume storage of the 3 final years is lower than

in previous years. These years are dry periods and the

operator should use more water for volume storage to

supply demand. Figure 8 shows the reliability percentage of

supplying demand for the long-term operation and NLDR

by LINGO and the GP rule even though the reliabilities of

NLDR and GP rules are less than the maximum value of

reliability in the same periods by long-term operation. It is

more than the minimum value in other periods.

At the final step, the NLDR by LINGO as the best result

of a predefined pattern rule and GP-developed rule were

tested for 3 years (36 months). The objective functions of

these two rules were calculated as 7.39 and 6.76 for the

LINGO and GP, respectively. According to these results,

GP is more capable to determine an appropriate operational

rule curve. Figure 9 shows storage volume and released

water for the test data set. As is shown, the rule curves use

less water from volume storage to supply demands than

the long-term operation model without considering any

rule curves. Thus, their volume storage is more than the

minimum allowable volume storage. It should be noted the

Table 5 | Results of LINGO and GA rule curves for the second case study

Coefficient values

Rule type Rule curve formulation Method a b c d e Objective function

LDR Rt ¼ a ×Qt þ b × St þ c LINGO 1.3E� 01 2.0E� 01 7.3Eþ 00 – – 33.595

GA 1.2E� 01 2.5E� 01 9.8E� 01 – – 34.558

NLDR Rt ¼ a ×Q2
t þ b × S2t þ c ×Qt þ d × St þ e LINGO 1.1E� 04 9.7E� 04 1.0E� 04 1.0E� 03 1.0Eþ 00 31.280

GA 8.6E� 06 5.7E� 06 7.7E� 02 3.3E� 01 9.9E� 01 32.005

Table 6 | Results and statistical measures of five runs of GP rule curve for the second case study

Number of runs Statistical measures

1 2 3 4 5 Minimum Average Maximum Standard deviation Coefficient of variation

16.257 20.976 21.424 25.245 21.520 16.718 21.176 25.245 3.027 0.143

Table 4 | Results and statistical measures of five runs of GA rule curves for the second case study

Number of runs Statistical measures

Rule type 1 2 3 4 5 Minimum Average Maximum Standard deviation Coefficient of variation

LDR 38.748 38.524 34.558 35.418 35.600 34.558 36.569 38.748 1.929 0.053

NLDR 32.005 32.416 33.280 35.032 32.934 32.005 33.133 35.032 1.168 0.035
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best possible objective function for long-term operation of

test data sets without considering any rule curves was 3.38

by LINGO.

Second case study

The second case study considers the Bazoft reservoir,

located on one of the main rivers, the Bazoft River in Iran

(Figure 10). The annual average inflow to the Bazoft reser-

voir with an active volume of 308.15 × 106m3 is about

2012.60 × 106m3. This reservoir with an installed capacity

of 290 × 106W has been designed and operated for hydro-

power energy generation. Data sets of inflow and demand

were divided into two sets, 25 and 9 years, for the training

and test processes, respectively.

LDR and NLDR by LINGO: second case study

The developed rule steps in this case study are the same as in

the first case study. Generally, gradient-based optimization

tools considering LP and NLP methods are capable of find-

ing best (optimum) solution. In this paper, the best possible

optimal solution has been found by the LINGO as a gradi-

ent-based tool.

A fitness value of 3.84 was obtained by considering the

optimal long-term operation of the reservoir without any

operational rule using LINGO. Although this obtained

objective relates to the best result for training times series,

it is not possible to use them directly to make decisions

for the real-time operation of a reservoir. Addition of

embedded operation rules as a constraint in the simulation

relations is one of the methods used to extract a decision

rule in the operating model. Objective functions of the

embedded LDR and NLDR were respectively calculated as

33.595 and 31.280 using LINGO.

LDR and NLDR by GA: second case study

In LINGO as the LP and NLP solver, the rule’s mathemat-

ical pattern should be identified in the simulation model.

Thus, LINGO’s capability is limited in determining a

decision rule. In this paper, to develop the rule pattern,

GP will be used. Thus, at first, the capability of GA to deter-

mine a traditional rule should be verified. To find LDR and

NLDR by GA, 50 chromosomes with 100 generations were

used. Thus, the total number of function evaluations for GA

is equal to the number of chromosomes which is multiplied

to the number of generations. Table 4 shows results of five

different runs for the linear and nonlinear rules and their

statistical measures. These results show no considerable

Figure 11 | Trend of minimum, average and maximum of objective function in five runs

for (a) linear and (b) nonlinear rule curve by GA, and (c) GP in the second case

study.

115 E. Fallah-Mehdipour et al. | Developing reservoir operational decision rule by genetic programming Journal of Hydroinformatics | 15.1 | 2013

Downloaded from http://iwaponline.com/jh/article-pdf/15/1/103/386902/103.pdf
by guest
on 20 August 2022



difference between the objective functions of five runs. As

shown in Table 4, all the minimum, average and maximum

values of the NLDR are less than the corresponding values

of the LDR. Thus, the NLDR estimated released water with

more precision with the same number of function

evaluations compared to the linear rule curve. Table 5

shows a comparison of the best values of the rules by GA

and LINGO. The best value of the objective function

(31.280) using LINGO was 2.27% better than the best

value obtained by GA (32.005).

Figure 12 | Volume of released water for the training data in the second case study.

Figure 13 | Volume of storage for the training data in the second case study.
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Developed rule by GP: second case study

As shown in previous sections, the difference between LDR

and NLDR results and long-term operation is high. Thus,

use of a decision rule that is capable and flexible to derive

an operating rule with a smaller difference from a long-

term result is the goal of operators. In this subsection, a

developed rule by GP is extracted and compared with tra-

ditional rules. GP was used to determine optimal rules

with the same specifications of the GP employed in the

first case study. Table 6 shows the results of five runs and

their statistical measures. The best objective function value

from GP is 48.03 and 49.20% less than the best results by

LINGO and GA. As presented in Table 6, the coefficient

variation of the calculated objective function for five differ-

ent runs was 0.143, a very small value. Thus, it is possible

to achieve the minimum value of the objective function

even by one run.

The decreasing trends of the statistical measures for GA

and GP are shown in Figure 11. The rule obtained by using

GP, having a nonlinear structure with mathematical func-

tions, is as follows:

Released water, storage volume and generated power of

the long-term operation without any decision rule, NLDR by

LINGO as the best result of the traditional rules and the GP

rule are shown in Figures 12–14, respectively. As is shown,

the long-term operation just releases water equal to the

maximum allowable value in some periods. The GP rule

Figure 14 | Generated power for the training data in the second case study.

Rt ¼ 2
ffiffiffiffiffiffi

Qt

p

þ
ffiffiffiffiffi

St
p

� 


þ



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Qt � St þ S2t þ StQt

� �sin
ffiffiffi

St
p� �

r

þ
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þ
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þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Qt � St þ 2S2t þ 2StQt

� �sin
ffiffiffi

St
p� �

4

r

þ
ffiffiffiffiffiffiffi

2St
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Qt þ St
p

(18)
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releases more water in different periods and generates more

power in those periods. Thus, the obtained objective func-

tion of GP is less than the same value by NLDR.

Finally, the best result of a common predefined pattern

rule (NLDR) which was found by LINGO and the nonlinear

rule by GP were tested. The objective functions of these two

rules were respectively calculated as 23.30 and 13.00 for rule

curves by LINGO and GP for 9 years (108 months). This

operational period was modeled by LINGO without any

rules, yielding an objective function value of 2.84. Figure 15

shows storage volume, released water and generated power

for the test data set in the second case study. As is shown,

released water from the GP rule used more water from

volume storage in most of the operational periods. Thus,

the storage volume of the GP rule is less than in the

NLDR in the operational periods.

CONCLUDING REMARKS

Application of GP, for developing an optimal existing

relation between input and output data in water resources,

resulted in a solution with performance measures much

better than other data-developed methods. In this paper,

GP was used to develop the best relation between inflow,

volume storage and release as the operational rule curve

for two different operational purposes: supplying down-

stream demand and generating hydropower energy.

Minimization of the total deficit rate, which is the total differ-

ence between released water and demand divided by the

obtained demand during the planning horizon, and minimiz-

ation of the total difference between power generation and

installed capacity divided by the installed capacity during

the planning horizon were respectively considered as the

objective functions. Note that the effects of equal water

excess or shortage are the same for each period in the supply-

ing downstream demand purpose. The objective function of

the supplying downstream demand purpose is the minimiz-

ation of the total squared deviation of the released water in

the planning horizon. Thus, to minimize the objective func-

tion and decrease the sum of differences between released

water and demand in all periods in the planning horizon,

the value of released water is nearly the same as the

demand in each period. By using LINGO as LP and NLP

solvers and GA in two case studies, LDR and NLDR were

calculated and compared even though the obtained objective

function was better (smaller) by LINGO. GA was capable of

achieving near-optimal yield rule curves by 3.67% average of

difference with LINGO in the LDR and NLDR, respectively.

Figure 15 | Volume of (a) storage, (b) released water and (c) generated power for the test

data in the second case study.
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The rules determined by LINGO and GP were then com-

pared in the training and testing data sets. The GP rule was

more effective with a high performance for both of the case

studies with the same number of function evaluations. To

determine the improvement rate of the obtained objection

function by GP, the difference between the best (minimum)

calculated objective function by GP and LINGOwas divided

by the obtained objection function by LINGO. TheGP objec-

tive functions were respectively 2.48 and 48.03% better

(smaller) than those obtained from LINGO for the training

data in the first and second case studies. By using GP, test-

ing-data results showed 8.53 and 44.21% improvement for

the first and second case studies, respectively. These results

indicated that the efficiency of the optimal rule curves for

reservoirs improved by the proposed rule based on GP.

Application of GP in the optimal operation of a reservoir

with other operation purposes, such as flood control, is rec-

ommended for future studies.
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