

Linköping Studies in Science and Technology

Dissertation No. 1005

De ve lo pin g Re usable an d Re co n figurable
Re al-Tim e So ftw are us in g Aspe cts an d

Co m po n e n ts

by

Ale ksan dra Te šan o vić

Department of Computer and Information Science

Linköpings universitet

SE-581 83 Linköping, Sweden

Linköping 2006

To Goran

Abstract

Our main focus in this thesis is on providing guidelines, methods, and tools for de-
sign, configuration, and analysis of configurable and reusable real-time software,
developed using a combination of aspect-oriented and component-based software
development. Specifically, we define a reconfigurable real-time component model
(RTCOM) that describes how a real-time component, supporting aspects and en-
forcing information hiding, could efficiently be designed and implemented. In this
context, we outline design guidelines for development of real-time systems using
components and aspects, thereby facilitating static configuration of the system,
which is preferred for hard real-time systems. For soft real-time systems with high
availability requirements we provide a method for dynamic system reconfiguration
that is especially suited for resource-constrained real-time systems and it ensures
that components and aspects can be added, removed, or exchanged in a system at
run-time. Satisfaction of real-time constraints is essential in the real-time domain
and, for real-time systems built of aspects and components, analysis is ensured by:
(i) a method for aspect-level worst-case execution time analysis; (ii) a method for
formal verification of temporal properties of reconfigurable real-time components;
and (iii) a method for maintaining quality of service, i.e., the specified level of
performance, during normal system operation and after dynamic reconfiguration.

We have implemented a tool set with which the designer can efficiently confi-
gure a real-time system to meet functional requirements and analyze it to ensure
that non-functional requirements in terms of temporal constraints and available
memory are satisfied.

In this thesis we present a proof-of-concept implementation of a configurable
embedded real-time database, called COMET. The implementation illustrates
how our methods and tools can be applied, and demonstrates that the proposed
solutions have a positive impact in facilitating efficient development of families of
real-time systems.

i

Acknowledgements

With mixed feelings I approach the end of my PhD studies. On one hand I am
very happy that I have finished my thesis and will be moving onto another stage
in my life, and on the other hand I am really sad for not being a student anymore.
I blame the sadness on Jörgen Hansson, my supervisor. He has not only provided
guidance through technical issues, but also made me feel protected, supported,
encouraged, and happy during my studies. Jörgen has, over the years, become
one of my best friends and allies.

I was fortunate to do my research within the COMET project, a joint project
between Linköping and Mälardalen University, working alongside Dag Nyström
and Christer Norström. Collaboration with Dag had a catalytic effect on my
research and has also showed me that great ideas are a product of spirited and
witty discussions. Christer’s feedback, questions, and suggestions have helped
greatly in shaping my research.

ARTES, a network for real-time research and graduate education in Sweden,
and CUGS, the Swedish computer science graduate school, have both provided
financial support for my graduate studies, as well as given me the opportunity to
meet new friends and exchange ideas. My last two years of studies would not be as
interesting if I was not financed by the SAVE project. SAVE meetings and their
members have shown me another, much more fun, dimension of research collabo-
ration. ARTES and SAVE have been founded by the SSF, Swedish foundation
for strategic research.

I extend my gratitude to past and present members of RTSLAB for providing
an enjoyable and lively working environment. Simin Nadjm-Tehrani has suppor-
ted me gracefully through the years of my PhD studies at RTSLAB. She is also
responsible for the heaviness of formal analysis that, when I was not paying atten-
tion, sneaked into my thesis. The miracle woman and my friend, Anne Moe, has
done wonders when it comes to helping me with administrative and other personal
matters. Mehid Amirijoo and Thomas Gustafsson deserve praise for many gossip
sessions and all the help they have unselfishly given me. United in supervision,
we successfully traumatized many master’s thesis students, of which a majority
was working on the implementation of the COMET database platform. Calin
Curescu has shown his real (soft) side and, in the last and most stressful days of
thesis writing, helped out with teaching so I could focus on writing. Traveling

iii

iv

back and forth from the SAVE meetings would not be as fun without the company
of the SAVE silver member, Jonas Elmqvist, and an RTSLAB fika would not be
as enjoyable without the companionship of remaining RTSLAB members: Diana
Szentiványi, Kalle Burbeck, Mikael Asplund, and Erik Kuiper.

I also thank the merry ESLAB bunch for their hospitality in the ”ESLAB
corridor” and, most importantly, for keeping me up to date with all spicy events
that happen in their and neighboring labs.

My friends in Sweden and abroad have been great throughout all these years
of my studies. I could always count on their kindness and encouragement.

Love and gratitude go to my parents. To my mother, for bringing up an
ambitious and stubborn daughter in the world of men, and my father, who’s
patience and understanding has helped me in many situations. I also thank them
for getting me a great younger sister. It is a bless having a younger sibling: you
at the same time get a friend, admirer, and a follower, who is, for the greater part
of her life, blind to your many flaws.

I think that we are all constructed out of two related opposites, positive pole
and negative pole, and that the two need to be in balance for the person to be
complete. I would have been incomplete without my husband, Goran. He has
been and continues to be my positive pole. Without his unconditional love and
encouragement I would not have been able to finish this thesis. He is Neo of my
Matrix.

Hvala,
Aleksandra Tešanović

Linköping, February 2006

List of Publications

This work is done as a part of the COMET research project, a joint project
between Linköping University and Mälardalen University. The principal inve-
stigators of the project are Jörgen Hansson (Linköping University) and Chris-
ter Norström (Mälardalen University). The doctoral students in the project
are Aleksandra Tešanović (Linköping) and Dag Nyström (Mälardalen). The
COMET project has over the years evolved and involved collaboration with addi-
tional senior researchers (Mikael Nolin, Mälardalen University, and Simin Nadjm-
Tehrani, Linköping University), and doctoral students (Mehdi Amirijoo and Tho-
mas Gustafsson, both at Linköping University). Furthermore, several master’s
students have completed their thesis work by implementing or investigating spe-
cific issues related to the COMET project, and thereby also contributed to the
research presented in this thesis; their contributions are recognized in the author
lists of the papers produced within the project.

The COMET project has resulted in the following published papers.

Publications Included in the Thesis

The contributions of this thesis are based on the following publications (the list
contains descriptions of the content of each paper, relating it to the other papers,
and the role of the thesis author in contributing to the paper).

Data Management Issues in Vehicle Control Systems: a Case Study,
Dag Nyström, Aleksandra Tešanović, Christer Norström, Jörgen Hansson, and
Nils-Erik B̊ankestad, In Proceedings of the 14th IEEE Euromicro International
Conference on Real-Time Systems (ECRTS’05), pages 249-256, IEEE Computer
Society, June 2002.

This paper presents a case study of a class of embedded hard real-time control
applications in the vehicular industry that, in addition to meeting transaction and
task deadlines, emphasize data validity requirements. The paper also presents how
a database could be integrated into the studied application and how the database
management system could be designed to suit this particular class of systems.

The paper was written based on the industrial stay at Volvo Construction
Equipment Components AB, Sweden. The industrial stay, and thereby the wri-

v

vi

ting of this case study paper, was made possible by Nils-Erik B̊ankestad. Alek-
sandra Tešanović and Dag Nyström investigated two different real-time systems,
one each. Additionally, Tešanović studied the impact of current data management
in both systems.

Integrating Symbolic Worst-Case Execution Time Analysis into
Aspect-Oriented Software Development, Aleksandra Tešanović, Dag
Nyström, Jörgen Hansson, and Christer Norström, OOPSLA 2002 Workshop on
Tools for Aspect-Oriented Software Development, November 2002.

This workshop paper presents an initial proposal for providing support for
predictable aspect-oriented software development by enabling symbolic worst-case
execution time analysis of aspect-oriented software systems.

Aleksandra Tešanović developed a way of representing temporal information
of aspects and an algorithm that enables worst-case execution time analysis of
aspect-oriented systems.

Towards Aspectual Component-Based Development of Real-Time
Systems, Aleksandra Tešanović, Dag Nyström, Jörgen Hansson, and Christer
Norström, In Proceeding of the 9th International Conference on Real-Time and
Embedded Computing Systems and Applications (RTCSA 2003), Lecture Notes
in Computer Science, vol. 2968, pp. 558-577, Springer-Verlag, 2003.

This paper introduces a novel concept of aspectual component-based real-
time system development. The concept is based on a design method that assumes
decomposition of real-time systems into components and aspects, and provides
a real-time component model that supports the notion of time and temporal
constraints, and space and resource management constraints.

The main ideas and contributions of the paper are developed by Aleksandra
Tešanović.

Aspect-Level Worst-Case Execution Time Analysis of Real-Time
Systems Compositioned Using Aspects and Components, Aleksandra
Tešanović, Dag Nyström, Jörgen Hansson, and Christer Norström, In Proceeding
of the 27th IFAC/IFIP Workshop on Real-Time Programming, Elsevier Science
Ltd, May 2003.

This paper extends and refines the method for analyzing the worst-case execu-
tion time of a real-time system composed using aspects and components, introdu-
ced in the OOPSLA 2002 workshop paper. In addition of presenting the aspect-
level WCET analysis of components, aspects and the composed real-time system,
the paper also presents design guidelines for the implementation of components
and aspects in a real-time environment.

The paper is a successor with extensions to the workshop paper presented at
the OOPSLA 2002 Workshop on Tools for Aspect-Oriented Software Development.

vii

Hence, in this paper as well, Aleksandra Tešanović developed the main ideas and
contributions.

Aspect-Level WCET Analyzer: a Tool for Automated WCET Analysis
of a Real-Time Software Composed Using Aspects and Components,
Aleksandra Tešanović, Jörgen Hansson, Dag Nyström, Christer Norström, and P.
Uhlin, In Proceedings of the 3rd International Workshop on Worst-Case Execution
Time Analysis (WCET 2003), July 2003.

This paper presents a tool that implements methods for aspect-level WCET
analysis developed and presented in two previous papers on this topic.

The main ideas and contributions of the paper are developed by Aleksandra
Tešanović.

Structuring Criteria for the Design of Component-Based Real-Time
Systems, Aleksandra Tešanović and Jörgen Hansson, In Proceedings of the IA-
DIS International Conference on Applied Computing 2004, pp. I401-I411, IADIS
Press, March 2004.

In this paper we identify the criteria a design method for component-based
real-time systems should fulfill to enable efficient, reuse-oriented, development
of reliable and configurable real-time systems. The criteria include a real-time
component model, separation of concerns in real-time systems via aspects, and
support for configuration and analysis of real-time software.

The main ideas and contributions of the paper are developed by Aleksandra
Tešanović.

Aspects and Components in Real-Time System Development: To-
wards Reconfigurable and Reusable Software, Aleksandra Tešanović, Dag
Nyström, Jörgen Hansson, and Christer Norström, Journal of Embedded Com-
puting, Volume 1, October 2004.

This paper is an extended version of the paper that was published at RTCSA
2003 conference.

The main ideas and contributions of this paper are developed by Aleksandra
Tešanović.

Empowering Configurable QoS Management in Real-Time Systems,
Aleksandra Tešanović, Mehdi Amirijoo, Mikael Björk, and Jörgen Hansson, In
Proceedings of the 4th ACM SIG International Conference on Aspect-Oriented
Software Development (AOSD’05), pp. 39-50, ACM Press, March 2005.

In this paper we present a method for developing reconfigurable feedback-based
QoS management for real-time systems, denoted Re-QoS. The Re-QoS method
ensures reconfiguration of QoS management by having components and aspects
as constituents of the QoS management architecture and policies.

viii

Aleksandra Tešanović contributed with the initial idea and the solution when
it comes to reconfigurability of QoS via aspects and components.

Development Environment for Configuration and Analysis of Embed-
ded Real-Time Systems, Aleksandra Tešanović, Peng Mu, and Jörgen Hans-
son, In Proceedings of the 4th International AOSD Workshop on Aspects, Com-
ponents, and Patterns for Infrastructure Software (ACP4IS’05), March 2005.

In this paper we present a tool set that provides developers of real-time systems
with support for building and configuring a system out of components and aspects,
as well as real-time analysis of the configured system.

The main ideas and contributions of this paper are developed by Aleksandra
Tešanović.

Modular Verification of Reconfigurable Components, Aleksandra
Tešanović, Simin Nadjm-Tehrani, and Jörgen Hansson, Book chapter in
Component-Based Software Development for Embedded Systems - An Overview
on Current Research Trends, Lecture Notes in Computer Science, vol. 3778, pp.
59-81, Springer-Verlag, 2006.

This book chapter presents a method for modular verification of reconfigurable
real-time components. The method enables proving that the reconfiguration of
components via aspect weaving provides expected functional and temporal beha-
vior in the reconfigured component.

The main ideas and contributions of this book chapter are developed by Alek-
sandra Tešanović.

Ensuring Real-Time Performance Guarantees in Dynamically Reconfi-
gurable Embedded Systems, Aleksandra Tešanović, Mehdi Amirijoo, Daniel
Nilsson, Henrik Norin, and Jörgen Hansson, In Proceedings of the IFIP Interna-
tional Conference on Embedded And Ubiquitous Computing (EUC’05), Springer-
Verlag, December 2005.

In this paper we present a method for dynamic, QoS-aware, reconfiguration of
real-time systems. This work is an extension of the work on enabling development
of real-time systems using aspects and components.

The main initial idea on dynamic reconfiguration was developed by Aleksandra
Tešanović.

Publications by the Author, not Included in the Thesis

Finite Horizon QoS Prediction of Reconfigurable Soft Real-Time
Systems, Mehdi Amirijoo, Aleksandra Tešanović, Torgny Andersson, Jörgen
Hansson, and Sang H. Son, in submission.

ix

Separating Active and On-Demand Behavior of Embedded Systems
into Aspects, Aleksandra Tešanović, Thomas Gustafsson, and Jörgen Hans-
son, In Proceedings of the Workshop on Non-functional Properties of Embedded
Systems, March 2006.

Application-Tailored Database Systems: a Case of Aspects in an Em-
bedded Database, Aleksandra Tešanović, Ke Sheng, and Jörgen Hansson, In
Proceedings of the 8th IEEE International Database Engineering and Applicati-
ons Symposium (IDEAS’04), IEEE Computer Society, July 2004.

COMET: A Component-Based Real-Time Database for Automotive
Systems, Dag Nyström, Aleksandra Tešanović, Mikael Nolin, Christer Norström,
and Jörgen Hansson, In Proceedings of the Workshop on Software Engineering
for Automotive Systems at 26th International Conference on Software engineering
(ICSE’04), IEEE Computer Society Press, May 2004.

Pessimistic Concurrency-Control and Versioning to Support Database
Pointers in Real-Time Databases, Dag Nyström, Mikael Nolin, Aleksandra
Tešanović, Christer Norström, and Jörgen Hansson, In Proceedings of the 16th
IEEE Euromicro Conference on Real-Time Systems (ECRTS’04), Sicily, Italy,
IEEE Computer Society Press, June 2004.

Database Pointers: a Predictable Way of Manipulating Hot Data
in Hard Real-Time Systems, Dag Nyström, Aleksandra Tešanović, Chris-
ter Norström, and Jörgen Hansson, In Proceedings of the 9th International
Conference on Real-Time and Embedded Computing Systems and Applications
(RTCSA 2003), Lecture Notes in Computer Science, vol. 2968, Springer-Verlag,
2003.

Contents

I Preliminaries 1

1 Introduction 3

1.1 Motivation . 3

1.2 Research Challenges . 7

1.3 Research Contributions . 8

1.4 Thesis Outline . 9

2 Basic Concepts in Software Engineering and Real-Time 11

2.1 Basic Notions in Software Engineering 11

2.2 Basic Notions in Real-Time Computing 21

2.3 Ensuring Real-Time Performance Guarantees 25

2.4 Embedded Real-Time Database Systems 34

3 Developing Reconfigurable Real-Time Systems 41

3.1 Requirements . 41

3.2 Existing Approaches . 51

3.3 Goals . 56

II Aspectual Component-Based Real-Time System Development 59

4 Enabling System Reconfiguration with ACCORD 61

4.1 ACCORD Overview . 61

4.2 Aspects in Real-Time Systems . 65

4.3 Real-Time Component Model . 68

4.4 Aspect Packages . 84

4.5 Static Reconfiguration . 89

4.6 Dynamic Reconfiguration . 89

5 Ensuring Real-Time Performance Guarantees 95

5.1 Overview . 95

xi

xii CONTENTS

5.2 Aspect-Level WCET Analysis . 97

5.3 Components and their Schedulability 105

5.4 Feedback-Based QoS Management 106

5.5 Formal Analysis of Aspects and Components 109

6 Tool Support and Evaluation 125

6.1 Development Environment . 125

6.2 ACCORD Evaluation . 131

III Component-Based Embedded Real-Time Database System 135

7 Data Management in Embedded Real-Time Systems 137

7.1 A Case Study: Vehicle Control Systems 137

7.2 Data Management Requirements 142

7.3 Observations . 145

8 COMET Database Platform 147

8.1 COMET Decomposition . 147

8.2 COMET Components . 151

8.3 Concurrency Control Aspect Package 157

8.4 Index Aspect Package . 163

8.5 QoS Aspect Package . 165

9 COMET Configuration and Analysis 173

9.1 COMET Configurations . 173

9.2 Static and Dynamic COMET Configuration 178

9.3 Performance Evaluation . 184

9.4 Experience Report . 190

IV Epilogue 195

10 Related Work 197

10.1 Component-Based Real-Time Systems 197

10.2 Component-Based Database Systems 202

10.3 Aspect-Oriented Database Systems 207

10.4 Formal Approaches for Aspects and Components 208

11 Conclusions 211

11.1 Summary . 211

CONTENTS xiii

11.2 Future Work . 213

A Abbreviations 215

Bibliography 217

Index 234

List of Figures

1.1 Examples of real-time computing applications 4

1.2 System assembly with components and aspects 5

2.1 Components and interfaces . 13

2.2 An example of an aspect definition 16

2.3 A typical pointcut syntax . 16

2.4 An example of a pointcut definition 16

2.5 The behavior of a before, after, and around advice 17

2.6 An example of the advice definition 17

2.7 Illustration of aspect weaving (a) one aspect and one white box
component and (b) multiple aspects woven into several white box
components. 18

2.8 Classes of component-based systems 19

2.9 Typical temporal characteristics of a task in a real-time system . . 22

2.10 The power function . 26

2.11 An architecture of the real-time system using feedback control
structure . 28

2.12 Formal analysis of real-time systems using model checking 30

2.13 An example of a simple timed automaton. 31

2.14 Expressing properties in TCTL logic. 33

3.1 An example of the component-to-task relationship 44

4.1 An overview of real-time system development via ACCORD con-
stituents . 62

4.2 Classification of aspects in real-time systems 66

4.3 A real-time component model (RTCOM) 68

4.4 The functional part of RTCOM . 70

4.5 An example of (a) allowed, and (b) not allowed relationship among
the operations . 71

4.6 An example of the relationship of operations and mechanisms in a
component . 71

xv

xvi LIST OF FIGURES

4.7 An illustration of the structure of an aspect that invasively changes
the behavior of a component . 72

4.8 An example of component reconfiguration via aspect weaving . . . 74
4.9 The functional part of the linked list component 75
4.10 The listPriority application aspect 76
4.11 The resulting woven component . 77
4.12 A general specification template for run-time aspects 78
4.13 An example of the specification template for the run-time part of

an application aspect . 79
4.14 A specification of the run-time aspect of the linked list component 80
4.15 A specification of the run-time aspect of the priority list application

aspect . 80
4.16 Different types of interfaces defined within RTCOM 81
4.17 The functional provided and required interface supported by

RTCOM . 82
4.18 The configuration interface of RTCOM 83
4.19 The composition interface of RTCOM 83
4.20 A QoS aspect package . 87
4.21 A real-time system where QoS aspect package is used for configu-

ring QoS management . 88
4.22 Static (re)configuration of a system 90
4.23 Dynamic configuration of a system 92
4.24 Reconfiguration of a component . 93
4.25 An example of the relation between tasks and components. 93

5.1 An analysis part of the ACCORD development process 96
5.2 An overview of the automated aspect-level WCET analysis process 97
5.3 The aspect-level WCET specification of the linked list component . 99
5.4 The aspect-level WCET specification of the listPriority aspect 100
5.5 Main constituents of aspect-level WCET analysis 100
5.6 An overview of the aspect-level WCET analysis life cycle 104
5.7 Temporal schedulability analysis within ACCORD 105
5.8 Fluctuations of performance under reconfiguration 107
5.9 Dynamic system reconfiguration with support of the feedback control 108
5.10 Examples of timed automata specifying (a) the transaction mana-

ger component and (b) the locking advice 111
5.11 An example of preservation of clock constraints 113
5.12 An example of a reconfigured component 114
5.13 One possible execution trace of for the transaction manager com-

ponent and the property EF (end ∧ x < 11) 123

6.1 ACCORD Development Environment 126
6.2 The editing window in ACCORD-ME 128
6.3 An implementation of the run-time aspect of a component in XML 130

LIST OF FIGURES xvii

7.1 The overall architecture of a vehicle control system 137
7.2 The structure of an ECU . 138
7.3 The architecture of the VECU . 140
7.4 The architecture of the IECU . 141

8.1 Decomposition of COMET into components 148
8.2 The outlook of the functional part of the COMET components . . 153
8.3 The execution steps of a transaction in COMET 156
8.4 The locking manager component in COMET 160
8.5 The structure of a locking-based concurrency control aspect 161
8.6 The GUARD policy aspect . 164
8.7 The QAC connector aspect . 168
8.8 The QAC utilization policy aspect 169
8.9 The missed deadline monitor aspect 170
8.10 The missed deadline control aspect 171
8.11 The scheduling strategy aspect . 171

9.1 Creating a family of real-time systems from the COMET QoS
aspect package . 176

9.2 Requirement-based configuration of the real-time database system 180
9.3 The snapshot of ACCORD-ME when doing analysis on a real-time

system configuration . 181
9.4 Dynamic COMET configuration 184
9.5 Deadline miss ratio as a function of load 185
9.6 Deadline miss ratio when components are replaced 189

10.1 The 2K middleware architecture 199
10.2 Embedded system development in VEST 200
10.3 The Oracle extensibility architecture 203
10.4 The Universal Data Access (UDA) architecture 205
10.5 The KIDS subsystem architecture 206

List of Tables

2.1 Examples of quality attributes [180] 12
2.2 Concurrency control methods in real-time database systems 36
2.3 The index concurrency control lock compatibilities 39

3.1 Criteria for evaluation of design approaches 52

5.1 Aspect-level WCET specifications of aspects and components . . . 99

6.1 Evaluation criteria for ACCORD 132

7.1 Data management characteristics for the systems 143

8.1 Crosscutting effects of different application aspects on COMET
components . 151

8.2 The lock compatibility for HP-2PL concurrency control policy . . . 158
8.3 The components that are crosscut and used by lock-based concur-

rency control methods . 162
8.4 The utilization transaction model 167

9.1 Relationship between different parts of the concurrency control
and the index aspect package and various COMET configurations . 175

9.2 Relationship between different parts of the QoS package and vari-
ous COMET QoS configurations 177

9.3 Measured attributes of transactions 183
9.4 Execution times for transactions 187
9.5 Reconfiguration times with one transactions running 187
9.6 Reconfiguration times in COMET with a 300% load 188

xix

Part I

Preliminaries

1

Chapter 1
Introduction

In this chapter we motivate the need for using new software engineering techni-
ques in development of real-time systems, and formulate our research goals. We
also present the main contributions of the thesis, addressing the identified goals.
Finally, we outline the structure of the thesis.

1.1 Motivation

A large majority of computational activities in modern computing systems are
performed within embedded and real-time systems. Figure 1.1 shows some of
the application areas where real-time systems can be found, e.g., vehicle systems,
traffic control, and medical equipment.

Successful deployment of real-time systems greatly depends on low develop-
ment costs, a short time to market, and high degree of configurability [161].
Component-based software development (CBSD) [169] is a modern software engi-
neering technique that enables systems to be assembled from a pre-defined set of
components explicitly developed for multiple usages (see left part of figure 1.2 for
an illustration of system configuration out of components). Thus, the introduc-
tion of CBSD into real-time and embedded systems development offers significant
benefits, namely:1

❏ configuration of software for a specific application using components from
the component library, thus, reducing software complexity as components
can be chosen to provide exactly the functionality needed by the application;

1We use the terms real-time software and real-time system interchangeably throughout the
thesis. Both of these denote a real-time software program running on a run-time platform, i.e.,
an operating system and the hardware, and performing a specific task for an application, i.e., a
user of the program.

3

4 INTRODUCTION 1.1

Vehicle systems
for

 cars, subways,
aircrafts, railways,

and ships

Traffic control
for

 highways,
airspace, railway

tracks, and
shipping lines

Medical systems
for

 radiation therapy
and patient
monitoring

Military uses
for

 advanced firing
weapons, tracking,

command and
control

Manufacturing
systems

with robots

Communication
systems

for
telephone, radio,

and satellite

Multimedia
systems that

provide
text, graphics,

audio, and video
interfaces

Figure 1.1: Examples of real-time computing applications

1.1 MOTIVATION 5

Components Aspects

System
configuration

Synchronization

Temporal attributes

Synchronization
(crosscutting the overall system)

Figure 1.2: System assembly with components and aspects

❏ rapid development and deployment of real-time software as many software
components, if properly designed and verified, can be reused in many app-
lications; and

❏ evolutionary design as components can be replaced or added to the system,
which is appropriate for complex embedded real-time systems that require
continuous hardware and software upgrades.

However, there are features of real-time systems that crosscut the overall sy-
stem, e.g., synchronization, memory optimization, and temporal attributes, and
cannot be encapsulated in a component with a well-defined interface. This pheno-
menon is depicted in the system configuration in figure 1.2 using synchronization
as an example. Aspect-oriented software development (AOSD) [81] has emerged
as a new principle for software development that provides an efficient way of mo-
dularizing crosscutting concerns in software systems. AOSD allows encapsulating
crosscutting concerns of a system in “modules”, called aspects (see figure 1.2).
Aspect are added to the system in a process called aspect weaving. Introducing
AOSD into real-time system development would ensure that:

❏ crosscutting concerns of a real-time system and its constituting components
can be developed independently with clear interfaces toward components
with which aspects should be combined;

❏ a component or an entire software composed of components can be fine-
tuned for a specific application with which the software is to be integrated;
and

6 INTRODUCTION 1.1

❏ a real-time software system can be extended with new functional and non-
functional features by defining and integrating new aspects into an already
existing system.

Consequently, using AOSD in the real-time and embedded system domain would
reduce the complexity of the system design and development, and provide means
for a structured and efficient way of designing and implementing crosscutting
concerns in real-time software.

As argued, there are strong motivations for using the AOSD principle of se-
paration of concerns, as well as the CBSD notion of the system assembly of
pre-defined components in the real-time software development. The integration
of the two disciplines, CBSD and AOSD, into the real-time domain would enable:

❏ efficient system configuration from components and aspects from the library
based on the application requirements; and

❏ easy reconfiguration of components and/or a system for a specific applica-
tion, i.e., reuse context, by changing the behavior (code) of the component
via aspect weaving.

This results in enhanced flexibility and reusability of real-time software through
the notion of system and component reconfigurability. However, applying main
ideas from both AOSD and CBSD into the real-time domain is not straightfor-
ward, for several reasons.

Firstly, CBSD assumes a component to be a black box, where internals of
the component are not visible or accessible to a component user, i.e., a system
designer or other components in the system. In contrast, AOSD promotes white
box components, where the code of a component is fully accessible and can be
changed by the component user. Thus, to utilize benefits of both technologies, we
need to provide support for aspect weaving into component code, while preserving
information hiding of a component to the largest degree possible.

Secondly, systems developed based on the CBSD principles are normally dy-
namically reconfigurable, implying that components can be added, removed, or
exchanged in a system on-line. AOSD, on the other hand, focuses primarily on
combining aspects and components into a system configuration statically, i.e., off-
line. In real-time systems residing in time-critical applications and requiring con-
formance to strict performance specifications, static configuration is necessary. In
real-time applications where performance can be traded for availability, dynamic
reconfiguration is preferable. Namely, reconfiguring a system on-line is desirable
for embedded real-time systems that require continuous hardware and software
upgrades in response to technological advancements, environmental change, or
alteration of system goals during system operation [44, 166]. For example, small
embedded real-time sensor-based control systems should be designed and deve-
loped such that software resources, e.g., controllers and device drivers, change
on the fly. Hence, a reconfiguration mechanism, enabling adding, removing, and

1.3 RESEARCH CHALLENGES 7

exchanging components on-line, is needed to ensure that the software is updated
without interrupting the execution of the system. It would, therefore, be benefi-
cial to ensure support for both static and dynamic reconfiguration of a real-time
system. Enabling dynamic reconfiguration implies providing mechanisms for on-
line exchange of components and aspects especially suited for resource-constrained
environments (as most real-time systems reside in such environments). To ensure
static configuration, the process of system design and development has to be defi-
ned and preferably accompanied by tools to provide guidelines to real-time system
developers and, thereby, support them in system development.

Finally, the development process of real-time systems has to be based on a soft-
ware technology that supports predictability in the time domain. Hence, we need
to provide methods and tools for satisfying real-time performance of the system
composed of components and aspects. Namely, analysis of the static temporal
behavior, e.g., worst-case execution time, of individual aspects and components,
as well as resulting system configurations, is necessary for statically configured
systems. Furthermore, to facilitate meaningful dynamic reconfiguration in a real-
time system, methods for guaranteeing real-time performance before and after
the reconfiguration are essential.

1.2 Research Challenges

Emergence of new requirements on the cost-effective development of real-time
systems focusing on reuse and reconfiguration has given rise to new research chal-
lenges in software engineering. One promising approach, as we show in this thesis,
is to merge CBSD and AOSD and apply them to real-time system development.
This calls for novel solutions for design and development of reconfigurable real-
time systems, including:

1. a real-time component model enforcing information hiding and component
reuse, while enabling tailoring of components for a particular application;

2. support for static and dynamic (re)configuration of a real-time system as-
sembled out of components and aspects;

3. methods for enforcing satisfaction of real-time performance requirements in
both dynamically and statically reconfigurable real-time systems; and

4. tools for configuring and analyzing a system and its constituting components
and aspects.

These solutions would be conducive to the reusability of components and
aspects in a variety of real-time applications.

8 INTRODUCTION 1.3

1.3 Research Contributions

The main research contributions of this thesis are as follows.

1. A reconfigurable real-time component model (RTCOM) that describes how a
real-time component, supporting different aspects and enforcing information
hiding, could efficiently be designed and implemented.

2. Support for static and dynamic reconfiguration of a real-time system in
terms of:

(a) Design guidelines for development of real-time systems using compone-
nts and aspects, which prescribe that a real-time system design should
be carried out in the following sequential phases: (i) decomposition of
the real-time system into a set of components, followed by (ii) decom-
position into a set of aspects, and (iii) implementation of components
and aspects based on RTCOM.

(b) A method for dynamic system reconfiguration suited for resource-
constrained real-time applications ensuring that components and
aspects can be added, removed, or exchanged in the system at run-
time. Thus, in addition to traditional static reconfiguration, we sup-
port dynamic reconfiguration of a system.

3. Methods for ensuring satisfaction of real-time constraints, namely:

(a) A method for aspect-level worst-case execution time analysis of real-
time systems assembled using aspects and components, which is per-
formed at a system composition time.

(b) A method for formal verification of temporal properties of reconfigu-
rable real-time components that enables (i) proving temporal proper-
ties of individual components and aspects, and (ii) proving that re-
configuration of a component via aspect weaving preserves expected
temporal behavior in the reconfigured component.

(c) A method for reconfigurable quality of service that enables configu-
ring quality of service in real-time systems in terms of desired perfor-
mance metric and performance level based on the underlying appli-
cation requirements. The method ensures that the specified level of
performance is maintained during system operation and after reconfi-
guration.

We have implemented a tool set that provides developers of real-time systems
with support for configuration and analysis of a system assembled using compo-
nents and aspects. This way a real-time system can efficiently be configured to
meet functional requirements and analyzed to ensure that non-functional require-
ments are also fulfilled. The analysis tools represent an automation of the analysis
methods from (3).

1.4 THESIS OUTLINE 9

We use the term ACCORD, which stands for aspectual component-based real-
time system development, to collectively denote the above mentioned research
contributions and tools and to indicate that these solutions, in addition of be-
ing used in isolation, can be used together to facilitate efficient development of
reconfigurable and reusable real-time software.

In this thesis we also present a proof-of-concept implementation of a
component-based embedded real-time (COMET) database. Using the COMET
example, we demonstrate the applicability of the proposed methods and tools
for building reconfigurable and reusable real-time systems. Requirements for the
COMET database have been extracted from requirements on data management
identified in the vehicular industry [124]. As a result of implementing the da-
tabase platform, we collected experiences in using available CBSD and AOSD
programming technologies in the real-time domain and we report on these. The
experiences are valuable for current and future implementors of real-time systems
that would like to use components and aspects in the system development.

1.4 Thesis Outline

The thesis is organized into four parts as follows.

Part I: Preliminaries. In chapter 2 we present the main terminology used
throughout the thesis and introduce advanced topics in real-time computing,
including methods for ensuring real-time performance and efficient data mana-
gement. In chapter 3 we provide an extensive problem description that serves as
an in-depth motivation for the work presented in this thesis.

Part II: Aspectual Component-Based Real-Time System Development.
In this part of the thesis we give a detailed description of ACCORD constituents.
In chapter 4 we introduce aspects, components, and aspect packages as system
constituents, and elaborate on the way static and dynamic system reconfiguration
is performed. Methods for ensuring real-time performance guarantees of resul-
ting configured systems are presented in chapter 5. These include the method for
aspect-level worst-case execution time analysis, the method for ensuring quality of
service under dynamic reconfiguration, and formal analysis of components woven
with aspects. Finally, in chapter 6 we present automated tool support for deve-
lopment and analysis of reconfigurable real-time systems, and evaluate ACCORD
against the requirements placed on development of reusable and reconfigurable
real-time systems previously identified in chapter 3.

Part III: Component-Based Embedded Real-Time Database System
In this part we present an example of utilizing ACCORD to develop COMET.
The goal with the COMET platform is to enable development of various data-
base configurations for specific embedded and real-time applications. The type of

10 INTRODUCTION 1.4

requirements placed on COMET development is best illustrated by an example of
one of the COMET targeting application areas: vehicle control systems. There-
fore, in chapter 7 we present a study of data management in two different real-time
systems developed at Volvo Construction Equipment Components AB, Sweden.
We then elaborate in chapter 8 on how COMET was developed using ACCORD
and discuss various components, aspects, and aspect packages in the COMET
library. In chapter 9 we present possible ways of configuring COMET using the
proposed tools, and evaluate performance of COMET. In this chapter we also
present experiences gathered while implementing the platform.

Part IV: Epilogue This final part of the thesis contains the related work and
conclusions. Namely, the related work is discussed in chapter 10, and the thesis is
concluded with chapter 11 where we summarize the work, give conclusions, and
outline possible directions for the future work.

Chapter 2
Basic Concepts in Software

Engineering and Real-Time

This chapter introduces the terminology related to software engineering and real-
time systems adopted in the thesis. Furthermore, we discuss how to ensure real-
time performance of a software system and achieve efficient management of data.

2.1 Basic Notions in Software Engineering

Massive amounts of software have been developed since the development of the
first software program. Moreover, the complexity of developed software has pro-
portionally increased. As a result, different software engineering techniques de-
voted to assuring efficient design, development, and use of software have emerged
[21] (see figure 2.8 for an evolutionary pyramid of the software engineering tech-
niques). In this section we introduce software engineering terminology adopted
in the thesis. We start with more general software engineering notions and then
focus on the terminology of component-based software development and aspect-
oriented software development.

Software architecture. Every software system has an architecture, which may
or may not be explicitly modeled [114]. The software architecture represents a
high level abstraction of a system, where a system is described as a collection of
interacting components [5]. The definition of the software architecture adopted
in this thesis is [22]:

The software architecture of a program or computing system is the
structure or structures of the system, which comprise software com-

11

12 BASIC CONCEPTS IN SOFTWARE ENGINEERING AND REAL-TIME 2.1

Quality attribute Description
Performance The capacity of a system to handle data or events.
Reliability The probability of a system working correctly over a

given period of time.
Safety The property of the system that it will not endanger

human life or the environment.
Security The ability of a software system to resist malicious

intended actions.
Availability The probability of a system functioning correctly at

any given time.
Testability The ability to easily prove correctness of a system by

testing.
Reusability The extent to which the architecture or its parts can

be reused.
Portability The ability to move a software system to a different

hardware and/or software platform.
Maintainability The ability of a system to undergo evolution and re-

pair.
Modifiability Sensitivity of the system to changes in one or several

components.

Table 2.1: Examples of quality attributes [180]

ponents, the externally visible properties of those components, and
the relationship among them.

Thus, the software architecture enables decomposition of the system into well-
defined components and their interconnections, and consequently it provides me-
ans for building complex software systems [114]. The word component in this
context denotes a generic building block of the system and no specific characte-
ristics of a component are assumed.

Quality attributes. Those attributes of a system that are relevant from the
software engineering perspective, e.g., maintainability and reusability, and those
that represent quality of the system in operation, e.g., performance, reliability,
robustness, and fault tolerance, are called quality attributes of a system. Qua-
lity attributes are often regarded as non-functional (or extra-functional) system
properties. Table 2.1 presents examples of common quality attributes.

2.1.1 Component-Based Software Development

The need for transition from monolithic to configurable systems has emerged from
problems in traditional software development, such as high development costs,

2.1 BASIC NOTIONS IN SOFTWARE ENGINEERING 13

inadequate support for long-term maintenance and system evolution, and often
unsatisfactory quality of software [37]. Component-based software development
(CBSD) is a development paradigm that enables this transition by allowing
systems to be assembled from a pre-defined set of components explicitly deve-
loped for multiple usages.

Software Components. The core of CBSD are software components. However,
many definitions and interpretations of a component exist. In general, within
software architecture, a component is considered to be a unit of composition with
explicitly specified interfaces and quality attributes [37]. In systems where COM
[48] is used as a component framework, a component is generally assumed to be a
self-contained binary package with precisely defined standardized interfaces [121].
Similarly, in the CORBA component framework [127], a component is assumed
to be a CORBA object with standardized interfaces. A component can be also
viewed as a software artifact that models and implements a well-defined set of
functions, and has well-defined, but not necessarily standardized, component in-
terfaces [55]. Hence, there is no common definition of a component for every
component-based system. The definition of a component depends on the archi-
tectural assumptions and the way it is to be reused in the system. However, all
component-based systems have one common fact: components are for composi-
tion [169].

While frameworks and standards for components today primarily focus on
CORBA, COM, or JavaBeans, the need for component-based development has
also been identified in the area of operating systems (OSs). The aim is to facilitate
OS evolution without endangering legacy applications and provide better support
for distributed applications [63, 115].

Component interfaces. Common for all types of components, independent of
their definition, is that they communicate with its environment through well-

Required

interfaceProvided

interface

Connector

Component

Component

Figure 2.1: Components and interfaces

14 BASIC CONCEPTS IN SOFTWARE ENGINEERING AND REAL-TIME 2.1

defined interfaces, e.g., interfaces in COM and CORBA are defined in an interface
definition language (IDL), Microsoft IDL and CORBA IDL, respectively. Note
that in an interface, only a collection of operations implemented in a component
is normally listed together with the descriptions and the protocols of these ope-
rations [51]. Having well-defined interfaces ensures that an implementation part
of a component can be replaced in the system without changing the interface.

Components typically have more than one interface. For example, a compo-
nent may have three types of interfaces: provided, required, and configuration
interfaces [37]. Provided and required interfaces are intended for the interaction
with other components, whereas configuration interfaces are intended for use by
the user of the component, i.e., a software engineer (developer) who is constructing
a system using reusable components. Each interface provided by a component is,
upon instantiation of the component, bound to one or more interfaces required
by other components. The component providing an interface may service mul-
tiple components, i.e., there can be a one-to-many relation between provided and
required interfaces.

Component connectors. When using components in system composition there
might be a syntactic mismatch between provided and required interfaces, even
when the semantics of the interfaces match. This requires adaptation of one or
both of the components or an adapting connector to be used between components
to perform the translation between them (see figure 2.1).

Black box component. Independently of an application area, a software com-
ponent is normally considered to have the black box property [61, 55], i.e., each
component sees only interfaces of other components, thus, internal state and at-
tributes of the component are strongly encapsulated.

Component domain. Every component implements some field of functionality,
i.e., a domain [37]. Domains can be hierarchically decomposed into lower level
domains, e.g., the domain of communication protocols can be decomposed into
several layers of protocol domains as in the OSI model. This means that com-
ponents can also be organized hierarchically, i.e., a component can be composed
out of subcomponents. In this context, two conflicting forces need to be balanced
when designing a component. First, small components cover small domains and
are likely to be reused, as it is likely that such component would not contain large
parts of functionality not needed by the system. Second, large components give
more leverage than small components when reused, since choosing the large com-
ponent for the software system would reduce the cost associated with the effort
required to find the component, and analyze its suitability for a certain software
product [37]. Hence, when designing a component, a designer should find the
balance between these two conflicting forces, as well as actual demands of the
system in the area of component application.

2.1 BASIC NOTIONS IN SOFTWARE ENGINEERING 15

System configuration (assembly). A system assembled using components is
referred to as a system configuration or an assembly. Often, an assembly of
components can be viewed as one composite component implementing a large
domain.

2.1.2 Aspect-Oriented Software Development

Aspect-oriented software development (AOSD) has emerged as a new principle
for software development and it is based on the notion of separation of concerns
[81]. Typically, an aspect-oriented implementation of a software system consists
of components and aspects, which are combined into a resulting system using an
aspect weaver.

White box components. The AOSD community uses the term component to
denote a traditional software module, e.g., program, function, or method, com-
pletely accessible by the users. Hence, components in AOSD do not enforce
information hiding and are fully open to changes and modifications of their inter-
nal structure. This is in contrast to black box components used for configuration
of component-based software. To preserve original terminology from the AOSD
community, and at the same time distinguish between the components used in
component-based software and the traditional modules used in aspect-oriented
software, we refer to the latter as components the with white box property or
simply white box components. A white box component is typically written in a
standard programming language, such as C, C++, or Java.

Aspects. A property of a system that affects its performance or semantics, and
that crosscuts the functionality of the system, is commonly considered to be an
aspect [81]. Aspects of software such as persistence and debugging can be descri-
bed separately and exchanged independently of each other without disturbing the
modular structure of the system.

Aspect language. Aspects are written in an aspect language that corresponds
to the language in which the white box components are written, e.g., AspectC
[47] for components written in C, AspectC++ [158] for components written in
C++ or C, and AspectJ [182] for Java-based components.1 The way an aspect
can be defined in AspectC++ is illustrated in figure 2.2.

Pointcuts and join points. As can be seen from figure 2.2, the aspect declara-
tion consists of advices and pointcuts. A pointcut in an aspect language consists
of one or more join points, and is described by a pointcut expression. A join
point refers to a point in the white box component code where aspects should be
weaved, e.g., a method, a type (struct or union). The syntax of the pointcut

1All existing aspect languages are conceptually very similar to AspectJ.

16 BASIC CONCEPTS IN SOFTWARE ENGINEERING AND REAL-TIME 2.1

 advice getLockCall(lockId):
 void after (int lockId){
 cout<<”Lock requested is”<<lockId<<endl;}
}

aspect printID{
 pointcut getLockCall(int lockId)=
 call(”void getLock(int)”)&&args(lockId);

Figure 2.2: An example of an aspect definition

∈p {pointcuts}

∈m {function|method_signatures}

p::=call(m)|execute(m)|target(v)|args(v)|p&&p|p||p|!p
∈v {identifiers_with_types}

Figure 2.3: A typical pointcut syntax

is illustrated in figure 2.3. The first two pointcuts (call and execute) match
join points that have the same signature2 as the join point m. While the call
pointcut refers to the point in code where some function/method is called, the
execute pointcut refers to the execution of the join point (i.e., after the call has
been made and a function started to execute). The pointcuts target and args

match any join point that has values of a specified type; in this case v. Operators
&&, ||, and ! logically combine or negate pointcuts.

Figure 2.4 shows the definition of a named pointcut getLockCall, which re-
fers to all calls to the function getLock() and exposes a single integer argument
to that call.

pointcut getLockCall(int lockId)=
 call(”void getLock(int)”&&args(lockId);

Figure 2.4: An example of a pointcut definition

Advices. A declaration used to specify code that should run when the join points
are reached is referred to as an advice. Different kinds of advices can be declared,
as follows:

❏ before advice, which is executed before the join point,

2A function or a method signature refers to a description that consist of the function name,
its type, and input/output parameters.

2.1 BASIC NOTIONS IN SOFTWARE ENGINEERING 17

A1A1A1A1

A2A2A2A2

A3A3A3A3

MMMM A3A3A3A3

A1A1A1A1

A2A2A2A2

MMMM

A3A3A3A3

A1A1A1A1

A2A2A2A2

A3A3A3A3

A1A1A1A1

A2A2A2A2

MMMM

AdviceAdviceAdviceAdvice

(a)
before

(b)
after

(c)
around

(d)
 around with
proceedproceedproceedproceed

Execution
flowAAAAiiii i-th

sequential
execution

segment of
an adviceMMMM Method or a

function
identified as

join point

Figure 2.5: The behavior of a before, after, and around advice

advice getLockCall(lockId):
 void after (int lockId)
 {
 cout<<”Lock requested is”<<lockId<<endl;
 }

Figure 2.6: An example of the advice definition

❏ after advice, which is executed immediately after the join point, and

❏ around advice, which is executed instead of the join point.

A special type of an advice, called inter-type advice or an introduction can be
used for adding members to the structures or classes.

When implementing an around advice, one can choose to execute the code of a
function or a method of the join point at a suitable place, or suppress the join point
execution completely. Figure 2.5 shows simplified flow of execution of a before,
after, and around advice. In the example, we assume that an advice can be divided
into three sequential execution segments, denoted A1, A2, and A3. M represents
the execution of the join point function that triggers the advice execution. In
figure 2.5(c) the code of the join point, i.e., the execution of M is completely
suppressed. In the case (d), M still is executed after execution step A2. This
is achieved by using the proceed construct of the aspect language to indicate
that the execution of the join point function should be resumed. Conceptually,
the execution behavior of the around advice using proceed can be viewed as an
execution of two advices, before and after, at the same join point.

18 BASIC CONCEPTS IN SOFTWARE ENGINEERING AND REAL-TIME 2.1

Software module
SM

Aspect
AS

woven
code

(a)

Software module
SM1

Software module
SM2

Aspect
AS1

Software module
SM3

Aspect
AS2

woven
code

(b)

Figure 2.7: Illustration of aspect weaving (a) one aspect and one white box component
and (b) multiple aspects woven into several white box components.

Figure 2.6 shows an example implementation of an after advice. With this
advice each call to getLock() is followed by the execution of the advice code,
i.e., printing of the lock id.

Aspect weaver. Aspects are combined with white box components using a spe-
cial compiler called aspect weaver, which performs code-to-code transformation,
transforming the source code of components and aspects into weaved source code
of the system that is expressed in the same language as components. Figure
2.7(a) depicts the effects of aspect weaving on a single white box component,
where weaving an aspect changes the internal behavior of the component. Fi-
gure 2.7(b) depicts a case where two aspects are woven into multiple white box
components, thereby, modifying the internal behavior of a system.

2.1.3 From Components to Composition

Research in the software engineering community increasingly emphasizes com-
position of the system as a way to enable development of reliable systems and
improve reuse of components. In this section we give an overview of the software
engineering techniques that primarily focus on system composition. Figure 2.8
provides a hierarchical classification of composition-oriented approaches [21].

Component-based systems. The first level in figure 2.8 represents component-
based systems, e.g., CORBA, COM, and JavaBeans. These systems are refer-
red to as “classical” component-based systems [21]. Frameworks and standards
for components of today in industry primarily focus on classical component-
based systems. In these systems components are black boxes and communicate
through standard interfaces, providing standard services to clients, i.e., compone-
nts are standardized. Standardization eases adding or exchanging of components
in the software system, and improves reuse of components. However, classical

2.1 BASIC NOTIONS IN SOFTWARE ENGINEERING 19

Composition systems

Systems with composition
operators

Aspect-oriented systems

Architecture systems

Classical component-based systems

Figure 2.8: Classes of component-based systems

component-based systems lack rules for the system composition, i.e., there is no
composition recipe.

Architecture systems. The next level represents architecture systems, e.g.,
RADL [151], RAPIDE [111], and UNICON [185]. These systems provide an
architectural description language (ADL) used to specify the architecture of the
software system. In an architecture system, components encapsulate application-
specific functionality and are also black boxes. Components communicate through
connectors, which encapsulate the communication between application-specific
components [5]. This is a significant advancement in the composition compared
to classical component-based systems, since communication and the architecture
can be varied independently of each other. Thus, architecture systems separate
three major aspects of the software system: architecture, communication, and
application-specific functionality. One important benefit of an architecture sy-
stem is the possibility of early system testing. Tests of the architecture can be
performed with “dummy” components leading to the system validation in the
early stage of the development. This also enables the developer to reason about
the software system at an abstract level. Classical component-based systems can
be viewed as a subset of architecture systems as they are in fact simple archi-
tecture systems with fixed communication [21].

Aspect-oriented systems. The third level represents systems that are deve-
loped using the AOSD principles [81]. Aspect-oriented systems separate more
concerns of the software system than architecture systems. Beside architecture,
application, and communication, aspects of the system can be separated furt-
her: representation of data, control flow, memory management, etc. Temporal
constraints can also be viewed as an aspect of the software system, implying that
a real-time system could be developed using AOSD [33]. Notably, several pro-

20 BASIC CONCEPTS IN SOFTWARE ENGINEERING AND REAL-TIME 2.1

jects sponsored by DARPA (Defense Advanced Research Projects Agency) have
been established with the aim to investigate possibilities of reliable composition
of embedded real-time systems using AOSD [136], e.g., ARIES [6], ISIS PCES
[78], and FACET [59]. In aspect-oriented systems, aspects are separated from
modules constituting the system functionality; they are combined automatically
through weaving. Weaving breaks the modules of the system at joint points and
crosscuts then with aspects. Hence, the weaving process results in an integrated
system. Here, modules constituting the system functionality are refereed to as
white box components as they can be fully accessed and crosscut with aspects.
However, aspect weavers can be viewed as black boxes since they are written for
a specific language, and for each new language a new aspect weaver needs to be
written. The process of writing an aspect weaver is not trivial, thus, introducing
additional complexity in the development of aspect-oriented systems and usability
of aspects. Compared to architecture systems, aspect systems are more general
and allow separation of various additional aspects, thus, architecture systems can
be viewed as a subset of the class of aspect-oriented systems. Having different
aspects improves reusability since various aspects can be combined (reused) with
different white box components. The main drawback of aspect systems is that
they depend on special languages for aspects, requiring system developers to learn
these languages.

Composition operators. At the fourth level are systems that provide compo-
sition operators by which components can be composed. Composition operators
are comparable to component-based weaver, i.e., a weaver that is no longer a
black box, but is also composed out of components, further improving the reuse.
Subject-oriented programming (SOP) [129], an example of systems with compo-
sition operators, provides composition operators for classes, e.g., merge (merges
two views of a class) and equate (merges two definition of classes into one). SOP
is a powerful technique for compositional system development since it provides
a simple set of operators for weaving aspects or views, and SOP programs sup-
port the process of system composition. However, SOP focuses on composition
and does not provide a well-defined component model. Instead, SOP treats C++
classes as components.

Composition language. Finally, the last level includes systems that contain a
full-fledged composition language, and are called composition systems. A compo-
sition language should contain basic composition operators to compose, glue, ad-
opt, combine, extend, and merge components. The composition language should
also be tailorable, i.e., component-based, and provide support for composing (dif-
ferent) systems in the large. Invasive software composition [21] is one approach
that aims to provide a system composition language, and here components may
consist of a set of arbitrary program elements (also known as boxes) [21]. Boxes
are connected to the environment through very general connection points, called

2.2 BASIC NOTIONS IN REAL-TIME COMPUTING 21

hooks, and can be considered grey box components. Composition of the system is
encapsulated in composition operators (composers), which transform a component
with hooks into the component with code. The process of system composition
using composers is more general than aspect weaving and composition operators,
since invasive composition allows composition operators to be collected in libraries
and to be invoked by the composition programs (recipes) in a composition lan-
guage. Composers can be realized in any programming or specification language.
Invasive composition supports software architecture, separation of aspects, and
provides composition receipts, allowing production of families of variant systems.
Reuse is improved, as compared to systems in the lower levels, since composition
recipes can also be reused, leading to easy reuse of components and architectu-
res. An example of the system that supports invasive composition is COMPOST
[177]. However, COMPOST is not suitable for systems that have limited amount
of resources and enforce real-time behavior, since it does not provide support for
representing temporal properties of the software components.

2.2 Basic Notions in Real-Time Computing

In this section we define the basic real-time terminology that is used in the thesis
as follows.

Embedded systems. Digital systems can be classified in two categories:
general-purpose systems and application-specific systems [69]. General-purpose
systems can be programmed to run a variety of different applications, i.e., they
are not designed for any special application, as opposed to application-specific
systems. Application-specific systems are typically a part of a larger host sy-
stem and perform specific functions within the host system [41]. Such systems
are usually referred to as embedded systems, and they are implemented partly
in software and partly in hardware. Frequently, when standard microprocessors,
micro-controllers, or DSP processors are used, specialization of an embedded sy-
stem for a particular application concerns primarily specialization of software.
An embedded system is required to be operational during the lifetime of the host
system, which may range from a few years, e.g., a low-end audio component, to
decades, e.g., an avionic system. The nature of embedded systems also requires
them to interact with the external world, as these systems need to monitor sensors
and control actuators for a wide variety of real-world devices.

Real-time systems. Most embedded systems are also real-time systems. In a
real-time system the correctness of the system depends both on the logical result
of the computation and the time when the results are produced [159]. Hence,
enforcing timeliness is essential to the overall correctness of a real-time system. We
use terms real-time software and real-time system interchangeably throughout the
thesis. Both of these denote a software program running on a run-time platform

22 BASIC CONCEPTS IN SOFTWARE ENGINEERING AND REAL-TIME 2.2

time

release time deadline

execution
time

Figure 2.9: Typical temporal characteristics of a task in a real-time system

and performing a specific task for an application, i.e., a user of the program. We
denote the underlying hardware and the operating system on which a real-time
system operates as the run-time environment of the system.

Although the majority of real-time systems are embedded and vice versa, there
are embedded systems that do not enforce real-time behavior, e.g., electronic toys,
and there are real-time systems that are not embedded, e.g., stock exchange. The
focus of this thesis are embedded real-time systems, i.e., the computing systems
that are both embedded and real-time. If not otherwise specified, in the remainder
of the thesis we use the term a real-time system to refer to an embedded real-time
system.

Real-time task model. Real-time systems are typically constructed out of con-
current programs called tasks. A task in a real-time system is characterized by a
number of temporal constraints amalgamating a task model. Figure 2.9 illustrates
typical temporal constraints a task has to satisfy:

❏ release time, representing the point in time after which the task can be
executed,

❏ execution time, representing the time needed for the task to execute, and

❏ deadline, representing the time point by which the task needs to be com-
pleted.

Execution times of tasks. Ensuring timeliness in a real-time system greatly
depends on the ability to measure or estimate the amount of the CPU time tasks
require for execution [38]. To maintain real-time performance, the execution time
of a task in terms of the worst-case execution time (WCET) is required. The
execution needs of a task can be obtained either by [38, page 59] (i) testing the
task set on a hardware with appropriate test data, (ii) analyzing the task set by
simulating the target system, or (iii) estimating the execution time by analyzing
the programs at the high language level, or possibly assembler language level. The
first method has a disadvantage that test data usually does not completely cover
the domain of interest, while the second method heavily relies on the model of the
underlying hardware. The hardware model typically represents an approximation

2.2 BASIC NOTIONS IN REAL-TIME COMPUTING 23

of the actual system and therefore might not accurately represent the worst-case
behavior of tasks. In this thesis we adopt the third method, i.e., estimating
bounds of the execution times of the tasks in the system by means of WCET
analysis of programs [137]. The estimated WCET should be as tight as possible
in order to asses the temporal behavior of a real-time system as close to the real
behavior that will be exposed during run-time. A real-time system is considered
to be predictable if its temporal behavior can be estimated (closely to the actual
behavior exposed during run-time) before running the system.

Periodic, aperiodic, and sporadic tasks. Tasks can be associated with addi-
tional temporal properties, including periods and minimum inter-arrival times. A
period specifies the time interval between two consecutive executions of a task in a
real-time system. Tasks associated with periods are referred to as periodic tasks.
Aperiodic and sporadic tasks are typically associated with arrival (or inter-arrival)
times, where the arrival time is used to denote the release time of an aperiodic (or
sporadic) task. While aperiodic tasks have no constraints on inter-arrival times,
sporadic tasks are characterized by the minimum inter-arrival time, i.e., a mini-
mum time interval that must elapse between arrivals of two consecutive tasks in
the system.

Hard and soft real-time systems. Depending on the consequence of missing
a deadline, real-time systems can be classified as hard or soft. In a hard real-time
system consequences of missing a deadline can be catastrophic, e.g., aircraft and
train control, while in a soft real-time system missing a deadline does not cause
catastrophic damage to the system but may affect performance negatively, e.g.,
mobile computing systems, web services, video streaming, and e-commerce.

Open and closed real-time environments. Traditionally, the focal point of
real-time computing has been hard real-time application areas and they are ty-
pically considered to be closed environments for real-time system operation since
the workload characteristics of a real-time system are required to be known and
do not change during the operational lifetime of the system.

Although real-time systems operating in closed environments are an essential
part of the real-time research domain, the application of real-time computing to
soft real-time application areas has gained momentum in recent years. The soft ap-
plication areas, for which the workload is generally unknown and not predictable
before or during the system execution, are considered to be open environments
for real-time system operation.

Scheduling techniques. Regardless of the type of a real-time system or an en-
vironment in which the system operates, it is necessary to ensure and maintain
real-time performance. This includes determining the order in which tasks should

24 BASIC CONCEPTS IN SOFTWARE ENGINEERING AND REAL-TIME 2.2

execute to ensure that tasks meet their respective deadlines. The process of deter-
mining the order of task execution is known as scheduling [39, 89], and it enables
real-time system designers to predict the behavior of a real-time system by ensu-
ring that all tasks fulfill their execution requirements and meet their deadlines. A
number of scheduling techniques exist and each is developed for a particular task
model or an environment in which a real-time system operates.

Static scheduling techniques. Static scheduling is primarily used in hard real-
time systems where temporal attributes of a task are known and fixed throughout
the operational lifetime of the system. Rate-monotonic scheduling (RMS) is a
typical representative of static scheduling techniques as the algorithm assumes
that priorities of tasks are assigned based on periods [104, 89]. The priorities
assigned to tasks based on their periods are invariant during run-time.

Dynamic scheduling techniques. Dynamic scheduling can also be used in
closed hard real-time environments where tasks have known temporal attributes.
These scheduling schemes are more flexible than static ones as they allow the
task order to be determined at run-time. Namely, a scheduling algorithm does
not have to posses full knowledge of the task set or its time constraints. New task
activations, not known to the algorithm when scheduling the current task set, can
arrive at a future unknown time [108]. The earliest deadline first (EDF) algorithm
is a representative of dynamic scheduling techniques as it assigns priorities to tasks
at run-time based on task deadlines [104, 89]. Hence, priorities assigned to tasks
based on their deadlines are changing dynamically at run-time.

Feedback control scheduling. Traditional dynamic approaches, such as EDF,
providing hard real-time guarantees rely on worst-case execution times and
worst-case arrival patterns of tasks, are not effective for a large class of soft
real-time systems that operate in unpredictable environments as they result in
highly underutilized systems. Scheduling based on feedback control theory has
been identified as a promising foundation for performance control of real-time
systems that are both resource insufficient and exhibit unpredictable workloads
[15, 11, 108, 110, 133, 45, 99]. Feedback control scheduling enables the designer
or system operator to explicitly specify the performance of the system in terms
of the desired steady state and transient state system performance. We return to
feedback control scheduling in the context of maintaining real-time performance
in section 2.3.2.

Quality of Service. In the context of a real-time system, quality of service
(QoS) refers to system’s performance. QoS can be quantitatively captured by
a real-time system’s performance parameters, such as utilization of the system
or a number of task deadline misses in the system [108, 140]. Since feedback
control scheduling methods enable specifying the desired performance level of a

2.3 ENSURING REAL-TIME PERFORMANCE GUARANTEES 25

real-time system, they are considered to be efficient as methods for real-time QoS
management [73, 108, 110, 133].

2.3 Ensuring Real-Time Performance Guarantees

As mentioned previously, the essential difference between general-purpose soft-
ware and real-time software system is that real-time performance needs to be
satisfied and maintained in real-time software. Different techniques exist for ensu-
ring and maintaining real-time performance, depending on the type of a real-time
system, the environment in which the system operates, and the phase in the life
cycle of the system.

For hard real-time systems operating in closed environments it is essential to
determine the WCETs of tasks before the system is deployed into a run-time en-
vironment. To that end, various WCET analysis techniques have been developed
[38]. In this thesis we employ symbolic WCET analysis (discussed in section 2.3.1)
for determining the WCET of a task in the pre-run-time phase of the system’s
life cycle.

For soft real-time systems operating in open environments it is important
to maintain real-time performance in terms of a specified level of QoS during
run-time, i.e., in a post-deployment phase of the system’s life cycle. A number of
feedback control-based techniques have been developed to tackle this challenge. In
section 2.3.2 we discuss the feedback-based QoS management techniques adopted
in this thesis.

For both soft and hard real-time systems it is valuable to check temporal
and functional behavior of a system already in the early design phase of the
system development to ensure that the system is going to behave as required
and prescribed by the design and/or requirement specification. A number of
techniques with a strong mathematical foundation can be used for analyzing the
system behavior against the specification. These techniques are referred to as
formal analysis methods and are used in this thesis as the foundation for formal
analysis of the functional and temporal real-time system behavior (section 2.3.3).

2.3.1 Symbolic Worst-Case Execution Time Analysis

As mentioned, one of the most important elements in real-time system deve-
lopment is temporal analysis of real-time software. Determining the WCET of
the code guarantees that the execution time does not exceed the WCET bound.
WCET analysis is usually done on two levels [137]: (i) low level, analyzing the ob-
ject code and the effects of hardware-level features, and (ii) high level, analyzing
the source code and characterizing the possible execution paths.

Symbolic WCET addresses the problem of obtaining the high level tight esti-
mate of the WCET by characterizing the context in which code is executed [27].

26 BASIC CONCEPTS IN SOFTWARE ENGINEERING AND REAL-TIME 2.3

1 double powerpowerpowerpower(double ffff, int nnnn) {

2 double res = 0;

3 int times = 0;

4 bool pos = true;

5

6 ifififif n < 0 thenthenthenthen

7 times = -n;

8 elseelseelseelse

9 pos = false;

10 times = n;

11 end ifend ifend ifend if

12 res = 1.0;

13

14 for for for for (i in 1 … times) looplooplooploop

15 res = res * f;

16 end loopend loopend loopend loop

17

18 if if if if (pos) thenthenthenthen

19 res = 1 / res;

20 end if end if end if end if

21 returnreturnreturnreturn res;

22 end powerend powerend powerend power

(a) The code of the power function

S (50)

E2 (99)

S (270)

Then1 (301) Else1 (583)

E1 (111)

Then2 (560)

R (244)

Body (317)

E (117)

(b) Control-flow graph of the power func-
tion (WCETs in parenthesis)

Figure 2.10: The power function

Hence, the symbolic WCET technique describes the WCET as a symbolic expres-
sion, rather than a fixed constant.

To illustrate the main idea and benefits of the symbolic WCET technique,
we provide an example of the WCET calculations for code of the power function
given in figure 2.10(a) (the example is adopted from [27]). The function computes
the n-th power of a float number f. If n is negative the function computes 1

fabs(n)
.

Using traditional techniques to calculate WCET of the power function one
first needs to estimate the maximum range of the exponent n, thus, determining
the maximum number of iterations of the loop in the function (lines 14-16 in
figure 2.10(a)). Then, the WCET of the function is determined by adding the
execution times of all sections of code, looking for the longest path in conditional
branches. Figure 2.10(b) shows the control flow of the power function, with an
example of the execution times of each of the sections in the code (numbers in
parenthesis). Consider a case where n is in the range [-10,10], implying that 10 is
the maximum number of loop iterations. In this case, adding the execution times
of code sections (given in figure 2.10(b)) results in the following WCET of the

2.3 ENSURING REAL-TIME PERFORMANCE GUARANTEES 27

power function:

WCETpower = 50 + 111 + max(301, 583) + 270 + 10(117 + 317) +

99 + max(560, 0) + 244 = 6374

The obtained result is pessimistic as the two if-statement branches with the
maximum WCET can never be taken together. Furthermore, this WCET calcu-
lation takes a pessimistic approach to calculations of loop iterations as it uses 10
as the maximum number of iterations.

The symbolic WCET technique allows expressing the WCETs of the code as
an algebraic expression. In this case, the WCET of the power function can be
formulated as a function of the exponent n as follows:

WCETpower(n) = 50 + 111 + [n < 0]301 + [n ≥ 0]583 + 270 + 117 +

abs(n)
∑

i=1

(117 + 317) + 99 + [n < 0]560 + [n ≥ 0]0 + 244

The above expression can be further simplified, e.g., by using Maple V, into:

WCETpower =







1752 − 434n if n < 0
1474 if n = 0
1474 + 434n if n > 0

The WCET of the power function is maximal for n = −10. The value of
WCETpower for n = −10 is WCETpower = 6092. The maximal value of the
WCET obtained by symbolic analysis (6092) is tighter than the value of WCET
obtained by traditional analysis (6374). It is worth noting that the symbolic
expression is left parameterized until the actual call to the function is made, in
which case, based on the passed value of the exponent e, the symbolic expression
is evaluated and the tight bound on the execution time is obtained.

Now, the obtained WCET estimation can be used by scheduling algorithms
to ensure that all task deadlines are met and, thereby, guarantee the performance
of the real-time system.

2.3.2 Feedback-Based QoS Management

Recall that for soft real-time systems operating in open environments it is es-
sential to guarantee a specific level of QoS. Assuring QoS guarantees is typically
done by employing feedback control. Hereafter we refer to real-time QoS mana-
gement based on feedback control as feedback-based QoS management. A typical
structure of a feedback control system is given in figure 2.11. Input to the con-
troller is a performance error, yr(k) − y(k). The performance error is computed
as the difference between the reference yr(k), representing the desired state of the

28 BASIC CONCEPTS IN SOFTWARE ENGINEERING AND REAL-TIME 2.3

+ Controller
Controlled

System

))))((((ky

)(klδ))))((((kyr

-1

Actuator

Figure 2.11: An architecture of the real-time system using feedback control structure

controlled system at time kT , where T is the sampling period and k is the samp-
ling instant, and the actual system state measured using the sensor and given by
the controlled variable y(k).

Based on the performance error the controller changes the behavior of the con-
trolled system via the manipulated variable u(k) and the actuator. The objective
of the control is to compute u(k) such that the difference between the desired
state and the actual state is minimized, i.e., we want to minimize (yr(k)− y(k))2.
This minimization results in a more reliable performance and system adaptability
as the actual system performance is closer to the desired system performance.

Next we review the main feedback-based QoS management policies used in
various real-time applications. The goal is to illustrate the variety of sensors,
actuators, and controllers used in QoS management of real-time systems.

Controlling the utilization using feedback control has been important in ap-
plications where meeting deadlines is vital [3, 11, 45, 108, 88]. In controlling
utilization, a sensor periodically measures the utilization of the system. A con-
troller compares the utilization reference with the actual measured utilization and
computes a change to the manipulated variable. The actuator then carries out
the change in utilization in one of the following ways:

❏ The precision or the quality of the result of the tasks can be modified by
applying the imprecise computation technique [105]. Here, the utilization is
decreased by reducing the execution time of the tasks. This in turn implies
that the precision of the task results is lowered. Conversely, the result
precision increases as the utilization increases.

❏ The utilization is directly related to the the inter-arrival times of the tasks,
i.e., the utilization increases with decreasing inter-arrival times. Hence, the
utilization can easily be adjusted by changing the inter-arrival times of the
tasks [108, 45].

❏ Since the utilization of the system increases with the number of admitted
tasks, the utilization can be changed by enforcing admission control, where
a subset of the tasks are allowed to be executed [16].

In a number of real-time applications, e.g., video streaming and signal proces-
sing, tasks can deliver results of less precision in exchange for timely delivery of

2.3 ENSURING REAL-TIME PERFORMANCE GUARANTEES 29

results. For example, during overloads alternative filters with less output quality
and execution time may be used, ensuring that task deadlines are met. In gene-
ral, the precision of the results increases with the execution time given to a task,
calling for the use of a feedback structure to control the precision [14, 15, 99]. In
such a structure, the sensor is used to estimate the output quality of the tasks,
while a controller forces the tasks to maintain an output precision equal to the
reference. The execution time given to individual tasks is controlled by the ac-
tuator, thereby, ensuring that the output precision is maintained at the desired
level.

In telecommunication and web servers applications, arriving packets and re-
quests are inserted into queues, where the requests wait to be processed. The
time it takes to process requests once they arrive at a server is proportional to
the length of the queue, i.e., the processing time increases with the length of the
queue. Controlling the queue length is the key to guarantee timely processing
of requests. If the queue length is too long, then the time it takes to process a
request may be unacceptable as there are time constraints on the requests. A
feedback controller can be used to adjust the queue length such that the length
equals its reference [133, 4, 153, 2, 148]. Ways of manipulating the queue length
include changing the admission rate of the requests. Namely, by admitting more
arriving requests the queue length increases, thus, increasing the latency time of
the requests.

Controlling the execution times of tasks is important in real-time systems with
constraints on energy consumption. Efforts have been carried out trying to reduce
energy consumption in real-time systems, while preserving timely completion of
tasks [186]. In this case execution times are monitored and the voltage and, thus,
frequency of the CPU is varied such that the power consumption is reduced and
tasks are executed in a timely manner. Hence, the sensor is used to measure the
execution time of the tasks and the actuator is used to carry out the change in
the voltage or the frequency of the CPU.

By studying the examples above, we note that there are many ways to imple-
ment sensors and actuators. This shows that the choice of a sensor and an actuator
depends highly on the type of an application and its constraints. Control-related
variables also vary depending on the application being controlled. Furthermore,
controllers are implemented using a particular metric and a controlling algorithm,
explicitly tuned for a specific application.

In the feedback control-based policies mentioned in this section, traditional
control algorithms such as PID, state-feedback, and Lead-Lag are used (details
on these algorithms can be found in [62]). These algorithms assume that the
controlled system does not change during run-time, i.e., the behavior of the con-
trolled system is time-invariant. Hence, the control algorithm parameters are
tuned off-line and may not be altered during run-time. However, the behavior of
some real-time systems is time-varying due to significant changes in load and/or
execution times. This is addressed by employing adaptive control algorithms
[146] where the behavior of the controlled system is monitored at run-time and

30 BASIC CONCEPTS IN SOFTWARE ENGINEERING AND REAL-TIME 2.3

Model checker

Does the system
satisfy the property?

Formal representation of the
system

(timed automata)

Property to be checked
(temporal logic)

YES

NO

Figure 2.12: Formal analysis of real-time systems using model checking

the control algorithm parameters are adapted accordingly. Hence, different types
of controllers may be employed and, as such, there is a need for configurability of
the controllers.

As can be observed, there are many different types of control algorithms that
are applied to specific QoS management policies. The choice of a control algorithm
depends on the control performance, run-time complexity, memory footprint, and
adaptiveness.

2.3.3 Formal Analysis of Real-Time Systems

Several techniques for formal analysis have been developed of which model chec-
king has been found to be most beneficial in verification of real-time systems
behavior [74, 96, 8]. Model checking of real-time systems is based on a formal
representation of the system, logics for checking relevant system properties, and
algorithms that check whether the formal representation of the system satisfies
the property (see figure 2.12).

Finite state real-time systems are frequently formally represented using timed
automata. A timed automaton is a timed extension of a finite state automaton
with a finite set of real-valued clock variables (clocks) [9]. Constraints on the
clocks, referred to as guards, are used to restrict the behavior of an automaton,
and accepting conditions are used to enforce progress properties. A transition,
represented by an edge in a graph of the automaton, can be taken when the clocks
satisfy the guard (condition) that labels the edge.

A simplified version of the original timed automata, called timed safety au-
tomata [74], are introduced to specify progress properties using local invariant
conditions. An automaton, in this case, can remain in a location as long as the
clock values satisfy the invariant conditions of the location. Given that timed
safety automata are, due to their simplicity, increasingly used in verification tools
and model-checking theory [25], we focus on timed safety automata and hereafter
refer to them as timed automata.

Figure 2.13 shows an example of a simple timed automaton that has three
locations, start, loc1, and loc2 and one clock x. The automaton can stay in the

2.3 ENSURING REAL-TIME PERFORMANCE GUARANTEES 31

start

x<=4

loc1

x<=4

loc2
x>=1

Figure 2.13: An example of a simple timed automaton.

location start only while the value of the clock is less than or equal to four, i.e.,
while the location invariant is satisfied. However, due to the “empty” guard,
equivalent to the condition true, the system may move from start to loc1 at any
time point. The transition from location loc1 to loc2 is taken when the guard
is satisfied, i.e., clock x is equal to one or higher. Note that edges are taken
instantaneously, but the time elapses in a location. Additionally, clocks can be
reset to zero at any edge of a timed automaton. In the example from figure 2.13,
clocks are not reset.

Formally, a clock is defined as a variable ranging over R+. For a set C of
clocks with x, y ∈ C, the set of clock constraints over C, ψ(C), is defined by

α ::= x ≺ c | x − y ≺ c | ¬α |(α ∧ α),

where c ∈ N, and ≺∈ {<,≤}. A formal definition of timed automata is given as
follows [25].

Definition 1 (Timed automaton) A timed automaton A is a tuple 〈L, l0, E,
C, r, g, Inv〉, where L is a non-empty finite set of (named) locations, l0 ∈ L is an
initial location, E ⊆ L×L is a set of edges, C is a finite set of clocks, r : E 7→ 2C

is a function that assigns to each edge e ∈ E a set of clocks r(e) to be reset,
g : E 7→ ψ(C) is a function that labels each edge e ∈ E with a clock constraint
g(e) over C, and Inv : L 7→ ψ(C), a function that assigns to each location l ∈ L
an invariant Inv(l).

The values of clocks are formally defined by clock valuations. A clock valuation
v is a function that assigns a value v(x) to each clock x ∈ C. In the remainder of
the thesis we consider guards, clocks to be reset, and invariants as sets of clock
valuations. We use notation v ∈ g to denote that v satisfies a guard g, and
[r 7→ 0]v to denote the clock valuation that maps all clocks in r to 0 and agrees
with v for other clocks C\r. Similarly, v+d denotes the clock valuation that maps
all x ∈ C to v(x) + d, d ∈ R+. The operational semantics of a timed automaton
is defined as a transition system where a state consists of a current location and
current values of clocks. Two types of transitions can be taken between the states:
an action transition and a delay transition.

Definition 2 (Operational semantics) Let RC be the set of all clock valua-
tions, and v0 = v0(x) = 0, for all x ∈ C. The semantics of a timed automaton

32 BASIC CONCEPTS IN SOFTWARE ENGINEERING AND REAL-TIME 2.3

A=〈L, l0, E, C, r, g, Inv〉 is a transition system (S, s0, 7→), where S = L × RC

is the set of states, s0 = 〈l0, v0〉 is the initial state, and 7→⊆ S×S is the transition
relation defined as:

❏ 〈l, v〉 7→ 〈l, v + d〉 if v + d ∈ Inv(l), for d ∈ R+ (delay transition); and

❏ 〈l, v〉 7→ 〈l′, v′〉 if there exists e = 〈l, l′〉 ∈ E such that v ∈ g(e), v′ = [r(e) 7→
0]v and v′ ∈ Inv(l′) (action transition).

The foundation for decidability results in verification of timed automata is
based on the notion of region equivalence over clock assignments [10]. A more
efficient representation of the state-space for the timed automata is based on
the notion of clock zones and zone graphs [74]. A zone Z represents a solution
set of a clock constraint, i.e., the maximal set of clock assignments satisfying the
constraint. Zones can be represented as conjunctions in ψ(C) and, therefore, ψ(C)
denotes a set of zones. The symbolic semantics of timed automata is defined by
a transition system where a symbolic state consists of a current location and a
current zone.

Definition 3 (Symbolic semantics) Let Z0 =
∧

x∈C x ≥ 0 be the initial zone.
The symbolic semantics of a timed automaton A=〈L, l0, E, C, r, g, Inv〉 is a
transition system (S, s0,;) called the zone graph where S = L × ψ(C) is the set
of symbolic states, s0 = 〈l0, Z0 ∧ Inv(l0)〉 is the initial state, and ;⊆ S × S is a
symbolic transition defined as:

❏ 〈l, Z〉 ; 〈l, Z ′〉, Z ′ = Z↑ ∧ Inv(l); and

❏ 〈l, Z〉 ; 〈l′, Z ′〉, Z ′ = re(Z ∧ g(e)) ∧ Inv(l′) if e = 〈l, l′〉 ∈ E;

where
Z↑={v + d|v ∈ Z ∧ d ∈ R+} is the future operation, and re(Z)={[r(e) 7→

0]v|v ∈ Z} is the reset operation.

The set of zones is closed under reset and future operations. That is, the result
of a reset operation on a zone results in a new zone in which adequate clocks
are reset. The symbolic semantics is a full and correct characterization of the
operational semantics of timed automata [25]. The symbolic semantics can be
extended to cover networks of communicating timed automata, where a location
vector is used instead of a location.

Verification of real-time systems emphasizes checking of safety and bounded
liveness properties of real-time systems using reachability analysis [25]. For an
automaton with symbolic semantics described by definition 3, a state 〈l, Z〉 is
reachable if there is a sequence of symbolic transitions (i.e., a path) from the initial
state 〈l0, Z0〉 to the state 〈l, Z〉. A number of tools exist, e.g., UPPAAL [178] and
Kronos [60], that use reachability analysis based on symbolic semantics of timed
automata for checking properties of real-time systems. The algorithms utilize

2.3 ENSURING REAL-TIME PERFORMANCE GUARANTEES 33

q

q q

qqq q

q

qq

q

q

q q

(a) AGq (b) AFq

(c) EGq (d) EFq

Figure 2.14: Expressing properties in TCTL logic.

the property of the inclusion operation ⊆ on the zones, where clock constraints
satisfied in a zone Z ′ are also satisfied in zone Z if Z ′ ⊆ Z.

Properties in the real-time model checking tools are expressed in timed
computational tree logic (TCTL) [9] using temporal operators G and F , and
path quantifiers A and E. The semantics of the operators and quantifiers is as
follows:

❏ Aq means that the property q holds for every path;

❏ Eq means that property q holds for some path;

❏ Gq means that the property q holds globally for every state on the path;
and

❏ Fq means that the property q holds eventually for some state on the path.

By combining temporal operators and path quantifiers we can obtain expres-
sions for checking behavior of the system, namely (see figure 2.14):

❏ AGq means that the property q holds for every state in every path;

❏ AFq means that the property q holds for some state on every path;

❏ EGq means that property q holds for every state on some path; and

34 BASIC CONCEPTS IN SOFTWARE ENGINEERING AND REAL-TIME 2.4

❏ EFq means that property q holds for some state on some path.

For example, we can express the reachability property that some state satisfying
proposition q will eventually be reached in the system on some path as EFq.
Invariant properties, e.g., φ = AGq checking if all states in the system at every
path satisfy q, are checked using the negation of reachability properties (AGq
is equivalent to ¬EF¬q). In this thesis we utilize the verification of real-time
systems using symbolic techniques and representation of timed automata using
zones.

2.4 Embedded Real-Time Database Systems

The amount of data that needs to be managed by real-time and embedded systems
is increasing [43]. Hence, a database management system (DBMS) functionality
suitable for embedded and real-time systems is needed to provide efficient support
for storage and manipulation of data. In the remainder of the thesis, were there
is no risk of ambiguity, we use the term database to denote a DBMS. Embedding
databases into real-time systems offers significant gains:

❏ reduction of development costs due to reuse of database systems;

❏ improvement of quality in the design of embedded systems since the data-
base provides support for consistent and safe manipulation of data, which
makes the task of the programmer simpler; and

❏ increased maintainability as the software evolves.

Furthermore, embedded databases provide mechanisms that support porting of
data to other embedded systems or large central databases. Naturally, require-
ments placed on such a database originate both from characteristics of embedded
and of real-time systems.

Namely, most embedded systems need to be able to run without human pre-
sence, which means that a database in such a system must be able to recover
from a failure without external intervention [125]. Also, the resource load the
database imposes on the embedded system, e.g., memory footprint and power
consumption, should be carefully balanced. For example, in embedded systems
used to control a vehicle, the minimization of the hardware cost is of utmost
importance. This usually implies that memory capacity must be kept as low as
possible and, consequently, databases used in such systems must have a small
memory footprint. Embedded systems can be implemented in different hardware
environments supporting different operating system platforms; this requires the
embedded database to be portable to different operating system platforms.

On the other hand, real-time systems impose a different set of demands on a
database system. The data in the database used in real-time systems must be lo-
gically consistent, as well as temporally consistent [139]. Temporal consistency of

2.4 EMBEDDED REAL-TIME DATABASE SYSTEMS 35

data is needed in order to maintain consistency between the actual state of the en-
vironment that is being controlled by the real-time system, and the state reflected
by the content of the database. Temporal consistency has two constituents:

❏ absolute consistency , between the state of the environment and its reflection
in the database, and

❏ relative consistency , among the data used to derive other data.

A temporally constrained data element, d, is characterized by three attributes
[139]:

❏ value v(d), which is the current state (value) of data element d in the data-
base,

❏ time-stamp ts(d), which is the time when the observation relating to d was
made, and

❏ absolute validity interval avi(d), i.e., the length of the time interval following
ts(d) during which d is considered to be absolute consistent.

A set of data items used to derive a new data item forms a relative consistency
set, denoted R, and each such set is associated with a relative validity interval,
Rrvi. Data in the database, such that d ∈ R, has a correct state if and only if
[139]

1. v(d) is logically consistent, i.e., satisfies all integrity constraints, and

2. d is temporally consistent, both

❏ absolute, i.e., (t − ts(d)) ≤ avi(d), and

❏ relative, i.e., ∀d′ ∈ R, |ts(d) − ts(d′)| ≤ Rrvi.

A transaction, i.e., a sequence of read and write operations on data items, in con-
ventional databases must satisfy the following properties: atomicity, consistency,
isolation, and durability, normally called ACID properties [155]. In addition,
transactions that process real-time data must satisfy temporal constraints. Some
of the temporal constraints on transactions in a real-time database come from the
temporal consistency requirement, and some from requirements imposed on the
system reaction time (typically, periodicity requirements) [139]. These constraints
require time-cognizant transaction processing so that transactions can be proces-
sed to meet their deadlines, both with respect to completion of the transaction as
well as satisfying the temporal correctness of the data [107]. Also, these require-
ments result in different temporal attributes attached to transactions that make
a transaction model. Note that a transaction in a database system corresponds
to a task in a real-time system.

36 BASIC CONCEPTS IN SOFTWARE ENGINEERING AND REAL-TIME 2.4

Method
Controls
Access to

Suitable for
Hard Soft Mixed

HP-2PL Data
√

OCC Data
√

Priority Inheritance Data
√

RWPCP Data
√

Timestamp-Based Data
√

Versioning Data
√ √

2V-DBP Data
√

IM Data
√

Similarity-Based Data
√ √ √

Epsilon-Based Data
√ √ √

ARIES/KVL Data/(index) (
√

)
√

(
√

)
B-Tree ICC Index

√ √ √
B-Tree ICC w. GUARD Index

√

Table 2.2: Concurrency control methods in real-time database systems

2.4.1 Concurrent Access to Resources

It is frequently the case in a real-time database that there is a number of concur-
rently executing transactions. Concurrent execution of transactions brings several
benefits in terms of effectively increasing performance. However, concurrency also
introduces problems as violating consistency becomes a risk. We illustrate this
with a simple example as follows. Consider two transactions, τ1 and τ2, acces-
sing the same data item x. We denote the value of a data item x as v(x). The
operation of writing a new value of x performed by a transaction τi is denoted
W (τi, v(x), x). Reading of a value of a data item v(x) and storing this value into
a new data item xi is denoted R(τi, v(x), xi). Assume that transactions τ1 and τ2

perform the following operations:

R(τ1, v(x), x1) → R(τ2, v(x), x2) → W (τ2, x2 + 1000, x) → W (τ1, x1 + 1, x)

Assume that data item x had the value v(x) =0 before the transactions started.
When both transactions have committed, x has the value 1. Hence, the update
that τ2 made has disappeared.

To ensure concurrent access to data in the real-time database a number of
concurrency control (CC) methods have been developed. Most of them aim at
preserving serializability, i.e., the property that transactions should be isolated
from each other in the sense that the effect of executing a concurrent transac-
tion should be the same as if each transaction is executed in a system without
concurrency [183].

Table 2.2 lists well-known CC methods together with resources they control
access to. Whether algorithms are suitable for hard, soft, or mixed real-time

2.4 EMBEDDED REAL-TIME DATABASE SYSTEMS 37

systems is also indicated in the table. Here follows a brief explanation of the
listed methods.

High priority 2-phase locking (HP-2PL) [1] is a locking scheme based on
regular 2-phase locking (2PL). HP-2PL takes priorities into account, while 2PL
does not. The main idea of the HP-2PL algorithm is to relinquish resources to
the high priority transaction by aborting the low priority transactions. Variants
of HP-2PL exist, using different conflict resolution methods. HP-2PL suffers from
unbounded number of transaction restarts and unbounded waiting times. Thus,
it is primarily suitable for soft real-time systems.

Optimistic concurrency control (OCC) [91] assumes that the execution con-
sists of three phases: read, validation and write phases. During the read phase
a transaction reads from the database and updates data in the local space. In
the validation phase, the system correctness is checked. If the system is correct,
the transaction enters its write phase and writes the locally updated data to the
database. Transactions in OCC may be restarted an arbitrary number of times,
which makes the method suitable for soft real-time systems.

Priority inheritance [165] is an approach where a low priority transaction bloc-
king a high priority one inherits the higher priority. The idea is to allow the low
priority transaction to finish quicker, which results in decreased blocking times.
Priority inheritance must be used together with a locking protocol, e.g., 2PL, and
is only suitable for soft real-time systems as waiting for the completion of a low
priority transaction (even though its priority is raised) can make the blocking
time unbounded.

Read/write priority ceiling protocol (RWPCP) [154] is an extension of
the well-known priority ceiling protocol. RWPCP is designed for hard real-time
systems and differentiates between read and write access to data items. RWPCP
requires that the transactions are scheduled using fixed priority scheduling, e.g.,
RMS.

Timestamp-based CC [29] is a lock-free scheme feasible in soft real-time
systems. Each transaction τi is assigned a timestamp, ts(τi), when it starts.
Timestamp-based CC is based on enforcing the following rule. If pi(x) and qj(x)
are conflicting operations, then pi(x) is processed before qj(x) iff ts(τi) < ts(τj).
Variants exist, but they all use this rule as a basis.

Versioning [30] maintains several versions of data at the same time. Typically,
every update on the data creates a new version. Read-only transactions are
then allowed to run without being blocked, by only reading data versions that
committed before the read-only transaction started. The concept of versioning

38 BASIC CONCEPTS IN SOFTWARE ENGINEERING AND REAL-TIME 2.4

can be used in both hard and soft systems. The specific suitability is dependent
on how updates are handled.

2-version database pointer CC (2V-DBP) [122] is a method for use in mixed
hard and soft systems. It uses HP-2PL for the soft transactions and 2-versioning
for the hard ones. It allows both classes of transactions to execute with minimal
interference.

Integrated method (IM) [94] is a method designed for mixed soft and non-
real-time systems. It uses OCC for soft transactions and 2PL for non-real-time
transactions. Some variants exist depending on how inter-class conflicts are hand-
led.

Similarity-based CC [92] is a class of CC methods that relaxes the seriali-
zability correctness criterion with the motivation that it is often too strict for a
real-time database. The idea is that by specifying what values are similar, non-
serializable schedules are allowed as long as the result becomes similar to what a
serializable schedule would produce. Similarity-based CC is suitable for both soft
and hard real-time systems, depending on the specific algorithm chosen from this
class.

Epsilon-based CC [181] uses a generalization of classic serializability, called
epsilon-serializability (ESR). ESR allows some inconsistency, e.g., read-only que-
ries may read data that is concurrently being updated. This is realized by speci-
fying a limit on how much inconsistency these queries may import. Transactions
performing queries like this are called epsilon transactions (ETs), and may fit in
all types of real-time systems.

ARIES/KVL [117] is applicable in systems that use a B-tree index structure.
One variant of the algorithm can be used to enforce transaction serializability
only. This is done by placing locks on the index nodes of the accessed data
items. By using locks the algorithm experiences the same problems as HP-2PL
regarding unbounded blocking times. The algorithm can also be used to enforce
index consistency at the same time as transaction serializability.

B-tree index CC is used in many conventional databases. There are three
well-known classes of B-tree index CC protocols [72]: Bayer-Schkolnick [24], Top-
Down [119], and B-link [97]. Each class also has several flavors. Common to
all classes and flavors are that they use some of, or all, four types of locks:
intention share (IS), intention exclusive (IX), share and intention exclusive (SIX),
and exclusive (X). The compabilities among these locks are shown in table 2.3.
The symbol

√
in table 2.3 means that the locks are compatible with each other,

while an empty space indicates that the locks are in conflicting modes. Index

2.4 EMBEDDED REAL-TIME DATABASE SYSTEMS 39

Lock IS IX SIX X
IS

√ √ √
IX

√ √
SIX

√
X

Table 2.3: The index concurrency control lock compatibilities

operations lock tree nodes and subtrees in a variety of ways, depending on the
type of the ICC algorithm. Nodes are typically locked on descent, i.e., going from
the top of the three to the leaves, and the locks are kept if modification of the
tree is needed, otherwise they are released. In the real-time variants of these met-
hods, the locks are preempted and index operations aborted if a higher priority
transaction tries to lock a node in a conflicting mode.

B-Tree index CC with GUARD [71] is designed specifically for real-time
systems. The method introduces an admission control called gatekeeping using
adaptive earliest deadline (GUARD). The admission control decides what trans-
actions are allowed execute. By introducing this control, the contention for the
index is significantly decreased under high system load, which in turn decreases
the blocking times. GUARD is tailored to be used together with EDF scheduling.

2.4.2 Emerging Requirements

There are several embedded databases on the market, e.g., Polyhedra [135], RDM
and Velocis [113], Pervasive.SQL [134], Berkeley DB [26], and TimesTen [176].
They all have different characteristics and are designed with a specific application
in mind. They support different data models, e.g., relational vs. object-relational
model, and different operating system platforms [171]. Moreover, they have dif-
ferent memory requirements and provide various types of interfaces for users to
access data in the database. Application developers must carefully choose the em-
bedded database their application requires, and find the balance between required
and offered database functionality. Hence, finding the right embedded database
is a time-consuming, costly, and difficult process, often with a lot of compromises.
Additionally, the designer is faced with the problem of database evolution, i.e., the
database must be able to evolve during the life-time of an embedded system, with
respect to new functionality. However, traditional database systems are hard to
modify or extend with new required functionality, mainly because of their mono-
lithic structure and the fact that adding functionality results in additional system
complexity.

Although a significant amount of research in real-time databases has been
done in the past years, it has mainly focused on various schemes for concurrency
control, transaction scheduling, and logging and recovery, and less on configu-

40 BASIC CONCEPTS IN SOFTWARE ENGINEERING AND REAL-TIME 2.4

rability of software architectures. Research projects that are building real-time
database platforms, such as ART-RTDB [82], BeeHive [163], DeeDS [17] and RO-
DAIN [102], have monolithic structure, and are targeted for a specific real-time
application. Hence, the issue of how to enable development of an embedded data-
base system that can be tailored for different embedded and real-time applications
arises.

Chapter 3
Developing Reconfigurable

Real-Time Systems

Enabling development of reconfigurable and reusable software is essential for effi-
cient and cost-effective development of modern real-time systems. In this chapter
we first identify key requirements that facilitate development of such systems.
We then explore to what degree these requirements are fulfilled by existing ap-
proaches in the software engineering and real-time community. Finally, based on
the identified requirements and shortcomings of existing approaches, we form a
list of research challenges that are addressed in this thesis.

3.1 Requirements

The requirements are classified into three main categories and include issues
concerning the component model for real-time systems, separation of concerns
through the support for aspects and aspect weaving, and system composability
encompassing the support for configuration and analysis of an assembly.

3.1.1 Component Model

One of the most fundamental reasons behind the need to divide software into mo-
dules is to guarantee exchange of parts [21]. In mature industries, e.g., mechanical
engineering, an engineer constructs a product by decomposition; the problem is
decomposed into sub-problems until one arrives to the basic problem for which
basic solution elements can be chosen. Software engineering is not different from
other engineering disciplines in the effort to mature, i.e., enable software decompo-
sition into components and use of already developed components to build software
systems.

41

42 DEVELOPING RECONFIGURABLE REAL-TIME SYSTEMS 3.1

To be able to build software systems using reusable components, a way of
specifying what a component should look like, i.e., a component model, is needed.
A component model supports modularity of software in the sense that it defines
what should be hidden in the component, i.e., it enforces information hiding, such
that it can be exchanged and reused in several systems [21, 51, 169].

While information hiding in terms of black box components is assumed in
CBSD, AOSD uses the white box component metaphor to emphasize that all
details of the component implementation should be revealed. Both black box
and white box component abstractions have their advantages and disadvantages.
For example, hiding all details of a component implementation in a black box
manner has the advantage that a component user does not have to deal with
the component internals. In contrast, having all details revealed in a white box
manner allows the component user to freely optimize and tailor the component
for a particular software system.

A component model that enforces information hiding for ensuring easy ex-
change and reuse and, at the same time, provides controlled access to its internals
in well-defined places of the component structure is the balance between the two
extremes; a component exhibiting this property is referred to as a grey box com-
ponent. A component with the grey box property is particularly attractive in
applications where optimization of components for each particular application is
necessary, e.g., real-time, database, and sensor network applications [167, 23, 75].
Thus, we obtain the following requirement for a component model (CM).

Requirement
CM1 Information hiding. A component has to hide details of its

internal design and implementation from the environment and
the component users. To ensure reusability in a wide domain of
applications a component should exhibit the grey box property
enabling the users to fine-tune it for individual applications.

Interfaces of components should be well-defined by the component model to
provide necessary information to the component user, e.g., reuse context and
performance attributes. The interfaces that have a constructive role in the sy-
stem and are used for component communication and system configuration are
frequently referred to as functional or constructive interfaces. Provided and requi-
red interface of components are typical representative of the class of constructive
interfaces. Beside these, it is found to be advantageous to have other types of
interfaces that can be used for various analysis of the resulting system, e.g., la-
tency of the system [76]. These interfaces are denoted non-functional or analytical
interfaces [51, 76].

3.1 REQUIREMENTS 43

Requirement
CM2 Interfaces. A component should have well-defined interfa-

ces to the environment. The component can be accessed only
through these interfaces, thus, complementing the information
hiding criterion. Moreover, the interfaces provided by the com-
ponent should enable construction as well as analysis, e.g., WCET
and formal analysis, of an assembled system.

A transparent system evolution and configuration requires support for defining
and implementing connectors. This is to ensure that a newly developed compo-
nent can be added to a system even if the system is developed not aware of the
possible new extensions.

Requirement
CM3 Connectors. There should be support for integrating a com-

ponent, developed independently of other components, into a
system even if the system was not initially developed aware of
this particular component, or there are syntactical mismatches
between the interfaces of the components in the system.

We observe that ensuring reusability of a software system or its parts necessi-
tates a well-defined component model supporting information hiding (preferably
in terms of grey box components) and providing interfaces for construction and,
possibly analysis of the system, as well as ways of gluing non-matching compone-
nts that have been developed independently.

Approaches to real-time system development sharing the component vision
are faced with additional requirements on the component model as components in
these environments should provide mechanisms for handling temporal constraints.
Moreover, since the traditional view of real-time systems implies tasks as building
elements of a system, the relationship between tasks and components needs to be
clarified. We argue that the relationship between a real-time software component
and a task should not be fixed for several reasons. First, we would like to reuse
any software components applicable to a real-time system under construction, i.e.,
we do not want to limit reusability of real-time software only to tasks. Second,
perfect mapping of one component to one task (for all applications) is normally
hard to determine. We illustrate this with a simple example as follows. Assume
that we have a set of components c1,. . . , c6 in a component library (see figure
3.1). If components are developed to be reusable that implies that the same set or
a subset of components c1,. . . , c6 can be used in different run-time environments
(denoted RT1-RT3 in figure 3.1). Since different run-time environments typically

44 DEVELOPING RECONFIGURABLE REAL-TIME SYSTEMS 3.1

o11
o12
o13
c1

o21
o22

c2

o61
o62
o63
o64

c6
Run-time

environment RT1

t1 t2
Run-time

environment RT2

t1
t6t2

Run-time
environment RT3

t1
t10t2

Components Resources

Figure 3.1: An example of the component-to-task relationship

have different resources available, we can observe that operations oij offered by
component ci to the environment via interfaces, could be allocated differently
to tasks in different real-time environments, depending on the actual available
resources of the underlying run-time environment.

The challenge now is to perform appropriate mapping of components to tasks.
One way to achieve this is to distinguish between a temporal and a structural
dimension of a component. The structural dimension (or the structural view) of a
component represents a traditional software component as perceived by the soft-
ware engineering community, i.e., a software artifact with well-defined interfaces
that enforces information hiding. The temporal dimension should reflect real-time
attributes needed to map components to tasks on the target platform and perform
temporal analysis of the resulting real-time system. This is especially important
for components used in hard real-time systems. Hence, in a component-based
real-time system each component should have both a structural and a temporal
dimension.

As shown, components can be mapped in numerous ways onto a run-time
environment. To ensure suitable mapping for each environment guidelines or
algorithms, possibly supported by tools, for component to task mapping need to
be provided.

Requirements
CM4 Component views. A design method should support decom-

position of a real-time software system into components as basic
building blocks and, further, components should support both
a structural and a temporal view. In the structural view real-
time software is composed out of software components, and in
the temporal view it is composed out of tasks.

CM5 Task mapping. There should be clear guidelines and tools to
support mapping of components into tasks.

Having two different views of a real-time software component yields the need
for explicit support of the relevant temporal properties in the component model.

3.1 REQUIREMENTS 45

Each real-time software component in its structural view should carry enough
temporal attributes so that, when mapped to the temporal view, schedulability
analysis of the system can easily be performed.

Requirement
CM6 Temporal attributes. A component model should provide

mechanisms for handling temporal attributes of components, e.g.,
worst-case execution time, to support temporal and structural
views of a real-time system, and enable static and dynamic tem-
poral analysis of the overall real-time system.

We conclude that in the real-time domain a software component model should
ensure that the relationship of a component and a task is not fixed and that
components can be mapped to variable number of tasks in diverse real-time en-
vironments. Therefore, it is valuable to provide temporal and structural views of
components and systems, and guidelines for mapping components to tasks. Furt-
hermore, to facilitate component-to-task mapping, the component model should
provide support for specification of temporal attributes.

3.1.2 Aspect Separation

While modularity helps to functionally decompose a system, designers would like
to have modular exchange in several dimensions so that different features of com-
ponents can be exchanged separately [21]. As already mentioned, the separation
of concerns is the main idea behind AOSD [81]. The benefits of using aspect-
orientation for developing software systems are as follows [21, 175]:

❏ independent development of crosscutting concerns of a system, implying
that aspects of a software system can be developed independently with clear
interfaces toward the system with which aspects should be woven;

❏ localized changes, implying that a change in an arbitrary number of places
in a system can easily be carried out by simply modifying the code of an
aspect;

❏ extensibility, implying that a software system can be extended with new
functional and non-functional features by defining and weaving new aspects;

❏ improved comprehensibility, implying that having different features of a
software system encapsulated into aspects allows reasoning about different
parts of the software and their interaction separately;

❏ tailorability, allowing a software system to be tailored toward a target ap-
plication;

46 DEVELOPING RECONFIGURABLE REAL-TIME SYSTEMS 3.1

❏ improved testability, implying that a system functionality developed inde-
pendently of additional, typically non-functional, features introduced by
aspects can be more efficiently tested as less software should be tested; and

❏ improved maintainability, implying that aspects encapsulated into modules
and separated from the main software functionality enable more efficient
maintainability of software as less software needs to be maintained - this,
combined with the localized changes in software, allows the entire software
systems (with aspects) to be more efficiently maintained.

These are the reasons why an increasing number of approaches in software engi-
neering provide support for aspects and aspect weaving (see [19] for an overview
of current aspect-oriented technology). A restricted form of aspect separation is
also realized in COM and CORBA through defining multiple interfaces as access
points for the component, since each of the interfaces can be viewed as one aspect
[21]. Additionally, tools to support aspect specification and weaving are essential
in assuring successful utilization of separation of concerns in software systems via
aspects.

It is clear that the software engineering community increasingly emphasizes
support for aspects and aspect weaving, giving us the following criteria with
respect to aspect separation (AS) [7, 21, 81].

Requirements
AS1 Aspect support. To enable design and development of highly

reusable and reconfigurable software systems support for iden-
tifying and specifying aspects in the software system should be
ensured.

AS2 Aspect weaving. Tools that weave aspect specifications into
the final product are needed in order to increase (re)usability of
software systems.

AS3 Multiple interfaces. A component should have multiple inter-
faces through which it can be accessed to ensure that the compo-
nent can be used for system composition via aspect weaving as
well as system composition via component assembling.

The frontier where aspects and aspect weaving meet real-time has not been
explored fully, although there is a strong motivation for using aspects in real-
time system development. Namely, some of the core real-time concerns such as
synchronization, memory optimization, power consumption, temporal attributes,
etc., are, in typical implementations of real-time systems, crosscutting the overall
system. Moreover, these concerns cannot easily be encapsulated in a component

3.1 REQUIREMENTS 47

with well-defined interfaces. In a real-time environment, not only is it desirable to
support aspects that crosscut the code of the components, but also aspects that
crosscut the structure of the system and describe the behavior of the components
and the system [164]. This implies that for designing and developing reconfi-
gurable and reusable real-time systems, one should provide support for multiple
aspect types. We express this in the following criterion.

Requirement
AS4 Multiple aspect types. The notion of separation of con-

cerns in real-time systems is influenced by the nature of real-time
systems, e.g., temporal constraints and run-time environment.
Thus, a real-time system design should support aspects that in-
vasively change the code of the components, as well as additional
aspect types that enable specification of properties determining
the behavior of the component in the run-time environment, e.g.,
WCET and memory consumption.

3.1.3 System Composability

Software for real-time systems should be produced quickly, reliably, and should
be optimized for a particular application or a product. We already argued that
adopting CBSD and AOSD paradigms in real-time system development provides
means for fulfilling these needs. It is a challenge, however, to produce real-time
systems using various artifacts from a library such that the resulting system has
the required functionality and exposes necessary temporal behavior. Hence, a
support for system configuration in terms of tools or guidelines is necessary. A
system developer should be aided in choosing a relevant subset of artifacts from
the possible choices that might exist in a library. This is to ensure correct system
composition and reduce the time it takes to choose exactly the components needed
for a particular configuration. Hence, the following should be considered with
respect to system composability (SC).

Requirement
SM1 Static configuration. Recipes for combining different compo-

nents into system configurations that satisfy desired functional
requirements are required.

Most real-time component-based software systems are pre-compiled. This im-
plies that the resulting running system is monolithic and not dynamically reconfi-

48 DEVELOPING RECONFIGURABLE REAL-TIME SYSTEMS 3.1

gurable. Consequently, when updating or maintaining these systems, they need to
be shut down for recompilation. However, reconfiguring a system on-line is desi-
rable for embedded real-time systems that require continuous hardware and soft-
ware upgrades in response to technological advancements, environmental change,
or alteration of system goals during system operation [44, 120, 168]. For example,
small embedded real-time sensor-based control systems should be designed and
developed such that software resources, e.g., controllers and device drivers, can
change on the fly [44, 120, 168]. Furthermore, systems like telecommunication,
e-commerce, and radar applications are required to have a high degree of avai-
lability and, hence, it is not feasible to stop the execution of the system due to
maintenance. Instead, on-line reconfiguration mechanisms that enable software
to be updated without interrupting the execution of the system are needed.

To achieve dynamic reconfigurability in a real-time system, a number of requi-
rements for facilitating dynamic reconfiguration should be fulfilled.

❏ A reconfiguration mechanisms should be light-weighted, implying that in
normal operation a dynamically reconfigurable system must not introduce
significant overhead in the task execution and memory consumption. This
is to ensure that the system is usable environments with sparse recourses in
terms of CPU and memory.

❏ There should not be a restriction on the number of components that could
be exchanged or added/removed as the system needs to be able to evolve,
e.g., due to changes in the application goals it might be necessary to include
new functionality by adding one or several new components to an existing
system.

❏ Reconfiguration may be requested at any time, and the system has no a pri-
ori knowledge of the possible components that are to be added, removed,or
exchanged in the system.

❏ Reconfiguration must be carried out as efficiently as possible in terms of the
granularity of exchangeable parts, implying that flexibility for fine-tuning of
an embedded real-time application should be ensured. One should be able
to exchange both functionality that is encapsulated into components and
real-time algorithms that typically crosscut several components.

Accurate temporal characteristics of software components that are being ad-
ded, removed, or exchanged in the system are not always available. Therefore, we
need to ensure that, when reconfiguring a real-time system, the reconfiguration
does not affect the performance of the system negatively, i.e., a real-time sy-
stem under reconfiguration should consider the varying temporal behavior of the
software components being used in reconfiguration, and adapt accordingly. The
adaptation should be such that specified performance requirements expressed in
terms of desired QoS, bounded worst-case QoS, and timely adaptation are satis-

3.1 REQUIREMENTS 49

fied. Hence, the following additional requirements on dynamically reconfigurable
system arise.

❏ The system user must be able to specify the desired system QoS during
steady state, i.e., the state in which no reconfiguration is applied.

❏ In the face of a transient state during which reconfiguration is applied,
the worst-case system QoS and temporal adaptation must comply with the
specified requirements. More specifically, the QoS must satisfy worst-case
system QoS requirements and the QoS must converge toward and reach the
desired QoS within a certain specified time interval (also known as settling
time).

In summary, reconfigurable real-time systems need to provide support for the
following.

Requirement
SM2 Dynamic reconfiguration. The system needs to be able to

undergo adding, removing, or exchanging of components at any
point in its operational lifetime. The overhead of performing the
reconfiguration, e.g., an exchange of a components, should not
introduce a significant overhead in the task execution and me-
mory consumption of the system to ensure usability in resource-
constrained embedded environments. Moreover, real-time perfor-
mance needs to be maintained in the system before, during, and
after reconfiguration, especially when exact temporal characte-
ristics of components are unavailable.

To ensure that once developed, a real-time component can be (re)used for
building various real-time systems one needs to ensure that appropriate techniques
for satisfying real-time performance in every phase of the system life cycle (under
development and run-time operation) exist.

For hard real-time systems operating in closed environments it is important to
ensure that static temporal analysis of the system configuration can be done before
the system is deployed into a run-time environment and, thus, enable schedulabi-
lity analysis. Thereby, predictable behavior of the system can be guaranteed. Soft
real-time systems operating in open environments need to maintain real-time per-
formance in terms of assuring QoS guarantees, e.g., via the feedback-based QoS
management techniques, in order to reduce the CPU overhead and efficiently
handle overload situations.

Regardless of the type of the environment or an application in which the
component or the resulting system configuration is going to be used, it is valuable
to check temporal and functional behavior of the system in the early design phase

50 DEVELOPING RECONFIGURABLE REAL-TIME SYSTEMS 3.1

of the system development against the system specification. Applying formal
reasoning and formal analysis techniques ensures that some errors in the design
can be detected and corrected before the actual implementation of the system
takes place. We epitomize this in the following requirements.

Requirements
SM3 Temporal analysis. Support for temporal analysis of the com-

posed real-time system should be provided to enable reuse of com-
ponents in real-time applications. Tools to achieve predictable
temporal software behavior are preferable.

SM4 QoS assurance. Methods for maintaining real-time perfor-
mance in terms of desirable QoS levels are necessary as they incre-
ase applicability of components and component-based real-time
systems in open environments where exact workload characte-
ristics are generally unknown.

SM5 Formal verification. Formal methods for verification of fun-
ctional and temporal behavior of components and the composed
system are needed to assist in detecting the shortcomings and er-
rors in the temporal and functional design of a real-time system.

It can be concluded that it is important to provide means for static and dyna-
mic reconfiguration of real-time systems accompanied by methods and tools for
real-time performance assurance.

3.1.4 Notes on Requirements

The requirements identified in this section are not exhaustive in the sense that we
identified all possible issues that development efforts for building reconfigurable
and reusable real-time systems need to satisfy. Moreover, each of the identified
requirements could possibly be disintegrated into smaller (or greater number of)
constituents. However, the given set of requirements contains the issues that
are considered by the software engineering community to be central to the deve-
lopment reconfigurable and reusable systems, and the issues that are considered
by the real-time community to be central to development of a system enforcing
real-time constraints.

The requirements discussed are both complemental and interdependent. Na-
mely, the requirement for interfaces of a component model is complemental to
the requirement for the support of multiple interface types in requirements for
aspect separation. Necessity of ensuring temporal view in the component model
is interdependent with the requirement for support for temporal constraints, as
well as support for temporal analysis of the configured system.

3.2 EXISTING APPROACHES 51

It is often difficult to distinguish a clear boundary between the requirements.
For example, providing the support for formal analysis requires defining formal
models of components, which in turn can be viewed as analytical interfaces, or
a specific type of an aspect, in a real-time system. However, to establish the
consistent evaluation criteria for existing and future development efforts for re-
configurable real-time systems it is beneficial to adopt a view as perceived by a
community that deals with the particular topic. In the case of formal analysis, the
real-time community dealing with formal techniques considers a particular formal
method to be a self-contained research effort that could be applied to a number
of real-time systems, provided that they comply to a specific set of requirements
identified for that particular verification method.

3.2 Existing Approaches

In this section we discuss the extent to which different approaches for building
reusable and reconfigurable systems in software engineering and real-time com-
munity satisfy the identified requirements. The goal of this discussion is not to
give a detailed survey of the related work1, rather to highlight that each of the
approaches is developed with a very specific and limited subset of requirements
in mind. Table 3.1 illustrates the requirements and their fulfillment by different
approaches.

3.2.1 Software Engineering Design Methods

The design methods for general-purpose software systems in the software engine-
ering community are mostly targeted toward defining a component model. This
is a component view taken by the first generation of CBSD systems, e.g., COM
and CORBA. Both COM and CORBA provide a standardized component model
with an interface definition languages (see table 3.1). Hence, once developed com-
ponents in these types of systems can be reused in many applications. The need
for facilitating dynamic reconfiguration of the system is a requirement stressed in
the development of CBSD systems. Hover, these systems (COM and CORBA)
lack support in configuration in terms of assisting a system developer in proposing
adequate components for configuration, and in analysis of the assemblies [56, 131].

To enable support for analysis of modern component-based systems, a way
of specifying and analyzing the correctness of the system configuration has been
developed within the RADL approach [151]. RADL belongs to the class of archi-
tecture systems as it provides an ADL for describing a system configuration such
that its extra-functional behavior, e.g., safety (liveness properties) and execution
times, can formally be analyzed [152]. The formal analysis of assemblies in RADL
is founded on finite state machines and Petri net models. The analysis process is
automated with the TrustME tool suite [147].

1Detailed survey of the related work is presented in chapter 10.

52 DEVELOPING RECONFIGURABLE REAL-TIME SYSTEMS 3.2

Design approaches

Criteria DARTS

TRSD
VEST

IS
C COM

AOP

Component model
CM1 Information

hiding
� � � � �

CM2 Interfaces � � � � �

CM4 Component

Views
� � � - -

CM6 Temporal

attributes

�

- - -

CM5 Task
mapping - -

Aspect separation

AS1 Aspect
support - - � � - �

AS3 Multiple
interfaces - - - � � �

�

AS4 Multiple

aspect types - - -

System composability
SC1 Static

configuration
� � � � �

SC3 Temporal

analysis
- �

-

- - -

LEGEND:

DARTS: design approach for real-time systems
TRSD: transactional real-time system design

VEST: Virginia embedded systems toolkit

ISC: invasive software composition

HRT-HOOD: a hard real-time hierarchical object-oriented design

� partially supported - not supported� supported

�

�

-

-

-

-

�

�

�

�

�

-

AS2 Aspect
weaving

- - - �
-

CM3 Connectors

HRT-

HOOD

�

�

�

�

�

-

-

-

-

�

�

Real-time Software engineering

SC2 Dynamic
reconfiguration

SC4 QoS

assurance

SC5 Formal

verification

AOP: aspect-oriented programming

- - � - � � �

-

-

-

-

-

�

-

- - -

-

-

-

-

- - � - � ��

�

�

�

CORBA
RADL

(A
sp

ectJ)

�

��

�

�

�

�

-

-

-

�

-

�

�

�

�

-

RADL: reliable architecture description language

Table 3.1: Criteria for evaluation of design approaches

3.2 EXISTING APPROACHES 53

Some design approaches [182, 21, 7, 130] have taken one step further in software
configurability by providing support for separation of crosscutting concerns in the
system. Normally, the support is provided for aspects and aspect weaving, thus
adopting the main ideas of AOSD in general and aspect-oriented programming
in particular. A typical representative of programming languages that explicitly
provide ways for specifying aspects is AspectJ [182]. It is accompanied by power-
ful configuration tools for development of software systems using aspects written
in AspectJ and components written in Java. Observe that AspectJ is a represen-
tative of aspect-oriented programming (AOP) languages and as such it provides
mechanisms for implementing the system according to principles of the AOSD
community. Also, pure AOSD systems, e.g., [112, 46], support only the notion
of white box components, thus not exploiting the full power of information hi-
ding. Invasive software composition (ISC) [21] overcomes the drawbacks of pure
aspect language approaches, and enforces information hiding by having a well-
defined component model, called the box, which is a general component model
supporting two types of interfaces: explicit interfaces and implicit interfaces. Ex-
plicit interfaces are used for inter-component communication; implicit interfaces
are used for aspect weaving into the code of components. Here, components can
be viewed as grey boxes in the sense that they are encapsulated, but still their
behavior can be changed by aspect weaving.

3.2.2 Real-Time Design Methods

There are several established design methods developed by the real-time com-
munity, and we focus on a few representative approaches [66, 67, 87, 57, 38] to
demonstrate the types of requirements addressed.

DARTS

DARTS [66] developed by Gomaa is a well-established design approach for real-
time systems. An Ada-based extension of DARTS is called ADARTS [67]. Gomaa
has also extended DARTS to use UML for real-time system design in an approach
called COMET/UML [68]. In DARTS and its variants, a real-time system is first
decomposed into tasks that are then grouped into software modules (see table 3.1).
Modules in DARTS typically represent traditional functions, implying white box
properties and lack of enforcement of information hiding. DARTS emphasizes the
need for having task structuring criteria that could help the designer to make a
transition from tasks to modules. Hence, the method accentuates two views on a
real-time system: (i) a temporal view where the system is composed out of tasks,
and (ii) a structural view where the system is composed out of modules performing
a specific function. The temporal view here only refers to representation of the sy-
stem modules as tasks, but there is no support for specification of task attributes
within the method. Configuration of DARTS-based systems is done off-line using
configuration guidelines that have been refined through their use in industry. In

54 DEVELOPING RECONFIGURABLE REAL-TIME SYSTEMS 3.2

COMET/UML, the design of real-time systems is done using the UML tool envi-
ronment and object-oriented technology, thereby improving information hiding as
objects provide better information hiding than traditional modules (however, still
lacking well-defined interfaces). As in DARTS, components in COMET/UML are
not reusable since they are developed for a designated system. Although it is
developed for all classes of real-time systems, DARTS does not provide means
for real-time performance assurance either in system development or under its
operation [87, 38]. Similarly, COMET/UML, the most recent variant of DARTS,
does not provide support for temporal analysis and configurability of the system
under construction.

TRSD

TRSD, a transactional real-time system design, is an approach to real-time sy-
stem development introduced by Kopetz et al. [87]. Building blocks of a real-time
system are transactions consisting of one or several tasks. A transaction is associ-
ated with real-time attributes, e.g., deadline and criticality. TRSD, in addition to
rules for decomposition of real-time systems into tasks, provides temporal analysis
of the overall real-time system. The extension of TRSD discussed in [86] comple-
ments the pure temporal view of TRSD with the structural view by establishing
the notion of a component in a distributed real-time system as a distributed node
(with software and the underlying hardware). To facilitate temporal analysis of
the composed distributed real-time system components are equipped with tem-
poral interfaces. However, TRSD and its recent extensions focus on system-level
components that are large-grained as compared to the traditional software com-
ponents as they include both software and hardware. As shown in table 3.1, the
support for separation of concerns is not provided.

HRT-HOOD

HRT-HOOD [38], a hard real-time hierarchical object oriented design is an exten-
sion of the well-defined HOOD design method to the real-time domain. As such, it
utilizes the HOOD tools to support the real-time design process. Building blocks
of a real-time system in HRT-HOOD are HRT-HOOD objects, supplied with two
different types of interfaces, namely required interface and provided interface.
Having been based on the object-oriented technology and supporting different ty-
pes of interfaces, HRT-HOOD enforces information hiding in terms of objects as
entities that hide the information. HRT-HOOD makes a distinction between the
logical and physical architectural design. The logical design results in a collection
of terminal objects (these do not require further decomposition) with a fully defi-
ned interaction. At the physical design stage, the logical architecture is mapped
to the physical resources on the target system. The physical design stage is prima-
rily concerned with object allocation, network scheduling, processor scheduling,
and dependability. Additionally, HRT-HOOD provides support for static priority

3.2 EXISTING APPROACHES 55

analysis of the overall real-time system. Although the HRT-HOOD design process
is well-defined and supported by tools, it does not facilitate component reuse.

VEST

VEST [161, 164], a Virginia embedded systems toolkit, is a configuration tool for
development of component-based real-time systems. VEST provides a graphical
environment in which temporal behavior of the building blocks of a real-time sy-
stem can be specified and analyzed, e.g., WCETs, deadlines, and periods. VEST
supports two views of real-time components, temporal and structural, and as-
sumes that components making the system configuration are later mapped to
tasks. However, the actual process of mapping between a component and a task
is not defined. VEST recognizes the need for having separation of concerns in
the real-time system design. Hence, VEST provides support for analysis of the
component memory consumption, which is a concern that crosscuts the structure
of the overall component-based real-time system.

In its recent edition [164], the tool has been extended to support design-level
crosscutting concerns by providing a description language for design-level aspects
of a real-time system. The VEST configuration tool allows tool plug-ins, thus
enabling temporal analysis of the composed system by enabling plugging off-the-
shelf analysis tools into the VEST environment.

In its first version, VEST did not have an explicit component model, implying
that components could be pieces of code, classes, and objects [161]. Currently
VEST uses the well-defined CORBA component model [164].

RT-UML

RT-UML [57], real-time unified modelling language, provides stereotypes for spe-
cifying real-time notions. Namely, it provides support for modeling concurrency
in a real-time system, i.e., identifying threads, assigning objects to threads, as
well as defining thread rendezvous and assigning priorities to threads. RT-UML
allows specifying and visualizing real-time properties of a component, and, thus,
supports both structural and temporal dimension of a software artifact constitu-
ting a real-time system. However, we omit the detailed description of RT-UML
and its evaluation since RT-UML provides syntactical notation for modeling real-
time systems but still lacks well-established semantics for the real-time system
design. However, there is initial work aiming at providing semantics for RT-UML
for the purposes of analysis of real-time systems using timed automata [70]. The-
refore, currently RT-UML cannot be considered a design method, rather it is an
infrastructure for a design method as it provides a visual language as a basis for
enforcing design methods, e.g., its expressive power could be used by a design
method as means of specifying real-time software components [68, 50].

56 DEVELOPING RECONFIGURABLE REAL-TIME SYSTEMS 3.3

3.2.3 Lessons Learned

From early ’80s till now real-time design methods have mostly focused on task
structuring and two different views on the system and only with moderate emp-
hasis on information hiding. The analysis of the real-time system under design,
although missing from early design approaches, has been highlighted as impor-
tant for real-time system development (see table 3.1). Furthermore, configuration
guidelines and tools for system decomposition and configuration have been an
essential part of all design methods for real-time systems so far and have, more or
less, been enforced by all design methods. On the other hand, modern software
engineering design methods primarily focus on the component model, strong in-
formation hiding, and interfaces as means of component communication. Also,
the notion of separation of concerns is considered to be fundamental in software
engineering as it captures aspects of the software system early in the system
design.

Hence, most of the approaches discussed in this section both in the software
engineering and the real-time community are developed with a specific subset of
requirements in mind. However, to fully exploit the benefits of modern software
engineering techniques for development of reconfigurable and reusable real-time
systems, we need an approach that would address requirements we have found so
far.

Specifically, a component model for real-time systems with two views, tempo-
ral and structural, is required to facilitate easy system composition and mapping
of the components and the composed real-time system to a particular run-time
environment. Separation of concerns in real-time systems through the support for
aspects and aspect weaving is a valuable feature as it allows efficient component
and system tailoring; this has not been fully addressed by existing real-time design
approaches. Hence, a approach that would fully support aspects in the real-time
system development should provide support for aspect weaving into the code of
the components. Moreover, to satisfy the traditionally strong requirement for
temporal analysis of the overall real-time system, a real-time development should
be accompanied by methods and tools for temporal analysis of software composed
using components and aspects. This requirement is essential if component-based
real-time systems are used in hard real-time environments. In summary, faci-
litating development of reconfigurable and reusable real-time systems calls for
new approaches that meet the requirements for the real-time component model,
separation of concerns, and system composability.

3.3 Goals

Emergence of the new set of requirements on cost-effective development of real-
time systems focusing on reuse and reconfiguration, and the limitations of existing
approaches, have given rise to new research challenges in software engineering

3.3 GOALS 57

for real-time systems. Resolving the identified issues would enable successful
application of the ideas and notions from modern software engineering approaches,
namely CBSD and AOSD, to real-time system development. Therefore, the goal
of the work presented in this thesis is to provide:

❏ a component model supporting temporal and structural view of the system,
and enforcing information hiding, component reuse and connection, while
enabling tailoring of components for a particular application (via aspect
weaving);

❏ support for static and dynamic reconfiguration of a real-time system as-
sembled using components and aspects;

❏ mechanisms for enforcing satisfaction of real-time performance requirements
of the configured system both off-line and during run-time; and

❏ tools for analysis and configuration of the reconfigurable system under de-
velopment.

By providing these we facilitate design and development of reconfigurable and
reusable real-time systems operating in open and closed environments.

Part II

Aspectual Component-Based
Real-Time System Development

59

Chapter 4
Enabling System Reconfiguration

with ACCORD

We have already argued that the growing need for enabling development of recon-
figurable and reusable real-time systems calls for an introduction of new software
engineering solutions for real-time system development. In that context, we have
developed methods for design, configuration, and analysis of real-time software
built using aspects and components. We refer to these methods collectively as
the ACCORD framework to indicate that, in addition of being used in isolation,
the solutions can be used together to further alleviate efficient development of
reconfigurable and reusable real-time software. Therefore, in this chapter we first
present how our solutions fit together in ACCORD and discuss what they offer to
system developers in various phases of system development. Then, we introduce
aspects, components, and aspect packages as real-time system constituents. Fi-
nally, we elaborate on the way static and dynamic system reconfiguration is done
using these constituents.

4.1 ACCORD Overview

Ideally, the development process should cover all the phases of system design and
development, from requirements specification to system analysis, composition,
and deployment. The reconfigurable real-time system development process using
ACCORD constituents is depicted in figure 4.1. As can be seen, development of
a real-time system can be done both when

❏ components and aspects are not available in the library (steps ❶-❽), and

❏ there is a pre-existing library of aspects and components developed for a
family of real-time systems (steps ❼-❽).

61

62 ENABLING SYSTEM RECONFIGURATION WITH ACCORD 4.1

Compilation and
deployment

System requirements

Decomposition into
components

Decomposition into
aspects

Design of components
and aspects according

to RTCOM

Library

Compilation and
deployment

Monolithic system

Configuration
and

analysis:
� static temporal
� formal verification

Dynamically
reconfigurable system

1

2

3

4

6

8a

7

8b

Implementation of
aspects

and components5

Figure 4.1: An overview of real-time system development via ACCORD constituents

4.1 ACCORD OVERVIEW 63

When components and aspects are not available in a library, the design of a
real-time system starts with phase ❶, the requirements specification. Our focus
has been on the phases of system development that succeed requirements specifi-
cation. Hence, the solutions we propose are primarily for phases ❷-❽.

System design is performed according to our design guidelines prescribing that
the initial system design should be done by first decomposing a real-time system
into a set of components, and then decomposing the system into a set of aspects
(steps ❷ and ❸ in figure 4.1). A component encapsulates a well-defined functiona-
lity of a system that can be straightforwardly decoupled from other functionality
the system carries out. Hence, decomposition into components is guided by the
need to have functionally exchangeable units that are loosely coupled, but with
strong cohesion. An aspect is a functional or non-functional feature of a system
affecting its performance or semantics, and crosscutting the functionality or the
structure of the system. Aspects enable designing, developing, and maintaining
feature (or code) segments that are spread over multiple components, functions,
or modules in the system, but collectively perform a particular functionality in
the system. Therefore, the decomposition into aspects is guided by the need to
encapsulate crosscutting features of the system into aspects. For example, an
aspect can be an algorithm, e.g., QoS, scheduling, or concurrency control, as the
algorithm implementation is typically entangled with the overall functionality of
the system.

In step ❹, identified components and aspects are designed according to the
reconfigurable real-time component model (RTCOM) that describes how a real-
time component supporting aspects and enforcing information hiding should be
designed and implemented. In step ❺ the actual implementation of aspects and
components according to the previously made design takes place. Once implemen-
ted, components and aspects are stored in a library, grouped into so-called aspect
packages (step ❻). An aspect package represents a number of components and
aspects that provide a specific functionality to the system, grouped together for
facilitating reuse and efficient system evolution. As we explain in detail in section
4.4, aspect packages also enable development of families of real-time systems with
variations in their functionality, where variations (aspects from the package) are
injected into the existing system. The library also contains models of components
and aspects resulting from step ❹.

In step ❼, aspects and components are assembled to form a system configu-
ration and analyzed to check if the configuration satisfies timeliness, e.g., allowed
WCETs. In this phase a system is configured and analyzed using models of ex-
isting components and aspects from the library. Observe that this step could
just as easily be performed before the implementation of aspects and components
takes place (i.e., before step ❺), in which case the analysis is done on models of
components and aspects, and the implementation of these is done only for the
case of a positive outcome of the analysis process. The development tool set we
implemented provides developers of real-time systems with automated support
for this step of the development process. The analysis tools enable automatiza-

64 ENABLING SYSTEM RECONFIGURATION WITH ACCORD 4.1

tion of the theoretical method we developed for static temporal (WCET) analysis
[173, 172] of different configurations of real-time systems assembled out of aspects
and components. In this step, the system configuration can also be checked using
a method for modular verification of reconfigurable components. If analysis of
a system configuration shows that the system does not satisfy desired proper-
ties, configuration or a design of components and aspects can be refined until a
satisfactory system configuration is obtained.

Once the appropriate configuration is obtained, the system is compiled and
deployed into the run-time environment in step ❽. Note that depending on the
type of an application, the system can either be compiled into (a) a monolithic
system, or (b) a system that is reconfigurable on-line. For example, in the case of
hard real-time applications the monolithic compilation is preferable, while in ap-
plications requiring high availability at the cost of performance the reconfigurable
solution could be optimal.

In the case when the system is developed from pre-existing library of aspects
and components, system development starts (after the requirements are specified)
in step ❽ by choosing appropriate aspects and components from the library and
forming a system configuration based on application requirements.

The following is a recap of our main contributions presented earlier in section
1.3 with a relation to the development procedure in figure 4.1.

1. RTCOM is developed to support step ❹.

2. Support for static and dynamic reconfiguration of a real-time system is
provided by the following.

(a) Design guidelines defining steps ❷-❹ enable system designers to deve-
lop real-time systems using components and aspects.

(b) A method for dynamic system reconfiguration suited for resource-
constrained, time-critical, environments is represented in step ❽(b).
Dynamic system reconfiguration is also supported in step ❹ by the
extended guidelines for RTCOM, specifically developed to enable dy-
namic reconfiguration of RTCOM components and aspects.

3. Methods for ensuring satisfaction of real-time constraints as follows.

(a) A method for static temporal analysis of real-time systems assembled
using aspects and components is contained in step ❼.

(b) A method for formal verification temporal properties of reconfigurable
real-time components is also embodied in step ❼.

(c) A method for reconfigurable quality of service that ensures that the
specified level of performance is maintained during system operation
and after reconfiguration is covered by steps ❸-❻ and step ❽(b).

4.2 ASPECTS IN REAL-TIME SYSTEMS 65

4. A development tool set that provides developers of real-time systems auto-
mated support for configuring and analyzing a system built of components
and aspects, is represented by step ❼.

In summary, ACCORD facilitates development of highly reconfigurable and
analyzable real-time systems. Moreover, the developed techniques ensure that
real-time systems operating both in closed and open environments can efficiently
be reconfigured and evolved when the need for a new system functionality arises.

The contributions of the thesis and their relation to the overall development
process are clarified further in this part of the thesis where ACCORD constituents
are discussed in detail. In the remainder of the chapter, we explain guidelines
for decomposition of a real-time system into aspects in section 4.2, and then
present the RTCOM model in section 4.3. The concept of an aspect package is
introduced in section 4.4. Finally, in sections 4.5 and 4.6, we elaborate how static
and dynamic reconfiguration is performed, respectively.

4.2 Aspects in Real-Time Systems

We classify aspects in a real-time system as follows (see figure 4.2):

❏ application aspects (section 4.2.1),

❏ run-time aspects (section 4.2.2), and

❏ composition aspects (section 4.2.3).

Having separation of aspects in a number of categories eases reasoning about
various application-related requirements, as well as the composition of a system
and its integration into a run-time environment. For example, one could define
what (run-time) aspects a real-time system configuration should fulfill so that
appropriate components and application aspects could be chosen from the library.
Aspect separation and classification offers a flexibility since additional aspect
types can be added to components, and therefore, to the overall real-time system,
further improving reconfigurability of the system and its integration with the
run-time environment.

4.2.1 Application Aspects

Application aspects are programming (aspect) language-level constructs encapsu-
lating crosscutting concerns that invasively change the code of a component, thus,
(re)configuring a component or a system according to specific needs of an applica-
tion. Hence, application aspects can change the internal behavior of components
as they crosscut component code. An application in this context refers to the
application toward which a real-time and an embedded system should be confi-
gured. The application aspects include (see figure 4.2): memory optimization,
synchronization, security, task model, and real-time policies.

66 ENABLING SYSTEM RECONFIGURATION WITH ACCORD 4.2Aspects in real-time systemsRun-time CompositionApplication
PortabilityResourcedemandsTemporalconstraints VersioningCompatibilityConnectorsSychronizationMemoryoptimizationSecurityTask modelReal-timepolicies

Figure 4.2: Classification of aspects in real-time systems

We view memory optimization as an application aspect since: (i) code for
optimizing memory in an embedded system crosscuts the overall system, (ii) ef-
ficient memory usage is one of the key issues for embedded systems, and (iii)
different ways of memory optimization are appropriate depending on the type of
an application with which the system is to be embedded. Security is another
application aspect that influences the behavior and the structure of a system.
Distinct security methods might be appropriate for various types of applications,
e.g., a system must distinguish users with distinct security clearances. It is also
beneficial to encapsulate synchronization in a real-time and embedded system
into a synchronization aspect [175]. Namely, in a typical real-time system there
exists many data areas spread over the entire system that should be protected by
semaphores, and the placement of semaphores can depend on the specific needs of
an application. Memory optimization, synchronization, and security aspects are
commonly mentioned aspects in AOSD [81]. A number of other aspects frequently
referred to by the AOSD community, e.g., failure detection, logging, and recovery,
can also be included in the category of application aspects.

Application aspects specific to real-time systems, and normally not found
among mentioned aspects in the AOSD community, include the task model and
real-time policies aspects. The task model aspects enrich the task model of a real-
time system with additional properties, e.g., period, deadline, priority, WCET,
and CPU utilization, to accommodate the needs of the underlying application
(concrete examples of the task model are given in chapter 8).

The real-time policy aspects adapt a real-time system to a target application
as they include implementation of various real-time algorithms that crosscut the
overall real-time system. For example, if a real-time system is used in an open
and unpredictable environment an appropriate QoS algorithm should be added
to assure real-time performance guarantees. Since the QoS algorithm is highly
dependent on the target application, and it crosscuts the structure of the ove-

4.2 ASPECTS IN REAL-TIME SYSTEMS 67

rall system, it is beneficial to encapsulate it into an aspect. Concurrency control
algorithms in the domain of real-time database systems or distributed real-time
systems exhibit similar properties as QoS algorithms, and therefore can be con-
sidered as aspects in the category of real-time policy aspects. Depending on the
requirements of an application, task model and real-time policies aspects could
further be refined as we show in detail in the example of the COMET system (see
section 8.1).

4.2.2 Run-Time Aspects

Run-time aspects are language-independent design-level constructs encapsulating
crosscutting concerns that contain the parameters that determine run-time beha-
vior of a component, e.g., WCET and memory footprint. This implies that the
run-time aspects do not invasively change the code of the component.

Run-time aspects are critical as they refer to aspects of a monolithic real-time
system that need to be considered when integrating the system into the run-time
environment. Thus, run-time aspects give information needed by the run-time
environment to ensure that integrating a real-time system would not compromise
timeliness or available memory consumption. Therefore, each component should
have declared resource demands in its resource demand aspect, and should have
information of its temporal properties, e.g., WCET, contained in the temporal
constraints aspect. The temporal constraints aspect enables a component to be
mapped to a task (or a group of tasks) with specific temporal requirements.

Additionally, each component should contain information of the platform with
which it is compatible, e.g., real-time operating system supported, and other
hardware related information. This information is contained in the portability
aspect. It is imperative that the information contained in the run-time aspects is
provided to ensure predictability of the composed system and ease the integration
into a run-time environment.

4.2.3 Composition Aspects

Composition aspects are twofold in their purpose as they are used to ensure
functionally correct system composition, and facilitate system evolution. Version
and compatibility aspects in the category of composition aspects can be viewed as
language-independent design-level constructs encapsulating crosscutting concerns
that describe the composition needs of each component. In contrast, connector
aspects can invasively change the behavior of a component to adapt the component
for communication with other, newly developed components.

Version aspects and compatibility aspects therefore describe the version of
components and aspects, and compositional constraints when assembling a sy-
stem using both components and aspects. Namely, the compatibility aspect eases
correct functional composition of a system by providing information with which
aspects and components a component can be combined.

68 ENABLING SYSTEM RECONFIGURATION WITH ACCORD 4.3

PortabilityPortabilityPortabilityPortabilityResource Resource Resource Resource demandsdemandsdemandsdemandsTemporalTemporalTemporalTemporalconstraintsconstraintsconstraintsconstraints WCET-O1WCET-O1WCET-O1WCET-O1WCET-O2WCET-O2WCET-O2WCET-O2 Memory - O1 Memory - O1 Memory - O1 Memory - O1OS typeOS typeOS typeOS type Memory - O2 Memory - O2 Memory - O2 Memory - O2Hardware typeHardware typeHardware typeHardware typeRun-timeRun-timeRun-timeRun-timepartpartpartpart

CCCCoooommmmppppoooossssiiiittttiiiioooonnnnpartpartpartpartAAAAssssppppeeeecccctttt aaaannnndddd ccccoooommmmppppoooonnnneeeennnntttt ffffuuuunnnnccccttttiiiioooonnnnaaaallll ccccoooommmmppppaaaattttiiiibbbbiiiilllliiiittttyyyyFunctionalFunctionalFunctionalFunctionalpartpartpartpart operation_o1operation_o1operation_o1operation_o1operation_o2operation_o2operation_o2operation_o2mechanismsmechanismsmechanismsmechanisms TTTTeeeemmmmppppoooorrrraaaallll ccccoooommmmppppaaaattttiiiibbbbiiiilllliiiittttyyyyRRRReeeessssoooouuuurrrrcccceeee ccccoooommmmppppaaaattttiiiibbbblllliiiittttyyyyPPPPllllaaaattttffffoooorrrrmmmm ccccoooommmmppppaaaattttiiiibbbbiiiilllliiiittttyyyy
Figure 4.3: A real-time component model (RTCOM)

The connector aspects are used for facilitating system evolution. They repre-
sent an implementation of connectors between syntactically incompatible com-
ponents. These aspects are useful when extending an existing system with a
component that is not envisioned when the system was first developed.

Note that in the remainder of this thesis, when discussing aspects without
explicitly naming their type, we are discussing application aspects. Also, when
talking about aspect weaving we exclusively refer to aspects that can invasively
change the code of the components.

4.3 Real-Time Component Model

In this section we present RTCOM, a component model that enables facile and
predictable weaving of aspects, while preserving information hiding, thereby re-
flecting decomposition of the system into components and aspects. RTCOM con-
sists of the following parts (see figure 4.3):

❏ functional part,

❏ run-time system dependent part, and

❏ composition part.

RTCOM represents a coarse-granule component model as it provides a broad
infrastructure within its functional part. This broad infrastructure enables recon-
figuring of a component through aspect weaving, thereby changing the functiona-
lity and the behavior of the component to suit the needs of a specific application.

4.3 REAL-TIME COMPONENT MODEL 69

RTCOM components have the grey box property as they are encapsulated in in-
terfaces, but changes to their behavior can be performed in well-defined places of
the component structure via aspect weaving. In contrast, traditional component
models are typically black box, fine-grained, and allow only limited configuration
of a component (see [51] for an overview of component models). Although a fine-
grained component is often more optimal for one particular application in terms
of code size, it does not allow component tailoring for various applications, but
merely fine-tuning of the restricted set of parameters in the component [51].

For each component designed and implemented based on RTCOM, the func-
tional part of a component is first implemented together with application aspects.
Then, the run-time system dependent part is defined, followed by the composition
part and rules for composing different components and application aspects.

In the remainder of this section we give details on RTCOM constituents, inclu-
ding functional, run-time, and composition parts, as well as supported interfaces.
Using a simple example of a linked list component we exemplify how implementing
RTCOM can be done, showing how weaving is performed, and illustrate the result
of the weaving process. While the linked list example is presented here for cla-
rification purposes, in chapter 7 we present the COMET system implementation
where complex components and aspects are implemented using RTCOM.

4.3.1 Functional Part

The functional part of RTCOM implements the behavior of a component, i.e.,
represents the actual code of the component. It consists of two parts:

❏ mechanism part representing the invariant part of a component that exposes
the black box property toward the component users and the environment;
and

❏ policy part representing the changeable part of a component that extends
the mechanism part and exhibits the grey box property toward the user of
a component and the component environment.

Figure 4.4 depicts the RTCOM functional part including the mechanism and
policy parts, which we describe next.

Mechanism Part

As depicted in figure 4.4, the mechanism part in itself is essentially a black box
component contained within a larger (overall RTCOM) component. The mecha-
nism part consists of a number of mechanisms, which are methods, or function
calls, used by the policy part of a component to implement the component be-
havior. Mechanisms are private to the component and their implementation is,
therefore, inaccessible to the component environment, i.e., component users and

70 ENABLING SYSTEM RECONFIGURATION WITH ACCORD 4.3

operation 1operation 1operation 1operation 1

operation noperation noperation noperation n

mechanism 1mechanism 1mechanism 1mechanism 1

mechanism 2mechanism 2mechanism 2mechanism 2

mechanism mmechanism mmechanism mmechanism m

operation 2operation 2operation 2operation 2

reconfiguration reconfiguration reconfiguration reconfiguration

locationslocationslocationslocations

mmmmeeeecccchhhhaaaannnniiiissssmmmmssss

policypolicypolicypolicy

Figure 4.4: The functional part of RTCOM

other components. All mechanisms within a component are mutually indepen-
dent, i.e., one mechanism cannot be used for implementing another component
mechanism. We consider mechanisms to be basic building blocks of a component.

Policy Part

The policy part consists of a number of public methods, or function calls, used for
component composition and communication. We refer to these methods as opera-
tions. An operation in a component represents the functionality or a service that
a component can provide to other components or the overall system. Operations,
therefore, compose the internal behavior, i.e., policy, of a component.

The relationship between the operations in a component, and in the overall
system, should be such that the control flow that determines component com-
munication forms a directed acyclic graphs (DAGs), as shown in figure 4.5 (a).
That is, it is not allowed that operation o1 is implemented using operation o2,
which in turn is implemented using operation o3, and operation o3 gives a recur-
sive cycle by being implemented using operation o1 (see figure 4.5(b)). Having the
recursive calls to operations in the component, and between different components,
makes temporal analysis of the system composed out of components inherently
difficult [138]. Hence, RTCOM in its current form only supports operations that
are implemented such that the control flow between them forms a DAG.

An operation is implemented using the underlying component mechanisms.
Hence, operations can be viewed as coarse methods (or function calls) as they are
implemented using finer methods, namely component mechanisms. An example
of how operations and mechanisms of a component could be related is given in
figure 4.6, where operation o1 is implemented using component mechanisms m1

and m3, while operation o2 is implemented using mechanism m2. Furthermore,

4.3 REAL-TIME COMPONENT MODEL 71

oooo1111 oooo3333oooo2222callscallscallscalls callscallscallscallscallscallscallscallsoooo1111
oooo3333oooo2222 callscallscallscallscallscallscallscalls oooo3333callscallscallscallsoooo4444callscallscallscalls (a) (a) (a) (a) (b) (b) (b) (b)

Figure 4.5: An example of (a) allowed, and (b) not allowed relationship among the
operations

uses 1xuses 1xuses 1xuses 1x

3x3x3x3x

2x2x2x2x

operation ooperation ooperation ooperation o1111
operation ooperation ooperation ooperation onnnnoperation ooperation ooperation ooperation o2222
mechanism mmechanism mmechanism mmechanism m1111
mechanism mmechanism mmechanism mmechanism m2222
mechanism mmechanism mmechanism mmechanism m3333

............

Figure 4.6: An example of the relationship of operations and mechanisms in a compo-
nent

each operation in the component can use a mechanism in its implementation
one or several times. In the example in figure 4.6 operation o1 uses mechanism
m1 once and mechanism m3 three times. The ”uses relation” of operations and
mechanisms reflects that the flow of control in operation o1 is transferred to m1

once and m3 three times.

To facilitate weaving of aspects into a component, design of the functional
part of the component is performed in the following manner. First, mechanisms
as basic blocks of the component are identified and designed. Here, particular
attention should be given to the previously identified application aspects, and the
table that reflects the crosscutting effects of application aspects to components
could be made to help the designer in the remaining steps of RTCOM design and
implementation. Next, the operations of a component are designed using compo-
nent mechanisms. Note that the operations provide an initial component policy,

72 ENABLING SYSTEM RECONFIGURATION WITH ACCORD 4.3

advice advice advice advice

call to operation 1 call to operation 1 call to operation 1 call to operation 1

call to mechanism 1call to mechanism 1call to mechanism 1call to mechanism 1

Pointcuts: Pointcuts: Pointcuts: Pointcuts:

 calls to calls to calls to calls to

operation 1operation 1operation 1operation 1

operation koperation koperation koperation k

mechanism nmechanism nmechanism nmechanism n

call to mechanism 3call to mechanism 3call to mechanism 3call to mechanism 3

advice advice advice advice

call to operation 1 call to operation 1 call to operation 1 call to operation 1

call to mechanism 3call to mechanism 3call to mechanism 3call to mechanism 3

call to mechanism 3call to mechanism 3call to mechanism 3call to mechanism 3

call to mechanism 2call to mechanism 2call to mechanism 2call to mechanism 2

Figure 4.7: An illustration of the structure of an aspect that invasively changes the
behavior of a component

i.e., basic and somewhat generic component functionality. This initial policy can
be modified by weaving various application aspects. If identified crosscutting ap-
plication aspects are considered when designing and implementing operations and
mechanisms, then the resulting functional part of a component is highly reconfi-
gurable. All the places where changes to the component via aspect weaving can
be done, i.e., operations of the policy part and mechanisms of the mechanism
part, are simply denoted reconfiguration locations (represented with black circles
in figure 4.4).

Ensuring aspect weaving such that the grey box property of a component is
preserved, and weaving is done in a predictable manner, is a primary concern
of RTCOM. Given that the functional part of a component can be changed via
aspect weaving, in the remainder of this section, we discuss the way aspects
should be designed to support predictable weaving. By predictable weaving we
mean the integration of aspects into component code such that further analysis
of designs and implementations based on RTCOM is enabled. In the description
of aspects that follows, we focus on aspects that can invasively change the code
of the component. Hence, we focus on design and implementation of application
aspects, and, as mentioned before, for presentation reasons we refer to these simply
as aspects.

4.3 REAL-TIME COMPONENT MODEL 73

Aspects and Aspect Weaving

Within RTCOM we take the traditional view of programming language level
aspects, and adapt it to the real-time domain by specifying pointcuts and advices
in terms of mechanisms and operations (see figure 4.7). This enables performing
temporal analysis1 of the weaved system, and thereby use of aspects in real-time
environments. This also enables existing aspect languages to be used for imple-
menting aspects in real-time systems, and enables existing weavers to be used to
integrate aspects into components while maintaining predictability of a real-time
system, i.e., ensuring that temporal behavior of a composed system can be esti-
mated closely to the actual behavior (exposed during run-time) before running
the system. Hence, aspect are designed such that pointcuts refer to reconfigura-
tion locations (operations and mechanisms) of available components. This implies
that a pointcut in an aspect can point to one or several operations or mechanisms
of a component, indicating these as places where modifications of the component
code are allowed, as depicted in figure 4.7. To facilitate temporal analysis, the
advices of an aspect are also implemented using component mechanisms as basic
building blocks. Furthermore, the implementation of an entire aspect is not limi-
ted only to mechanisms of one component, since an aspect can contain any finite
number of advices that can precede, succeed, or replace reconfiguration locations
throughout the system configuration. Hence, aspects can be implemented using
a number of mechanisms from several components.

Now, by defining adequate advices within an aspect, weaving can be done
before, after, or around a reconfiguration location. Note that when weaving a
mechanism, operations using this mechanism are affected by weaving, while the
mechanism implementation remains intact and its black box behavior uncom-
promised. This is because weaving a mechanism adds code to the operation
(before/after advices) that is going to be executed before or after the call to the
mechanism is made. In the case of an around advice, the call to the mechanism
within the operation is replaced. From this it follows that operations are flexible
parts of the component as their implementation can change by aspect weaving,
while mechanisms are fixed parts of the component infrastructure. Each advice
within an aspect can change the behavior of a component by changing one or
more operations in the component.

Once the component functional part is designed and implemented, and an
aspect that invasively changes it is developed, the weaving can take place. By
using an appropriate aspect weaver, the resulting woven component is obtained.
As depicted in figure 4.8, weaving is adding code defined within advices to the
original component in the places defined by reconfiguration locations and in the
manner prescribed by pointcut expressions and advice types. Therefore, one can
consider that the development process of the functional part of a component
eventually results in a component woven with aspects.

1Temporal analysis refers both to static WCET analysis of the code and dynamic schedula-
bility analysis of the tasks.

74 ENABLING SYSTEM RECONFIGURATION WITH ACCORD 4.3

advice advice advice advice

call to operation 1 call to operation 1 call to operation 1 call to operation 1

Pointcuts: Pointcuts: Pointcuts: Pointcuts:

 call to call to call to call to

 operation 1 operation 1 operation 1 operation 1

 operation k operation k operation k operation k

operation 1operation 1operation 1operation 1

operation noperation noperation noperation n

mechanism 1mechanism 1mechanism 1mechanism 1

mechanism 2mechanism 2mechanism 2mechanism 2

mechanism mmechanism mmechanism mmechanism m

operation 2operation 2operation 2operation 2

advice advice advice advice

call to operation k call to operation k call to operation k call to operation k

operation noperation noperation noperation n

mechanism 1mechanism 1mechanism 1mechanism 1

mechanism 2mechanism 2mechanism 2mechanism 2

mechanism mmechanism mmechanism mmechanism m

operation 1operation 1operation 1operation 1

Functional part of Functional part of Functional part of Functional part of

the componentthe componentthe componentthe component

Functional part of Functional part of Functional part of Functional part of

the componentthe componentthe componentthe component
Aspect with two Aspect with two Aspect with two Aspect with two

advicesadvicesadvicesadvices

Aspect with two Aspect with two Aspect with two Aspect with two

advicesadvicesadvicesadvices

Weaving Weaving Weaving Weaving
Weaving Weaving Weaving Weaving

Reconfigured componentReconfigured componentReconfigured componentReconfigured component
Reconfigured componentReconfigured componentReconfigured componentReconfigured component

Advice code Advice code Advice code Advice code

inserted into the inserted into the inserted into the inserted into the

implementation ofimplementation ofimplementation ofimplementation of

operationsoperationsoperationsoperations

Advice code Advice code Advice code Advice code

inserted into the inserted into the inserted into the inserted into the

implementation of implementation of implementation of implementation of

operationsoperationsoperationsoperations

operation 2operation 2operation 2operation 2

Figure 4.8: An example of component reconfiguration via aspect weaving

4.3 REAL-TIME COMPONENT MODEL 75

insert()insert()insert()insert()

findFirst()findFirst()findFirst()findFirst()

createNode()createNode()createNode()createNode()

deleteNode()deleteNode()deleteNode()deleteNode()

getNextNode()getNextNode()getNextNode()getNextNode()

create()create()create()create()

linkNode()linkNode()linkNode()linkNode()

unlinkNode()unlinkNode()unlinkNode()unlinkNode()

remove()remove()remove()remove()

destroy()destroy()destroy()destroy()

mechanismsmechanismsmechanismsmechanisms

policypolicypolicypolicy

Figure 4.9: The functional part of the linked list component

Example

Consider an example of an ordinary linked list implemented based on RTCOM.
The functional part of the component consists of the mechanism and the po-
licy part. The mechanisms needed are the ones for the manipulation of nodes
in the list, i.e., createNode, deleteNode, getNextNode, linkNode, and
unlinkNode (see figure 4.9). Operations implementing the initial policy, e.g.,
create, insert, remove, and findFirst, define the behavior of the compo-
nent, and are implemented using the underlying mechanisms. In this example,
insert uses the mechanisms createNode and linkNode to create and link a
new node into the list in first-in-first-out (FIFO) order. Hence, the initial policy
of the component is FIFO.

Assume that we want to change the policy of the component from FIFO to
priority-based ordering of the nodes. This can be achieved by weaving an ap-
propriate application aspect. Figure 4.10 shows the listPriority application
aspect, which consists of one pointcut insertCall, identifying insert as a
join point in the component code (lines 2-3). When this join point is reached,
the code in the before advice insertCall is executed. Hence, the application
aspect listPriority intercepts the operation insert and, using the compo-
nent mechanisms (getNextNode), determines the position of the node based on
its priority (lines 5-14). The outlook of the woven component is depicted in figure
4.11.

4.3.2 Run-Time System Dependent Part

The run-time part of RTCOM accounts for run-time aspects of a component,
including resource consumption and temporal behavior of both the original com-
ponent (without application aspects) and the reconfigured component (when ap-
plication aspects are woven into the component). Thus, a run-time aspect should

76 ENABLING SYSTEM RECONFIGURATION WITH ACCORD 4.3

aspect listPriorityaspect listPriorityaspect listPriorityaspect listPriority{

1:

2: pointcut insertCallpointcut insertCallpointcut insertCallpointcut insertCall(int data)=

3: call("void insert(int)")&&args(data);

4:

5: advice insertCalladvice insertCalladvice insertCalladvice insertCall(data):

6: void beforebeforebeforebefore(int data){

7: while

8: the node position is not determined

9: do

10: node = getNextNodegetNextNodegetNextNodegetNextNode(node);

11: /* determine position of the node based

12: on its priority and the priority of the

13: nodes in the list*/

14: }

15: }

advice advice advice advice

insertCall insertCall insertCall insertCall

getNextNode()getNextNode()getNextNode()getNextNode()

Pointcut:Pointcut:Pointcut:Pointcut:

 call to insert() call to insert() call to insert() call to insert()

Figure 4.10: The listPriority application aspect

be specified both for the functional part of a component and for the applica-
tion aspects. In the run-time part of a component, the constituents of run-time
aspects are expressed as attributes of operations, mechanisms, and application
aspects since they are the elements of the functional part of the component, and
thereby influence the behavior of the component with respect to timeliness and
available memory consumption.

Next, we illustrate how run-time aspects are represented and handled in
RTCOM using two representative run-time aspects, one for illustrating temporal
constraints (WCET) and one for illustrating resource demands (memory foot-
print). We already established that knowing WCETs is imperative for enabling
schedulability analysis of hard real-time systems. Additionally, prediction of the
static memory usage, i.e., memory footprint, is important in embedded systems
having small amount of available memory. We exemplify the overall run-time
aspect specification on the running example of the linked list component and
listPriority application aspect.

The specification of static memory and WCET needs of components is done
based on the following observations related to aspect weaving in the code of a
component.

❏ Aspect weaving does not change static temporal behavior of a mechanism
within a component nor its memory requirements since implementation of
the mechanism is not changed by aspect weaving.

❏ Aspect weaving changes operations by changing the number of mechanisms
that an operation uses, thus, changing static temporal behavior and memory
consumption of the operation.

4.3 REAL-TIME COMPONENT MODEL 77

insert()insert()insert()insert()

findFirst()findFirst()findFirst()findFirst()

createNode()createNode()createNode()createNode()

deleteNode()deleteNode()deleteNode()deleteNode()

getNextNode()getNextNode()getNextNode()getNextNode()

create()create()create()create()

linkNode()linkNode()linkNode()linkNode()

unlinkNode()unlinkNode()unlinkNode()unlinkNode()

remove()remove()remove()remove()

destroy()destroy()destroy()destroy()

Advice: Advice: Advice: Advice:

insertCall insertCall insertCall insertCall

getNextNode()getNextNode()getNextNode()getNextNode()

Pointcut:Pointcut:Pointcut:Pointcut:

 call to insert() call to insert() call to insert() call to insert()

findFirst()findFirst()findFirst()findFirst()

createNode()createNode()createNode()createNode()

deleteNode()deleteNode()deleteNode()deleteNode()

getNextNode()getNextNode()getNextNode()getNextNode()

create()create()create()create()

linkNode()linkNode()linkNode()linkNode()

unlinkNode()unlinkNode()unlinkNode()unlinkNode()

remove()remove()remove()remove()

destroy()destroy()destroy()destroy()

insert()insert()insert()insert()
Modified Modified Modified Modified

policy of the policy of the policy of the policy of the

listPriority listPriority listPriority listPriority

componentcomponentcomponentcomponent

Figure 4.11: The resulting woven component

78 ENABLING SYSTEM RECONFIGURATION WITH ACCORD 4.3

mechanisms()mechanisms()mechanisms()mechanisms()

intWCETintWCETintWCETintWCET

policy()policy()policy()policy()

operationoperationoperationoperation

mechanismmechanismmechanismmechanism

nameOfOperationnameOfOperationnameOfOperationnameOfOperation

nameOfMechanismnameOfMechanismnameOfMechanismnameOfMechanism usageusageusageusage

Value in TU (time units)Value in TU (time units)Value in TU (time units)Value in TU (time units)

Value in MU (memory units)Value in MU (memory units)Value in MU (memory units)Value in MU (memory units)intMemoryintMemoryintMemoryintMemory

listOfParameterslistOfParameterslistOfParameterslistOfParameters

WCETWCETWCETWCET

nameOfMechanismnameOfMechanismnameOfMechanismnameOfMechanism

Value in TU Value in TU Value in TU Value in TU

Value in MU Value in MU Value in MU Value in MU MemoryMemoryMemoryMemory

listOfParameterslistOfParameterslistOfParameterslistOfParameters

mechanismmechanismmechanismmechanism

Figure 4.12: A general specification template for run-time aspects

❏ Aspect weaving augments the code of an operation in the case of weaving
the before or after advice, and replaces the code of an operation in the case
of the around advice.

To facilitate efficient WCET and memory footprint analysis of different con-
figurations of aspects and components, the specification of WCETs and memory
footprint within the run-time part of RTCOM should satisfy the following.

❏ WCETs and memory consumption of mechanisms are known and declared
in the specification (illustrated in the lower part of figure 4.12).

❏ The WCET and memory footprint of an operation is determined based on
two elements: (i) the WCETs and memory footprints of the mechanisms,
and (ii) the internal values of WCET and memory footprint of the operation
(see the upper part of figure 4.12). The internal WCET and memory foot-
print of an operation refer to the code of the operation not associated with
the invocation of the mechanisms; we also refer to this code as the body of
the operation.

❏ WCETs and memory requirements of every advice is based on: (i) the
WCET and memory requirements of the mechanisms used for implementing
the advice, and (ii) the internal WCET and memory footprint of the body
of the advice, i.e., code that manages the mechanisms (see figure 4.13).

4.3 REAL-TIME COMPONENT MODEL 79

affectsaffectsaffectsaffects

aspect()aspect()aspect()aspect()

adviceadviceadviceadvice

typetypetypetype

nameOfAdvicenameOfAdvicenameOfAdvicenameOfAdvice

type of advicetype of advicetype of advicetype of advice

usageusageusageusagemechanismmechanismmechanismmechanism

listOfParameterslistOfParameterslistOfParameterslistOfParameters

nameOfOperationnameOfOperationnameOfOperationnameOfOperation

intWCETintWCETintWCETintWCET value in TU (time units)value in TU (time units)value in TU (time units)value in TU (time units)

intMemoryintMemoryintMemoryintMemory value in MU (memory units)value in MU (memory units)value in MU (memory units)value in MU (memory units)

nameOfMechanismnameOfMechanismnameOfMechanismnameOfMechanism

Figure 4.13: An example of the specification template for the run-time part of an
application aspect

Figure 4.12 shows the template for specification of a run-time aspect within
RTCOM. As can be seen from the bottom part of the figure, for each mechanism
the WCET and memory needs are declared and assumed to be known. WCET
values are expressed in time units, e.g., seconds, milliseconds, and microseconds.
Memory footprint values are expressed in memory units, e.g., bytes and kilobytes.
In the run-time aspect specification of a component, each operation defining the
policy of the component declares what mechanisms it uses, and how many times
it uses a specific mechanism. Figure 4.13 shows the run-time specification of an
application aspect. For each advice type (before, around, after) that modifies
an operation, the operation it modifies is declared together with the mechanisms
used for implementing the advice, and the number of times the advice uses these
mechanisms. Run-time specifications of aspects and components can also have a
list of parameters used for expressing the values of WCETs and memory require-
ments.

Figure 4.14 presents an instantiation of a run-time specification for the linked
list component. Each operation in the component is named and its internal WCET
intWcet and memory consumption intMemory are declared. Additionally, the
number of times an operation uses a particular mechanism is declared. Since the
maximum number of elements in the linked list can vary, the specifications are pa-
rameterized with parameter N representing the number of nodes in the list. Figure
4.15 shows the run-time specification of the listPriority application aspect.
The run-time properties of advice insertCall are specified by declaring that
the advice is of type before and that it modifies operation insert by invoking
mechanism getNextNode N times. The advice also has the internal WCET and
memory footprint, accounting for run-time properties of the code that handles
mechanism invocations.

80 ENABLING SYSTEM RECONFIGURATION WITH ACCORD 4.3

mechanismsmechanismsmechanismsmechanisms

intWCETintWCETintWCETintWCET

policy()policy()policy()policy()

operationoperationoperationoperation

mechanismmechanismmechanismmechanism

insertinsertinsertinsert

createNodecreateNodecreateNodecreateNode 1111

3333

45454545intMemoryintMemoryintMemoryintMemory

NNNN

WCETWCETWCETWCET

createNodecreateNodecreateNodecreateNode

5555

22222222MemoryMemoryMemoryMemory

mechanismmechanismmechanismmechanism

mechanismmechanismmechanismmechanism linkNodelinkNodelinkNodelinkNode 1111

intWCETintWCETintWCETintWCET

operationoperationoperationoperation

mechanismmechanismmechanismmechanism

removeremoveremoveremove

getNextNodegetNextNodegetNextNodegetNextNode NNNN

1111

32323232intMemoryintMemoryintMemoryintMemory

mechanismmechanismmechanismmechanism unlinkNodeunlinkNodeunlinkNodeunlinkNode 1111

mechanismmechanismmechanismmechanism deleteNodedeleteNodedeleteNodedeleteNode 1111

WCETWCETWCETWCET

linkNodelinkNodelinkNodelinkNode

4444

12121212MemoryMemoryMemoryMemory

mechanismmechanismmechanismmechanism

WCETWCETWCETWCET

getNextNodegetNextNodegetNextNodegetNextNode

2222

10101010MemoryMemoryMemoryMemory

mechanismmechanismmechanismmechanism

Figure 4.14: A specification of the run-time aspect of the linked list component

affectsaffectsaffectsaffects

aspect()aspect()aspect()aspect()

adviceadviceadviceadvice

typetypetypetype

insertCallinsertCallinsertCallinsertCall

beforebeforebeforebefore

NNNNmechanismmechanismmechanismmechanism

NNNN

insertinsertinsertinsert

intWCETintWCETintWCETintWCET 4+0.4*N4+0.4*N4+0.4*N4+0.4*N

intMemoryintMemoryintMemoryintMemory 34+N34+N34+N34+N

getNextNodegetNextNodegetNextNodegetNextNode

Figure 4.15: A specification of the run-time aspect of the priority list application aspect

4.3 REAL-TIME COMPONENT MODEL 81

operation 1operation 1operation 1operation 1

operation noperation noperation noperation n

mechanism 1mechanism 1mechanism 1mechanism 1

mechanism 2mechanism 2mechanism 2mechanism 2

mechanism mmechanism mmechanism mmechanism m

operation 2operation 2operation 2operation 2

Provided Provided Provided Provided

(functional)(functional)(functional)(functional)

interfaceinterfaceinterfaceinterface

RRRReeeeqqqquuuuiiiirrrreeeedddd

((((ffffuuuunnnnccccttttiiiioooonnnnaaaallll))))

interfaceinterfaceinterfaceinterface

Composition Composition Composition Composition

interfaceinterfaceinterfaceinterface

(reconfiguration (reconfiguration (reconfiguration (reconfiguration

locations)locations)locations)locations)

Configuration Configuration Configuration Configuration

interfacesinterfacesinterfacesinterfaces

Figure 4.16: Different types of interfaces defined within RTCOM

We continue this example of run-time specifications of the linked list compo-
nent in section 5.2 and use it to illustrate the way static analysis is performed
within ACCORD.

4.3.3 Composition Part of RTCOM

The composition part refers both to the functional part and the run-time part of a
component, and is graphically represented as a third dimension of the component
model (see figure 4.3). Given that there are different application aspects that can
be woven into a component, composition aspects represented in the composition
part of RTCOM should contain information about component compatibility with
respect to different application aspects, as well as with respect to different com-
ponents. This part of RTCOM has not been a main focus of our work so far,
and in its current form only supports, for a given component, simple composition
rules listing (by name) compatible aspects and components.

4.3.4 RTCOM Interfaces

RTCOM supports three different types of interfaces (see figure 4.16):

❏ functional interface,

❏ configuration interface, and

❏ composition interface.

Typically, in a component-based software system, a component functional in-
terface specification reflects operations of the component. Namely, the interface

82 ENABLING SYSTEM RECONFIGURATION WITH ACCORD 4.3

required interfacerequired interfacerequired interfacerequired interfaceprovided interfaceprovided interfaceprovided interfaceprovided interface

nameOfOperationnameOfOperationnameOfOperationnameOfOperationoperationoperationoperationoperationnameOfOperationnameOfOperationnameOfOperationnameOfOperationtypetypetypetype (argumentList)(argumentList)(argumentList)(argumentList)

nameOfOperationnameOfOperationnameOfOperationnameOfOperationtypetypetypetype (argumentList)(argumentList)(argumentList)(argumentList)
nameOfOperationnameOfOperationnameOfOperationnameOfOperationtypetypetypetype (argumentList)(argumentList)(argumentList)(argumentList)

nameOfOperationnameOfOperationnameOfOperationnameOfOperationtypetypetypetype (argumentList)(argumentList)(argumentList)(argumentList)

Figure 4.17: The functional provided and required interface supported by RTCOM

specification provides the name, type, and parameters of the operation, e.g., input,
output, or input/output parameters [50].

Functional Interface

Functional interfaces of components are used for component communication and
system configuration. Functional interfaces are classified in two categories:

❏ provided functional interfaces, and

❏ required functional interfaces.

The provided interface reflects a set of operations that a component provi-
des to other components, as shown in figure 4.17. The required interface reflects
operations that a component requires from other components. Namely, in this
interface each operation provided by a component declares which operations from
other components it needs (see figure 4.17). Having explicit separation into pro-
vided and required interfaces eases component exchange and addition of new
components into the system [37].

Configuration Interface

The configuration interface lists changeable parameters for each operation that
can be instantiated with different values depending on the target run-time environ-
ment. As such, the configuration interface is intended for supporting integration
of a real-time system with its targeted run-time environment.

As illustrated in figure 4.18, this interface provides a set of parameters that
can be changed so that the mapping of the component on the target run-time
environment is eased, e.g., the parameter can be a number of tasks that are sup-
ported in the underlying run-time environment. Combining multiple components
results in a system that also has a configuration interface (the collection of con-
figuration interfaces of components), which enables the designer to further tune
the behavior of the system toward the run-time environment.

4.4 REAL-TIME COMPONENT MODEL 83

configuration interfaceconfiguration interfaceconfiguration interfaceconfiguration interface

nameOfOperationnameOfOperationnameOfOperationnameOfOperationoperationoperationoperationoperation

nameOfConfigurationParameternameOfConfigurationParameternameOfConfigurationParameternameOfConfigurationParametertypetypetypetype

typetypetypetype nameOfConfigurationParameternameOfConfigurationParameternameOfConfigurationParameternameOfConfigurationParameter

Figure 4.18: The configuration interface of RTCOM

composition interfacecomposition interfacecomposition interfacecomposition interface

nameOfOperationnameOfOperationnameOfOperationnameOfOperationoperationoperationoperationoperation

nameOfMechanism(argumentList)nameOfMechanism(argumentList)nameOfMechanism(argumentList)nameOfMechanism(argumentList)typetypetypetype

available data structuresavailable data structuresavailable data structuresavailable data structures

namenamenamenametypetypetypetype

typetypetypetype nameOfOperation(argumentList)nameOfOperation(argumentList)nameOfOperation(argumentList)nameOfOperation(argumentList)

nameOfMechanism(argumentList)nameOfMechanism(argumentList)nameOfMechanism(argumentList)nameOfMechanism(argumentList)typetypetypetype

Figure 4.19: The composition interface of RTCOM

Composition Interface

The composition interface of a component represents a set of mechanisms, opera-
tions, and data structures of the component that can be used for aspect weaving
(see figure 4.19). Hence, the composition interface is a precise declaration of re-
configuration locations of a component. The user of the component, e.g., system
designer, uses this interface when extending the component or a system with new
aspects or reconfiguring the component/system for new reuse contexts. Compo-
sition interfaces are ignored at component/system compile time if they are not
needed; they are “activated” only when certain aspects are woven into the system.
Thus, the composition interface eases integration of the component and aspectual
part of the system.

84 ENABLING SYSTEM RECONFIGURATION WITH ACCORD 4.4

4.4 Aspect Packages

The most common way of ensuring that real-time performance is guaranteed in
a software system is to employ a certain real-time policy, e.g., scheduling po-
licies are employed in the system to ensure that tasks meet their respective
deadlines, and QoS policies are used for maintaining performance in open un-
predictable environments. Numerous approaches developing new real-time po-
licies or fine-tuning existing ones have been developed over the years, e.g.,
[15, 11, 40, 108, 110, 133, 45, 99]. However, these have focused primarily on
providing a specific real-time policy, not addressing software engineering issues
relating to configurability of policies and their reuse across application areas.
Traditionally, real-time policies are implemented as an integral part of a real-time
system, crosscutting its structure and cannot easily be modified, exchanged, or
reused.

To ensure that real-time policies can be reused and reconfigured in newly de-
veloped and existing systems across applications, we define and use the notion
of an aspect package, which represents a way of packaging specification and im-
plementation of real-time policies for reuse and configuration. An aspect package
consists of a number of components and aspects implementing a variety of real-
time policies.

For example, when studying existing QoS management approaches we obser-
ved that a majority of approaches typically assume that a real-time system has
a QoS management infrastructure upon which algorithms implementing specific
QoS policies are implemented. The infrastructure can consist of services, fun-
ctions, or methods provided by the system for adjusting the system load and
is implemented as an integral part of the system. Algorithms implementing QoS
policies use services provided by the infrastructure to ensure performance guaran-
tees, and they often crosscut other parts of the system as well. Notable, many QoS
management approaches have a similar QoS infrastructure but provide distinct
QoS policies, i.e., have distinct QoS algorithms implemented on top of the in-
frastructure. For these reasons, a concept of an aspect package is useful as it
provides a way of decomposing and implementing QoS management for a family
of real-time applications. The decomposition is done such that the main functio-
nal infrastructure of QoS management is encapsulated into a set of components
and various QoS policies crosscutting the QoS management infrastructure and
the structure of a system are encapsulated into aspects. Hence, for a family of
real-time applications a QoS aspect package has a unique set of components (as in
this case all QoS policies in the family use the same infrastructure), and possibly
a great number of aspects implementing various QoS policies.

Similarly, a concurrency control aspect package could be defined as a collection
of aspects and components that implement a number of different concurrency con-
trol policies. The concurrency control aspect package can be used for development
of a family of real-time systems with variations in their concurrency control.

Using an aspect package enables a system designer to develop several app-

4.4 ASPECT PACKAGES 85

lications with similar characteristics with respect to a certain real-time policy.
Therefore, each family of applications would have its unique aspect package. By
adding aspects and components from an aspect package to an existing system, we
are able to use the same system in applications with distinct needs. For example,
using aspects and components from the QoS aspect package, it is possible to
configure QoS management of a real-time system based on the application requi-
rements. Similarly, using aspects and components from the concurrency control
aspect package, it is possible to configure the system to support different poli-
cies for resolving conflicts on data items, which are simultaneously accessed by
multiple tasks.

Since we found that the concept of an aspect package is especially useful
in for enabling reconfiguration and reuse of real-time policies in existing real-
time systems, we first outline the main requirements an existing real-time system
should fulfil to be able to employ the concept of an aspect package. We then
present an example of a QoS aspect package. The purpose of this example is
to provide guidelines for development of aspect packages as the described way of
determining constituents of a QoS aspect package can be used for determining
the constituents of most aspect packages.

4.4.1 Requirements

The concept of an aspect package as the means of configuring and extending
an existing system applies both to the class of traditional (monolithic) real-time
systems and to the class of component-based real-time systems, provided that
they conform to the following requirements.

Traditional real-time systems should: (i) be written in a language that has a
corresponding aspect language; (ii) have the source code of the system available;
and (iii) have well-structured code such that the code is structured in fine-grained
pieces that perform well-defined functions, i.e., good coding practice is employed.

Configurable, component-based, real-time systems should be built using ”glass
box” or ”grey box” component models. These models imply that components have
well-defined interfaces, but also internals are accessible for manipulation by the
software developer, e.g., Koala [179], RTCOM [174], PBO [166], AutoComp [150],
and Rubus-based component models [79].

In addition, both monolithic and configurable real-time systems should have
functions upon which components and aspects from the aspect package can be
added. For example, in the case of the QoS aspect package a real-time system
should have functions for controlling the system load. Namely, there are multiple
ways of controlling the load in the system, e.g., by changing the output quality
of the tasks [105], modifying the period of the tasks [108, 45], admission control
[16], and changing the frequency of the CPU [186]. This implies that the tasks
must be scheduled by an on-line scheduler [40], e.g., EDF or RMS [104]. In the
case of a concurrency control aspect package, the system should have functions
for data access.

86 ENABLING SYSTEM RECONFIGURATION WITH ACCORD 4.4

Given that a system conforms to the named requirements, an aspect package
can be used for adding and configuring the majority of real-time policies. When a
real-time systems is built from scratch, then the system can be optimized during
design and development using ACCORD.

4.4.2 An Aspect Package Example

In this section we show how an aspect package can be identified and defined on an
example of the QoS aspect package. The details of the concrete implementation
of aspect packages for COMET database, including QoS and concurrency control,
are discussed later in chapter 7.

Any aspect package essentially consists of two types of entities: components
and aspects (see figure 4.20). The top level of the aspect package can be used
for any policy. At the lower level, the components are refined for a specific set
of policies. In the remainder of this section we discuss feedback-based QoS ma-
nagement, where components include a feedback controller component (FCC),
a QoS actuator component (QAC), and a sensor component. The aspects are
constructed to embrace the following (see figure 4.20):

❏ QoS policy aspects,

❏ QoS task model aspects, and

❏ QoS connector aspects.

The components should conform to the RTCOM model. As such, a component
has an interface that contains: (i) functionality in terms of functions, procedures,
or methods that a component requires (uses) from the system, (ii) functionality
that a component provides to the system, and (iii) the list of reconfiguration
locations where the changes of the component policy can be done. Reconfiguration
locations are especially useful in the context of producing families of systems with
variations in their QoS management.

The QAC is a component that its simplest form acts as a simple admission
controller. It publishes a list of reconfiguration locations in its interfaces where
different actuator policies can be woven. Similarly, the FCC is by default designed
with a simple control functionality and appropriate reconfiguration locations such
that the FCC can be extended to support more sophisticated control algorithms,
e.g., adaptive control [146]. The sensor component collects necessary data and
possibly aggregates it to form the metric representing the controlled variable. In
its simplest form the sensor component measures utilization, which is commonly
used as a controlled variable [108]. The sensor component publishes a set of
reconfiguration locations, where it is possible to change the measured metric.

The QoS management policy aspects, namely actuator policy, controller po-
licy, and sensor policy, adapt the system to provide different QoS management
policies. Depending on the target application, the aspects modify the FCC to

4.4 ASPECT PACKAGES 87

QoS QoS QoS QoS

management management management management

policy aspectspolicy aspectspolicy aspectspolicy aspects

FCC FCC FCC FCC

connectorconnectorconnectorconnector
QAC QAC QAC QAC

connectorconnectorconnectorconnector

actuation actuation actuation actuation

policy policy policy policy

component component component component

QACQACQACQAC FCCFCCFCCFCC

aspect aspect aspect aspect

QoS task QoS task QoS task QoS task

model aspectsmodel aspectsmodel aspectsmodel aspects
QoS connectior QoS connectior QoS connectior QoS connectior

aspectsaspectsaspectsaspects

controlling controlling controlling controlling

policy policy policy policy

basic basic basic basic

modelmodelmodelmodel

utilization utilization utilization utilization

modelmodelmodelmodel

sensor sensor sensor sensor

policypolicypolicypolicy

sensor sensor sensor sensor

componentcomponentcomponentcomponent

sensor sensor sensor sensor

connectorconnectorconnectorconnector

RTCOMRTCOMRTCOMRTCOM

Figure 4.20: A QoS aspect package

support an appropriate QoS controller, and also change the QAC and the sensor
component according to the choice of manipulated variable and controlled vari-
able, respectively. For example, if deadline miss ratio is to be controlled, then a
QoS policy aspect measuring deadline miss ratio is chosen. The QAC is modified
by the aspect, exchanging the admission policy for an actuation mechanism where
the quality of the task results are modified.

The QoS task model aspects adapt the task model of a real-time system to
the model used by QoS policies, e.g., a utilization task model needs to be used for
a feedback-based QoS policy where utilization of the system is controlled. There
can be a number of aspects defined to ensure enrichments or modifications of the
task model, e.g., by adding various attributes to tasks, so that the resulting task
model is suitable for distinct QoS or applications needs. Concrete examples of
task models are given in chapter 8.

The QoS connector aspects facilitate the composition of a real-time system
with the QoS-related components FCC, QAC, and the sensor component.

Once a QoS aspect package is specified as described above, i.e., components
and aspects identified, it needs to be populated with actual implementations of
aspects and components for a particular application or a family of applications.
An existing system that complies with requirements from section 4.4.1 is configu-
red for the specific real-time QoS management as follows.

❏ The architecture of the existing system is inspected and reconfiguration
locations are identified.

❏ The new context in which the system is going to be used, i.e., the application
domain, is determined.

❏ Given the new usage context of the system, a suitable QoS policy consisting
of the sensor policy, controlling policy, and the actuation policy, is identified.

❏ If the aspects implementing the QoS policy do not exist in a QoS aspect
package, then the corresponding aspects are defined, developed, and added

88 ENABLING SYSTEM RECONFIGURATION WITH ACCORD 4.4

QoS
aspects for
policies and
task model

QoS components:
QAC (actuator)
FCC (controller)
sensor

QoS aspect package:

QoS
compostion

aspects

Controlled System

QAC

FCC

QoS connector aspects
sensor

c1 c2 c3

c4
c5

Existing (controlled) system:
c1-c5 components constituting the controlled system

Figure 4.21: A real-time system where QoS aspect package is used for configuring QoS
management

to the package. Aspects use reconfiguration locations in the existing sy-
stem to inject the QoS policy. Similarly, the QoS aspect package has to be
populated with a sensor, FCC and QAC components, in case these do not
already exist in the package.

❏ Aspects and components for a specific QoS configuration are chosen from
the aspect package and woven with the existing system.

Now, a real-time system can be developed so that it fulfills certain functionality
(without QoS guarantees), and then QoS management can be added to the system
using the QoS package in the previously described procedure.

Note also that aspects implemented within a QoS aspect package can easily
be reused in different applications. Moreover, the QoS aspect package enables
closed systems to be efficiently used in open environments. It is indeed possible
to design a real-time system without QoS management and then add the QoS
dimension to the system using the QoS aspect package. We prove these claims in
chapter 8 on the example of the COMET database.

A real-time system where a QoS aspect package is applied is shown in fi-
gure 4.21. In this figure it is depicted that a controlled (existing) system is a

4.6 STATIC RECONFIGURATION 89

component-based system that consists of RTCOM components c1, . . . , c5, which
have well defined interfaces and internals accessible for modification.2

QoS connector aspects from a QoS aspect package are used to add the sensor,
FCC, and QAC to the parts/components of the system or a system itself, where
needed; these aspects are represented with grey dashed lines between component
connections in figure 4.21. Additionally, QoS connector aspects offer significant
flexibility in the system design as the feedback loop can easily be placed “outside”
the controlled system and between any components in the system by simply ad-
ding QoS connector aspects. QoS management policies are added to the system
using appropriate aspects from the package. Moreover, QoS policies can easily
be exchanged by adding or changing aspects within the QoS management policy
type. Hence, a QoS aspect package ensures that QoS management policies are
modifiable and configurable, depending on the application requirements.

4.5 Static Reconfiguration

In this section we elaborate on how static real-time system reconfiguration is
done from components and aspects that are previously designed and implemented
based on RTCOM, and placed in a library. Static system configuration is the
preferred type of system composition for hard real-time systems operating in
closed environments.

To facilitate system evolution and its reconfiguration, we utilize the concept
of aspect packages. Hence, we group components and aspects constituting real-
time policies of a system into aspect packages. Now, a library can be populated
with components, aspects, and possibly aspect packages that can be used for
developing a real-time system or a family of real-time systems. The overview of
the composition process from software artifacts from the library is illustrated in
figure 4.22.

The developer chooses appropriate aspects and components, and configures a
system based on application requirements. The resulting system configuration is
monolithic and is deployed on the target run-time environment as a monolithic
system. If the system needs to be modified during its lifetime to support new
functionality this can be achieved by static reconfiguration. Namely, upgrades
of the system via aspect packages that provide needed functionality are done by
re-compiling the system off-line.

4.6 Dynamic Reconfiguration

We already established (in chapter 3) that reconfiguring a system on-line is neces-
sary for embedded real-time systems that require continuous hardware and soft-

2The explanation and the main points are the same as if the depicted controlled system would
be a traditional monolithic real-time system conforming to the requirements listed in section
4.4.1.

90 ENABLING SYSTEM RECONFIGURATION WITH ACCORD 4.6

ComponentsComponentsComponentsComponents AspectsAspectsAspectsAspects Aspect packagesAspect packagesAspect packagesAspect packages

System configuration 1System configuration 1System configuration 1System configuration 1

System configuration 2System configuration 2System configuration 2System configuration 2

Components and Components and Components and Components and

aspects used for aspects used for aspects used for aspects used for

system configurationsystem configurationsystem configurationsystem configuration

Existing system Existing system Existing system Existing system

configuration and aspect configuration and aspect configuration and aspect configuration and aspect

packages used for packages used for packages used for packages used for

system reconfigurationsystem reconfigurationsystem reconfigurationsystem reconfiguration

LIBRARYLIBRARYLIBRARYLIBRARY

Figure 4.22: Static (re)configuration of a system

4.6 DYNAMIC RECONFIGURATION 91

ware upgrades in response to technological advancements, environmental change,
or alteration of system goals during system operation [44, 168]. Hence, an on-
line reconfiguration mechanism is needed ensuring that software can be updated
without interrupting the execution of the system.

To enable dynamic reconfiguration we extend the RTCOM component model
to ensure preservation of component and aspect states during reconfiguration.
Furthermore, we introduce a middleware layer, which handles communication
among components and aspects.

Note that, in the context of ensuring real-time performance, an exchange of
a component encompasses all the dimensions of the dynamic reconfiguration as
it includes also removal of the old version of a component and the addition of
a new version. Therefore, in the following, we focus primarily on explaining the
component exchange3 part of the dynamic reconfiguration.

4.6.1 Extensions to RTCOM

To preserve the internal state of components and aspects under reconfiguration,
RTCOM is extended as follows. The provided interface of a component is extended
with two mandatory operations, export and import. The export operation
enables a component under reconfiguration to export its state, i.e., to store its
state outside its data space (in the middleware layer). The import operation
ensures that the exported state of the component, which is to be replaced, is
correctly imported into the new version of the component.

Enabling aspect exchange implies changing the way aspects are implemented
within RTCOM. To conform to the dynamic aspect reconfiguration, a feature not
supported by current aspect languages, and still enable general applicability of
our dynamic reconfiguration method with any of the aspect and/or component
languages, we augment aspects with provided and required interfaces. For dyna-
mic reconfiguration purposes, the code of advices is encapsulated into methods,
or function calls, and these are declared in the provided interface of the aspect.
The required interface lists all the reconfiguration locations of components that
are used in the pointcut expressions of the aspect. Provided and required interfa-
ces play an important role in communication and reconfiguration as we describe
later. Observe also that having interfaces defined for each aspect provides better
encapsulation of aspect functionality and still preserves the crosscutting nature
of an aspect.

System composition out of components and aspects now consists of the
following steps. First, aspects are woven off-line into components they affect.
Then, using information stored in interfaces of components and aspects, these are
translated into run-time entities (shared objects) recognized by the middleware
layer. The run-time entities are then deployed onto the middleware layer (see
figure 4.23). Conceptually, this means that weaving and run-time entity gene-

3A component exchange is also referred to as a live update of a system.

92 ENABLING SYSTEM RECONFIGURATION WITH ACCORD 4.6

ComponentsComponentsComponentsComponents AspectsAspectsAspectsAspects

LIBRARYLIBRARYLIBRARYLIBRARY export/importexport/importexport/importexport/import

Run-time entity transformationRun-time entity transformationRun-time entity transformationRun-time entity transformation

Middleware layerMiddleware layerMiddleware layerMiddleware layer

Figure 4.23: Dynamic configuration of a system

ration are done on a separate computer (e.g., development platform), and the
obtained run-time entities are uploaded into the system running on the target
computer platform. Having components and aspects mapped into run-time en-
tities that communicate via the middleware layer enables easy reconfiguration of
both components and aspects.

4.6.2 Middleware Layer

We introduce a middleware layer between a run-time environment and compo-
nents, which handles communication among components and aspects using jump
tables (inspired by [149]). The jump table contains the list of pointers to provided
and required interfaces of components and aspects. When exchanging a compo-
nent or an aspect, the jump table entries for the functional interface of a compo-
nent or an aspect are re-pointed to the new version of the component/aspect. As
mentioned, during reconfiguration the middleware layer temporarily stores com-
ponent and aspect internal states, using the export and import operations.

The middleware layer provides a user interface for reconfiguration. This re-
configuration user interface consists of operations that enable adding, removing,
or exchanging components (see figure 4.24). During the system lifetime, reconfi-
guration can be requested at any time using these operations.

4.6 DYNAMIC RECONFIGURATION 931 exchange exchange exchange exchange(c1111,c2222){2 makeSystemReady();3 remove(c1); 4 redirect(c1,c2);5 add(c2);6 }
1 remove remove remove remove(c){2 makeSystemReady();3 if (c.hasState(){ 4 state=c.export();5 statePresent=true;6 }7 }

1 add add add add(c){2 makeSystemReady();3 if (statePresent){ 4 c.import(state);5 statePresent=false;6 }7 }
(a) exchange (b) remove (c) add

Figure 4.24: Reconfiguration of a component

cccc1111
cccc2222

cccc3333
cccc4444

tttt1111tttt2222
tttt3333

Figure 4.25: An example of the relation between tasks and components.

When reconfiguration is requested, the new version of the component is loaded
into the memory. At this point, the new version is not added to the system, but
we load it into the memory to carry out the reconfiguration as fast possible by
minimizing the delay of removing the old version and adding the new version of
the component. Furthermore, before allowing reconfiguration to take place, the
middleware layer ensures that the system can undergo reconfiguration without
interrupting the task execution (line 2 in figures 4.24(a-c)). Namely, tasks that
rely on operations of components that are to be reconfigured, have to be completed
before the reconfiguration is carried out, i.e., the task queue needs to be emptied
of all tasks using the component. This is exemplified in figure 4.25, where there
are four components denoted by c1, . . . , c4, and three tasks denoted by t1, . . . , t3.
Task t1 uses operations of component c1 and c3, while t2 uses c1 and c2. Both t1
and t2 have to complete executing before c1 can be exchanged. However, only t1
needs to be completed before c3 can be exchanged. Once the system can undergo
reconfiguration, the actual exchange of components is initiated.

For example, the exchange of an old version of a component c, denoted c1, with
a new version, c2, is carried out as follows. Note that we use notation cj

i to refer
to component i and its version j. First, a system is prepared for reconfiguration
by emptying the task queue of all tasks using the component c1. Hence, at the
beginning of the actual reconfiguration there are no tasks calling the operations

94 ENABLING SYSTEM RECONFIGURATION WITH ACCORD 4.6

of c1, thus, its state will not change since it changes only through operation calls.
Therefore, we can now exchange the old component c1 with the new version c2.
The exchange is carried out by first removing the component from the system
(line 3 in 4.24(a)). The removal is carried out by exporting the state of (an old
version) of a component into the middleware layer(lines 3-5 in figure 4.24(a)).
Then the jump table is re-pointed to the functional interfaces of the new version
c2 of the component (line 4 in figure 4.24(b)). Finally, the new component is
added to the system (line 5 in figure 4.24(a)). The operation add restores states
in the new version of the component using the import operation (line 4 in figure
4.24(c)). The role of the statePresent variable in remove and add operations
is to ensure that the state of a component is restored only if it is needed. The
described reconfiguration mechanism is hidden in the middleware layer and it
enables fast and light-weight reconfiguration (we confirm this in experimental
evaluations on the COMET database in chapter 9).

The reconfiguration of any number of components can be done by a user, which
can either be the system user (human) or an application. The middleware layer
is aware of the version of a component, via the version number of a component,
in the current configuration. When a new version is compiled into the run-time
directory (the component is loaded in the memory by the middleware layer), this
can detected during application self-inspection and the component is exchanged
with another version using the exchange operation of the middleware layer (see
figure 4.24(a)). If a number of components needs to be exchanged this can be
done by invoking exchange operation for each of the components. This also
implies that components with dependencies can be exchanged safely, in a sequence
of appropriate exchange calls, since the tasks using these components will be
completed before the exchange takes place.

When wanting to exchange one of the algorithms that crosscut the overall
system, the reconfiguration can be done by exchanging aspects. Exchange is done
by first weaving the desired new aspect into affected components off-line, and
then employing the reconfiguration of affected components as described above.4

Note that it is not possible to exchange aspects if they are not encapsulated
into interfaces and translated into corresponding real-time entities. Although the
dynamic reconfiguration of aspects is done via component exchange, the benefits
of aspect-orientation are still retained as changes to the code that crosscuts many
components are still done in an automated, efficient, and modular way via aspect
weaving.

4An aspect exchange can be, from the dynamic reconfiguration perspective, regarded as
exchange of a number of components with new (woven) versions.

Chapter 5
Ensuring Real-Time Performance

Guarantees

In this chapter we present methods that enable maintaining real-time performance
guarantees in reconfigurable real-time systems. The methods include (i) analysis
of WCETs needs of components woven with aspects, followed by (ii) maintenance
of specified QoS levels under dynamic system reconfiguration, and (iii) formal
verification of components reconfigured with aspects. The developed analysis
techniques ensure that real-time performance can be guaranteed in hard real-time
systems operating in closed environments, and in soft real-time systems operating
in open environments. Hence, this chapter starts with an overview of techniques
where we briefly elaborate the domain of applicability of each of the technique,
e.g., open vs. closed environment. Then, the proposed techniques are discussed
in detail.

5.1 Overview

We already established that maintaining real-time performance is essential for
real-time systems. In section 2.3 we reviewed a number of techniques for ensuring
and maintaining real-time performance of software operating in both open and
closed environments. We use these techniques as a foundation for analysis of
reconfigurable real-time systems.

To be able to deploy a statically configured hard real-time system into a closed
run-time environment we need to ensure that it is possible to estimate WCETs of
tasks and perform schedulability analysis. This is also important in the context of
ensuring that the system can undergo reconfiguration, especially if there are, e.g.,
multiple candidate components or aspects for adding to the system. To that end,
we have developed an approach for WCET analysis of real-time systems configu-

95

96 ENSURING REAL-TIME PERFORMANCE GUARANTEES 5.1

Compilation and
deployment

Library

Compilation and
deployment

Monolithic system

Configuration
and

Analysis

Dynamically
reconfigurable system

6

8a

7

8b

Static temporal and
memory analysis

Formal verification of
reconfigurable systems

QoS specification

Schedulability analysis

Formal verification of
reconfigurable systems

Figure 5.1: An analysis part of the ACCORD development process

red using aspects and components (discussed in section 5.2), which is founded on
symbolic WCET analysis [27]. As we show in this chapter the obtained WCETs
can be used for schedulability analysis of the system in the pre-run-time phase
of system life cycle (see figure 5.1). For statically reconfigurable hard real-time
systems it is important to perform schedulability analysis prior to system execu-
tion to ensure that deadline misses do not occur; thus, utilization of the system
is also fixed beforehand.

A dynamically reconfigurable real-time system is typically deployed into an
open and unpredictable environment. Moreover, when a system undergoes a dy-
namic reconfiguration, it is not always possible to predict the workload submitted
to the system beforehand, e.g., due to the unknown number of components that
are being exchanged. This can cause the system to be overloaded in the worst
case. This means that it is difficult to adjust the utilization to a certain level
beforehand (since admitted workload and utilization are related) and missing de-
adlines is inevitable. Rather than striving for achieving a certain utilization or
meeting deadlines, the focus in performance maintenance of dynamically reconfi-
gurable system should lie in providing mechanisms for ensuring QoS predictability,
i.e., guaranteeing that the utilization does not exceed a certain threshold and no
more than a certain number of tasks miss their deadlines during a period of time.
To provide these performance guarantees we (in section 5.4) integrate feedback-
based QoS management techniques into the method for dynamic real-time system
reconfiguration. Thereby, we ensure that real-time performance in terms of a spe-
cified level of QoS is maintained during run-time even if the system undergoes
reconfiguration.

When composing systems out of reusable artifacts (both in open and closed

5.2 ASPECT-LEVEL WCET ANALYSIS 97

Aspect-level
(WCET)
analysis

Input Output

aspectaspect
Aspect-level

(WCET)
specifications

of aspects

aspectaspect
Aspect-level

(WCET)
specifications
of components

WCET values
of components
weaved with

aspects

Figure 5.2: An overview of the automated aspect-level WCET analysis process

environment) it is desirable to be able to formally prove temporal and functional
properties of components as well as the composed system. When doing formal
analysis of component-based systems, one option is to first compose a system out
of components and then do the verification of the overall system. However, this
approach has drawbacks [100]. Namely, the possible number of configurations can
be too large even if components are available in the library; which is a typical
scenario in product line architectures. Hence, for verification to be tractable
and usable in component-based development, it should apply to components with
implications for the overall composed system [100, 101].

The verification challenge for reconfigurable real-time systems is great as the
verification methodology needs to ensure that components are verified only once
and the verification of configured systems is done on aspects. This is to overcome
the possible state explosion that might happen in cases where verification is done
on woven designs. To address this challenge, we provide a method for formal
verification (in section 5.5) where we ensure that components are verified only
once for a particular property, and where the property satisfaction of a configu-
ration is checked only on aspects. We formally represent components and aspects
as augmentations of timed automata, thereby building upon already established
formalisms in the real-time domain.

5.2 Aspect-Level WCET Analysis

In this section we present an approach for determining the WCET needs of a real-
time system composed using aspects1 and components. We denote this aspect-
level WCET analysis, and it is based on the concept of symbolic WCET analysis
[27]. The main goal of aspect-level WCET analysis is determining WCETs of
different real-time system configurations consisting of aspects and components

1Here aspects refer exclusively to application aspects, i.e., language-dependent aspects that
invasively change the code of the components.

98 ENSURING REAL-TIME PERFORMANCE GUARANTEES 5.2

before any actual aspect weaving (system configuration) is performed. This ena-
bles the designer of a configurable real-time system to choose a system configu-
ration fitting the WCET needs of the underlying real-time environment without
paying the price of first performing aspect weaving for each individual candidate
configuration.

Figure 5.2 presents an overview of the main constituents of analysis, namely:

❏ aspect-level WCET specifications of aspects and components,

❏ aspect-level WCET algorithm, which gives rules for the actual computation
of the WCET of components woven with aspects, and

❏ resulting specification of WCETs of components woven with aspects.

The aspect-level WCET analysis gives WCET estimates of components woven
with aspects to determine if the system configuration can be integrated into the
target run-time environment. If very precise WCET estimates are needed, aspect-
level WCET analysis can be followed by further analysis of the resulting woven
code using a WCET tool that performs both low level and high level WCET
analysis.

The following sections provide a detailed description of each of the elements
involved in aspect-level WCET analysis.

5.2.1 Aspect-Level WCET Specification

Aspect-level specifications of components and aspects correspond to the run-time
part of the RTCOM describing WCET needs. The reason we introduce the no-
tion of aspect-level specifications is to emphasize that the approach to aspect-level
WCET analysis could be generalized beyond ACCORD, if aspects and compo-
nents are implemented in conformance with the guidelines presented in section
4.3. Based on the discussion in section 4.3.2 aspect-level WCET specification of
an aspect and a component can be viewed as consisting of the internal WCET
specification and the external WCET specification. The internal WCET specifi-
cation is a fixed part of the aspect-level WCET specification and it is obtained
by symbolic WCET analysis. It represents the WCET of the code that cannot
be changed by aspect weaving. The external WCET specification is a variable
part of the aspect-level WCET specification as it represents the WCET of the
code that can be modified by aspect weaving, i.e., the temporal behavior can be
changed by “external” influence.

Table 5.1 presents the relationship between components, aspects, and the
aspect-level WCET specification. The temporal behavior of mechanisms, be-
ing fixed parts of a component, does not change by aspect weaving. Hence, the
WCETs of mechanisms in a component are determined by the internal WCETs,
specified as symbolic expressions. As operations can be modified by aspect wea-
ving, their aspect-level WCET specifications consist both of fixed internal WCET

5.2 ASPECT-LEVEL WCET ANALYSIS 99

Aspect-level WCET
Internal WCET External WCET

Components/Aspects (symbolic (function of
expression) mechanisms)

Component Mechanism x
Operation x x

Aspect Before advice x x
After advice x x
Around advice x x

Table 5.1: Aspect-level WCET specifications of aspects and components

mechanismsmechanismsmechanismsmechanisms

intWCETintWCETintWCETintWCET

policy()policy()policy()policy()

operationoperationoperationoperation

mechanismmechanismmechanismmechanism createNodecreateNodecreateNodecreateNode 1111

3333

NNNN

WCETWCETWCETWCET 5555

mechanismmechanismmechanismmechanism

mechanismmechanismmechanismmechanism linkNodelinkNodelinkNodelinkNode 1111

intWCETintWCETintWCETintWCET

operationoperationoperationoperation

mechanismmechanismmechanismmechanism getNextNodegetNextNodegetNextNodegetNextNode NNNN

1111

mechanismmechanismmechanismmechanism unlinkNodeunlinkNodeunlinkNodeunlinkNode 1111

mechanismmechanismmechanismmechanism deleteNodedeleteNodedeleteNodedeleteNode 1111

WCETWCETWCETWCET 4444

mechanismmechanismmechanismmechanism

WCETWCETWCETWCET 2222

mechanismmechanismmechanismmechanism

External External External External

WCET WCET WCET WCET

specification specification specification specification

of an of an of an of an

operationoperationoperationoperation

getNextNodegetNextNodegetNextNodegetNextNode

linkNodelinkNodelinkNodelinkNode

createNodecreateNodecreateNodecreateNode

insertinsertinsertinsert

removeremoveremoveremove

Internal Internal Internal Internal

WCET WCET WCET WCET

specification specification specification specification

of an of an of an of an

operationoperationoperationoperation

Figure 5.3: The aspect-level WCET specification of the linked list component

specifications and variable external WCET specifications (see table 5.1). The
external WCET of an operation depends on the number of mechanisms called
by this operation. This dependency exists since aspect weaving can change the
operation implementation by changing the number of mechanisms used by the
operation. Similarly, the WCET specification of an advice also consists of the
fixed internal WCET specification and the variable external WCET specification.

Figure 5.3 represents the aspect-level WCET specification for the linked list
component. The aspect-level specification for the aspect listPriority chan-
ging the code of the linked list component is shown in figure 5.4.

Aspect-level WCET specifications of aspects and components are input to the
analysis process.

100 ENSURING REAL-TIME PERFORMANCE GUARANTEES 5.2

affectsaffectsaffectsaffects

aspect()aspect()aspect()aspect()

adviceadviceadviceadvice

typetypetypetype

insertCallinsertCallinsertCallinsertCall

beforebeforebeforebefore

NNNNmechanismmechanismmechanismmechanism

NNNN

insertinsertinsertinsert

intWCETintWCETintWCETintWCET 4+0.4*N4+0.4*N4+0.4*N4+0.4*N

getNextNodegetNextNodegetNextNodegetNextNode

External External External External

WCET WCET WCET WCET

ssssppppeeeecccciiiiffffiiiiccccaaaattttiiiioooonnnn

IIIInnnntttteeeerrrrnnnnaaaallll

WCET WCET WCET WCET

ssssppppeeeecccciiiiffffiiiiccccaaaattttiiiioooonnnn

Figure 5.4: The aspect-level WCET specification of the listPriority aspect

Aspect-level WCET analysis

aspectaspectComponent.file

Preprocessor
extracting relevant
information from

files

Aspect-level
WCET

algorithm
computing new

values of
WCETs

output.file

Parameters, component
and aspect dependecies

aspectaspectAspect.file

aspectaspectSystem.file

Figure 5.5: Main constituents of aspect-level WCET analysis

5.2.2 Aspect-Level WCET Analysis

The aspect-level WCET analysis consists of two main steps, preprocessing and
applying the aspect-level WCET algorithm, as shown in figure 5.5.

The task of the preprocessor is to transform the information contained in
aspect-level WCET specifications into a form useful for the WCET algorithm.
Note that for successful analysis the knowledge about dependencies among com-
ponents in the configuration is also required. This information can be obtained
by using functional interfaces of components where provided and required ope-
rations are stated. The preprocessor analyzes aspect-level WCET specifications,
and produces data structures containing the WCET values and interdependency
information for all components and aspects needed for the algorithm.

The aspect-level WCET algorithm computes WCETs of components woven
with aspects. Since internal WCETs in the aspect-level specifications are symbolic

5.2 ASPECT-LEVEL WCET ANALYSIS 101

expressions and are a function of certain parameters, the values of these need to
be determined. Therefore, the fist step of the analysis is to obtain the values of
parameters in the expressions and, based on them, calculate the internal WCET
values. This is done in the preprocessing step before applying the algorithm.

The resulting, parameterized aspect-level specifications are used as input to
aspect-level WCET algorithm to calculate the WCETs of all the operations within
the real-time system configuration under development.

Algorithm 1 used for calculating the total WCET of components woven with
aspects consists of three interdependent parts (top-down description):

❏ WCETanalyzer() is the main program of the WCET analyzer that com-
putes the WCETs of every operation in the chosen system configuration;

❏ operationWCET() is called from WCETanalyzer() to compute the
WCET of an operation in the component; and

❏ codeBlockWCET() is called from the operationWCET() to compute the
WCET of an advice or an operation that is not weaved with aspects (note
that advices and operations use mechanisms as basic blocks).

operationWCET() computes the WCET of an operation by taking into
account that the operation might be modified by aspect weaving, and if it is,
the following is applicable. For every advice within the aspect that modifies
an operation we need to recalculate the WCET of the operation, depending
on the advice type. The WCET of an around advice is calculated directly by
codeBlockWCET(), where around advice now is a code block. The WCETs
of before and after advices are calculated by taking into account not only the
WCET of an advice as a code block, but also the WCET of the operation since
the advice runs before or after the operation. If the operation is not modified
by aspect weaving, then the above described actions are ignored and the value of
the WCET of the operation is obtained simply by calling codeBlockWCET().
Finally, if the operation for which we are calculating the WCET is implemented
using operations from other components, then in the WCET of the operation we
need to include all the WCETs of every other operation called (these are cal-
culated by the same principle). Thus, we need to have a recursive call to the
operationWCET() itself.

The function codeBlockWCET() is used for calculating the WCET of a
code block (codeBlock), which can be either an advice or an operation.
codeBlockWCET() does so by first calculating the value of the internal WCET
of a given code block based on a symbolic expression. Then, to obtain an aspect-
level WCET of a codeBlock, the internal value of the WCET is augmented
with the value of the external WCET. The external WCET is computed using
the values of WCET for each mechanism called by the codeBlock such that the
value of WCET of a mechanism (a symbolic expression) is multiplied with the
number of times the codeBlock uses the mechanism.

102 ENSURING REAL-TIME PERFORMANCE GUARANTEES 5.2

Algorithm 1: Aspect-level WCET estimation

Input:

– aspect-level WCET specifications of aspects and components,

– values Ni of parameters, and

– required and provided interfaces of components in the configuration.

Output:

– output file, specifying WCETs of operations woven with aspects.

WCETanalyzer()

For every operationi do

newWCET=operationWCET(operationi)

end for

operationWCET()

operationWCET= 0

If an advice is modifying the operation then

For every advicei in aspectk modifying the operation do

If around advice then

operationWCET=operationWCET+ codeBlockWCET(advicei)

else before or after advice

operationWCET=operationWCET+ codeBlockWCET(advicei)
+ codeBlockWCET(operation)

end if

end for

else operationWCET = codeBlockWCET(operation)

end if

If operation requires other operations then

For every operationk required by the operation

operationWCET=operationWCET+operationWCET(operationk)

end for

end if

return operationWCET

5.2 ASPECT-LEVEL WCET ANALYSIS 103

codeBlockWCET(codeBlock)

codeBlockWCET=intcodeBlockWCET

For every mechanismi used by the codeBlock do

codeBlockWCET=codeBlockWCET+WCETi ∗ Ni

end for

5.2.3 Example

Consider that we want to develop a real-time system using aspect and compo-
nents that has to conform to specific WCET requirements. Hence, we need to
apply aspect-level WCET analysis to the chosen configuration. To simplify the
explanations, we return to our example of a configuration consisting of one compo-
nent and one aspect, namely a linked list component and listPriority aspect.
The aspect-level WCET specification of the linked list component is given in fi-
gure 5.3, while the specification of the listPriority aspect is depicted in figure
5.4. These are used as input to the analysis.

In the preprocessing part of the analysis a parameter N is detected and the
designer is prompted for its value. Let us assume that we set the value of N to 5.
Now we can apply the algorithm to compute the WCET values of the operations
in the linked list component. Recall that the operation insert is modified by
the advice insertCall of the listPriority aspect. To calculate the WCET
of the modified operation, the WCET analyzer applies the operationWCET()
part of the aspect-level WCET algorithm. Hence, a new value of the WCET of
the operation insert woven with the before advice insertCall is calculated
as follows:

operationWCET = operationWCET +

codeBlockWCET(insertCall) + codeBlockWCET(insert).

After applying the codeBlockWCET() part of the algorithm this results in:

operationInsertWCET = 0 +

(1 + createNodeWCET ∗ 1 + linkNodeWCET ∗ 1) +

(4 + 0.4 ∗ N + getNextNode ∗ N) =

0 + (1 + 5 ∗ 1 + 4 ∗ 1) + (4 + 0.4 ∗ 5 + 2 ∗ 5) = 26.

5.2.4 Discussion

Ideally, the complete process of aspect-level WCET analysis should have a life
cycle as presented in figure 5.6. The process starts with the implementation files
of components and aspects, which are fed into a tool that performs the symbo-
lic WCET analysis on the code, i.e., computes symbolic expressions for WCETs,

104 ENSURING REAL-TIME PERFORMANCE GUARANTEES 5.3

Tool for
calculating

SYMBOLIC
WCET

of aspects and
components

Library
 aspect-level WCET specifications

Aspect-
level

WCET
analysis

aspectaspect
aspect-level

WCET
specifications

of aspects

aspectaspectaspect

aspectaspectcomponent
aspectaspect

aspect-level
WCET

specifications
of components

aspectaspect
aspect-level

WCET
specifications

of aspects

aspectaspect
aspect-level

WCET
specifications
of components

WCET values
of components
weaved with

aspects

requirements
for WCET

met?
OK to weave!

Yes

No

aspectaspect
Configuration

information, e.g.,
components’funct-

ional interfaces

Figure 5.6: An overview of the aspect-level WCET analysis life cycle

and extracts these into aspect-level WCET specifications. These specifications
are stored in a library and are used for the aspect-level WCET analysis, which
computes the WCET of different system configurations so that the system de-
signer can determine configuration eligibility for use in the underlying real-time
environment (with respect to WCET constraints of the environment). If a given
configuration does not fulfill the requirements with respect to the WCET, the
designer can choose another configuration, i.e., another set of aspect-level WCET
specifications, until the WCET requirements are met, and the actual weaving can
be performed.

Figure 5.6 also illustrates limitations of current aspect-level WCET analysis.
Namely, the tool that computes WCETs in the form of symbolic expressions and
extracts these to aspect-level WCET specifications could be an adaptation of
the pWCET tool for symbolic WCET analysis [28] to the aspect-level WCET
analysis. This adaptation is currently not available. However, the aspect-level
WCET analysis still provides benefits over traditional WCET analysis performed
on weaved code as it enables calculations on WCET specifications, not on actual
components and aspects. This way we reduce the overhead of performing the
weaving and then WCET analysis for each potential configuration of aspects and
components.

Note that the method for estimating WCET needs of components woven with
aspects can also be applied for estimating static memory needs of components. In
such a case memory needs are calculated using the aspect-level WCET algorithm
and the aspect-level specification of memory needs, which are analogous to the
specification of WCETs.

5.3 COMPONENTS AND THEIR SCHEDULABILITY 105

task mapping informationtask mapping informationtask mapping informationtask mapping information

operationoperationoperationoperation operationNameoperationNameoperationNameoperationName

operationNameoperationNameoperationNameoperationName

tasktasktasktask

operationoperationoperationoperation

WCET informationWCET informationWCET informationWCET information

WCETvalueWCETvalueWCETvalueWCETvalue

componentcomponentcomponentcomponent

operationNameoperationNameoperationNameoperationName

componentNamecomponentNamecomponentNamecomponentName

WCETvalueWCETvalueWCETvalueWCETvalueoperationNameoperationNameoperationNameoperationName

taskNametaskNametaskNametaskName

schedulability analysisschedulability analysisschedulability analysisschedulability analysis

Figure 5.7: Temporal schedulability analysis within ACCORD

5.3 Components and their Schedulability

Schedulability analysis within ACCORD can be performed if the following is
available (see figure 5.7):

❏ WCETs of operations in the system configuration, and

❏ task mapping information describing which operation of a component is
executed by which task.

By combining the knowledge of WCETs of operations in the component with
the task mapping information, we can obtain WCETs of each task in the system.
This enables analysis of a given task set with respect to finding a feasible schedule
on a specific platform, e.g., by using some off-the-shelf tool or a method for
schedulability analysis such as RapidRMA [141] and TimeWiz [49].

The information about the WCET of each operation can be obtained by ap-
plying aspect-level WCET analysis. The task mapping information specifies on
which task’s thread of execution an operation of a component runs. Recall (from
section 3.1) that the way operations of a component are mapped to a task depends
on the target run-time environment and its available resources. For examples of
how mapping is done in a specific run-time environment, see [150, 118]. When
mapping components to tasks one should consider the characteristics of that rela-
tionship. The following list of characteristics is an adaptation of task structuring
guidelines from DARTS [66] to component-based systems.

❏ Event dependency, which includes the following:

– Aperiodic I/O device dependency. Operations of components depen-
dent on the device input and output often need to be executed at the

106 ENSURING REAL-TIME PERFORMANCE GUARANTEES 5.4

speed of the I/O device with which they interact. In particular, if
the device is aperiodic then a set of operations interacting with such a
device could be structured into a separate I/O-dependent task.

– Periodic events. If operations provided by one or more components
need to be executed at regular intervals of time, then these operations
could be structured into a periodically activated task.

❏ Task cohesion, which includes the following:

– Sequential cohesion. Some operations need to be performed sequenti-
ally with respect to operations of other components. If the first opera-
tion (of the first component) in the sequence is triggered by an aperi-
odic or periodic event, these sequential components can be combined
into one task.

– Temporal cohesion. Operations of components activated on the same
event may be grouped into a task so that they are executed each time
the task receives a stimuli.

❏ Task priority, which includes the following:

– Time criticality. Time-critical operations of the component need to run
at a high priority and, thus, a component providing these operations
could be structured as a separate high-priority task.

– Computational intensity. Non-time-critical but computationally inten-
sive operations of components may run as a low priority task consuming
spare CPU cycles.

Note that listed characteristics represent an initial effort in providing general
characterization of the component-task relationship, and issues not discussed here,
such as inter-process synchronization, are subject to further research.

5.4 Feedback-Based QoS Management

Recall requirements for maintaining performance under dynamic reconfiguration
of soft real-time systems operating in open environments identified in section 3.1.3,
stating that the system administrator must be able to specify desired system QoS
and transient state system QoS in terms of worst-case QoS and how fast the QoS
should converge toward the desired QoS. To provide QoS guarantees under system
reconfiguration we employ feedback control [62].

The desired nominal system QoS is expressed in terms of a reference QoS, as
shown in figure 5.8. The reference gives the level of QoS that the system must
provide when it is in the steady state, i.e., when no reconfiguration is currently
taking place and any effects of previous reconfiguration have passed. When a

5.4 FEEDBACK-BASED QOS MANAGEMENT 107

ValueValueValueValue

ReferenceReferenceReferenceReference

(desired (desired (desired (desired

performance)performance)performance)performance)

TimeTimeTimeTime

TTTT
ssss

Time to reach desired Time to reach desired Time to reach desired Time to reach desired

performanceperformanceperformanceperformance

MMMM
pppp

AAAAlllllllloooowwwweeeedddd

ppppeeeerrrrffffoooorrrrmmmmaaaannnncccceeee

ddddeeeeggggrrrraaaaddddaaaattttiiiioooonnnn

Figure 5.8: Fluctuations of performance under reconfiguration

reconfiguration is taking place the system alternates to a transient state, which is
characterized by fluctuations in QoS depicted in figure 5.8. The desired behavior
of the system under reconfiguration is expressed in terms of the maximum overs-
hoot and the settling time [73, 62]. The maximum overshoot Mp is the worst-case
system QoS in the transient system state and it is given in percentage. By defi-
ning Mp we bound the maximum allowed performance degradation of the system
under reconfiguration. The settling time Ts is the time for the transient overshoot
to decay and reach the steady state QoS. Hence, the settling time is a measure of
system adaptability, i.e., how fast the system converges toward the desired QoS
in the face of reconfiguration.

Typically, one is interested in controlling the performance of real-time systems
using the deadline miss ratio metric [108], which gives the ratio of tasks that have
missed their deadlines. Therefore, we employ a feedback-based QoS management
method, referred to as FC-M [108], in the dynamic reconfiguration of real-time
software. FC-M enables controlling deadline miss ratio by modifying the admitted
load.

We say that a task is terminated when it has completed or missed its deadline.
Let missedTasks(k) be the number of tasks that have missed their deadline and
terminatedTasks(k) be the number of terminated admitted tasks in the time
interval [(k − 1)T, kT]. The deadline miss ratio is defined as follows:

m(k) =
missedTasks(k)

terminatedTasks(k)

and denotes the ratio of tasks that have missed their deadlines.
The feedback loop has the static structure shown in figure 4.21. In the dy-

namic case, this means that QoS management related components and aspects
are implemented according to the extended RTCOM model and deployed into the
middleware layer. The structure of the dynamically reconfigurable system that
guarantees QoS is depicted in figure 5.9. QoS guarantees are now satisfied by
having the QAC that implements changes in the manipulated variable and the
FCC, which implements the control loop by measuring the controlled variable and

108 ENSURING REAL-TIME PERFORMANCE GUARANTEES 5.4

Middleware layerMiddleware layerMiddleware layerMiddleware layerOperating systemOperating systemOperating systemOperating system
cccc1111 cccc2222 cccc3333 aspectaspectaspectaspectApplicationApplicationApplicationApplication QACQACQACQAC FCCFCCFCCFCC FC-MFC-MFC-MFC-MSystem configurationSystem configurationSystem configurationSystem configuration FFFFeeeeeeeeddddbbbbaaaacccckkkk ccccoooonnnnttttrrrroooollll

--------Jump Jump Jump Jump tabletabletabletable
Figure 5.9: Dynamic system reconfiguration with support of the feedback control

computing the manipulated variable. The FC-M QoS algorithm is implemented
as an aspect, crosscutting QAC and FCC.

The performance error, em(k) = mr(k) − m(k), is computed to quantize the
difference between the desired deadline miss ratio, given by the reference mr(k),
and the measured deadline miss ratio m(k) (see figure 2.11). The change to load
δl(k) is derived using a P-controller [62]. The load target l(k) is the integration
of δl(k), i.e., l(k + 1) = l(k) + δl(k). The QAC is used to carry out the change in
load as follows. A task is admitted into the system if the sum of the load of the
task that is waiting to be admitted and the load of the already admitted tasks is
less than the load target l(k).

Consider the following example where the deadline miss ratio reference is set to
0.1 and the load threshold at the 10th sampling instant is set to 0.9, i.e., mr = 0.1
and l(10) = 0.9. A component exchange during the previous sampling interval
has resulted in an increase in the execution time of the tasks, and consequently
the deadline miss ratio has increased to m(10) = 0.2. Clearly, the component
exchange has degraded the performance of the system. Therefore, we need to
reduce the deadline miss ratio to the reference value mr = 0.1. This is done
by taking the measured value of the deadline miss ratio from the system and
computing the performance error em(10) = mr(10)−m(10) = (0.1− 0.2) = −0.1
and then computing the change in load, i.e., δl(10) = −0.1KP ; following the steps
in the feedback structure from figure 2.11. The load threshold during the next
sampling interval is changed to l(11) = l(10)+δl(10) = 0.9−0.1KP . The admitted
load is reduced as a result of a decrease in the load threshold and, consequently,
the deadline miss ratio for the 11th sampling instant is reduced.

As we demonstrate experimentally on the COMET database in section 9.3
applying feedback-based QoS for guaranteeing the performance before and after
reconfiguration is beneficial. As we show, the reconfigurability can indeed be
achieved for real-time systems, even though the execution time of the tasks vary
when adding, removing, or changing components.

However, even though QoS of the system reaches the reference in the steady
state, overshoots and long settling times, i.e., violation of the QoS specification,
could still occur for reconfiguration instances that are heavily affected by the

5.5 FORMAL ANALYSIS OF ASPECTS AND COMPONENTS 109

execution time and the arrival pattern of the tasks. Therefore, on-line QoS mana-
gement of dynamically reconfigurable systems could further be strengthened by
providing additional analysis of the system behavior off-line. Namely, one way
to ensure that the QoS specification is not violated is to determine the overshoot
and settling time before the actual reconfiguration is made, i.e., to predict the
behavior of the system. That is, for a given system under reconfiguration and a
given QoS specification one could determine if the reconfigured system can meet
its QoS specification beforehand, and then carry out the actual reconfiguration
only if it is possible to meet the given specification. By combining off-line ana-
lysis with the on-line mechanisms for QoS guarantees, one could ensure that the
reconfiguration will not violate the QoS specification and that the performance of
the system will be on the desired level after reconfiguration.

5.5 Formal Analysis of Aspects and Components

In this section we describe a formal method for verifying temporal properties of
reconfigurable real-time components. This method enables: (i) proving temporal
properties of individual components and aspects, and (ii) proving that reconfigura-
tion of components via aspect weaving preserves expected temporal behavior in a
reconfigured component. We primarily focus on the verification of one component
reconfigured with one aspect because this is both the foundation and prerequisite
for the successful verification of the overall composed real-time component-based
system; we can then infer properties, functional and temporal, of the composed
system based on the proven properties of individual reconfigurable components.

5.5.1 Modeling Reconfigurable Components

Our goal is to verify that properties proven for a component are preserved under
component reconfiguration. More precisely, given a component C, an aspect AS,
a weaving operation g, and a property φ, we want to prove that if φ is satisfied
by component C (denoted C |= φ), then the reconfigured component C′ = C g

AS, obtained by weaving AS into C also preserves the property (C′ |= φ). In
order to be able to do this we need to formally model components, aspects, and
reconfiguration, which is the focus of this section.

In section 4.3 we explained that aspects, or more precisely their constituents
advices, can be woven into the code of a component such that they are executed
before, after, or around (instead of) pre-defined reconfiguration locations. The
information about the reconfiguration locations is stored in the composition in-
terface of RTCOM. Thus, we augment a timed automaton, which represents a
component, with the composition interface that fixes places, i.e., reconfiguration
locations, in the component used for attaching advices of aspects.

110 ENSURING REAL-TIME PERFORMANCE GUARANTEES 5.5

Definition 4 (Component) A reconfigurable component C is a tuple 〈Ac, I〉,
where Ac is a timed automaton 〈Lc, l0c, Ec, Cc, rc, gc, Invc〉, and I =
〈rl1, . . . , rlk〉, rli ∈ Lc, is a composition interface.

Thus, each location rli from an interface I corresponds to a reconfiguration
location in RTCOM. Note that the reconfiguration locations of a component are
pre-defined and explicitly declared for each component and, thus, the number of
these is known and fixed. Although in the structural description of components
(see section 4.3) we only needed knowledge of the reconfiguration locations, for
formal verification purposes, we also require this information about its predeces-
sors and successors (definition 5). This information can easily be extracted from
the timed automaton Ac of a component C.

Definition 5 (Successor and predecessor) Given a reconfigurable component
C = 〈Ac, I〉, for each rli ∈ Lc in the interface I of C, we define two sets, a
predecessor set of rli, pred, and a successor set of rli, succ, as

❏ pred(rli)={l | 〈l, rli〉 ∈ Ec}

❏ succ(rli)={l | 〈rli, l〉 ∈ Ec}

To be able to place an advice of type before we use pred(rli), since the advice
is going to be placed between the pred(rli) and rli location. An advice of type
after is going to be placed between rli and succ(rli). In the case of an around
advice, the advice is going to be placed between locations pred(rli) and succ(rli)
and will be executed instead of the code in the reconfiguration location.

Figure 5.10(a) illustrates an automaton that represents the behavior of a com-
ponent. The example shows a simplified model of the component in charge of
updating data times, e.g., a transaction manager in a database. For this compo-
nent, the Ac part is shown as the timed automaton in figure 5.10(a), and the I
part as the interface I = 〈update〉 associated with one location. The component
is responsible for starting a transaction (start), performing operations defined
within a transaction on data in the database (update) and ending the transaction
(end). The interface of the component consists of one reconfiguration location
update. The reconfiguration location is characterized also with its predecessor
pred(update) = {start} and successor succ(update) = {end}.

Next we define an aspect as a collection of timed automata.

Definition 6 (Aspect) An aspect AS is a tuple 〈AD, PC,F 〉, where AD=〈Ad1,
. . . , Adn〉 is a collection of advices, PC={pc1, . . . , pcm} is a set of pointcuts, and
F is a function assigning a subset of pointcuts to each of the advices, F (Adi) ⊆
PC. Each pci ∈ PC is some reconfiguration location rl from an interface I of
some component C ∈ C, where C is a set of components. Each advice Ad =
〈Aa, in, out, t〉 is a timed automaton Aa with two designated locations in and out
and an associated type t ∈ {before, after, around}, such that the graph defined by
〈La, Ea〉 induced by Aa is a connected graph.

5.5 FORMAL ANALYSIS OF ASPECTS AND COMPONENTS 111

idle start

x<3

end update

x<11

x:=0

x<11

x:=0 x<3

(a)

in

out

lock

x<=5
x>=5

(b)

Figure 5.10: Examples of timed automata specifying (a) the transaction manager com-
ponent and (b) the locking advice

In definition 6, following the traditional structure of aspects presented in sec-
tion 4.3, an aspect consists of a number of advices and pointcuts. Pointcuts
denote places where the advice should be woven into the component. Therefore,
each pointcut corresponds to one or more reconfiguration locations from interfaces
of components. Note that an advice of an aspect can be woven into multiple com-
ponents, and that two and more advices in an aspect can share the same pointcuts.
The in and out locations introduced in definition 6 are used as placeholders for
the places at which the advice will be woven at reconfiguration time.

Following the previous example, assume that a given component should be
extended such that it is ensured that data cannot be updated in the system
unless the appropriate lock on a data item is obtained prior to updates. This
can be done by defining an aspect ASlock= 〈Ad, update〉 with the advice Ad =
〈Aa, in, out, before〉, where the automaton Aa describes the locking mechanism
to be woven before the pointcut update in the component (see figure 5.10(b)).

Without loss of generality from now on we refer to aspects defined as AS =
〈Ad, pc〉 consisting of only one advice Ad and only one pointcut pc, and exclude
function F . This is to simplify presentation and reduce the complexity of nota-
tion that otherwise would unnecessarily complicate the definition of a component
reconfiguration.

Reconfiguration of a component C = 〈Ac, I〉 with an aspect 〈Ad, pc〉 is defined
by the weaving operation g as follows.

Definition 7 (Component reconfiguration) Given a component C=〈Ac, I〉
and an aspect AS=〈Ad,pc〉, where pc = rli ∈ Lc\{l0c} is a reconfiguration loca-
tion from the interface I and Ad = 〈Aa, in, out, t〉, the reconfigured component
C′=CgAS is defined as a tuple 〈A′

c, I〉 where A′
c is defined as follows:

❏ the locations L′
c

L′
c =

{

Lc ∪ La\{in, out} if t ∈ {before, after}
Lc ∪ La\{in, out, pc} if t=around

112 ENSURING REAL-TIME PERFORMANCE GUARANTEES 5.5

❏ l′0c = l0c

❏ E′
c={〈l, l′〉|〈l, l′〉 ∈ Ec ∪Ea, l, l′ /∈ {in, out, pc}} ∪ Es where Es denotes the

substituted transition set defined as follows:

Es =















{〈l, l′〉|〈in, l′〉 ∈ Ea, l ∈ pred(pc)}∪
{〈l, l′〉|〈l, out〉 ∈ Ea, l′ = pc} if t=before
{〈l, l′〉|〈in, l′〉 ∈ Ea, l = pc} ∪ Essucc

if t=after
{〈l, l′〉|〈in, l′〉 ∈ Ea, l ∈ pred(pc)} ∪ Essucc

if t=around

where Essucc
is the substituted transition subset that depends on the content

of succ(pc) set as

Essucc
=

{

{〈l, l′〉|〈l′, out〉 ∈ Ea, l = pc} if succ(pc) = ∅
{〈l, l′〉|〈l, out〉 ∈ Ea, l′ ∈ succ(pc)} otherwise

❏ C ′
c=Cc ∪ Ca

❏ the clocks to be reset r′c(e)

r′c(e) =































rc(e) if e ∈ (E′
c\Es) ∩ Ec

ra(e) if e ∈ (E′
c\Es) ∩ Ea

ra(e) if e = 〈l, l′〉 ∈ Es, ea = 〈in, l′〉 ∈ Ea, and
ec = 〈l′′, l′〉 ∈ Ec

ra(ea) ∪ rc(ec) if e = 〈l, l′〉 ∈ Es, ea = 〈l, out〉 ∈ Ea, and
ec = 〈l′′, l′〉 ∈ Ec

❏ the guards g′c(e)

g′c(e) =































gc(e) if e ∈ (E′
c\Es) ∩ Ec

ga(e) if e ∈ (E′
c\Es) ∩ Ea

gc(ec) ∧ ga(ea) if e = 〈l, l′〉 ∈ Es, ec = 〈l, l′′〉 ∈ Ec, and
ea = 〈in, l′〉 ∈ Ea

ga(ea) if e = 〈l, l′〉 ∈ Es, ea = 〈l, out〉 ∈ Ea

ec = 〈l′′, l′〉 ∈ Ec

❏ Inv′
c={Invc(l)|l ∈ Lc}∪{Inva(l)|l ∈ La\{in, out}}

Definition 7 of component reconfiguration is easily extendable to aspects con-
sisting of many advices woven into multiple components. The definition describes
the way edges are formed in a reconfigured component. Also, definition 7 en-
sures that aspect weaving into a component, when replacing an edge between

5.5 FORMAL ANALYSIS OF ASPECTS AND COMPONENTS 113

l

l"

l’

in

out

e
c

eagc(ec)

rc(ec)

ga(ea) ra(ea)

l

l’

in

out

e
c

e
a

gc(ec)

r
c
(e

c
)

ga(ea)

r
a
(e

a
)

e

g(e)=g
c(ec) ga(ea) r(e)=r

a(ea)

l"

(a) Transfer of guards and clock constraints for an edge starting in a
component and ending in an aspect.

l

l’

in

out

e
c ea

gc(ec)

rc(ec)
ga(ea)

ra(ea)

l

l’

in

out

ec

ea

gc(ec)

rc(ec)
ga(ea)

ra(ea)

er(e)=r(ec
)U r(ea

) g(e)=ga
(ea

)

l"

l"

(b) Transfer of guards and clock constraints for an edge starting in
an aspect and ending in a component.

Figure 5.11: An example of preservation of clock constraints

114 ENSURING REAL-TIME PERFORMANCE GUARANTEES 5.5

idle start

x<3

end update

x<11

lock

x<=5

x:=0

x<11

x:=0 x<3

x>=5

Figure 5.12: An example of a reconfigured component

the reconfiguration locations, preserves clock constraints that existed on the re-
moved edge. That is, invariants, guards, and clock constraints of the replaced
edges are transferred to the newly created edges. Figure 5.11 illustrates the way
clock constraints are preserved on the removed edges. Grey colored edges and
clock constraints depict elements substituted during component reconfiguration.
Figure 5.11(a) shows the way guards and reset clocks are transferred to a newly
created edge in the case when the newly created edge connects a component loca-
tion to an aspect location in a reconfigured component. Similarly, figure 5.11(a)
shows the way guards and reset clocks are transferred to a newly created edge in
the case when the newly created edge connects an aspect location to a component
location in a reconfigured component. To enable meaningful reachability analysis
on the advices, preservation of clock constraints that existed on the transitions
to/from the reconfiguration location is essential.

The reconfiguration of the component from figure 5.10(a) with the ASlock

aspect is illustrated in figure 5.12. Weaving the aspect ASlock in the component at
reconfiguration location rl = pc = update results in the reconfigured component
C′ = C g ASlock. The composition resulted in replacing the in location in the
advice with start = pred(rl), and the out location with the location rl = update.
Now instead of taking a transition from location start to update directly, location
lock is first visited to obtain the locks. The reconfigured component retains all
clock constraints of the original components (which existed on the removed edge).

5.5.2 Formal Analysis of Reconfiguration

As mentioned, the goal of the formal analysis is to verify a reconfigurable com-
ponent by verifying the aspect that is to be woven into the component. In our
approach, when verifying a component, appropriate information about composi-
tion interfaces is extracted. The extracted information is used for verification of
an aspect. Moreover, the same information can be reused for many aspects that
might reconfigure the same component, e.g., in different reuse contexts.

5.5 FORMAL ANALYSIS OF ASPECTS AND COMPONENTS 115

To verify the timing and functional behavior of reconfigurable components via
reachability analysis we employ the following three steps (S1)-(S3):

(S1) proving TCTL properties of components, which is performed using existing
model checking techniques;

(S2) deriving constraints on composition interfaces of components to preserve a
particular property upon reconfiguration; and

(S3) preserving properties of components upon reconfiguration, which is done by
analyzing aspects, using the interface derived under (S2).

The above steps (S1)-(S3) constitute an extension to deal with timing properties
in the verification approach for the non-real-time systems by Li et al. [100, 101].
While the untimed approach uses labeling on states with propositions, we use
clock zones to represent timing information.

We provide a verification method that is of practical value as our method can
be applied in existing model-checking tools for real-time systems. In UPPAAL,
which is our candidate tool, verification of a real-time system is done on the subset
of TCTL properties found essential for real-time system verification: EFq, AFq,
and AG(p ⇒ AFq), where q is a boolean expression over locations and clock
constraints and can be directly checked on a state. Here, we primarily focus on
reachability properties in the form φ=EFq, where q=lq∧Zq (lq is a location and Zq

a zone represented by a clock constraint), and derive main results for these types
of properties. This restriction to q may later be relaxed; in the relaxed form q
can consist of an arbitrary number of boolean expressions over locations and clock
constraints. An example of a standard EFq property is the property φ=EF (end∧
x < 11) of the component from figure 5.10(a), ensuring that a transaction executed
by this component will complete within 11 time units. Here, lq=end and Zq={x <
11}. The invariant properties AFq are dual to reachability properties EFq, and
the results obtained for reachability properties are transparently applicable to the
invariant properties. The property in the form AG(p ⇒ AFq) can be derived from
reachability properties as well.

The following section formally describes the verification steps.

5.5.3 Verifying a Reconfigured Component

Given component C=〈Ac, I〉, TCTL reachability property φ in the form EF (l∧Z),
and aspect AS=〈Ad, pc〉, we illustrate steps (S1)-(S3) in detail.

Step 1 (S1)

Given property φ, and component C=〈Ac, I〉, use the standard reachability al-
gorithm [25] for model checking of timed automata Ac. If the algorithm reports
success then C satisfies property φ, denoted C |= φ.

116 ENSURING REAL-TIME PERFORMANCE GUARANTEES 5.5

The semantics of a component C=〈Ac, I〉 is defined by semantics of a ti-
med automaton Ac, which is transition system (Sc, s0c, 7→) given by definition 2.
Recall that the standard reachability algorithm works by traversing a zone graph
(Sc, s0c, ;) of Ac until the desired state is reached or there is nothing else to
traverse. Hence, the following holds for a component C.

Proposition 1 Let C=〈Ac, I〉 be a component, the semantics of which is defined
by the transition system (Sc, s0c, 7→). Let Z(C)=(Sc, s0c, ;) be a zone graph of
C, and φ = EFq be a reachability property where q = lq ∧ Zq. Let ;

∗ denote
a sequence of action/delay transitions in the zone graph. If the component C
satisfies property φ, then there exists at least one path σ in the zone graph Z(C)
such that σ=〈l0c, Z0c〉;∗〈lq, Z〉, Z ⊆ Zq.

Proof Follows from the definition of reachability in the zone graph of a timed
automaton, and the property of the inclusion operation on zones [25].

The path induced by a proof of reachability of φ in C is referred to as reachabi-
lity path of φ in C. To save notation, we use Zq to denote zone Z associated with
location lq on the reachability path of φ in C where there is no risk for ambiguity.
It follows from the proof of reachability that a component C can have several
paths reaching the state 〈lq, Zq〉. We denote a set of rechablity paths of φ in C
as Σ. Further, l ∈ σ is used as a shorthand for stating that location l appears
in some 〈l, Z〉 on the path σ; conversely, l /∈ σ denotes that location l does not
appear on the path σ.

Proposition 2 Let AS=〈Ad, pc〉 be an aspect with an advice Ad=〈Aa, in, out,
t〉. Let C=〈Ac, I〉 be a component, and C′=CgAS be a reconfigured component
at some reconfiguration location rl = pc. Let φ = EFq be a reachability property
such that C |= φ, and Σ be the set of reachability paths of φ in C. The following
holds for C′:

(1) If for every reachability path σ ∈ Σ, rl /∈ σ then C′ |= φ.

(2) If rl = lq and t=around, then C′
2 φ.

Proof for both cases is as follows.

(1) If rl /∈ σ for all σ ∈ Σ then property φ is always preserved under reconfigu-
ration since none of the paths σ ∈ Σ are altered by the reconfiguration.

(2) When rl = lq and t=around then by construction of a reconfigurable com-
ponent (definition 7) it follows that the location lq will not appear in C′.
Thus, 〈lq, Zq〉 cannot be reached in Z(C), and C′

2 φ.

From proposition 2, it follows that: (1) the property is always preserved if the
reconfiguration location does not exist in any of the reachability paths of the

5.5 FORMAL ANALYSIS OF ASPECTS AND COMPONENTS 117

property; and (2) the property is always violated when the advice of type around
is reconfiguring the component at the reconfiguration location that exists in the
property expression. Case (1) should be clearly identified in the verification of
a component to avoid unnecessary aspect verification. Given that the advices of
type around are rarely used, case (2) appears rarely. However, we include it here to
provide adequate support for detecting these immediate property violations in the
property preservation algorithm (presented later in this section) and, thus, enable
designers to immediately see in which cases around advices are inappropriate for
component reconfiguration. We deal with these cases by introducing a boolean
variable, discussed further in (S2), that helps in determining if one of the two
cases has occurred.

Step 2 (S2)

Step (S2) involves deriving constraints on the composition interfaces building up
on the results of the verification from the previous step. These constraints include
temporal information needed in the subsequent step (S3) of the verification. Since
we need to store this information with the component, we augment component C
with an appropriate interface, denoted verification interface, formally defined as
follows.

Definition 8 (Verification interface) Let C=〈Ac, I〉 be a component with the
zone graph Z(C)=(Sc, s0c, ;) and an interface I=〈rl1, . . . , rlk〉. Let φ = EFq
be a reachability property. Let C |= φ, inducing a set of reachability paths Σ =
{σ1, . . . , σm} of φ in C, with σj=〈l0c, Z0c〉;∗〈lq, Zq〉 . The verification interface

Iφ of component C for the property φ is defined as a k-tuple 〈rlφ1 , . . . , rlφk 〉 where

rlφi =















{〈IsPreserved : true〉} if for all σj ∈ Σ, rli /∈σj

{rlφij = 〈〈IsPreserved : ⊥〉,
〈l, Zpred〉, 〈rli, Zrl〉〈l′, Zsucc〉〉|
rli ∈ σj , l ∈ pred(rli), l

′ ∈ succ(rli)} otherwise

All the states 〈l, Zpred〉, 〈rli, Zrl〉, 〈l′, Zsucc〉, appearing in elements rlφij of the set

rlφi , appear in the reachability path σj of φ. The variable IsPreserved flags that
case (1) identified in proposition 2 is trivially true, i.e., identifies those verification
interfaces of components that are not affected by the reachability property φ no
matter which aspect reconfigures them. When 〈IsPreserved : ⊥〉 is stored in
the verification interface for reconfiguration location rli, the reconfiguration of
the component at this location potentially affects φ. ⊥ denotes unknown as it is
customary in 3-valued formalisms.

In algorithm 2 we describe step (S2), i.e., the extraction of a verification
interface of a component, in algorithmic steps.

118 ENSURING REAL-TIME PERFORMANCE GUARANTEES 5.5

Algorithm 2: Verification interface extraction

Input:

– component C with composition interface I=〈rl1, . . . , rlk〉, and

– reachability property φ=〈lq, Zq〉.

Output:

– verification interface Iφ=〈rlφ
1
, . . . , rl

φ

k 〉 of component C.

Construct the zone graph Z(C) of C

Compute the set Σ = {σ1, . . . , σm} of reachability paths of φ in C

NotOnPath := true

Iφ := 〈〉

For i = k downto 1 do

rl
φ
i := ∅

For j = 1 to m do

rl
φ
ij := 〈〉

If rli appears on path σj then

rl
φ
ij :=append(〈l′, Zsucc〉, rl

φ
ij) for location l′ ∈ succ(rli) on σj

rl
φ
ij :=append(〈rli, Zrl〉, rl

φ
ij) for state 〈rli, Zrl〉 on σj

rl
φ
ij :=append(〈l, Zpred〉, rl

φ
ij) for location l ∈ pred(rli) on σj

rl
φ
ij :=append(〈IsPreserved : ⊥〉, rl

φ
ij)

NotOnPath := false

rl
φ
i :=rl

φ
i ∪{rl

φ
ij}

end if

end for

If NotOnPath = true then rl
φ
i :=rl

φ
i ∪ {〈IsPreserved : true〉}

Iφ:=append(rlφi , Iφ)

end for

Return verification interface Iφ

5.5 FORMAL ANALYSIS OF ASPECTS AND COMPONENTS 119

Step 3 (S3)

Before giving the algorithm that checks whether a property φ is preserved under
reconfiguration of a component C with an aspect AS, step (S3), we define the se-
mantics and the satisfiability relation for the aspect reconfiguring the component.
The semantics of an aspect AS=〈Ad, pc〉 with an advice Ad=〈Aa, in, out, t〉 is
defined by the semantics of the timed automaton Aa, which is a transition system
(Sa, s0a, 7→) given by definition 2. The zone graph associated with Aa we denote
by Z(AS) and refer to it as the aspect zone graph.

Definition 9 (Enriched aspect zone graph) Let AS=〈Ad, pc〉 be an aspect
with an advice Ad=〈Aa, in, out, t〉, and the zone graph Z(AS). Let C be a com-
ponent under reconfiguration by aspect AS at some reconfiguration location rli=pc
from I. Let φ be a property under verification, with C |= φ. Let Iφ=〈rlφ1 , . . . , rlφk 〉
be the verification interface of the component for this property with rlφij ∈rlφi , rlφij
=〈〈IsPreserved : ⊥〉, 〈l, Zpred〉, 〈rli, Zrl〉, 〈l′, Zsucc〉〉. The enriched zone graph

Z(AS)′=(S′
a, s′0a, ;) for rlφij is computed as follows:

❏ the initial state

s′0a = 〈l0a, Z ′
0a〉 =

{

〈in, Zpred ∧ Zin〉 if t∈{before, around}
〈in, Zrl ∧ Zin〉 if t=after

❏ s′0a;s′1a

– 〈l0a, Z ′
0a〉 ; 〈l0a, Z ′′

0a〉, Z ′′
0a = Z ′↑

0a ∧ Inv(l0a); and

– 〈l0a, Z ′
0a〉;〈l1a, Z ′

1a〉, Z ′
1a = re(Z

′
0a ∧ ga(e) ∧ gc(e

′)) ∧ Inv(l1a) for all
e = 〈l0a, l1a〉 ∈ Ea and all e′ ∈ Ec such that

e′ =

{

〈l, rli〉 if t∈{before, around}
〈rli, l′〉 if t=after

❏ for all sia ; s(i+1)a in Z(AS), i ≥ 1, compute s′ia ; s′(i+1)a as follows:

– 〈lia, Z ′
ia〉 ; 〈lia, Z ′′

ia〉, Z ′′
ia = Z ′↑

ia ∧ Inv(lia); and

– 〈lia, Z ′
ia〉 ; 〈l(i+1)a, Z ′

(i+1)a〉, Z ′
(i+1)a = re(Zia ∧ ga(e)) ∧ Inv(l(i+1)a)

for all e = 〈lia, l(i+1)a〉 ∈ Ea, where the reset operation is defined as

re(Z
′
ia) =







{[ra(e) 7→ 0]v|v ∈ Z ′
ia} if l(i+1)a 6= out

{[ra(e) 7→ 0]v|v ∈ Z ′
ia}∪

{[rc(e
′) 7→ 0]v|v ∈ Zia′} if l(i+1)a = out

for all e′ ∈ Ec such that

e′ =

{

〈l, rli〉 if t∈{before, around}
〈rli, l′〉 if t=after

120 ENSURING REAL-TIME PERFORMANCE GUARANTEES 5.5

Before we formulate an algorithm that analyzes enriched zone graphs and
instantiates the IsPreserved variable for deducing satisfiability of a property φ,
we introduce the notion of satisfiability for an aspect and prove the theorem that
shows under which conditions the weaving operation g preserves a property by
analyzing the enriched zone graph of an aspect.

Definition 10 (Preserving φ under reconfiguration of C) Let C be a com-
ponent under reconfiguration by the aspect AS=〈Ad, pc〉 at some reconfigura-
tion location rli=pc from I. Let φ be a property under verification such that
C |= φ, and Iφ verification interface of the component for this property with

rlφij ∈ rlφi , rlφij=〈〈IsPreserved : ⊥〉, 〈l, Zpred〉, 〈rli, Zrl〉, 〈l′, Zsucc〉〉. Let Z(AS)′

be an enriched zone graph of AS for rlφij. We say that aspect AS preserves
property φ under reconfiguration of C, denoted AS |=gC φ, if there exists a
path δ=〈in, Z ′

oa〉;∗〈out, Zout〉, in the enriched zone graph Z(AS)′ such that the
following holds

❏ Zout ⊆ Zrl, for t=before,

❏ Zout ⊆ Zsucc, for t=after,

❏ Zout ⊆ Zsucc for t=around and rl 6= lq.

The following lemma is used in the proof of theorem 4.

Lemma 3 Let A1 and A2 be two timed automata, with L1 ⊆ L2, l01 = l02,
E1 ⊆ E2, C1 ⊆ C2, for all e ∈ E1, r1(e) ⊆ r2(e), g1(e) = g2(e), and Inv1(l) =
Inv2(l) for all l ∈ L1. Let σ1 and σ2 be paths in zone graphs Z(A1) and Z(A2),
respectively, such that σ1=〈l1, Z1〉 ;

∗〈ln, Zn〉 and σ2=〈l1, Z ′
1〉 ;

∗〈ln, Z ′
n〉, where

li ∈ L1. If Z1 ⊆ Z ′
1 then Zn ⊆ Z ′

n.

Proof by induction on transitions in the zone graph.

Theorem 4 Let C be a component, AS an aspect, g the weaving operation, and
φ a reachability property. Let C |= φ and C′ = CgAS. If AS |=gC φ then C′ |= φ.

Proof We present a full proof for one advice type t=before. The proofs for other
types of advices are analogous.

Since C |= φ, there exists a set of reachability paths Σ in zone graph Z(C) of C,
where each reachability path σj ∈ Σ of φ is in the form: σj=〈l0c, Z0c〉;∗ 〈lq, Zq〉.

Based on definition of C′ = C g AS, we know that the reconfiguration of C
with AS is done at some reconfiguration location rli = pc from the composition
interface I of C.

If rli does not appear in any of the paths σj ∈ Σ then C′ is not affected in
relation to satisfiability of φ (proposition 2), and the theorem is trivially true.

If rli appears in some σj ∈ Σ, then σj=〈l0c, Z0c〉 ;
∗ 〈lpred, Zpred〉 ; 〈rl, Zrl〉

;
∗ 〈lq, Zq〉.

5.5 FORMAL ANALYSIS OF ASPECTS AND COMPONENTS 121

Since C′ = C g AS, by the definition of component reconfiguration and the
definition of zone graphs, it follows that there is a reachability path σrl for loca-
tion rli in zone graph Z(C′) of C′, σrl=〈l0c, Z

′
0c〉 ;

∗ 〈lpred, Z
′
pred〉 ;

∗ 〈la, Za〉;
〈rl, Z ′

rl〉, where la ∈ La such that 〈la, out〉 ∈ Ea.

From AS |=gC φ we know that there exists an element rlφi in the ve-

rification interface Iφ of C, with some rlφij=〈〈IsPreserved : ⊥〉 , 〈l, Zpred〉,
〈rli, Zrl〉, 〈l′, Zsucc〉〉. We further know that in the enriched zone graph of AS

based on rlφij there exists a path δ=〈in, Z ′
0a〉 ;

∗ 〈la, Za〉 ; 〈out, Zout〉 in which
Zout ⊆ Zrl.

From the definition of component reconfiguration it follows that the zones
associated with the state 〈rl, Z ′

rl〉 from path σrl and the state 〈out, Zout〉 from
path δ are the same, i.e., Z ′

rl=Zout. Since Z ′
rl = Zout and Zout ⊆ Zrl, then

Z ′
rl ⊆ Zrl.

Based on definition 7 of component reconfiguration, for all locations l, l′ ∈ E′
c∩

Ec, guards, invariants and reset clocks remain unchanged under reconfiguration
and 〈l, l′〉 ∈ Ec⇒〈l, l′〉 ∈ E′

c. This implies that, since there was a path reaching
location lq from location rli, 〈rli, Zrl〉 ;

∗ 〈lq, Zq〉 in Z(C), there will be a path
between these two locations in Z(C′), 〈rl, Z ′

rl〉 ;
∗ 〈lq, Z ′

q〉. Given that location
rli is reachable in Z(C′) from location l0c by path 〈l0c, Z

′
0c〉 ;

∗ 〈rl, Z ′
rl〉, and

lq is reachable in Z(C′) from rli by path 〈rl, Z ′
rl〉 ;

∗ 〈lq, Z ′
q〉, then location lq is

reachable from l0c in Z(C′) by a path σ′
j= 〈l0c, Z

′
0c〉 ;

∗ 〈rl, Z ′
rl〉 ;

∗ 〈lq, Z ′
q〉. Given

that Z ′
rl ⊆ Zrl, by lemma 3, we have that Z ′

q ⊆ Zq. Hence, σ′
j is a reachability

path of φ in Z(C′). Thus, C′ |= φ.

Algorithm 3 checks for satisfiability of AS |=gC φ, thus, giving algorithmic
steps for performing step (S3) of the verification procedure.

We argue for the soundness of the algorithm as follows. If the algorithm

returns 〈true, rlφ
′

ij 〉, then the aspect AS preserves property φ when reconfiguring

C. Here, rlφ
′

ij contains the path on which the property is preserved. In the first two
steps of the algorithm, it trivially returns a correct value based on proposition 2.
Namely, the algorithm returns 〈true, 〈〉 〉 if the property is always preserved (case
(1) of proposition 2). In this case, 〈〉 is returned together with true to indicate
that the property is trivially satisfied and no further checks on an aspect need to
be performed. The algorithm returns 〈false, ∅ 〉 if the property is trivially violated

(case (2) of proposition 2). Otherwise, 〈true, rlφ
′

ij 〉 is returned if there exists a
zone Zout with properties named in definition 10. Thus, the aspect complies with
definition 10 of preservation of φ. If the algorithm is not previously terminated,

then the final step terminates it by returning 〈false, rlφ
′

i 〉, where rlφ
′

i gives all
paths on which the property is not satisfied.

122 ENSURING REAL-TIME PERFORMANCE GUARANTEES 5.5

Algorithm 3: Property preservation

Input:

– aspect AS = 〈Ad, pc〉 and an advice Ad = 〈Aa, in, out, t〉,

– reachability property φ=〈lq, Zq〉, and

– component C with composition interface I=〈rl1, . . . , rlk〉 and verification
interface Iφ=〈rlφ

1
, . . . , rl

φ

k 〉, such that rli = pc.

Output:

– 〈true, rl
φ′

ij 〉 if AS |=gC φ, 〈false, rl
φ′

i 〉 otherwise.

If rl
φ
i = 〈IsPreserved : true〉 then return 〈true, 〈〉 〉

If rli = lq and t =around then return 〈 false, ∅ 〉

RemainingPaths :=rl
φ
i ={rlφi1, . . . , rl

φ
im}

Repeat:

Choose an element rl
φ
ij=〈〈IsPreserved : ⊥〉, δ〉 from RemainingPaths

RemainingPaths:=RemainingPaths\{rlφij}

Construct Z(AS)′ for rl
φ
ij from definition 9

If (Zout ⊆ Zrl and t=before) or (Zout ⊆ Zsucc and t∈{after, around})
then

rl
φ′

ij :=〈〈IsPreserved : true〉, δ〉

return 〈true, rl
φ′

ij 〉

end if

rl
φ′

ij :=〈〈IsPreserved : false〉, δ〉

rl
φ′

i :=rl
φ′

i ∪{rlφ
′

ij }

Until RemainingPaths = ∅

Return 〈false, rl
φ′

i 〉

5.5 FORMAL ANALYSIS OF ASPECTS AND COMPONENTS 123

idle start update end

0=x
30 <≤ x 110 <≤ x

locations

zones

Figure 5.13: One possible execution trace of for the transaction manager component
and the property EF (end ∧ x < 11)

5.5.4 An Example

We illustrate steps (S1)-(S3) of the verification procedure on the running example
of the component C = 〈Ac, I〉 and the locking aspect ASlock=〈Ad, update〉, where
Ad=〈Aa, in, out, before〉. We want to check if the task executing this component
will execute within 11 time units in the reconfigured component C′ = C gASlock.
That is, we need to check if the property φ=EF (end∧x < 11) is preserved under
reconfiguration, i.e., location end is reached within 11 time units.

(S1) Existing real-time model-checkers, e.g., UPPAAL, can be used in this step
for model-checking timed automaton Ac. This results in C |= φ. The tool
generates the trace showing how the property is fulfilled. One such trace
for the property φ=EF (end∧x < 11) of the component TMC is illustrated
in figure 5.13. This trace corresponds to the path σ=〈l0c, Z0c〉;∗〈lq, Zq〉,
lq=end and Zq={x < 11}, identified by proposition 1.

(S2) In this step the temporal information for the location update and it
successor and predecessor locations start and end are extracted into the
verification interface Iφ of C using algorithm 1. Following the steps of the
algorithm we obtain the verification interface Iφ=rlφ as follows. First, the
state of the successor location end, 〈end, Zsucc〉, Zsucc = Zend = {0 ≤ x}
is appended to rlφ. Next, the state corresponding to the reconfiguration
location update, 〈update, Zrl〉, where Zrl = Zupdate = {0 ≤ x < 11},
is appended to rlφ. Further, the state corresponding to the predecessor
location start, 〈start, Zpred〉, where Zpred = Zstart = {0 ≤ x < 3} is
appended to rlφ. Finally, < IsPreserved : ⊥ > is appended to rlφ since
rl appears on the path σ. Hence, algorithm 2 returns the verification
interface:
Iφ=rlφ=〈〈IsPreserved : ⊥〉, 〈start, {0 ≤ x < 3}〉,〈update, {0 ≤ x < 11}〉,
〈end, {0 ≤ x}〉〉.

(S3) This step is done as prescribed by the property preservation algorithm 3.
Following the steps in the algorithm 3, the checks for trivial satisfaction
of ASlock |=gC φ are passed without stopping the algorithm as the advice
is neither of type around nor is the flag IsPreserved set to true. In the
next step, the enriched aspect zone graph is computed based on definition 9.

124 ENSURING REAL-TIME PERFORMANCE GUARANTEES 5.5

Then the zone Zout corresponding to location out is checked for satisfiability.
Since Zout = {5 ≤ x < 11} then Zout ⊆ Zrl and the algorithm returns 〈true,
rlφ

′〉. In this example, rlφ
′

= rlφ. Hence, ASlock |=gC φ.

5.5.5 Discussion

The presented verification method is beneficial as it ensures that components
are verified only once for a particular property. The verification of reconfigured
components is done on the aspects, in order not to waste the effort invested in
verification of the components and to overcome the possible state explosion that
might happen in cases where verification is done on woven designs.

So far we have primarily focused on the application of the method for the ve-
rification of an aspect with a single advice that is woven into a single component.
This result is a foundation for further extension of the method to enable verifi-
cation of reconfiguration of several components with aspects containing several
advices running in parallel; this type of composition corresponds to a hybrid of
sequential and parallel composition.

Chapter 6
Tool Support and Evaluation

In this chapter we present the tool set that provides real-time system develo-
pers support for configuration and analysis of a system built using components
and aspects. Furthermore, we evaluate ACCORD against the previously identi-
fied requirements placed on development of reusable and reconfigurable real-time
systems.

6.1 Development Environment

The ACCORD development environment is a tool set developed to provide the
system designer tool support for assembling and analyzing a real-time system for
a particular application. We assume that, for a particular family of real-time
systems, components and aspects are already developed and placed in the library.
The ACCORD development environment consists of (see figure 6.1):

❏ ACCORD library of pre-developed software artifacts,

❏ ACCORD modeling environment (ACCORD-ME), and

❏ configuration compiler.

In this section we describe each of the constituents of the ACCORD develop-
ment environment and then discuss limitations and benefits of the environment.

6.1.1 ACCORD Library

The ACCORD library contains two types of artifacts, namely design-level artifacts
and implementation artifacts (see figure 6.1). Design-level artifacts are:

❏ configuration paradigms for modeling of different system configurations,

125

126 TOOL SUPPORT AND EVALUATION 6.1

R
eq

u
ir

em
en

ts
:

�
fu

nc
tio

na
l c

ha
ra

ct
er

is
tic

s
�

ex
pe

ct
ed

 p
er

fo
rm

an
ce

gu
ar

an
te

es
�

te
m

po
ra

l c
on

st
ra

in
ts

 (
e.

g.
,

al
lo

w
ed

 m
em

or
y

fo
ot

pr
in

t
an

d
W

C
E

T
)

R
u

n
-T

im
e

as
p

ec
ts

C
o

n
fi

g
u

ra
to

r
A

n
al

yz
er

s

S
ys

te
m

 c
on

fig
ur

at
io

n
sa

tis
fy

in
g

fu
nc

tio
na

l
ch

ar
ac

te
ris

tic
s

O
K

N
o

t
O

K

C
o

n
fi

g
u

ra
ti

o
n

co
m

p
ile

r

C
o

m
p

ile
d

sy
st

em

S
ys

te
m

 d
ep

lo
ye

d
on

 a
 r

ea
l-t

im
e

pl
at

fo
rm

L
ib

ra
ry

D
es

ig
n

-l
ev

el
 a

rt
if

ac
ts

Im
p

le
m

en
ta

ti
o

n
 a

rt
if

ac
ts

A
C

C
O

R
D

-M
E

A
p

p
lic

at
io

n
as

p
ec

ts

A
sp

ec
t

p
ac

ka
g

es
A

sp
ec

t
p

ac
ka

g
es

C
o

m
p

o
n

en
ts

A
p

p
lic

at
io

n
as

p
ec

ts

C
o

n
fi

g
u

ra
ti

o
n

p
ar

ad
ig

m
s

C
o

m
p

o
n

en
ts

Figure 6.1: ACCORD Development Environment

6.1 DEVELOPMENT ENVIRONMENT 127

❏ run-time aspects of components and application aspects (as prescribed by
RTCOM), and

❏ formal representations of components and aspects.

Design-level artifacts are used when modeling, configuring, and analyzing the sy-
stem (in ACCORD-ME). Implementation artifacts represent source code of com-
ponents and aspects, and they are used when producing the final product, i.e., a
compiled code of the system for deployment in a specific run-time environment.

6.1.2 ACCORD-ME

The ACCORD-ME part of the development environment is implemented using
the generic modeling environment (GME), a tool kit for creating domain-specific
modeling environments [65]. The creation of a GME-based tool is accomplished
by defining meta-models that specify a modeling paradigm (modeling language)
of the application domain. Modeling paradigms (given as UML diagrams) define
the relationship between components and aspects in the library and their pos-
sible relationship to other components of the system, as well as possibilities of
combining components and aspects into different configurations. The GME en-
vironment also enables specifying different tool plug-ins, which can be developed
independently of the environment and then integrated with the GME for different
modeling and/or analysis purposes.

The input to ACCORD-ME are requirements that are placed on the system.
This includes functional and non-functional requirements a system should fulfill
when used in a specific run-time environment, e.g., performance guarantees, and
temporal and memory constraints. This tool uses the design-level artifacts for
configuration and analysis of the system. The output of the tool is a configura-
tion file containing information about the system configuration that fulfills the
specified functional and non-functional requirements.

ACCORD-ME is developed with a number of sub-tools that are plugged into it:
configurator, memory and WCET (M&W) analyzer, and formal verifier. Figure
6.2 shows a snapshot of the GME-based ACCORD-ME, with the tool plug-ins
and the editing area.

The configurator helps the designer to assemble the system configuration by
suggesting a subset of suitable aspects and components. The decision on what
components and aspects are suitable is based on the pre-defined modeling para-
digms and the requirements placed on the system. Modeling paradigms define the
relationship between components and aspects in the library, and possibilities of
combining those in different configurations. Modeling paradigms in GME-based
tools are expressed by UML diagrams. This tool provides three levels of support
to system configuration based on the developer’s expertise and preferences.

128 TOOL SUPPORT AND EVALUATION 6.1

Analyzer
Configurator

W&M Analyzer

AspectAspectAspectAspect

ComponentComponentComponentComponent

Library Library Library Library

contentcontentcontentcontent

ConnectionConnectionConnectionConnection

Figure 6.2: The editing window in ACCORD-ME

6.1 DEVELOPMENT ENVIRONMENT 129

❏ Expert option is used by developers familiar with the library of components
and aspects, and it enables the developers to create a number of custom
made configurations of the system. This is useful in cases when a comparison
of the performance of different configurations is of interest, e.g., WCET and
memory footprint.

❏ Configuration-based option gives a list of possible configurations of the sy-
stem, and it is intended for developers who can directly express the requi-
rements of the system in terms of a desired system configuration.

❏ Requirement-based option provides the system developer with a list of requi-
rements from which the developer can choose a relevant subset for a particu-
lar application. Thus, developers do not need to have knowledge of what
components and aspects exist in the library.

The output of the tool is a configuration as an XML file of an assembled
system that is functionally correct.

The M&W analyzer is a tool plug-in that analyzes a configuration with re-
spect to WCET and memory requirements using the aspect-level WCET analysis
presented earlier in section 5.2. This tool takes as input:

❏ an XML configuration file produced by the configurator; and

❏ run-time aspects, also expressed in XML, that contain the run-time infor-
mation the tool needs to calculate the impact of aspect weaving and system
composition with respect to WCET or static memory consumption.

Recall that WCETs in the run-time aspects are expressed in terms of symbolic
expressions. Hence, they are a function of one or several parameters that in turn
abstract the properties of the underlying run-time environment. The symbolic
expressions need to be re-evaluated for each run-time environment, i.e., parame-
ters in symbolic expressions should be instantiated in the analysis. Hence, the
M&W analyzer provides a list of symbolic expressions and the list of necessary
parameters that need to be configured. Since it is possible to assemble a number
of configurations in ACCORD-ME, e.g., when using the expert option, the M&W
analyzer detects the configurations and enables developers to choose which confi-
guration she/he would like to analyze. Moreover, it is possible to choose whether
WCET or memory analysis of the system should be performed. The way run-
time aspects for a component are expressed in XML is illustrated in figure 6.3
for a running example of the linked list component. The XML description file for
run-time aspect describing the WCET and memory needs of application aspects
is analogous. The process of analysis using the M&W is identical to the process
of aspect-level WCET analysis discussed in section 5.2.

130 TOOL SUPPORT AND EVALUATION 6.1

<?xml version="1.0"?>
<!-- START INTERNAL DTD -->
<!DOCTYPE Component_Property (view source for a full document...)>
<!-- END INTERNAL DTD -->

<Component_Run_Time_Property>
<PARAMETERS number="1">
<PARA name="n"/>
</PARAMETERS>
<PROPERTY>
 <COMPONENT name="linkedList">
 <OPERATION name="insert" intWCET="3" intMEM="45">
 <MECHANISM name="createNode" WCET="5" MEM="22" num="1"/>
 <MECHANISM name="linknode" WCET="4" MEM="12" num="1"/>
 </OPERATION>
 <OPERATION name="remove" intWCET="1" intMEM="32">
 <MECHANISM name="getNextNode" WCET="2" MEM="10" num="n"/>
 …..
 </OPERATION>
 ….
 </COMPONENT>
 </PROPERTY>
</Component_Run_Time_Property>

Figure 6.3: An implementation of the run-time aspect of a component in XML

The formal verifier is a tool that performs formal verification of the com-
posed real-time system based on the formal method for modular verification of
reconfigurable components presented in section 5.5. The behavior of the system
configuration is checked using formal models of aspects and components represen-
ted as augmented timed automata with reconfiguration and verification interfaces
(stored in the ACCORD library).

6.1.3 Configuration Compiler

This tool is part of the development environment that aids the designer in com-
piling the final product. The configuration compiler takes as input:

❏ information obtained from ACCORD-ME about the created configuration
that satisfied functional and non-functional requirements, and

❏ implementation level artifacts.

Based on this input the configuration compiler generates a compilation file, which
is then used for compiling the source code of needed aspects and components into
the final system. Hence, the output of this tool is the compiled system configu-
ration, which is ready to be deployed in a specific run-time environment. The
configuration compiler also provides necessary documentation about the genera-
ted configuration that can later be used for maintaining the system.

6.2 ACCORD EVALUATION 131

6.1.4 Discussion

The ACCORD development environment offers benefits for system developers in
terms of automated support during the composition process (via the configurator
tool), analysis of the system (via various analysis tools), and the compilation
and deployment (via the configuration compiler tool). With this automation the
overall development time for a real-time system decreases significantly.

The tool environment in general, and ACCORD-ME in particular, treats both
components and aspects as first-class constituents of a real-time system. More-
over, the uniqueness of the environment is the set of tools encompassed by the
ACCORD-ME for analysis of a real-time system woven with aspects.

For each family of real-time systems developed using ACCORD, i.e., each new
application domain, specific implementation of components and aspects that con-
stitute the domain should be made, and these should be placed in the ACCORD
library. Moreover, parts of the ACCORD development environment should be
extended to embrace a particular domain (section 5.5.4 shows the tool applied to
the domain of real-time databases). Namely, the configurator should be extended
with a set of requirements and composition rules for this particular domain, and
the compilation rules in the configuration compiler tool need also to be updated to
contain the rules for compilation of the newly developed components and aspects.

6.2 ACCORD Evaluation

This section provides an evaluation of ACCORD and its main constituents. The
evaluation is performed by relating the requirements we identified in chapter 3 to
ACCORD. The main requirements are epitomized in table 6.1, which compares
ACCORD and the previously discussed design approaches (see chapter 3).

Component model - relation to ACCORD. ACCORD provides a compo-
nent model for reconfigurable real-time systems, which enforces information hiding
and supports three different types of interfaces, hence, fulfilling the requirements
CM1 and CM2, respectively (see section 4.3). Moreover, within ACCORD aspects
are used for implementation of connectors among components, ensuring efficient
extensions to the system and fulfilling requirement CM3.

ACCORD provides a description language for defining temporal attributes of
components (see section 4.3.2), corresponding to the fulfillment of CM6, and aims
at providing tools that can automatically extract temporal information from any
real-time software component built using RTCOM. The description language for
temporal attributes of components and guidelines for mapping components to
tasks, enable ACCORD to enforce fulfilling of the CM4 requirement by suppor-
ting both temporal and structural views of components and the overall real-time
system.

We assume that a real-time system should first be decomposed into a set of

132 TOOL SUPPORT AND EVALUATION 6.2

Design approaches

Criteria DARTS

TRSD
VEST

IS
C COM

AOP

Component model
CM1 Information

hiding
� � � � �

CM2 Interfaces � � � � �

CM4 Component

Views
� � � - -

CM6 Temporal

attributes

�

- - -

CM5 Task
mapping - -

Aspect separation

AS1 Aspect
support - - � � - �

AS3 Multiple
interfaces - - - � � �

�

AS4 Multiple

aspect types - - -

System composability
SC1 Static

configuration
� � � � �

SC3 Temporal

analysis
- �

-

- - -

LEGEND:

DARTS: design approach for real-time systems
TRSD: transactional real-time system design

VEST: Virginia embedded systems toolkit

ISC: invasive software composition

HRT-HOOD: a hard real-time hierarchical object-oriented design

� partially supported - not supported� supported

�

�

-

-

-

-

�

�

�

�

�

-

AS2 Aspect
weaving

- - - �
-

CM3 Connectors

HRT-

HOOD

�

�

�

�

�

-

-

-

-

�

�

Real-time Software engineering

SC2 Dynamic
reconfiguration

SC4 QoS

assurance

SC5 Formal

verification

AOP: aspect-oriented programming

- - � - � � �

-

-

-

-

-

�

-

- - -

-

-

-

-

- - � - � ��

�

�

�

CORBA
RADL

(A
sp

ectJ)

�

��

�

�

�

�

-

-

-

�

-

�

�

�

�

-

�

-

-

�

�

�

-

�

ACCORD

�

�

�

�

�

�

�

�

�

�

ACCORD: aspectual component-based
 real-time system development

RADL: reliable architecture description language

Table 6.1: Evaluation criteria for ACCORD

6.2 ACCORD EVALUATION 133

components, which are later mapped to tasks. Hence, the relationship between
tasks and components is not fixed. Within ACCORD we provide initial cha-
racterization of component-task relationship (see section 5.3). Hence, ACCORD
partially fulfills CM5 (task mapping).

Aspect separation - relation to ACCORD. ACCORD meets the require-
ments AS1 and AS4 by supporting three different types of aspects: application,
run-time, and composition aspects (see section 4.2). It also fulfills the requirement
AS2 as application aspects can change the code of components by aspect weaving.
Run-time aspects describe the behavior of components, e.g., temporal properties
and resource consumption. Composition aspects refer to composability issues
and relate both to the functional and the temporal compatibility of components
in the real-time system. The requirement AS3 is fulfilled as RTCOM provides th-
ree types of interfaces: functional, configuration, and composition interfaces (see
section 4.3.4).

System composability - relation to ACCORD. ACCORD provides con-
figuration support for the reconfigurable real-time system design by providing
design guidelines and tool support within ACCORD development tool environ-
ment, hence, meeting the requirement SC1; note that the configuration support
has its limitation as discussed in section 6.1.4.

With its component middleware layer and design guidelines for extended
RTCOM, ACCORD design is extended to handle dynamically reconfigurable
systems (section 4.6). Thereby, requirement SC2 is fulfilled.

ACCORD partially meets the SC3 requirement as it supports static WCET
analysis of composed system (see section 5.2); the dynamic schedulability analysis
is not automated and relies on the guidelines for the task mapping, and, hence,
requires additional refinements (see section 5.3).

Given that ACCORD with its notion of aspect packages enables adding QoS to
the system, as well as maintaining the QoS in dynamically reconfigurable systems,
requirement SC4 is fulfilled. Formal verification method is developed within AC-
CORD to support verification of temporal and functional behavior of components
woven with aspects, as explained in section 5.5. Since we have primarily focused
on the application of the method on the verification of an aspect with a single
advice woven into a single component, further generalization of results to complex
systems, consisting of many aspects and components, is needed. This implies that
ACCORD partially fulfills requirement SC5.

Part III

Component-Based Embedded
Real-Time Database System

135

Chapter 7
Data Management in Embedded

Real-Time Systems

In this chapter we present a case study of data management in vehicle control
systems developed at Volvo Construction Equipment Components AB, Sweden.
We study two different hard real-time systems and observe that the variability
of data management requirements in these systems calls for distinct database
configurations specially suited for the particular system. The case study, thus,
serves as a motivation for developing a reconfigurable COMET database.

7.1 A Case Study: Vehicle Control Systems

In this section we present the case study of two different hard real-time systems
developed at Volvo Construction Equipment Components AB, Sweden, with re-
spect to data management [124]. These systems are embedded into two different
vehicles (an articulated hauler and a wheel loader), and are typical representative
real-time systems for the class of vehicular systems. Both of these vehicle control
systems consist of several subsystems called electronic control units (ECUs), con-
nected through two serial communication links: the fast CAN link and the slow

VECU TECU EECUIECU

CAN

Diagnostic link

CECU
Service

tool

Figure 7.1: The overall architecture of a vehicle control system

137

138 DATA MANAGEMENT IN EMBEDDED REAL-TIME SYSTEMS 7.1

Rubus OSCommunication
Hardware layer

ECU software system

Run-time
system

I/O
Application layer

Figure 7.2: The structure of an ECU

diagnostic link, as shown in the figure 7.1. Both the CAN link and the diagnostic
link are used for data exchange between different ECUs. Additionally, the dia-
gnostic link is used by diagnostic (service) tools. The number of ECUs can vary
depending on the way functionality is divided between ECUs for a particular type
of the vehicle. For example, the articulated hauler consists of five ECUs: instru-
mental, cabin, vehicle, transmission, and engine ECU, denoted IECU, CECU,
VECU, TECU, and EECU, respectively. In contrast, the wheel loader control
system consists of three ECUs, namely IECU, VECU, and EECU.

We have studied the architecture and data management of the VECU in the
articulated hauler, and the IECU in the wheel loader. The VECU and the IECU
are implemented on hardware platforms supporting three different storage types:
EEPROM, Flash, and RAM. The memory in an ECU is limited, normally 64Kb
RAM, 512Kb Flash, and 32Kb EEPROM. Processors are chosen such that power
consumption and the cost of ECUs are minimized. Thus, processors run at 20MHz
(VECU) and 16MHz (IECU) depending on the workload.

Both VECU and IECU software systems consist of two layers: a run-time
system layer and an application layer (see figure 7.2). The run-time system layer
on the lower level contains all hardware-related functionality. The higher level of
the run-time system layer contains an operating system, a communication system,
and an I/O manager. Every ECU uses the Rubus [20] real-time operating system.
The communication system handles transfer and reception of messages on different
networks, e.g., CAN. The application is implemented on top of the run-time
system layer. The focus of our case study is data management in the application
layer. In the following section we briefly discuss the Rubus operating system.
This is followed by sections where functionality and a structure of the application
layer of both VECU and IECU are discussed in more detail. For presentation
purposes, in the following sections we refer to the application layer of the VECU
and IECU as the VECU (software) system and the IECU (software) system.

7.1.1 Rubus

Rubus is a real-time operating system designed to be used in systems with limited
resources [20]. The Rubus version of the operating system used in the studied

7.1 A CASE STUDY: VEHICLE CONTROL SYSTEMS 139

implementation of ECUs supports both off-line and on-line scheduling, and consi-
sts of two parts: red part, which deals with hard real-time, and blue part, which
deals with soft real-time.

The red part of Rubus executes tasks scheduled off-line. The tasks in the
red part, also referred to as red tasks, are periodic and have higher priority than
the tasks in the blue part, invoked in an event-driven manner. The blue part of
Rubus also supports functionality that can be found in many standard commercial
real-time operating system, e.g., priority-based scheduling, message handling, and
synchronization via semaphores. Each task has a set of input and output ports
that are used for communication with other tasks.

7.1.2 VECU

The VECU system is used to control and observe the state of the vehicle. The
system can identify anomalies, e.g., an abnormal temperature. Depending on the
criticality of the anomaly, different actions can be taken, e.g., warning the driver
and shutting down the system. Furthermore, some of the functionality of the
vehicle is controlled by this system via sensors and actuators. Finally, logging
and maintenance via the diagnostics link can also be performed using a service
tool that can be connected to the vehicle.

All tasks in the system, except the communication task, are non-preemptive
tasks scheduled off-line. The communication task uses its own data structures,
e.g., message queues, and, thus, no resources are shared with other tasks. Since
the tasks are non-preemptive and run until completion, mutual exclusion is not
necessary. The reason for using non-preemptive off-line scheduled tasks is to
minimize the run-time overhead and to simplify the verification of the system
behavior.

The data in the system can be divided into five different categories: (1) sen-
sor/actuator raw data, (2) sensor/actuator parameter data, (3) sensor/actuator
base data, (4) logging data, and (5) parameter data.

The sensor/actuator raw data is a set of data elements that are either read
from sensors or written to actuators. The data is stored in the same format as
they are read/written. This data, together with the sensor/actuator parameter
data, is used to derive the sensor/actuator base data, which can be used by the
application. The sensor/actuator parameter data contains reference information
about how to convert raw data received from the sensors into base data. For
example, consider a temperature sensor, which outputs the measured temperature
as a voltage Tvolt. This voltage needs to be converted to a temperature T using
a reference value Tref , i.e., T = Tvolt · Tref .

In the studied system, the sensor/actuator (raw and parameter) data is stored
in a vector of data called a hardware database (HW Db), see figure 7.3. The HW
Db is, despite its name, not a database but merely a memory structure. The base
data is not stored in the system but is derived “on the fly” by data derivation
tasks. Apart from data collected from local sensors and the application, sensor

140 DATA MANAGEMENT IN EMBEDDED REAL-TIME SYSTEMS 7.1

Vehicle ECU

EEPROM

Backup/
restoration

Task

Logging
Task

Logs
(RAM)

Para-
meters

CAN
Diagnostics

link

Service tool

IECU

Communication
Task

 Subsystems

I/O
Task

I/O
Task

I/O
Task

.

.

.

Sig in

Sig in

Sig in

HWDb

Application
Task 1

Data
derivation

Task
Sig out

I/O
Task

Figure 7.3: The architecture of the VECU

and actuator data derived in other ECUs is stored in the HW Db. The distributed
data is sent periodically over the CAN bus. From the application’s point of view,
the locality of the data is transparent in the sense that it does not matter if the
data is gathered locally or remotely.

Some of the data derived in the applications is of interest for statistical and
maintenance purposes and therefore the data is logged (referred to as logging
data) on permanent storage media, e.g., EEPROM. Most of the logging data is
cumulative, e.g., the total running time of the vehicle. These logs are copied
from EEPROM to RAM in the startup phase of the vehicle and are then kept
in RAM during runtime, to finally be written back to EEPROM memory before
shutdown. However, logs that are considered critical are copied to EEPROM
memory immediately at an update, e.g., warnings. The parameter data is stored
in a parameter area. There are two different types of parameters, permanent and
changeable. The permanent parameters can never be changed and are set to fulfill

7.1 A CASE STUDY: VEHICLE CONTROL SYSTEMS 141

Flash

Other systems

.

.

.

Instrumental ECU
HWDb

Image
buffer

Driver display

WarningDriver display
Task

I/O
Task

Sig out

CAN

Communication task

VECU

Driver warning
Task

I/O
Task

I/O
Task

I/O
Task

.

.

.

Sig in

Sig in

Sig in

Application
Task 1

Data
derivation

Task
Sig out

I/O
Task

WoE Db

RAM

Service display

Test-calibraton Db

Serivce display
Task

I/O
Task

Diagnostic
link

Service menu Service
image Db

Language

Driver image DbDriver menu

Language

Text
buffer

RAM

EEPROM

Flash

Figure 7.4: The architecture of the IECU

certain regulations, e.g., pollution and environment regulations. The changeable
parameters can be changed using a service tool.

Most control applications in the VECU follow a common structure residing in
one precedence graph. The sensors (Sig In) are periodically polled by I/O tasks
(typically every 10 ms) and the values are stored in their respective slot in the HW
Db. The data derivation task then reads the raw data from the HW Db, converts
it, and sends it to the application task. The application task then derives a result
that is passed to the I/O task, which both writes it back to the HW Db and to
the actuator I/O port.

7.1.3 IECU

The IECU is a display electronic control unit that controls and monitors all in-
strumental functions, such as displaying warnings, errors, and driver information
on the driver display. The IECU also controls display of the service information
on the service display (a unit for servicing the vehicle), the I/O in the driver
cabin, e.g., accelerator pedal, and the communication with other ECUs via CAN

142 DATA MANAGEMENT IN EMBEDDED REAL-TIME SYSTEMS 7.2

and the diagnostic link.

The IECU differs from the VECU in several ways. Firstly, the data volume
in the system is significantly higher since the IECU controls displays and, thus,
works with a large amount of images and text information. Moreover, the data
is scattered in the system and, depending on its nature, stored in a number of
different data structures as shown in figure 7.4. Similarly to the HW Db, data
structures in the IECU are referred to as databases, e.g., image databases, menu
databases, and language databases. Since every text and image information in
the system can be displayed in thirteen different languages, the interrelationships
of data in different data storages are significant.

A dominating task in the system is the task updating the driver display. This
is a red task, but, in contrast to other red tasks, it can be preempted but only
by red tasks. However, scheduling of all tasks is performed such that all possible
data conflicts are avoided.

Data from the HW Db in the IECU is periodically pushed on to the CAN
link and copied to the HW Db of the VECU. Warnings or errors (WoE) are
periodically sent through the CAN link from/to the VECU and are stored in the
dedicated part of RAM, referred to as the WoE database (WoE Db). Hence, the
WoE Db contains information of active warnings and errors in the overall wheel
loader control system. While WoE Db and HW Db allow both read and write
operations, the image and menu databases are read-only databases.

The driver display is updated as follows (see figure 7.4). The driver display
task periodically scans the databases (HW, WoE, and menu Db) to determine
the information that needs to be presented on the driver display. If any active
WoE exist in the system, the driver display task reads the corresponding image,
in the specified language, from the image database located in a persistent storage
and then writes the retrieved image to the image buffer. The image is then read
by the blue I/O task, which then updates the driver display with an image as
many times as defined in the WoE Db. Similarly, the driver display task scans
the HW Db and menu database. If the HW Db has been updated and this needs
to be visualized on the driver display, or if data in the menu organization has
been changed, the driver display task reads the corresponding image and writes it
to the driver display as described previously. In the case a service tool is plugged
into the system, the service display task updates the service display in the same
way as described for the driver display, but then uses its own menu organization
and image database, buffer, and the corresponding blue I/O task.

7.2 Data Management Requirements

Table 7.1 gives an overview of data management characteristics in the VECU and
IECU systems. The following symbols are used in the table:

7.2 DATA MANAGEMENT REQUIREMENTS 143

v — feature is true for the data type in the VECU,
i — feature is true for the data type in the IECU, and
x — feature is true for the data type in both

VECU and IECU.

Data types
Management characteristics S

en
so

r
A

ct
u
at

or
B
as

e

P
ar

am
et

er
s

W
oE

Im
ag

e&
T
ex

t
L
og

s

HW Db x x i
Data Parameter Db x
source WoE Db i

Image Db i
Language Db i
Menu Db i
Log Db v

Memory RAM x x x x x v
type Flash i

EEPROM x v

Memory Static x x x x x i v
allocation Dynamic
Interrelated with other data x x x x x i v

Temporal validity x x x x v

Logging Startup v
Shutdown v
Immediately v1

Persistence x x v1 x x

Logically consistent x x x x

Indexing i

Transaction Update x x x x x v
type Write-only x x

Read-only x x x i
Complex update x x x v
Complex queries x x x x x i v

Table 7.1: Data management characteristics for the systems

As can be seen from the table 7.1, all data elements in both systems are scat-
tered in groups of different flat data structures referred to as databases. These
databases are flat because the data is structured mostly in vectors, and the data-
bases only contain data with no support for DBMS functionality.

The nature of the systems places special requirements on data management
in terms of (see table 7.1):

❏ only static memory allocation is allowed, since dynamic memory allocation
is not allowed due to the safety-criticality of the systems;

❏ small memory consumption, since production costs should be kept as low
as possible; and

1The feature is true only for some base data in the VECU.

144 DATA MANAGEMENT IN EMBEDDED REAL-TIME SYSTEMS 7.2

❏ diverse data accesses, since data can be stored in different storages, e.g.,
EEPROM, Flash, and RAM.

Most data, from different databases and even within the same database, is
logically related. These relations are not intuitive, which makes the data hard to
maintain for the designer and programmer as the software of the current system
evolves. Raw values of sensor readings and actuator writings in the HW Db are
transformed into base values by the data derivation task, as explained in section
7.1.2. The base values are not stored in any of the databases, rather they are
placed in ports (shared memory) and given to application tasks when needed.

The period times of updating tasks ensure that data in both systems (VECU
and IECU) is correct at all times with respect to absolute consistency. Further-
more, task scheduling, which is done off-line, enforces relative consistency of data
by using an off-line scheduling tool. Thus, data in the system is temporally consi-
stent (we denote this data property in the table as temporal validity). Exceptions
are permanent data, e.g., images and text, which are not temporally constrained
(see table 7.1).

One implication of the systems’ demand on reliability, i.e., the requirement
that a vehicle must be movable at all times, is that data must always be temporally
consistent. A violation of temporal consistency is viewed as a system error, in
which case three possible actions can be taken by the system: (1) use a predefined
default data value (most often), (2) use an old data value, and (3) shutdown of
involved functions (system exposes degraded functionality).

Some data is associated with a range of valid values, and is kept logically con-
sistent by tasks in the application (see table 7.1). The negative effect of enforcing
logical consistency by the tasks is that programmers must ensure consistency of
the task set with respect to logical constraints.

Persistence in the ECUs is maintained by storing data on a stable storage.
However, exceptions to this rule exist, e.g., RPM data is never copied to the
stable storage. Also, some of the data is only stored on the stable storage, e.g.,
internal system parameters. In contrast, data imperative to systems’ functioning
is immediately copied to the stable storage, e.g., WoE logs are copied to/from the
stable storage at startup/shutdown.

Several transactions exist in the VECU and IECU systems: (i) update trans-
actions, which are application tasks reading data from the HW Db; (ii) write-only
transactions, which are tasks updating sensor values; (iii) read-only transactions,
which are tasks reading actuator values; and (iv) complex update transactions,
which originate from other ECUs. In addition, complex queries are performed
periodically to distribute data from the HW Db to other ECUs.

Data in the VECU is organized in two major data storages, RAM and Flash.
Logs are stored in EEPROM and RAM (one vector of records), while 251 items
structured in vectors are stored in the HW Db. Data in the IECU is scattered
and interrelated throughout the system even more in comparison to the VECU
(see table 7.1). For example, the menu database is related to the image database,

7.3 OBSERVATIONS 145

which in turn is related to the language Db and the HW Db. Additionally, data
structures in the IECU are fairly large. HW Db and WoE Db reside in RAM. HW
Db contains 64 data items in one vector, while WoE Db consists of 425 data items
structured as 106 records with four items each. The image Db and the language
Db reside in Flash. All images can be found in 13 different languages, each
occupying 10Kb of memory. The large volume of data in the image and language
databases requires indexing. Indexing is today implemented separately in every
database, and even every language in the language Db has separate indexing on
data.

The main problems we have identified in existing data management can be
summarized as follows:

❏ data is scattered in the system in a variety of databases, each representing
a specialized data store for a specific type of data;

❏ base data values are not stored in any of the data stores, but are placed in
ports, which complicates maintenance and makes adding of functionality in
the system a difficult task;

❏ application tasks must communicate with different data stores to get the
data they require, i.e., the application does not have a uniform access or
view of the data;

❏ temporal and logical consistency of data is maintained by the tasks, increa-
sing the level of complexity for programmers when maintaining a task set;
and

❏ data from different databases exposes different properties and constraints,
which complicates maintenance and modification of the systems.

A possible solution to these problems is to integrate a database management
system to ensure uniform access to data and ease overall data manipulation in
the system. Moreover, we need to be able to configure a database system to meet
specific requirements on data management in different systems, as we elaborate
next.

7.3 Observations

As can be noted, a real-time system controlling a vehicle is operating in a clo-
sed environment as its workload characteristics are known beforehand and do not
change during the operational lifetime of the system. Furthermore, vehicle control
systems are real-time safety-critical systems consisting of several distributed no-
des, each implementing a specific functionality. Although nodes depend on each
other and collaborate to provide required behavior for the overall vehicle control
system, each node can be viewed as a stand-alone real-time system. The size of the

146 DATA MANAGEMENT IN EMBEDDED REAL-TIME SYSTEMS 7.3

nodes can vary significantly, from very small nodes to large nodes. For instance, a
vehicle control system could consist of a small number of resource adequate ECUs
responsible for the overall performance of the vehicle, e.g., 32-bit CPUs with a
few Mb of RAM, and a large number of ECUs responsible for controlling specific
subsystems in the vehicle, which are significantly resource-constrained, e.g., an
8-bit micro-controller and a few Kb of RAM [124].

Depending on the functionality of a node and the available memory, different
database configurations are preferred. In safety-critical nodes, e.g., VECU, tasks
are often non-preemptive and scheduled off-line, avoiding concurrency by allowing
only one task to be active at any given time. This, in turn, influences functionality
of a database in a given node with respect to concurrency control. Less critical
nodes having preemptable tasks, e.g., IECU, would require concurrency control
mechanisms. Furthermore, some nodes require critical data to be logged, e.g.,
warning and errors, and require backups on startup and shutdown, while other
nodes only have RAM (main-memory), and do not require non-volatile backup
facilities from the database. Hence, to provide support for data management
in these types of systems we need to enable development of different database
configurations to suit the needs of each node with respect to memory consump-
tion, concurrency control, recovery, scheduling techniques, transaction models,
and storage models. In the next chapter we show how we have reached this
goal by applying ACCORD constituents to the design and development of the
reconfigurable embedded real-time database COMET.

Chapter 8
COMET Database Platform

As mentioned before, real-time and embedded systems would benefit from having
a real-time database that can be configured to meet the specific data management
needs of the underlying system. In this chapter we present COMET, a real-time
embedded database platform that can be reconfigured to meet the needs of various
real-time and embedded applications. Reconfiguration in COMET is achieved by
employing ACCORD. Following the ACCORD design process, we describe the
decomposition of COMET into components and aspects, and then focus on the
design and implementation of a number of COMET aspect packages.

8.1 COMET Decomposition

After the requirements on data management in the target application domain
(vehicle systems) are gathered, the need for developing reconfigurable and reu-
sable embedded real-time database has been identified in chapter 7.1 To ensure
development of such a database we employ ACCORD, starting with steps ❷ and
❸ of the ACCORD development process (see figure 4.1). Hence, we decompose
data management of a real-time embedded system first into a set of components,
followed by decomposition into a set of aspects.

8.1.1 Decomposition into Components

When decomposing into components, each component is identified such that it en-
capsulates a well-defined functionality of a database management system. More-
over, another criterium in decomposition is to ensure that application-dependent

1Nowadays, the COMET platform is extended and embraces a larger class of real-time
systems, including systems operating in closed environments and those operating in open, un-
predictable real-time environments.

147

148 COMET DATABASE PLATFORM 8.1

User Interface Component (UIC)User Interface Component (UIC)User Interface Component (UIC)User Interface Component (UIC)

Transaction Transaction Transaction Transaction

Manager Manager Manager Manager

Component Component Component Component

(TMC)(TMC)(TMC)(TMC)

Scheduling Scheduling Scheduling Scheduling

Manager Manager Manager Manager

Component (SMC)Component (SMC)Component (SMC)Component (SMC)

Indexing Manager Indexing Manager Indexing Manager Indexing Manager

Component (IMC)Component (IMC)Component (IMC)Component (IMC)

Memory Manager Component (MMC)Memory Manager Component (MMC)Memory Manager Component (MMC)Memory Manager Component (MMC)

Figure 8.1: Decomposition of COMET into components

functionality is encapsulated into a component for easier exchange and reuse.
Also, the identified components, when composed into a system, should at least
provide basic functionality of the system that can later be reconfigured. Hence,
for the case of an embedded real-time database system, we identified the following
set of components (see figure 8.1):

❏ the user interface component (UIC),

❏ the scheduling manager component (SMC),

❏ the indexing manager component (IMC),

❏ the transaction manager component (TMC), and

❏ the memory manager component (MMC).

The UIC provides a database interface to the application, which enables an
application to query and manipulate data elements. Depending on the target
application, different user interfaces can be applicable implying that this part of
the database functionality is a good candidate for encapsulation into a component
in order to facilitate its reuse and reconfiguration.

Arriving transactions are scheduled in the system by the SMC. Hard real-
time applications typically do not require sophisticated transaction scheduling,
i.e., the system allows only one transaction to access the database at a time [124].
Therefore, for these types of applications the SMC is unnecessary while for others
it might be a vital part of the system. Since in embedded environments it also
important to minimize the footprint of the system, we need to ensure that the
scheduling functionality can easily be omitted from the system, or added when
necessary.

8.1 COMET DECOMPOSITION 149

The TMC is responsible for executing incoming transactions, thereby perfor-
ming the actual data manipulation. Transaction management can be done in a
number of distinct ways, depending on the goals of the database system, e.g.,
relational vs. object-oriented transaction processing. Having transaction ma-
nagement encapsulated into a component provides a good basis for exchange of
the overall transaction management functionality and, more importantly, ensures
that other parts of the system functionality can straightforwardly be exchanged
or modified without changing the way transaction is managed. In contrast, if
transaction management would not be encapsulated into a component, but im-
plemented partly in a number of other components, modifying the functionality
of one component could also require extensive modifications of all components
containing parts of transaction management.

The IMC is responsible for maintaining an index of all tuples in the data-
base. Indexing strategies could vary depending on the real-time application with
which the database should be integrated, e.g., T-trees [109] and multi-versioning
are suitable for applications with a large number of read-only transactions [145].
To ensure that a database can be configured for a large number of applications
requiring distinct indexing strategies and structures, the IMC should be made an
exchangeable part of the database architecture.

The MMC manages access to data in the physical storage. Recall from chapter
7 that real-time systems can have different storage types, e.g., EEPROM, Flash,
and RAM. Each of the storage types might require distinct memory manipulation
methods for data writing and reading. Hence, to make sure that a database can
be configured and used with various storage types, it is beneficial to have the fun-
ctionality in charge of memory manipulation encapsulated into an exchangeable
component.

The identified COMET components are necessary for creating a configura-
tion that provides basic database functionality, i.e., a database that can take
an arriving transaction via the UIC, register the transaction using the SMC,
perform operations on data via the TMC by looking up the data (IMC) and
reading/writing their values (MMC). A detailed description of the design and
functionality of each COMET component is given later in section 8.2.

8.1.2 Decomposition into Aspects

Following ACCORD, after decomposing the system into a set of components we
further decompose it into a set of aspects. The decomposition of COMET into
aspects fully corresponds to the ACCORD decomposition (given in section 4.2)
into three types of aspects: run-time, composition, and application aspects. Alt-
hough the majority of application aspect might be developed as a part of an aspect
package, it is nevertheless beneficial to identify these aspects after the decomposi-
tion into component has been made. This is to capture the crosscutting effects of
aspects to previously identified components as these can influence the design and
implementation of the components. Hence, in this section we illustrate various

150 COMET DATABASE PLATFORM 8.1

COMET application aspects and discuss the possible impact of crosscutting.
Application aspects are determined based on the characteristics of the appli-

cation domain, while keeping in mind previously made decomposition into com-
ponents. For COMET, the initial application domain was vehicle control systems,
and a database system in this domain needs to support both concurrent and non-
concurrent execution of transactions. This has a profound impact on the way
application aspects are defined.

For example, concurrent transaction execution can result in conflicts on data
items, inducing a need for concurrency control algorithms. Recall from section
2.4.1 that a variety of concurrency control methods exist, each suitable for a
particular group of applications. To ensure high reconfigurability of the database,
concurrency control should be designed and implemented as an aspect in the
database structure.

Additionally, it is possible to customize the indexing strategy depending on
the number of transactions active in the system. For example, in vehicle control
applications where only one transaction is active at a time there is no need to
ensure mutually exclusive access to the indexing structure as it cannot become in-
consistent. In more complex applications where multiple transactions can execute
concurrently, there is a possibility that the index structure becomes inconsistent
if accessed at the same time by a number of transactions. Such scenarios require
explicit access strategies ensuring that only one transaction at the time is allo-
wed to access the structure. This type of indexing where the indexing strategy
provides explicit handling of inconsistencies, e.g., via mutual exclusion and se-
maphores, is referred to as thread-safe indexing. A way of ensuring thread-safe
indexing is to define and weave a synchronization aspect into the database system.
Note that the synchronization aspect ensuring mutual access to a resource is also
necessary to be woven into the SMC, and TMC, i.e., all components that contain
data structures affected by transaction execution.

Various real-time policies, e.g., concurrency control, indexing, and scheduling,
require additional attributes to be defined for a transaction to represent transac-
tion models. Since changes to the transaction need to be propagated to all compo-
nents in the system (see table 8.1), a transaction model can be viewed as a highly
crosscutting concern and would therefore be beneficial to design and implement
it as an aspect in the database system. Note that the application aspects vary
depending on a specific real-time system and, thus, particular attention should
be made to identify the application aspects for each real-time system.

In the sections that follow, we first present design and implementation
of COMET components, constituting the basic database functionality. Since
COMET initially was intended for vehicle systems, to ensure conformance with
legacy software and current industrial practice, we chose the C programming lan-
guage as the implementation language for COMET components. Aspects and
components providing specific functionality are grouped and presented in the
context of aspect packages. This is also to illustrate the way systems can be
developed and evolved using aspect packages. Due to the current unavailability

8.2 COMET COMPONENTS 151COMETCOMETCOMETCOMETcomponentscomponentscomponentscomponentsApplicationApplicationApplicationApplication aspects aspects aspects aspects
TransactionTransactionTransactionTransaction

Real-time Real-time Real-time Real-time

schedulingschedulingschedulingscheduling

Concurrency Concurrency Concurrency Concurrency

controlcontrolcontrolcontrol

Memory Memory Memory Memory

optimizationoptimizationoptimizationoptimization

SynchronizationSynchronizationSynchronizationSynchronization

SecuritySecuritySecuritySecurity

UU UU
II II CC CC

TT TT
MM MM
CC CC

SS SS
MM MM
CC CC

II II MM MM
CC CC

MM MM
MM MM
CC CC

XXXX XXXX XXXX XXXX

XXXX

XXXX XXXX

XXXX

XXXX

XXXX XXXX

XXXX XXXX

XXXX XXXX XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

QoS policyQoS policyQoS policyQoS policy XXXX XXXX XXXX

Table 8.1: Crosscutting effects of different application aspects on COMET components

of AspectC [47], AspectC++ [158] has been used for implementation of aspects
within COMET.

8.2 COMET Components

In this section we describe in detail the design and implementation of COMET
components, and discuss the flow of transaction execution in COMET.

8.2.1 User Interface Component (UIC)

The UIC is the component that provides a user interface to the application. To
facilitate aspect weaving and manipulation of transactions, transaction-specific
details are stored in a structure called DBTrans (implemented using struct).
Depending on the number of transactions in the system, this structure can be
a part of an array of DBTrans structs, where each DBTrans contains the in-
formation for a specific transaction. The number of allowed transactions in the
system is a changeable parameter and can be set by the designer via the UIC
configuration interface.

Applications use operations provided by the UIC to create and execute new
transactions (see figure 8.2(a)). A transaction is initialized by an application by
invoking the operation beginTrans()2 of the UIC. After a transaction has been

2The names of operations and mechanisms are simplified for presentation purposes. Actually,
in the COMET implementation, the name of an operation or a mechanism is always preceded

152 COMET DATABASE PLATFORM 8.2

initialized queries can be posed to the database using the operation query().
The query language in COMET has an SQL-like syntax. Currently, the most
common database query commands are supported, namely select, insert,
update, delete, create table and drop table. Queries are passed to
the rest of the database as strings. When submitted by an application using the
operation query(), a query is parsed by the UIC, which creates an execution
plan for the query and stores it into a tree structure denoted execution tree. Each
node in the execution tree represents an operation that needs to be performed on
data items in the database in order to fulfill the query. The execution tree for
a transaction is stored in the DBTrans struct of the transaction. The operation
endTrans() is used by an application to signal the database that the actual
execution of a transaction should be initiated. Once a transaction is submitted to
the database, the UIC calls the SMC operations to ensure appropriate scheduling
of the transaction. When the transaction is scheduled, the SMC notifies the UIC
that the scheduling is done. Now, the UIC can initialize execution of operations
on data items by calling appropriate operations of the TMC component. Hence,
the UIC requires operations from both SMC and TMC, and these are recorded in
the required interface of the UIC.

The UIC also provides an operation that enables the result of the transaction
execution to be presented to the application. The mechanisms within the UIC
are used for implementing UIC operations, as well as for aspect weaving, and are
declared in the UIC composition interface.

8.2.2 Scheduler Manager Component (SMC)

The SMC provides mechanisms for scheduling transactions arriving into the sy-
stem, based on the chosen scheduling policy. The SMC is also in charge of main-
taining the list of all transactions that exist in the system, including scheduled
transactions and unscheduled but active transactions, i.e., transactions submitted
for execution. Note that the SMC in the non-concurrent database configuration
still exists but it is only used for registering an active transaction in the system.
The operations provided by the SMC to the system are depicted in figure 8.2(b).

The SMC manages a set of threads, called a thread pool. To each transaction
submitted to the database system via the UIC, a thread is assigned. The num-
ber of threads available in the thread pool is a configurable parameter set by the
system designer. Depending on the run-time environment constraints, this para-
meter can be changed (it is declared in the component configuration interface).
The SMC maintains two queues of transactions, a ready queue and an active
queue. Transactions currently executing are stored in the active queue, while
transactions that arrived in the system but have not yet started executing, i.e.,

with the abbreviation of the component and an appropriate designation: op for operations and
mech for mechanisms. Detailed explanation of naming and coding rules enforced in COMET
can be found in the COMET User Manual [103].

8.2 COMET COMPONENTS 153

getResult()getResult()getResult()getResult()

createMetaData()createMetaData()createMetaData()createMetaData()

readMetaData()readMetaData()readMetaData()readMetaData()

getRelaName()getRelaName()getRelaName()getRelaName()
isSetRowFlag()isSetRowFlag()isSetRowFlag()isSetRowFlag()

result()result()result()result()

getPriority()getPriority()getPriority()getPriority()

submitTrans()submitTrans()submitTrans()submitTrans()

createNew()createNew()createNew()createNew()
start()start()start()start()

aborted()aborted()aborted()aborted()
restarted()restarted()restarted()restarted()

completed()completed()completed()completed()

beginTrans()beginTrans()beginTrans()beginTrans()

presentData()presentData()presentData()presentData()

getParseTree()getParseTree()getParseTree()getParseTree()

endTrans()endTrans()endTrans()endTrans()

query()query()query()query()

(a) UIC (b) SMC (c) TMC

createRelation()createRelation()createRelation()createRelation()

getRawData()getRawData()getRawData()getRawData()

setRawData()setRawData()setRawData()setRawData()

removeRelation()removeRelation()removeRelation()removeRelation()
getMetaData()getMetaData()getMetaData()getMetaData()

(d) IMC

readData()readData()readData()readData()

readTuple()readTuple()readTuple()readTuple()

writeTuple()writeTuple()writeTuple()writeTuple()

writeData()writeData()writeData()writeData()
areEqual()areEqual()areEqual()areEqual()

(e) MMC

Figure 8.2: The outlook of the functional part of the COMET components

are pending for execution, are held in the ready queue. Since an arriving trans-
action is ready to be executed it is placed into the ready queue, which is sorted
according to transaction priorities determined by the chosen scheduling policy.
When the transaction starts executing, it is removed from the ready queue and
placed into the active queue. Upon completion, the transaction is removed from
the active queue and, thereby, leaves the system.

When a transaction, τ , is committed to the database in the manner described
in section 8.2.1, the UIC uses the SMC operation submitTrans() to submit
the request for scheduling this new transaction. Upon receiving the request for
scheduling τ , the SMC places τ in the ready queue, and then the SMC checks
wether it is possible to start the execution of τ . Three possible scenarios in
transaction execution emerge.

1. The thread pool contains at least one thread. In this case transaction
τ is immediately assigned to an available thread, removed from the ready
queue, and placed in the active queue as it starts to execute.

2. The thread pool is empty and transactions currently executing
have at least the same priority as τ . In this case τ remains in the
ready queue waiting to be scheduled by the SMC. The next transaction to
execute is chosen with the highest priority from the ready queue. Recall

154 COMET DATABASE PLATFORM 8.2

that the ready queue is sorted according to transaction priorities which are
determined by the scheduling algorithm, e.g., EDF.

3. The thread pool is empty and at least one of the currently execu-
ting transactions has a lower priority than τ . In this case the transac-
tion with lower priority is rolled back before completion to return its thread
to the thread pool. The released thread is then assigned to τ , which starts
to execute. Thus, τ is removed from the ready queue and placed into the
active queue.

The threads from the thread pool are scheduled by the underlying operating
system. When a transaction is completed, it releases its thread and is removed
from the active queue. If a transaction is rolled back before completion, it also
releases its thread, and is removed from the active queue and then placed back in
the ready queue.

The SMC component requires operations from the UIC, to inform the UIC that
the transaction has successfully been scheduled. Furthermore, the SMC provides
operations to the UIC and the LMC.

8.2.3 Transaction Manager Component (TMC)

The TMC coordinates the activities of all components in the system with respect
to transaction execution. Hence, the TMC performs the actual manipulation of
data in the database. The execution of a transaction is initiated by the UIC
using operation getResult() provided by the TMC (see figure 8.2(c)). The
TMC executes a transaction by traversing its execution tree. The traversal is
done sequentially, using the recursive call to the mechanism result(), which is
the core mechanism of the TMC. For each node in the execution tree, affected
relations are loaded into buffers using operations provided by the IMC and the
MMC; hence, these are part of the required interface of the TMC. The relations
are examined tuple by tuple, and tuples not needed in the query are deleted. The
operations of the query are performed on the tuples in the buffers. If a transaction
contains an update query, all the affected tuples are written back to memory,
again utilizing operations of the IMC and MMC. When finished with a previous
node in the execution tree of a transaction, the TMC starts with the next one.
When finalizing the last node, the TMC informs the SMC that the transaction is
completed. The so-called buffer manager component (BMC), which is a part of
TMC, is in charge of the buffer management.

8.2.4 Indexing Manager Component (IMC)

The IMC deals with indexing of data. Currently, the IMC operations, shown in
figure 8.2(d), are used to find tuples in relations by storing their addresses in
searchable trees. These addresses are used when reading or writing tuples with
the MMC. The IMC provides functionality for managing relations and tuples, e.g.,

8.2 COMET COMPONENTS 155

insertion of new tuples. The default IMC implements the T-tree index structure
[109].

8.2.5 Memory Manager Component (MMC)

The MMC depicted in figure 8.2(e) manages access to data in the physical sto-
rage. For example, each time a tuple is added or deleted, the MMC is invoked
to allocate and release memory. Generally, all reads or writes to/from the me-
mory in COMET involve the MMC. The operations provided by the MMC, e.g.,
readData, writeData, allocate, and deallocate, are used by the TMC
to manage relations, and by the IMC to manage the index.

8.2.6 Transaction Flow

Transaction execution in COMET is done in a number of steps depicted in figure
8.3. Each step is depicted with components involved in that step of execution.
The following is an explantation of execution steps of update and read-only trans-
actions, i.e., update and select queries.

1. An application sends an SQL query as a string to the UIC, initiating a
new transaction for the user query. Initialization implies the UIC stores
transaction-specific details in the DbTrans struct, parses the query string,
and produces a corresponding execution tree, also stored in DbTrans. After
that, the transaction is submitted to the the database for execution using
the UIC.

2. The transaction is scheduled by the SMC as described in section 8.2.2.

3. The TMC loads the relations needed by the query into buffers. Each relation
is loaded as follows. First, the IMC is used to get the address of the metadata
for the relation. The metadata describes properties of the relation and its
attributes, such as the name and types of the attributes. The MMC is
then called to read the metadata from memory. The obtained metadata are
stored by the TMC in a buffer. The TMC continues transaction execution
by locating every tuple in the relation using the IMC, and reads the tuples
into the buffer via the MMC.

4. The operations of the queries are performed on the tuples in the buffer, e.g.,
changing the value of an attribute. If the transaction is read-only, it leaves
the TMC at this point, and moves to step 6.

5. If the transaction contains an update query, the tuples affected in the pre-
vious step are committed by writing the updated values to the memory using
first the IMC to obtain the correct address of the tuple, and then using the
MMC to write the tuple to memory.

156 COMET DATABASE PLATFORM 8.2

Start

transaction

Load

relation

Perform

operations

Commit

changes

Present

result

SMCSMCSMCSMCSMCSMCSMCSMC IMCIMCIMCIMC MMCMMCMMCMMCTMCTMCTMCTMCTMCTMCTMCTMC IMCIMCIMCIMC MMCMMCMMCMMCTMCTMCTMCTMC TMCTMCTMCTMC

UICUICUICUIC

UICUICUICUIC

Steps in Steps in Steps in Steps in

transaction transaction transaction transaction

executionexecutionexecutionexecution

Components Components Components Components

involved in each involved in each involved in each involved in each

stepstepstepstep

Schedule

transaction

LEGENDLEGENDLEGENDLEGEND

the flow of the flow of the flow of the flow of transaction transaction transaction transaction execution execution execution execution COMET COMET COMET COMET componentcomponentcomponentcomponent1

2

3

4

5

6

i i:th step in i:th step in i:th step in i:th step in transaction transaction transaction transaction executionexecutionexecutionexecution

Figure 8.3: The execution steps of a transaction in COMET

8.3 CONCURRENCY CONTROL ASPECT PACKAGE 157

6. The result is presented to the user via the UIC, which in turn utilizes the
TMC.

The execution steps when performing delete or insert queries are analo-
gous, with the exception that metadata is updated in step 5 as well.

8.3 Concurrency Control Aspect Package

The concurrency control (CC) aspect package was identified based on the gui-
delines presented earlier in section 4.4. Recall that an aspect package normally
consists of a number of components and aspects providing a specific policy. The
aspects in the aspect package can be categorized further into policy, task (trans-
action) model, and connector aspects. In the case of COMET, the CC aspect
package consists of one component, locking manager component (LMC), and the
following application aspects:

❏ CC policy aspects: high priority 2 phase locking with similarity aspect and
optimistic divergence control aspect; and

❏ CC transaction model aspects: basic and epsilon-based transaction model
aspects.

Since the LMC is the only component in the package, it was more convenient
to integrate the functionality of the connector aspect with CC policy aspects
(thereby leaving the class of connector aspects unpopulated).

The CC policy aspects define the policy used for resolving conflicts that occur
when multiple transactions require the same data. The CC transaction model
aspects modify the transaction model of the database to fit the model required
by a particular CC policy.

Before going into details on the implementation of these aspects, we first
briefly present the main ideas behind the chosen concurrency control algorithms
for conflict resolution, and discuss the transaction models needed for realization
of each of these algorithms.

8.3.1 CC Policies

For ensuring conflict resolution in the COMET database, we have chosen to im-
plement two representative CC policies: (i) high-priority 2 phase locking with
similarity as the representative of the class of pessimistic CC policies, and (ii)
optimistic divergence control as a representative of the class of optimistic appro-
aches.

HP-2PL with Similarity

High priority 2 phase locking (HP-2PL) with similarity [95] is a pessimistic con-
currency control. It is founded on HP-2PL, which assumes that a transaction

158 COMET DATABASE PLATFORM 8.3

Lock Read Write
Read ✓ ✗

Write ✗ ✗

Table 8.2: The lock compatibility for HP-2PL concurrency control policy

executes in two phases: (i) the growing phase, in which the transaction acquires
all locks and is not allowed to release any of the locks, and (ii) the shrinking
phase, in which all locks held by the transaction are released. HP-2PL uses two
types of locks, read (shared) locks and write (exclusive) locks. Table 8.2 shows the
compatibility between the locks, where ✓ indicates that locks are compatible and
✗ indicates that they are conflicting. If a transaction tries to lock an item, such
that a lock conflict occurs, the conflict resolution policy is employed. In HP-2PL,
the conflict is resolved depending on the priorities of the involved transactions as
follows. If the requesting transaction has the highest priority of all transactions
holding a lock, these are aborted and the requesting transaction acquires the lock.
If the requesting transaction does not have the highest priority, it is blocked until
it becomes the highest priority transaction.

When similarity is incorporated in HP-2PL, the conflicts resolution policy is
based on the similarity of transactions in the value domain. To outline the way
conflicts are handled we introduce the following notation:

❏ τ1, . . ., τn is a collection of transactions in the system that manipulate data
item x,

❏ v(x) is the original value of data item x, before any transaction τi, 1 ≤ i ≤ n,
has accessed it,

❏ v(τi, x) is the new value of x that some transaction τi wants to write to x,

❏ τnew is a new transaction coming into the system that intends to access data
item x, and

❏ v(τnew, x) is the value of data item x that τnew intends to write to x.

If τnew is an update transaction acquiring a lock on x in a conflicting mode
with some of transactions τi already holding a lock, the conflicting transactions
are considered similar and the lock is granted to τnew if the following conditions
hold:

1. v(τnew, x) is similar to v(x)

2. v(τnew, x) is similar to v(τi, x), ∀i : 1 ≤ i ≤ n

If τnew is a read-only transaction, only one condition should hold in order for
conflicting transactions to be similar:

8.3 CONCURRENCY CONTROL ASPECT PACKAGE 159

1. v(x) is similar to v(τi, x), ∀i : 1 ≤ i ≤ n

The conflict is handled using conventional HP-2PL if the conflicting transactions
are not similar. The semantics of the “is similar” relation is application-specific
and should be defined by the application designer. The similarity can be a time
interval within which two values are read from a sensor, or a certain data value
threshold that should not be exceeded.

Optimistic Divergence Control

Optimistic divergence control (ODC) [181] is based on an optimistic concurrency
control method introduced by Wu and Dias [184] that uses weak and strong locks
and assumes transaction execution in three phases: read, write, and validation
phase. As a transaction executes it acquires weak read and write locks on the
accessed data items, and updates data in the local space. If a strong lock is already
held on any of the items, the requesting transaction is marked for abortion, and
is aborted in the validation phase. If a transaction has not been marked for
abortion during its read/write phase, it is committed in the validation phase.
During commit, all weak write locks of a transaction are temporarily converted
into strong locks. This implies that at this point all other transactions holding
weak locks on data items that get locked by strong locks are marked for abortion.

In ODC transactions can be read-only, update, and complex queries. To dis-
tinguish between update and query transactions, we denote query transactions as
τq, and update transactions as τu. Every query transaction τq has two attributes:
ImpV alue(τq), denoting the currently imported inconsistency, and ImpLimit(τq)
setting the limit on the amount of inconsistency the query is allowed to import.
Update transactions τu are associated with similar values. ExpV alue(τu) deno-
tes the currently exported inconsistency and ExpLimit(τu) sets the limit on the
amount of inconsistency a transaction is allowed to export. Hence, when a trans-
action τq requests a weak read lock on a data item and a strong lock is already
held by some other transaction τu, the import value of τq and the export value of
τu is checked. If any of these values exceed their respective limits after an incre-
ment by the difference in absolute values on the data item caused by τu during its
execution, τq is marked for abortion. If both values are still within their limits, τq

is not marked for abortion, rather it is marked as non-serializable as the conflict
is resolved based on epsilon serializability. In the validation phase transactions
are allowed to commit as long as they are not marked for abortion.

8.3.2 Data and Transaction Model

The HP-2PL with similarity policy requires a simple transaction model, which we
denote as the basic transaction model. Namely, in the basic transaction model
data elements are associated only with their values and each transaction τi is
characterized with a period pi, and a relative deadline di. Transactions can be
read-only transactions, update transactions, or complex query transactions. The

160 COMET DATABASE PLATFORM 8.3

getLock()getLock()getLock()getLock()

createLock()createLock()createLock()createLock()

insertLock()insertLock()insertLock()insertLock()

releaseLock()releaseLock()releaseLock()releaseLock()
releaseTrans()releaseTrans()releaseTrans()releaseTrans()

removeLock()removeLock()removeLock()removeLock()

Figure 8.4: The locking manager component in COMET

basic transaction model suffices for HP-2PL with similarity as the only information
required from a transaction during its execution is its priority. The transaction
priority is set based on the scheduling policy.

The ODC method, however, requires broadening of the transaction model to
embrace export and import limits on transactions. The epsilon-based transaction
model reflects the requirements on the transactions posed by the ODC policy. In
this model each transaction τi is characterized with:

❏ period pi,

❏ relative deadline di,

❏ export limit expi, and

❏ import limit impi.

Export and import limits of transactions are set by the system designer depending
on the need of an application with which the database is used.

8.3.3 COMET CC Aspect Package

Both HP-2PL with similarity and ODC can be implemented using locks and,
thereby, belong to the class of lock-based concurrency control policies. Although
these policies are different in the way they resolve conflicts, locking and unlocking
of data is done in the same manner in both algorithms. This results in using the
same LMC for both algorithms and an analogous implementation of HP-2PL and
ODC when it comes to the reconfiguration locations (i.e., join points) in the code
of COMET components.

The LMC deals with locking of data, providing mechanisms for lock manipula-
tion, and maintaining lock records in the database. Operations provided by the
LMC that enable lock management together with the underlying mechanisms are

8.3 CONCURRENCY CONTROL ASPECT PACKAGE 161

aspect CCpolicyaspect CCpolicyaspect CCpolicyaspect CCpolicy{

/* pointcuts *//* pointcuts *//* pointcuts *//* pointcuts */

/* relating to MMC */

 pointcut readTuple(DataElem *de pointcut readTuple(DataElem *de pointcut readTuple(DataElem *de pointcut readTuple(DataElem *de)=

 execution("bool MMC_readTuple(...)”)&&args(de);

 pointcut writeTuple pointcut writeTuple pointcut writeTuple pointcut writeTuple(DataElem *de)=

 execution("bool MMC_writeTuple(...)")&&args(de);

/* relating to IMC */

 pointcut insertIndex(char *relation.char *key, DataElem *address pointcut insertIndex(char *relation.char *key, DataElem *address pointcut insertIndex(char *relation.char *key, DataElem *address pointcut insertIndex(char *relation.char *key, DataElem *address)=

 execution("bool IMC_insert(...)”)&&args(relation,key,address);

/* advices *//* advices *//* advices *//* advices */
 advice readTuple advice readTuple advice readTuple advice readTuple(de): before(DataElem *de){

 CC_lockAttempt(de, ’W’);

 }

 advice writeTuple advice writeTuple advice writeTuple advice writeTuple(de):before(DataElem *de){

 CC_lockAttempt(de, ’R’);

 }

…

 advice insertIndex advice insertIndex advice insertIndex advice insertIndex(relation,key,address): before(char *relation, ...){

 CC_insertIndex(realtion,key,address,T)

 }

…

}

Figure 8.5: The structure of a locking-based concurrency control aspect

depicted in figure 8.4. The LMC provides an initial policy for the lock administ-
ration in which all locks are granted. The initial policy of the component can be
changed into a specific policy where the LMC deals with lock conflicts by weaving
a concurrency control aspect.

The concurrency control aspect is shown in figure 8.5. The functions imple-
menting advices are implemented into a separate C file, and are in fact treated
as operations provided by the aspect. Hence, these are for the purpose of the
dynamic exchange also listed in the aspect provided interface. The reconfigura-
tion locations of components used in pointcut expressions are, on the other hand,
declared in the required interface of the aspect. In general, the aspect that imple-
ments HP-2PL with similarity has similar structure and pointcuts as the aspect
that implements ODC. Table 8.3 shows what components are crosscut and used
by an aspect that implements lock-based CC. ✓ in the crosscut column means
that the component is crosscut by the aspect, while ✓ in the used column implies
that component operations or mechanisms are used in the implementation of ad-
vices in the aspect. A short description of why a component is crosscut and/or

162 COMET DATABASE PLATFORM 8.3

Comp. Crosscut Used Description

UIC ✓ The UIC is crosscut by the aspect to enable
initializations when new threads start.

TMC ✓ The TMC is crosscut to make it possible to
release read locks when tuples are deleted
from a buffer. Additionally, metadata loc-
king on the insert and delete database ope-
rations is performed.

IMC ✓ ✓ The IMC is crosscut to perform locking of
the metadata when metadata is read. The
IMC is also used for restoration of the index
on rollbacks.

SMC ✓ The SMC operations are used to abort and
restart transaction on conflicts.

LMC ✓ The LMC is used to manage all locking and
unlocking of data.

MMC ✓ ✓ The MMC is crosscut to ensure locking of
tuples on tuple reads, as well as to restore
tuples on rollbacks, and to perform deferred
deallocation.

Table 8.3: The components that are crosscut and used by lock-based concurrency control
methods

8.4 INDEX ASPECT PACKAGE 163

used is also given. Overall, HP-2PL consists of 19 pointcuts and 19 advices, while
two more pointcuts and advices are defined for the ODC aspect, which has in
total 21 pointcuts and 21 advices.

The epsilon-based transaction model aspect augments the basic COMET
transaction model so that it suits the epsilon transaction model, and has export
and import limits. The augmentation of the transaction model is achieved with
an inter-type advice that adds new parameters to the to the basic transaction
model by adding members, the export limit expi and the import limit impi, to
DBTrans struct.

8.4 Index Aspect Package

The index aspect package consists of one component, an alternative IMC that
implements B-tree structure (IMC B-tree), and the GUARD policy aspect. As
the GUARD indexing policy requires only the basic data and transaction model,
additional transaction model aspects are not needed to be defined. Moreover,
as the IMC B-tree replaces the default IMC component, connector aspects that
would ensure integration of the component into the system are unnecessary.

8.4.1 Indexing Policy

Haritsa and Seshadri [71] proposed the GUARD-link indexing protocol to further
strengthen the index management of a soft real-time system by taking into account
transaction deadlines. We adopt this policy in COMET as a part of the index
aspect package.

GUARD-link Policy

The GUARD-link indexing protocol augments the classical B-tree algorithm with
the GUARD admission control. In the GUARD policy, all transactions entering
the system are divided into two groups, admit and deny. The goal is to collect
the largest set of transactions that can be completed before their deadlines into
the admit group. Assigning transactions to groups is done using an admission
controller that determines whether the incoming transaction is suitable for the
admit or for the deny group. The variable AdmitCapacity, based on which the
assignment of transactions into groups is performed, represents the size of the
admit group. Each transaction τ is assigned a random integer and inserted in a
list, which is sorted based on this integer. If the position posτ of transaction τ in
the list is less than or equal to AdmitCapacity the transaction is assigned to the
admit group, otherwise it is assigned to the deny group. EDF scheduling policy
is then employed by the scheduler to schedule transactions within the admit

group. While the transactions in the admit group are allowed to execute, the

164 COMET DATABASE PLATFORM 8.4

1: aspect Guard{
2:
3: pointcut transCreated(SMC_ScheduleRecord sr, void
4: *args) = execution(”bool SMC_CreateNew()”)
5: &&args(sr, arg)
6: //GUARD admission control
7: advice transCreated(sr, args) : around(...) {
8: ...
9: pos=getPosition(sr.transId);
10: if (pos<=admitCapacity){
11: assignToAdmitGroup(sr.transId):
12: tjp->proceed();
13: } else {
14: assignToDenyGroup(sr.transId);
15: }
16: ...
17: };

Figure 8.6: The GUARD policy aspect

transactions in the deny group are denied entry to the system and are discarded
when their deadlines expire.

8.4.2 COMET Index Aspect Package

As mentioned earlier, the index package consists of the IMC B-tree component
and the GUARD aspect, which are described next.

The IMC B-tree is a component that implements indexing based on B-trees.
Namely, the index structure that COMET uses by default in an IMC component
described in section 8.1 is a T-tree structure [98]. As GUARD-link indexing
concurrency control requires a B-link tree, it was necessary to implement this
type of structure as a replacement for the T-tree. An index structure does not
have characteristics of a crosscutting concern as it is a functionally coherent unit,
clearly separated from the rest of the system. Thus, we decided to implement the
B-link tree structure within a new version of an IMC component as a part of the
aspect package. The new IMC B-tree component has the same interfaces as the
default IMC that uses T-trees. Thus, switching between the two IMCs (and, thus,
indexing policies) is transparent to the rest of the COMET database. The version
of the IMC needed for the database configuration can be chosen at compile time
during static system reconfiguration. Furthermore, the version of the IMC can be
exchanged at run-time by means of dynamic system reconfiguration.

The GUARD aspect implements the GUARD admission control. It only
crosscuts one component, the SMC. The aspect also uses mechanisms of the SMC

8.5 QOS ASPECT PACKAGE 165

in its advices to perform an admission check to establish whether the transaction
can violate its deadlines and, thereby, needs to be placed in the deny group. Fi-
gure 8.6 illustrates how the GUARD aspect is implemented. As prescribed by the
GUARD policy, every transaction is assigned to either the admit or the deny

group as follows. If the incoming transaction passes the admission test it is assig-
ned to the admit group and allowed to execute (lines 10-12). This implies that a
schedule record for that transaction is created in the SMC and transaction conti-
nues execution in the normal flow of execution. If the transaction does not pass
the admission test, its execution is not initiated and it is assigned to the deny
group (lines 13-15). The transactions in the deny group for which deadlines have
elapsed are removed from the system.

8.5 QoS Aspect Package

Applying the notion of an aspect package on COMET also resulted in the de-
velopment of the COMET QoS aspect package that enables the database to be
used in applications that have uncertain workloads and where requirements for
data freshness are essential. The COMET QoS aspect package consists of two
components, the QAC and the FCC, and the following aspects:

❏ QoS management policy aspects: QAC utilization policy, missed deadline
monitor, missed deadline controller, scheduling strategy, data access mo-
nitor, QoS through update scheduling aspect, self-tuning regulator aspect,
and adaptive regression model aspect;

❏ QoS transaction model aspects: utilization transaction model aspect and
data differentiation aspect; and

❏ QoS connector aspects: QAC connector and FCC connector aspect.

8.5.1 QoS Policies

Given that we want to use the COMET database with applications that require
performance guarantees, we need to employ existing QoS policies and integrate
them into the database. Hence, in this section we give an overview over three in-
stances of feedback-based QoS management we found in our case study to be espe-
cially suitable for ensuring performance guarantees in real-time database systems.
First we briefly review the feedback miss ratio control (FC-M) [108], where dead-
line miss ratio is controlled by modifying the number of admitted transactions.
This is followed by a description of the QoS sensitive approach for miss ratio and
freshness guarantees (QMF) [80], used for managing QoS in real-time databases.
Finally, we give a description of two adaptive QoS algorithms.

166 COMET DATABASE PLATFORM 8.5

FC-M Policy

Recall that FC-M uses a control loop to control the deadline miss ratio by adjus-
ting the utilization in the system. The deadline miss ratio,

m(k) =
missedTransactions(k)

admittedTransactions(k)
(8.1)

denotes the ratio of transactions that have missed their deadlines. The perfor-
mance error, em(k) = mr(k) − m(k), is computed to quantize the difference
between the desired deadline miss ratio mr(k) and the measured deadline miss
ratio m(k). The change to the utilization δu(k) is the manipulated variable.
Admission control is used to carry out the change in utilization.

QMF Policy

Another way to change the requested utilization is to apply the policy used in
QMF [80], where a feedback controller, similar to that of FC-M, is used to control
the deadline miss ratio. The actuator in QMF manipulates the quality of data in
real-time databases in combination with admission control to carry out changes
in the controlled systems. If the database contains rarely requested data items,
then updating them continuously is unnecessary, i.e., they can be updated on-
demand. On the other hand, frequently requested data items should be updated
continuously, because updating them on-demand would cause serious delays and
possibly deadline overruns. When a lower utilization is requested via the deadline
miss ratio controller, some of the least accessed data objects are classified as
on-demand, thus, reducing the utilization. In contrast, if a greater utilization is
requested then the data items that were previously updated on-demand, and have
a relatively higher number of accesses, are moved from on-demand to immediate
update, meaning that they are updated continuously. This way the utilization is
changed according to the system performance.

Adaptive QoS Policies

The QoS management approaches presented so far in this section are using linear
feedback-control assuming that real-time system is time-invariant and implying
that a controller is tuned and fixed for that particular environment setting. For
time-varying real-time systems it is beneficial to use adaptive QoS management
that enables the controller in the feedback loop to dynamically adjust its control
algorithm parameters such that the overall performance of the system is improved.
Two representative adaptive QoS approaches are the self-tuning regulator and the
least squares regression model [146]. In these, the control algorithm parameters
are adjusted either by self-tuning or by employing least squares techniques.

8.5 QOS ASPECT PACKAGE 167

Attribute Periodic transactions Aperiodic transactions
di di = pi di = rA,i

uE,i uE,i = xE,i/pi uE,i = xE,i/rE,i

uA,i uA,i = xA,i/pi uA,i = xA,i/rA,i

Table 8.4: The utilization transaction model

8.5.2 Data and Transaction Model

QoS algorithms like FC-M, QMF, and adaptive algorithms require distinct and
more complex data and transaction models than the ones used in previously descri-
bed aspect packages.

In the differentiated data model, data objects are classified into two classes,
temporal and non-temporal. For temporal data we only consider base data, i.e.,
sensor engineering data objects that hold the view of the real-world and are up-
dated by sensors. A base data object bi is considered temporally inconsistent or
stale if the current time is later than the timestamp of bi followed by the ab-
solute validity interval avii of bi, i.e., currenttime > timestampi + avii. Both
FC-M and QMF policies require a transaction model where transaction τi is clas-
sified as either an update or a user (query) transaction. Update transactions
arrive periodically and may only write to base data objects. User transactions
arrive aperiodically and may read temporal and read/write non-temporal data.
In this model, denoted the utilization transaction model, each transaction has the
following characteristics:

❏ period pi (update transactions),

❏ estimated average inter-arrival time rE,i (user transactions),

❏ actual average inter-arrival time rA,i (user transactions),

❏ estimated execution time xE,i,

❏ actual execution time xA,i,

❏ relative deadline di,

❏ estimated utilization3, uE,i, and

❏ actual utilization, uA,i.

Table 8.4 presents the complete utilization transaction model. Upon arrival, a
transaction presents the estimated average utilization uE,i and the relative dead-
line di to the system. The actual utilization of the transaction uA,i is not known
in advance due to variations in the execution time.

3Utilization is also referred to as load.

168 COMET DATABASE PLATFORM 8.5

1: aspect QAC_composition{
2: // Insert QAC between UIC and SMC.
3: advice call("bool SMC_CreateNew(...)") : around() {
4: if (QAC_admit(*(ScheduleRecord *)tjp->arg(0)))
5: tjp->proceed();
6: else
7: *(bool *)tjp->result() = false;
8: }
9: };

Figure 8.7: The QAC connector aspect

8.5.3 COMET QoS Aspect Package

The current COMET QoS aspect package provides components and aspects that
implement the FC-M, QMF, self-tuning, and least squares regression QoS policies.

The QAC decides, based on an admission policy, whether to allow new transac-
tions into the system. Operations provided by the QAC are QAC Admit(), which
performs the admission test, and QAC Adjust(), which adjusts the number of
transactions that can be admitted. The default admission policy is allowing all
transactions to be admitted to the system. This admission policy of the QAC can
be changed by weaving specific QoS actuator policy aspects.

The FCC computes the input to the admission policy of the QAC at regular in-
tervals. By default, an input of zero is generated, but by using QoS controlling po-
licy aspects different feedback policies can be used. The FCC provides the opera-
tion FCC Init() that initializes the FCC component. FCC calls QAC Adjust()

after computing the manipulated variable.

The utilization transaction model aspect augments the basic COMET
transaction model so that it suits the utilization transaction model described in
section 8.5.2. This is done using inter-type declaration that adds new parameters
to the basic model, e.g., estimated utilization uE,i and estimated execution time
xE,i.

The QAC connector aspect enables QAC to intercept requests to create new
transactions that are posed by the UIC to the SMC. This is done via an advice
of type around which is executed when the SMC operation SMC CreateNew()

is called (lines 3-8 in figure 8.7). Since this operation of the SMC is in charge
of registering a new transaction to the system, the advice ensures that, before
the transaction is actually registered, an admission test is made by the QAC
(line 4). If the transaction can be admitted the transaction registration is resu-
med; the proceed() in line 5 enables the normal continuation of the join point
SMC CreateNew(). If the transaction is to be aborted, then the around advice

8.5 QOS ASPECT PACKAGE 169

1: aspect QAC_utilization_policy{
2: // Add a utilization reference to the system
3: advice "UIC_SystemParameters" : float utilizationRef;
4: // Changes the policy of the QAC to the utilization
5: advice execution("% QAC_admit(...)") : around() {
6: // Get the current estimated total utilization
7: totalUtilization = GetTotalEstimatedUtilization();
8: // Check if the current transaction can be admitted
9: if (utilizationTarget > totalUtilization + sr->utilization)
10: { (*(bool *)tjp->result()) = true; }
11: else
12: { (*(bool *)tjp->result()) = false; }
13: }

Figure 8.8: The QAC utilization policy aspect

replaces the execution of the transaction registration in full and, thus, ensures
that the transaction is rejected from the system (line 7).

The QAC utilization policy aspect shown in figure 8.8 replaces, via the
around advice (lines 5-13), the default admission policy of QAC with an admis-
sion policy based on utilization (lines 9-12). The current transaction examined
for admission in the system is denoted ct in figure 8.8.

The FCC connector aspect facilitates the composition of FCC with all other
components in the system by ensuring that the FCC is properly initialized during
the system initialization.

The missed deadline monitor aspect modifies the SMC to keep track of
transactions that have missed their deadlines, missedTransactions, and transac-
tions that have been admitted to the system, admittedTransactions. This is done
by having a number of advices of different types intercepting SMC operations that
handle completion and abortion of transactions (see figure 8.9). For example, the
advice of type after, which intercepts the call to SMC CreateNew(), increments
the number of admitted transactions once transactions have been admitted to
the system (lines 2-4). Similarly, the advice in lines 5-12 checks if the number of
transactions with missed deadlines should be incremented before the transaction
has completed, i.e., before invoking the SMC operation SMC Completed().

The missed deadline controller aspect is illustrated in figure 8.10. This
aspect is an instance of the feedback control policy aspect and it modifies the
SMC to keep track of the deadline miss ratio, using equation 8.1. The aspect
does so with two advices of type after. One is executed after the initialization
of the UIC (lines 3-11), thus, ensuring that the appropriate variables needed for
FCC policy are initialized. The other advice modifies the output of the FCC to

170 COMET DATABASE PLATFORM 8.5

 1: aspect missed_deadline_monitor {
 2: advice call("% SMC_CreateNew(...)") : after(){
 3: if (*(bool *)tjp->result()) { admittedTransactions++; }
 4: }
 5: advice call("% SMC_Completed(...)") : before(){
 6: ScheduleRecord *sr = (ScheduleRecord *)tjp->arg(0);
 7: _getTime(¤tTime);
 8: node = findNode(ActiveQueue_root, sr->id);
 9: if ((node != NULL) && (_compareTimes(¤tTime,
10: &(node->data->deadline))))
11: { missedTransactions++; }
12: }
13: advice call("% SMC_Aborted(...)") : before(){…
14: admittedTransactions--;}
15: advice call("% SMC_RejectLeastValuableTransaction(...)") : after(){
16: if (*(bool *)tjp->result()) { admittedTransactions--;}
17: }
18: advice call("% getTimeToDeadline(...)") && within("%
19: getNextToExecute(...)") : after() {… missedTransactions++;}
20: }

Figure 8.9: The missed deadline monitor aspect

suit the chosen feedback control policy, which is deadline miss ratio in this case
(lines 13-17).

The data differentiation aspect enriches the data model of the basic COMET
configuration to differentiate between base data and derived data. Differentiation
is done by assigning avii and timestampi attributes to data items manipulated by
the transaction. Inserted data items containing fields for avii and timestampi are
assumed to be base data. Whenever these data values are inserted or modified,
timestampi is set to the current time.

The scheduling strategy aspect modifies the scheduling strategy and the data
model of COMET to support two distinct update strategies for base data: imme-
diate and on-demand [139]. To accommodate these strategies the aspect adds an
update wait queue in the SMC (advice of type after in lines 2-6 in figure 8.11).
The name of the update strategy is stored in a field in the relation (see line 15
for an example). Hence, an inserted data that contains a field for update strategy
as well as fields for avii and timestampi is handled by this aspect. Note that,
when a transaction reads a base data item, the freshness of the item is examined
in the advice that is executed after TMC mechanism readData() is called, i.e.,
after the data is read from the memory (lines 18-22 in figure 8.11). If the base
data item is stale and the updating strategy is set to on-demand, the transaction
is rolled back and moved to the update wait queue. If the updating strategy is
set to immediate, the transaction is rolled back and restarted. Updates of base
data items set to immediate are always allowed, while updates of base data items

8.5 QOS ASPECT PACKAGE 171

1: aspect missed_deadline_control{
2: // Initialize the new variales need for control
3: advice call("% UIC_init(...)") : after() {
4: UIC_SystemParameters *sp =
5: (UIC_SystemParameters *)tjp->arg(0);
6: if (*(bool *)tjp->result()) {
7: missRatioReference = sp->missRatioReference;
8: missRatioControlVariableP =
9: sp->missRatioControlVariableP;
10: ...
11: }
12: // Modify the calculation of the control output
13: advice call("% calculateOutput(...)") : after(){
14: missRatioOutputHm =
15: calculateMissRatioOutput(RSMC_GetDeadlineMissRatio());
16: *((float *)tjp->result()) = missRatioOutputHm;
17: }
18: }

Figure 8.10: The missed deadline control aspect

1: aspect scheduling_policy{
2: advice call("% SMC_constructor(...)") : after(){
3: // Initialize the update-wait queue
4: UpdateWaitQueue_root = SMC_createNode(...);
5: ...
6: }
7: advice call("% insert(...)") : before(){
8: // Set update type to immediate upon
9: //if the data is base data.
10: if (isUpdateTypeData(buffer)){
11: while (updateTypeNr > counter){
12: counter++;
13: treePtr = treePtr->right;
14: }
15: strcpy(treePtr->left->Data.operandID, "IMMEDIATE");
16: }
17: }
18: advice call("% ReadData(...)") : after(){
19: // If it is a base data relation...
20: // If it is not an update or insert transaction...
21: // If it is invalid...
22: }
23: …..
24: }

Figure 8.11: The scheduling strategy aspect

172 COMET DATABASE PLATFORM 8.5

set to on-demand are rejected unless these data items have been requested by a
transaction in the update wait queue. If so, the requesting transaction is moved
to the ready queue and the update executes normally.

The data access monitor aspect modifies the TMC to keep track of how
often base data items are accessed. Remember that in QMF data base items are
updated on-demand or immediate based on how often they are accessed.

The QoS through update scheduling aspect uses the data differentiation
aspect, scheduling strategy aspect, and the data access monitor aspect to modify
the QAC such that the actuator policy in QMF is used. Hence, when applying the
QoS through update scheduling aspect, changes to quality of data in combination
with admission policy is used to enforce utilization changes based on the control
signal from FCC.

The self-tuning regulator aspect and adaptive regression model aspect
implement the adaptive policies in controllers so that the control algorithm para-
meters can be adjusted dynamically and, thereby, enable COMET to be perceived
as time-varying system. Both aspects modify the policies of FCC and QAC, and
enhance the scheduling policy of the system in the process, hence, crosscutting
the SMC.

Chapter 9
COMET Configuration and

Analysis

Here we discuss the possible COMET configurations that can be obtained using
aspects and components described in the previous chapter. Furthermore, we di-
scuss how the ACCORD development tool environment can be used to support
configuration and analysis of COMET. Finally, we present performance evalua-
tions showing that both static and dynamic system reconfiguration yields a new
and functionally correct COMET configuration that exhibits the desired behavior.

9.1 COMET Configurations

A significant number of COMET configurations fulfilling distinct requirements
can be made from existing COMET components and aspects. In this section
we describe a subset of possible COMET configurations, their relationship, and
constituents.

The basic configuration consists of five COMET components: the UIC, TMC,
SMC, IMC, and MMC (see table 9.1). The configuration uses the basic transac-
tion model, and it is especially suitable for small resource-constrained embedded
vehicular systems [123]. All remaining database configurations are built upon the
basic COMET configuration by adding appropriate aspects and components from
aspect packages.

The high priority two-phase locking concurrency control configuration
(COMET HP-2PL) includes all basic components, as well as the LMC and the
HP-2PL with similarity aspect from the concurrency control aspect package. This

173

174 COMET CONFIGURATION AND ANALYSIS 9.1

configuration is suitable for more complex real-time systems where transactions
can execute concurrently.

The optimistic divergence control configuration (COMET ODC) is built
on top of the basic COMET configuration by adding the LMC, the ODC aspect,
and the epsilon-based transaction model aspect, as indicated in table 9.1. This
configuration, therefore, enables database system to resolve conflicts based on the
ODC policy. As such, COMET ODC is suitable for soft real-time applications
having concurrent transactions.

The GUARD-link configuration (COMET GUARD) requires all compo-
nents from the basic COMET configuration, except the IMC. It also requires
the constituents of the CC aspect package. Furthermore, from the index aspect
package the IMC B-tree and the GUARD link policy aspect are required. Two
distinct COMET GUARD configurations can be made, depending on the choice
of the CC policy from the CC aspect package. Namely, if the HP-2PL with si-
milarity aspect is used, COMET GUARD with HP-2PL is created. If ODC is
used, the configuration of COMET GUARD with ODC is made (see table 9.1).
COMET GUARD configurations are desirable in soft real-time applications where
indexing structure should further be optimized in terms of meeting transaction
deadlines.

A number of COMET QoS configurations can be made using the COMET
QoS aspect package together with different combinations of aspects and compo-
nents from the CC aspect package and the index aspect package. For simplicity
here we discuss only COMET QoS configurations that are distinct with respect to
QoS-related aspect and components. Any of the concurrent or GUARD COMET
configurations from table 9.1 can be used as a foundation for adding aspects
and components from the COMET QoS aspect package, and creating a COMET
QoS configuration. Hence, we discuss in detail five distinct COMET QoS con-
figurations that provide admission control, FC-M, QMF, self-tuning, and least
squares regression QoS. However, note that depending on the chosen aspects and
components from the COMET QoS aspect package, the number of possible con-
figurations in COMET QoS family is higher (see figure 9.1). Table 9.2 illustrates
the elements of the QoS aspect package used in the five representative COMET
QoS configurations.

The admission control QoS configuration includes one component from the
QoS aspect package, the QAC. The configuration also requires two aspects, the
QAC connector aspect and the utilization transaction model aspect. The QAC
connector aspect adds the QAC to the existing controlled system, while the uti-
lization transaction model aspect extends the transaction model (see table 9.2).
The admission control configuration is simple as it only provides facilities for
admission control.

9.1 COMET CONFIGURATIONS 175

Concurrency control
aspect package

policy
aspects

transaction
model

aspects

connector
aspects

components LMC

ODC

HP-2PL

Epsilon-based

COMET configurations

COMET

HP-2
PL

COMET

ODC

X

X

X

COMET
GUARD

X

XXX

with
 H

P-2PL

with
 O

DC

Concurrent
COMET

X

X

X

Index aspect package

policy
aspects

transaction
model

aspects

connector
aspects

components IMC_B-tree

GUARD link

X

X

MMC X

Basic

COMET

IMC

SMC

TMC

UIC

Basic
COMET

components

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

COMET HP-2PL - The high-priority 2 phase locking configuration
COMET ODC- The optimistic divergence control configuration

LEGEND
X in the table means that an aspect/component is part of a configuration

UIC - user interface component
TMC - transaction manager component

IMC - index manager component
MMC - memory manager component

LMC - locking manager componentSMC - scheduling manager component

Table 9.1: Relationship between different parts of the concurrency control and the index
aspect package and various COMET configurations

176 COMET CONFIGURATION AND ANALYSIS 9.1

LMC MMC

QAC

FCC
C

A Actuator composition

Utilization Model

Missed
Deadline
Controller

Missed
 Deadline

Monitor
Differentiation Model

Scheduling
Strategy

Data Access Control

Self Tuning Regulator

Code of the
reconfigured
component

Base component
implementation

(without aspects)

Aspect woven
into component

A A

C

UIC SMC TMC IMC Concurrent
configuration

Admission control
configuration

FC-M
configuration

QMF
configuration

STR
configuration

C Controller composition

Transaction model aspects

 Composition aspects

Policy aspects

LEGEND

User Interface
Component

(UIC)

Scheduling
Manager

Component
(SMC)

Transaction
Manager

Component
(TMC)

Index
Manager

Component
(IMC)

Locking
Manager

Component
(LMC)

Memory
Manager

Component
(MMC)

QoS Actuator
Component

(QAC)

Feedback
Controller

Component
(FCC)

Configuration
boundary

Config 1

Config 2

Config 2 refines Config 1
by adding the aspect to

the component

UM UM

UM

DM

DM DM

MDM

MDM

MDC

MDC MDC

SS

SSSSSS

DAC DAC DAC DAC

DAC

STR STR STR STR

STR

Figure 9.1: Creating a family of real-time systems from the COMET QoS aspect package

9.1 COMET CONFIGURATIONS 177

QoS aspect package

policy
aspects

transaction
model

aspects

connector
aspects

Utilization transaction model

Controller connector

Actuator connector

Actuator utilization policy

Missed deadline monitor

Missed deadline controller

Data differentiation

Scheduling strategy

Data access monitor

QoS through update
scheduling

COMET configurations

Admiss
ion

co
ntro

l
COMET

FC-M COMET

QMF

X

X

X
X

X

X

X

X
X

X

X

X

X

X

X

X

X X X

components
QAC

FCC

X

X

X

X

X

Self-tuning regulator

Adaptive regression
model

COMET

STR COMET

RM

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

COMET FC-M - The miss ratio feedback configuration
COMET QMF - The update scheduling configuration

COMET STR - The self-tuning regulator configuration

COMET RM - The regression model configuration

LEGEND

X in the table means that an aspect (or a component) is part of a configuration

QAC - QoS Actuator Component FCC - Feedback Controller Component

Table 9.2: Relationship between different parts of the QoS package and various COMET
QoS configurations

178 COMET CONFIGURATION AND ANALYSIS 9.2

The miss ratio feedback configuration (COMET FC-M) provides QoS
guarantees based on the FC-M policy. The configuration includes the QAC and
FCC components and their corresponding connector aspects, the utilization trans-
action model aspect, the missed deadline monitor aspect, and the missed deadline
controller aspect (see table 9.2). These aspects modify the policy of the SMC and
FCC to ensure that QoS with respect to controlling the number of deadline misses
is satisfied in soft real-time systems where workload characteristics are generally
unpredictable.

The update scheduling configuration (COMET QMF) provides the QoS
guarantees based on QMF policy. Here the data differentiation aspect and sche-
duling strategy aspect are used to enrich the transaction model. Moreover, the
data access monitor aspect is required to ensure the metric used in QMF. Also,
the QoS through update scheduling aspect is used to further adjust the policy
of QAC to suit the QMF algorithm. COMET QMF is especially suitable for
soft real-time applications where maintaining a certain level of data quality is of
interest.

The self-tuning regulator configuration (COMET STR) provides adap-
tive QoS control where the control algorithm parameters are adjusted by using
the self-tuning regulator. This aspect is added to the aspects and component
constituting the COMET FC-M configuration to ensure the adaptability of the
control already provided by the COMET FC-M configuration. The COMET STR
configuration can be used for real-time systems that cannot be modeled as time-
invariant.

The regression model configuration (COMET RM) provides adaptive QoS
control where the control algorithm parameters are adjusted by using the least
square technique and the regression model. This aspect also requires all the
aspects needed for the FC-M configuration to ensure adaptability of QoS mana-
gement.

9.2 Static and Dynamic COMET Configuration

Each of the COMET configurations discussed in the previous section can be con-
figured statically and dynamically. Regardless of the way COMET is configured,
tools in the ACCORD development environment can be used for aiding the desig-
ner in configuring. In this section, therefore, we first illustrate the way COMET is
configured using ACCORD tools. Then we discuss how dynamic reconfiguration
of the system by on-line component exchange is performed.

9.2 STATIC AND DYNAMIC COMET CONFIGURATION 179

9.2.1 Configuring COMET using ACCORD Tools

The following example illustrates how COMET can be tailored for a particular
real-time application using existing aspects and components. We focus here on
using ACCORD-ME for configuring COMET for a specific ECU in vehicles, which
is a new generation of ECUs used for controlling the engine in a vehicle, and it
has the following set of data management requirements.

R1: The application performs computations using data obtained from sensors
and forwards the computation results directly to actuators; recall that sensor
data items are typically referred to as base data items.

R2: Sensor data should reflect the state of the controlled environment implying
that transactions used for updating data items should be associated with
real-time properties, such as periods and deadlines.

R3: Values of data should be updated only if they are stale1 to save computation
time of the CPU.

R4: Multiple tasks can execute concurrently in an ECU, and operate on the same
data. Hence, consistency needs to be enforced.

R5: The tasks in the ECU should be scheduled according to priorities.

R6: The memory footprint of the system should be within the memBound, which
can be obtained from the ECU specifications.

When configuring COMET the ECU we start by specifying the requirements
using the configurator tool in ACCORD-ME. Given that we know the system
requirements, then the requirement-based option in the configurator can be used
to guide the system composition. Now, based on the requirements R1-R5 we can
choose options in the requirement-based form (shown in figure 9.2) as follows.
The configuration of the COMET database suitable for the ECU contains base
data items. Since tasks using the base data are not storing intermediate results,
there is no need for storing derived data (R1). Furthermore, the database should
provide mechanisms for dealing with concurrency such that conflicts on data items
are resolved (R4) and data items that are stale are updated (R3). This can be
achieved using HP-2PL with similarity [95]. The transaction model should be
chosen such that transactions are associated with periods and deadlines (R2).
We choose the RMS scheduling policy to enforce priority-based scheduling of
tasks (R5). Performance guarantees in terms of levels of quality of service are not
required.

When these decisions are submitted, the configurator loads candidate com-
ponents and aspects into ACCORD-ME. For more efficient composition process
one can use help in terms of composition rules provided in the description tab of
components and aspects in the ACCORD-ME editing window.

1A data item is stale if its value does not reflect the current state of the environment.

180 COMET CONFIGURATION AND ANALYSIS 9.2

Figure 9.2: Requirement-based configuration of the real-time database system

9.2 STATIC AND DYNAMIC COMET CONFIGURATION 181

Figure 9.3: The snapshot of ACCORD-ME when doing analysis on a real-time system
configuration

182 COMET CONFIGURATION AND ANALYSIS 9.2

A system configuration satisfying functional requirements R1-R5 is shown in
the upper part of figure 9.3 (denoted as step 1 in the figure). Recall that in
ACCORD-ME ovals are used as the graphical representation of aspects, while
squares represent components. When the composition of the system is made, it
should be analyzed to determine the memory needs of the configuration and con-
trast these to the available memory in the ECU. Hence, when the configuration
part of the system development is finished then the obtained configuration can be
analyzed using the M&W analyzer tool. Figure 9.3 is the snapshot of the analysis
process. When the M&W analyzer is invoked, it detects the configuration(s) one
might have made in ACCORD-ME and prompts for the choice of a configuration.
In our example, we created only one configuration and denoted it Pessimistic-
ConcurrecyControl. This configuration is detected by the M&W analyzer, as
illustrated by step 2 in figure 9.3. After the configuration is chosen, the appro-
priate files describing run-time aspects of components and aspects are loaded for
analysis. Since run-time properties of aspects and components are described in
terms of symbolic expressions with parameters, the values of these parameters are
instantiated during analysis, and the list of components that require instantiation
of parameters is displayed during analysis (step 3 in the figure). One can also
make an inspection of the symbolic expressions and input the values of parame-
ters in the expressions, as depicted by step 4. Note that advices that modify
components are included in the component run-time description as shown in step
5. Once the values of parameters are set for this particular ECU, the tool outputs
the resulting WCET and/or memory consumption values which can be compared
with the values given in the memory requirement (R6).

If the obtained configuration satisfies the requirements of the target ECU, the
next step is to compile the system and deploy it into the run-time environment,
which is done using the configuration compiler. As mentioned previously, the
configuration compiler also provides documentation of the composed configuration
of COMET.

9.2.2 Dynamic Reconfiguration

The same procedure as described in the previous section can be employed for
obtaining a dynamically reconfigurable COMET configuration. The difference is
in compiling and deploying the configuration as the middleware layer needs to be
included into the configuration to ensure that component exchange can occur at
run-time. Moreover, to ensure that performance of the database is maintained
even when the exchange occurs, the system should be made QoS adaptive.

Figure 9.4 depicts an instance of dynamic COMET configuration that is QoS
adaptive. The depicted configuration is COMET HP-2PL described earlier in sec-
tion 9.1, augmented with the middleware layer, an instantiation of the middleware
layer described in section 4.6. Hence, the configuration in the figure consists of all
basic COMET components, as well as the HP-2PL with similarity concurrency
control aspect, and utilization-based transaction model. The utilization-based

9.3 STATIC AND DYNAMIC COMET CONFIGURATION 183

Attribute Description
AEi Average execution time of transaction τi

AE Average execution time of all transactions
AIi Average inter-arrival time of transaction τi

AI Average inter-arrival time of all transactions

Table 9.3: Measured attributes of transactions

transaction model is further enriched with the parameters presented in table 9.3
that are derived by aspects in charge of the QoS adaptability, i.e., they are mea-
sured at run-time. The application running the database is also considered to be
a component plugged into the middleware layer.

As previously discussed, components constituting a configuration of a real-time
system are typically mapped to a number of tasks in the run-time environment
[53, 150]. Hence, in COMET a subset of COMET components is mapped to one or
several transactions. Since a transaction is executed by invoking operations provi-
ded in COMET components, the variations of the execution time of components2

directly influence the execution time of a transaction.

Reconfiguration of the COMET is initiated from the application via the
exchange() operation provided by the middleware layer. The application using
the database regularly performs self-inspection where it checks if any updates
of components and aspects are available. If a new version of a component is
available, the reconfiguration takes place. Correct transaction execution during
reconfiguration is ensured by emptying the active queue maintained by the SMC.
Completion of transactions that are executing in the system at the time reconfi-
guration is requested is a precondition for successful preservation of correct states
of the components after reconfiguration. After the queue has been emptied the
actual reconfiguration of a component takes place, i.e., re-pointing in the jump
table. In section 9.3.2 we experimentally show that the overhead in terms of the
time it takes to perform the reconfiguration is negligible.

QoS guarantees are satisfied in COMET by having the QAC and FCC com-
ponents and the aspects constituting the FC-M policy (see figure 9.4). Recall
that the FC-M aspects are applied to the QAC and FCC to control deadline miss
ratio. Hence, the FC-M aspects constitute the deadline miss ratio feedback loop,
consisting of measuring the deadline miss ratio, forming the performance error
em(k) = mr(k) − m(k), and computing the manipulated variable δl(k).

2Here we refer to the execution time of an operation provided by a component, and used by
a transaction, as the execution time of the component.

184 COMET CONFIGURATION AND ANALYSIS 9.3

Middleware layerMiddleware layerMiddleware layerMiddleware layerOperating systemOperating systemOperating systemOperating system
UICUICUICUIC TMCTMCTMCTMC SMCSMCSMCSMC HP-2PLHP-2PLHP-2PLHP-2PLApplicationApplicationApplicationApplication QACQACQACQAC FCCFCCFCCFCC FC-MFC-MFC-MFC-MCOMET configurationCOMET configurationCOMET configurationCOMET configuration FFFFeeeeeeeeddddbbbbaaaacccckkkk ccccoooonnnnttttrrrroooollll

Figure 9.4: Dynamic COMET configuration

9.3 Performance Evaluation

In this section we present experimental evaluations of the COMET platform. The
goal of the evaluations is twofold. In the first set of experiments, we show that
reconfiguring COMET statically by adding aspects from an aspect package to an
existing COMET configuration yields a new and functionally correct COMET
configuration. In the second set of experiments, we show that the dynamically
reconfigurable COMET is suitable for embedded environments as the middleware
layer does not introduce significant performance overhead. Moreover, we show
that QoS guarantees are provided when a system undergoes dynamic reconfigu-
ration.

9.3.1 Static System Reconfiguration

The goal of these experiments is to show that adding aspects and components from
an aspect package into an existing configuration results in a new system configu-
ration exhibiting the expected behavior. To that end, we chose the COMET QoS
aspect package as a representative of aspect packages, and concurrent COMET
HP-2PL configuration as a configuration on top of which aspects and components
from the QoS aspect package are added. In this context, the goal of the expe-
riments is to show that the QoS management in COMET performs as expected
and, thereby, show that, when adding the QoS aspect package, we achieve requi-
red performance guarantees. It should be noted that we have performed several
other experiments to show that we achieve the desired behavior under different
COMET QoS configurations (see [32]). Extensive performance evaluations have
also shown that the concurrent COMET configurations, created by adding aspects
and components from the CC aspect package on top of the basic COMET, ex-
hibit expected functional behavior with respect to how data access conflicts are
detected and handled [58].

For doing the experiment we have chosen the following experiment setup. The
database consists of eight relations, each containing ten tuples. Note that this

9.3 PERFORMANCE EVALUATION 185

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Load

D
ea

dl
in

e
M

is
s

R
at

io
Open Loop
FC−M
Reference

Figure 9.5: Deadline miss ratio as a function of load

relatively low data volume is acceptable for the experiments as the experimental
results do not depend on the data volume but the load, i.e., number of trans-
actions, that is imposed on the database. To that end, we ensure that constant
streams of transaction requests are used in the experiments. Update transactions
arrive periodically, whereas user transactions arrive aperiodically. To vary the
load on the system, the inter-arrival times between transactions are altered. The
deadline miss ratio reference, i.e., the desired deadline miss ratio, is set to 0.1.

The experiment is applied to the COMET FC-M configuration, where the
load applied on the database varies. This way we can determine the behavior
of the system under an increasing load. We use the behavior of the concurrent
COMET configuration without the QoS aspect package as a baseline. For all
the experiment data, we have taken the average of 10 runs, each one consisting of
1500 transactions. We have derived 95% confidence intervals based on the samples
obtained from each run and used the t-distribution [54]. It has been shown that
the 10 runs are sufficient as we have obtained tight confidence intervals (shown
later in this section). Figure 9.5 shows the deadline miss ratio of concurrent
COMET and COMET with the FC-M configuration. The dotted line indicates the
reference deadline miss ratio, i.e., the desired QoS. We vary the applied load from
0% to 130%. This interval of load captures the transition from an underloaded
system to an overloaded system. Hence, at 130% applied load we capture the case
when the system is overloaded.

Starting with concurrent COMET, the deadline miss ratio starts increasing at

186 COMET CONFIGURATION AND ANALYSIS 9.3

approximately 0.85 load. However, the deadline miss ratio increases more than
the desired deadline miss ratio and, hence, concurrent COMET does not provide
any QoS guarantees. Studying the FC-M configuration we see that the deadline
miss ratio for loads 0.90, . . . , 1.30 are 0.1025 ± 0.0070, 0.1023 ± 0.0027, 0.1012 ±
0.0025, 0.1052±0.0030, and 0.1082±0.0011. In contrast with concurrent COMET,
the added FC-M configuration manages to keep the deadline miss ratio at the
reference, even during high loads. This is in line with earlier observations where
feedback control has shown to be very effective in guaranteeing QoS [15, 12, 13].
Hence, the results of our experiment show that the COMET FM-C configuration
is able to provide QoS guarantees under varying load.

9.3.2 Dynamic System Reconfiguration

We perform experiments on the dynamically reconfigurable COMET HP-2PL
database configuration shown in figure 9.4. Before each experiment run, ten
relations are created in the database, each relation consisting of ten tuples. To
create a load during the experiment runs, transactions are created and submitted
to the database with an average inter-arrival time AI that is uniformly distributed.
The transaction deadlines are uniformly distributed in the interval [3 ·AE ms, 17 ·
AE ms], where AE denotes the average execution time of the transactions. The
experiments are run on a Sun Blade 1500 and Solaris 9 [157].

Reconfiguration Overhead

In the following experiments we want to quantify the effect of enabling dynamic
system reconfiguration on the system performance. Our focus is primarily on
quantifying the overhead in transaction execution times. Note however that there
also exists a performance overhead with respect to memory, since, e.g., exchanging
a component requires loading of a new component into the memory while the old
component still exists in the system. Hence, for reconfiguration to take place, the
system has to have an amount of free memory corresponding to the memory of
the largest component in the system.

Table 9.4 gives the impact of dynamic reconfiguration on the transaction
execution times. We measure the average execution time of a transaction in
both statically and dynamically reconfigurable COMET HP-2PL configurations.
Lower bound (LB) and upper bound (UB) of a 95% confidence interval are also
presented in the table. As can be seen, the differences in execution times are
statistically negligible.

Tables 9.5 and 9.6 give the results of performance measurements where we eva-
luate the mechanisms for dynamic reconfiguration by measuring the time it takes
to carry out the reconfiguration in the system. The magnitude of the component
internal states increases as the number of transactions increases, resulting in an
increase in the execution time of the import and export operations. Results
in table 9.5 show the time it takes to do the reconfiguration in the simple case

9.3 PERFORMANCE EVALUATION 187

original ACCORD dynamic ACCORD
AEi [µs] 59117 59054
LB [µs] 58899 58847
UB [µs] 59336 59262

Table 9.4: Execution times for transactions

Comp. Task Time [µs]
MMC Component exchange 7959
TMC Component exchange 7803
SMC Component exchange 8034
MMC and TMC Component exchange 10875

Table 9.5: Reconfiguration times with one transactions running

when elaborate component states do not have to be exported and imported due to
only one transaction running. Comparing the times needed for reconfiguration of
every component (table 9.5) with the execution time of transactions (table 9.4),
it is clear that that the time it takes to reconfigure a component is substantially
lower than the execution time of a transaction, re-confirming that reconfiguration
does not induce significant overhead in system performance.

Table 9.6 shows the time it takes to perform the reconfiguration when the load
in the system is increased 300%, i.e., when we have several transactions running.
In the heavily loaded system, reconfiguration of a component must also include the
time it takes to complete transactions by emptying the transaction queue, which
increases the total reconfiguration time of one component. If several components
are exchanged, then emptying the queue is done only once before the components
are exchanged. Hence, the action constituting the great portion of the component
exchange time, i.e., emptying the queue, is executed only once followed by the time
it takes to actually exchange the components (given in table 9.5). Consequently,
even with many transactions in the system, the reconfiguration mechanism takes
a bounded amount of time, equivalent to the execution time of one transaction.

From the performed experiments, we can conclude the following. Developing
and deploying a system configuration to be dynamically reconfigurable as pre-
scribed by ACCORD does not introduce a significant overhead in the system
performance. Observe that reconfiguration in the presented experiments is done
at arbitrary points in time, exchanging arbitrary number of components, indica-
ting that reconfiguration can be done at any point in time and that the system
does not posses a priori knowledge of components that are going to be exchanged.

Effects of Reconfiguration on System Performance

In the following experiments we examine how the deadline miss ratio is affected
when replacing components. Specifically, the experiments show how QoS is varied

188 COMET CONFIGURATION AND ANALYSIS 9.3

Comp. Task Time [µs]
MMC Empty queue 57663

Component exchange 8037
Total exchange time 65700

SMC Empty queue 64438
Component exchange 9754
Total exchange time 74192

Table 9.6: Reconfiguration times in COMET with a 300% load

during transient state. We consider two versions of the TMC, namely, TMC1

and TMC2, where TMC2 is a later version of a TMC component that has a
longer execution time than TMC1. The execution time of TMC2 is twice the
execution time of TMC1. We chose the TMC for reconfiguration in experiments
since it is the largest component in COMET and has the greatest impact on the
transaction execution time in the system. Additionally, we chose to double the
execution time of one component to simulate an extreme case condition where
several components with great variations in the execution time are replaced. If
our approach performs well under extreme cases then it should also perform well
under normal circumstances where the increase in the execution time is less. A
transaction running in the COMET configuration with TMC1 has the execution
time AE of 400ms3. When the TMC1 is replaced with TMC2, transactions in
the resulting COMET configuration with TMC2 have the average execution time
of 800ms. Hence, the component exchange resulted in significant increase of the
execution time of transactions in the system.

At the 60th sample TMC1 is replaced with TMC2, hence, introducing a longer
execution time. The results of the transient behavior of a single experiment run
can be seen in figures 9.6(a) and 9.6(b). The deadline miss ratio increases when
the component is replaced and the system becomes over-utilized. Without QoS
adaptation the system cannot adjust to changes in the execution time and con-
tinues to be over-utilized, resulting in that the deadline miss ratio remains at
approximately 98%. Although the execution time of the transactions is doubled,
representing an extreme case condition, our approach adjusts to the reconfigura-
tion, since the deadline miss ratio drops to the miss ratio reference value within
a bounded settling time. This is done by utilizing the feedback information and
reducing the admitted load, i.e., rejecting more transactions. Also, as we can
see the worst-case QoS during reconfiguration (the overshoot in figure 9.6(b)) is
bounded. Since we are simulating an extreme case of reconfiguration overload, the
allowed worst-case QoS under reconfiguration is, consequently, relatively high. In
normal reconfiguration scenarios, where one or several components with relatively

3AE of 400ms for a transaction is obtained in a separate set of experiments where artificial
delays are introduced in transaction execution and it, therefore, differs from AE given in table
9.4.

9.3 PERFORMANCE EVALUATION 189

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample

D
ea

dl
in

e
M

is
s

R
at

io

(a) No QoS Adaptation

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample

D
ea

dl
in

e
M

is
s

R
at

io

(b) QoS Adaptation

Figure 9.6: Deadline miss ratio when components are replaced

190 COMET CONFIGURATION AND ANALYSIS 9.4

small variations in execution times are reconfigured, the allowed worst-case QoS
will be significantly smaller.

We have shown that in the face of a reconfiguration we are able to adjust
the deadline miss ratio, representing QoS, such that the worst-case system per-
formance is bounded and that deadline miss ratio converges toward the desired
reference in a timely manner. Hence, having dynamic reconfiguration as pre-
scribed by ACCORD has shown to be very effective in satisfying performance
objectives in a reconfigurable real-time system.

9.4 Experience Report

This section contains observations we made with respect to usage of a combination
of aspects and components for ensuring configurability and reusability of real-time
software.

Lesson 1: Both aspects and components are needed to ensure configurability. We
already discussed in section 4.4 that many real-time policies have similar in-
frastructure but they provide distinct policies, concluding that this is reason why
an aspect package has both components (providing infrastructure) and aspects
(providing, e.g., QoS policies). Here, again on the example of QoS management,
we would like to reaffirm that without both aspects and components high recon-
figurability and reusability would be difficult to achieve. Namely, if all QoS ma-
nagement approaches where implemented only using aspects, each aspect would
have to contain the necessary functionality of the infrastructure for QoS manage-
ment. This is not conducive to the development of families of real-time systems
with distinct needs on the QoS configuration, since we are not able to add aspects
to the system incrementally because each aspect would contain redundant parts
of the infrastructure. Furthermore, the footprint of the system would be increased
with additional code, which is not preferable for resource-constrained real-time
systems. Another solution would be to implement one basic aspect that would
contain the functionality of an infrastructure and possibly a QoS policy. However,
this option is not favorable as it implies dependencies among aspects that could
lead to dependency problems in the implementation phase. This in turn could
induce decreased configurability (as fewer aspects could be combined). Having
components that provide functionality used by aspects decreases dependency is-
sues and the overall memory footprint for the system, and increases reusability of
aspects and configurability of the overall system.

Lesson 2: Explicitly declared reconfiguration locations in component interfaces
lead to an efficient and analyzable product-line architecture. We observed that for
development of a variety of system configurations using the same set of compone-
nts in combination with various aspects, it is beneficial to have explicitly defined

9.4 EXPERIENCE REPORT 191

places in the architecture where extensions can be made, i.e., aspects woven. Alt-
hough we restrain the join point model of the aspect language, we obtain clear
points in the components and the system architecture where variations can be
made. Thus, the system developer who is extending and reconfiguring an existing
system does not have to have a complete insight into the system or component in-
ternals to perform successful reconfiguration. Therefore, in our component model
we enforce that the places where possible extensions can be done (a component can
be reconfigured) are explicitly declared in the component interfaces as reconfigu-
ration locations. It is our experience (confirmed by the experiences of third-party
COMET users) that these points are not difficult to identify in the design and im-
plementation phase of the component development. For example, reconfiguration
locations for the QAC and the FCC from the COMET QoS aspect package were
straightforwardly determined in the design phase by taking into consideration a
few possible policies that could be applied to these components.

Hence, relevant reconfiguration locations in the components should be favo-
rably identified in the design phase of the system development with regard to
possible policy variations. In development of the COMET database we have ex-
perienced that these locations are bounded and relatively low in number and
once identified they are even suitable for aspects that are developed later on, i.e.,
aspects that were not anticipated when the were initially identified. Moreover, the
explicitly declared reconfiguration locations are desirable in the real-time domain
as they provide pre-defined places where code modifications can be done and,
therefore, the system can be analyzed during the design phase to establish if it
satisfies temporal constraints and has desired functional characteristics [170, 174].
We conclude that by using components with explicitly declared reconfiguration
locations we enable efficient development of an analyzable product line archi-
tecture of a real-time system that has the ability to satisfy specified performance
guarantees.

Lesson 3: There is a tradeoff between configurability, reusability, and mainte-
nance. Having a large number of aspects leads to high demands on maintainability
of the aspects and the system, while fewer aspects lead to better maintainability
at the expense of limiting configurability and reusability of aspects in the system.
This further confirms the conclusions made in [175] where a tradeoff between
requirements for configurability and maintenance when using aspects in embed-
ded software systems was identified. In the case of development of a QoS aspect
package for COMET our primary goal was to ensure reuse of QoS-related aspects
and to increase system configurability. Therefore, we have chosen to separate
concerns such that we have a great number of aspects that each can be used
in multiple COMET configurations. For example, the missed deadline monitor
aspect is decoupled from the missed deadline controller aspect (both are part
of the QoS policy aspects and implement FC-M policy) to ensure that reuse of
aspects is increased since the missed deadline monitor aspect can generally be

192 COMET CONFIGURATION AND ANALYSIS 9.4

used in combination with another controller policy. In the case when there is a
focus on maintainability, the missed deadline monitor aspect and the missed de-
adline control aspect could be combined into one aspect that both monitors and
controls the deadline misses. The same is true for the scheduling strategy aspect
and the QoS through the update scheduling aspect that both implement parts of
the QMF algorithm.

Hence, if reusability and configurability is of foremost concern, as it is typi-
cally the case in the context of creating families of real-time systems, real-time
policies should be decomposed into greater number of aspects. Thus, trading
maintainability for reusability and configurability. To deal with maintainability
issues, an efficient way of organizing aspects and components for easier access and
modification within an aspect package is needed.

Lesson 4: Aspects can be reused in various phases of the system development.
We found that aspects can efficiently be reused in different phases of the system
development. This is true for reusing aspects both in the system design and
implementation phase, and the evaluation phase. For example, due to the nature
of QoS policies, one or several aspects constituting a policy normally control the
load of the system and in some way monitor the system performance. Hence, in
addition to reusing these aspects in a number of QoS configurations, they can
be reused in the testing and evaluation phase for evaluating performance and
gathering statistics. As a simple illustration, the missed deadline monitor aspect
within the COMET QoS aspect package is used in the design and implementation
phase of the system as a part of a QoS management to implement a specific QoS
policy, and is later reused in the the evaluation phase of the system development
for performance evaluations (presented in section 9.3).

Lesson 5: Aspect languages are a means of dealing with legacy software. Since
we initially developed the COMET database system to be primarily suited for
hard real-time systems in the vehicular industry [124], the programming language
used for the development of the basic database functionality needed to be suited
for software that already existed in a vehicular control system. Moreover, analysis
techniques that have been used in the existing vehicle control system should be
applicable to our basic database components. This leads to the development of
the COMET basic configuration using the C programming language. Aspects
provide efficient means for introducing extensions to the system; we used the
AspectC++ weaver since a weaver for the C language [46] is not yet publicly
available. Overall, we believe that if extending existing real-time systems, which
are typically developed in a non-object-oriented language such as C, aspects are
of greater value than rebuilding the system using an object-oriented language and
then making extensions to it using an object-oriented language such as C++.

9.4 EXPERIENCE REPORT 193

Lesson 6: Less is more when it comes to aspect languages for embedded and
real-time systems. When developing aspect languages for real-time systems ope-
rating in resource-constrained environments, the focus should be on providing
basic aspect language features that facilitate encapsulating and weaving aspects
into the code of components in the simplest and most memory-efficient way pos-
sible. We believe that minimizing memory usage should be of primary importance
for aspect languages suitable for these types of systems. Given that most real-
time computing systems are developed using non-object-oriented languages, the
inter-type declaration could be kept as simple as possible, e.g., allowing weaving
of single members in structs. We also observe that due to the nature of many
real-time operating systems, e.g., Rubus [20] and MicroC [93], the advice and
pointcut model could be simplified. Namely, pointcut syntax in most cases does
not need to be as elaborate as it is in current aspect languages (e.g., AspectJ and
AspectC++). We have developed most of the COMET aspects using call and
execution pointcuts, and occasionally within.

Part IV

Epilogue

195

Chapter 10
Related Work

Given that representative design approaches are already contrasted against AC-
CORD in previous chapters, we here primarily focus on existing component-based
real-time systems and database platforms. As the research in applying aspect-
orientation to real-time system development is in its early stages and, thus, consi-
derably sparse, we direct our attention to existing aspect-oriented database plat-
forms.

Since a constituent of ACCORD is an approach to formal verification of recon-
figurable components, we conclude this chapter with an overview of approaches to
formal verification of reconfigurable systems, which we relate to our verification
method.

10.1 Component-Based Real-Time Systems

In this section we review three distinct types of component-based embedded real-
time systems.

❏ Systems where extensions are possible by plugging components that provide
non-standard features or functionality. An example of this type of systems
is SPIN [31], an extensible microkernel.

❏ Systems that provide efficient management of resources in dynamic hetero-
geneous environments, e.g., 2K [83] is a CORBA-based distributed operating
system specifically developed for management of resources in a distributed
environment.

❏ Systems that have fine-grained components and an architecture that faci-
litates system configurability, e.g., VEST [160], Ensemble [106], and the
port-based object (PBO) approach [167].

197

198 RELATED WORK 10.1

SPIN

SPIN [31, 132] is an extensible operating system that allows applications to define
customized application-specific operating system services. An application-specific
service is one that precisely satisfies the functional and performance requirements
of an application, e.g., multimedia applications impose special demands on the
scheduling, communication and memory allocation policies of an operating sy-
stem. SPIN provides a set of core services that manage memory and processor
resources, such as device access, dynamic linking, and events. All other services,
such as user-space threads and virtual memory, are provided as extensions. A
reusable component, called an extension, is a code sequence that can be installed
dynamically into the operating system kernel by the application or on behalf of
it. The mechanism that integrates extensions (components) with the core system
are events, i.e., communication in SPIN is event-based. Event-based communica-
tion allows considerable flexibility of the system composition as all relationships
between the core system and components are subject to changes by changing the
set of event handlers associated with any given event.

The correctness of the composed system depends only on the language safety
and encapsulation mechanisms, specifically interfaces, type safety, and automatic
storage management. Analysis of the composed system is not performed since it is
assumed that the configuration support provided within the Modula-3 language
is enough to guarantee the system to be correct and safe. Provided the right
extension for real-time scheduling policy, this operating system can be used for
soft real-time applications such as multimedia applications [31, 132].

2K

2K [85, 83] is an operating system specifically developed for manipulation of
resources in a distributed heterogeneous environment (different software systems
on different hardware platforms). As shown in figure 10.1, the 2K middleware
architecture is realized using standard CORBA services such as naming, trading,
security, and persistence, as well as extending the CORBA service model with
additional services, such as QoS-aware management, automatic configuration, and
code distribution.

Integration of components into the middleware is done through a component
called dynamic TAO, the adaptive communication environment ORB. The dy-
namic TAO is a CORBA compliant reflective ORB as it allows inspection and
reconfiguration of its internal engine [84]. The dynamic TAO component has a
memory footprint greater than a few megabytes, which makes it inappropriate
for use in environments with limited resources. A variant to the dynamic TAO, a
LegORB component, is developed by the 2K group and it has a small footprint
and is appropriate for embedded environments, e.g., 6 Kbytes on the PalmPilot
running on PalmOS.

2K provides automated installation and configuration of new components and

10.1 COMPONENT-BASED REAL-TIME SYSTEMS 199

dynamic TAO

hardware

Solaris

LegORB

hardware

Solaris

LegORB

hardware

Palm OS

LegORB

hardware

Windows
CE

dynamic TAO

hardware

Windows

Automatic
configuration

QoS-aware
repository

Component
environments

User

resource manager

Distributed operating system services
Naming

Trading

Security

Persistency

Active meeting roomVideo-on-demandVideo-conferencing
applications

2K

middleware

2K

Figure 10.1: The 2K middleware architecture

the development of new components is done using CORBA component specifica-
tions [127]. However, it is assumed that inter-component dependencies provide
good basis for the system integration and guarantee correct system behavior (ot-
her guarantees of the system behavior, obtained by appropriate analysis, do not
exist).

Ensemble

Ensemble is a high performance network protocol architecture designed to sup-
port group membership and communication protocols [106]. Ensemble does not
enforce real-time behavior, but is nevertheless interesting because of the confi-
gurable architecture and the way it addresses the problem of configuration and
analysis of the system. Ensemble includes a library of over sixty micro-protocol
components that can be stacked, i.e., formed into a protocol in a variety of ways
to meet communication demands of an application. Each component has a com-
mon event-driven Ensemble micro-protocol interface, and uses message-passing
as communication. Ensemble’s micro-protocols implement basic sliding window
protocols and functionality such as fragmentation and re-assembly, flow control,
signing and encryption, group membership, and message ordering. The Ensemble
system provides an algorithm for calculating the stack, i.e., composing a protocol
out of micro-protocols, given the set of properties that an application requires.
This algorithm encodes knowledge of protocol designers and appears to work
quite well, but it does not assure generation of a correct stack (the methodology
for checking correctness is not automated yet). Thus, Ensemble can be effici-
ently customized for different protocols, i.e., it has a high level of tailorability.
In addition, Ensemble gives the possibility of formal optimization of the compo-
sed protocol. This is done in Nuprl [106] and appears to give good results in
optimizing a protocol for a particular application.

200 RELATED WORK 10.1

VEST

VEST aims to enable the construction of an embedded real-time system with
strengthened resource needs [160, 161, 164, 162]. The VEST development process
is fairly well-defined with an emphasis on configuration and analysis tools. System
development starts with the design of the infrastructure, which can be saved in
a library for further reuse (see figure 10.2). The infrastructure consists of micro-
components: interrupt handlers, indirection tables, dispatchers, plug and unplug
primitives, and proxies for state mapping.

After a system is composed, dependency checks are invoked to establish cer-
tain properties of the composed system. If the properties are satisfied and the
system does not need to be refined, the user can invoke analysis tools to perform
real-time and reliability analysis. As can be seen, VEST offers a high degree
of tailorability for the designer, i.e., a specific system can be composed out of
appropriate components as well as infrastructure from the component library.

Infrastructure creation

Component selection/design

Integrated system

Dependency checks

Library

Analysis

components

infrastructure

dependencies

Figure 10.2: Embedded system development in VEST

It should be noted that in the first version of VEST, components were fine-
granule, but VEST did not have an explicit component model, implying that
components could be pieces of code, classes, and objects [160, 161]. however,
currently VEST uses the well-defined CORBA component model [164]. Moreover,
each component is associated with real-time properties such as WCET, deadline,
and precedence and exclusion constraints, which enable real-time analysis of the
composed system. In addition to temporal properties, components have explicit
memory needs and power consumption requirements, needed for efficient use in
an embedded system.

Designing and selecting the appropriate component(s) is a fairly complex pro-
cess, since both real-time and non-real-time aspects of a component must be con-
sidered and appropriate configuration support has to be available. Dependency

10.1 COMPONENT-BASED REAL-TIME SYSTEMS 201

checks proposed in VEST are one good way of providing configuration support.
Due to its complexity dependency checks are broken into four types:

❏ factual: component-by-component dependency checks (WCET, memory,
importance, deadline, etc.);

❏ inter-component: pairwise component checks (interface requirements, ver-
sion compatibility, is a component included in another, etc.);

❏ aspects: checks that include issues that affect the performance or seman-
tics of components (real-time, concurrency synchronization and reliability
issues); and

❏ general: checks of global properties of the system (e.g., the system should
not experience deadlocks and hierarchical locking rules must be followed).

Having well-defined dependency checks is vital since they minimize possible errors
in the system composition. In its recent edition [164, 162], VEST has been exten-
ded with prescriptive aspects, which are defined as design-level aspects describing
the relationship and the interaction between the components. Prescriptive aspects
help in doing the factual and general dependency checks of the system.

The VEST configuration tool allows tool plug-ins, thus enabling temporal
analysis of the composed system by enabling plugging off-the-shelf analysis tools
into the VEST environment.

PBO Model

A component-based system based on the PBO model is suitable for development
of embedded real-time control software system [167]. Components from the com-
ponent library, in addition to newly created ones, can be used for the system
assembly. A component is the PBO that is implemented as an independent con-
current process. Components are interconnected through ports, and communicate
through shared memory.

The PBO defines module specific code, including input and output ports, con-
figuration constants (for adopting components for different applications), the type
of the process (periodic and aperiodic), and temporal parameters such as dead-
line, frequency, and priority. Support for composing a system out of components
is limited to general guidelines given to the designer and the design process is not
automated. This approach to componentization is somewhat unique since it gives
methods for creating a framework that handles the communication, synchroniza-
tion and scheduling of each component. Any C programming environment can
be used to create components with minimal increase in performance or memory
usage. Creating code using PBO methodology is an “inside out” programming
paradigm as compared to a traditional coding of real-time processes. With this,
the reconfiguration of the system is traded for performance and memory optimi-
zation.

202 RELATED WORK 10.2

The PBO method provides consistent structure for every process and OS sy-
stem services, such as communication, synchronization, scheduling. Only when
necessary, OS calls methods of PBO to execute application code. Analysis of the
composed system is not considered.

10.2 Component-Based Database Systems

Component-based database management systems can be classified as follows [55]:

❏ Databases that can be extended with non-standard functionality, e.g.,
Oracle8i [128], Informix Universal Server with its DataBlade technology
[77], Sybase Adaptive Server [126], and DB2 Universal Database [42].

❏ Databases that integrate existing data stores into a database system and
provide users and applications with a uniform view of the entire system,
e.g., OLE DB [116].

❏ Platforms that provide database functionality in a standardized form un-
bundled into services, e.g., (real-time) CORBAService [131].

❏ Databases that enable composition of non-standard DBMSs out of reusable
components, e.g., KIDS [64].

Next, we review representatives of each class.

Oracle8i

Oracle8i is an extensible database system. It allows developers to create their
own application-domain-specific data types [128]. Capabilities of the Oracle data
server can be extended by means of data cartridges, which represent components
in the Oracle8i architecture. A data cartridge consists of one or more domain-
specific types and can be integrated with the server. Data cartridges can be
integrated into a system through extensibility interfaces. There are three types
of these interfaces: DBMS and data cartridge interfaces, used for communication
between components and the DBMS, and service interfaces used by the developers
of a component.

The architecture of the Oracle8i is fixed and defines the places where ex-
tensions can be made (components added), i.e., the system has low degree of
tailorability. Provided configuration support by the Oracle Designer family of
products is adequate, since the system already has a fixed architecture and pre-
defined extensions, and that extensions are allowed only in well-defined places of
the architecture. This type of system emphasizes on satisfying only one requi-
rement - handling non-standard data types. Also, these systems cannot easily
be integrated in all application domains, e.g., real-time system, since there is no
analysis support for checking temporal behavior.

10.2 COMPONENT-BASED DATABASE SYSTEMS 203

Server
execution

Query
processing

Data
indexing

Type
system

Data
cartridge

Database and processing extensibility services

Oracle8 universal data server

Extensibility interface

Figure 10.3: The Oracle extensibility architecture

Informix DataBlade Technology

DataBlade modules are standard software modules that can be plugged into the
Informix Universal Server database to extend its capability [77]. DataBlade mo-
dules are components in the Informix Universal Server. These components are
designed specifically to enable users to store, retrieve, update, and manipulate
any domain-specific type of data. Similar to Oracle, Informix has provided low
degree of tailoring, since the database can only be extended with standardized
components that enable manipulation of non-standard data types. Configuration
support is provided for development and installation of DataBlade modules, e.g.,
BladeSmith, BladePack, and BladeManager.

DB2 Universal Database

DB2 Universal Database [42, 52] also allows extensions in the architecture to pro-
vide support for comprehensive management of application-specific data types.
Application-specific data types and new index structures for that data types are
provided by DB2 Relational Extenders, reusable components in the DB2 Uni-
versal Database architecture. There are DB2 Relation Extenders for text (text
extender), image (image extender), audio and video (extender). Each extender
provides the appropriate functions for creating, updating, deleting, and searching
through data stored in its data type. An extender developer’s kit with wizards for
generating and registering extenders provides support for the development and
integration of new extenders in the DB2 Universal Database.

Sybase Adaptive Server

Similar to other extensible database systems, the Sybase Adaptive Server
[126] enables extensions in its architecture, called Sybase’s adaptive component

204 RELATED WORK 10.2

architecture (ACA), to enable manipulation of application-specific data types.
Components that enable manipulation of these data types are called Speciality
Data Stores, e.g., speciality data stores for text, time series, and geospatial data.
The Sybase Adaptive Server differs from other database systems in the extensible
DBMS category in that it provides support for standard components in distri-
buted computing environments. Through open (Java) interfaces, Sybase’s ACA
provides mechanisms for communication with other database servers. Also, Sy-
base enables interoperability with other standardized components in the network,
such as JavaBeans.

OLE DB

OLE DB [34, 35] is a specification for a set of data access interfaces designed to
enable a variety of data stores to work together. OLE DB provides a way for
any type of data store to expose its data in a standard and tabular form, thus
unifying data access and manipulation. In Microsoft’s OLE-DB infrastructure, a
component is thought of as [116]:

”. . . the combination of both process and data into a secure, reusable
object. . . ”

and as a result, both consumers and providers of data are treated as components.
A data consumer can be any piece of the system or the application code that
needs access to a broad range of data. In contrast, data providers are reusable
components that represent data sources, such as Microsoft ODBC, Microsoft SQL
server, Oracle, Microsoft Access, which are all standard OLE DB providers. Thus,
OLE DB enables building component-based solutions by linking data providers
and data consumers through providing services that add functionality to existing
OLE DB data and where the services are treated as components in the system
(see figure 10.4). The architecture in figure 10.4 is called the universal data access
(UDA) architecture. It is possible to develop new, customized, data providers
that reuse existing data providers as the underlying component or a component
building block of more complex (data provider) components.

Although OLE DB provides unified access to data and enables developers to
build their own data providers, there is no common implementation on either the
provider or consumer side of the interface [36]. Compatibility is provided only
through the specification and developers must follow the specification exactly to
make interoperable components, i.e., adequate configuration support for this is
not yet provided. To make up for inadequate configuration support, Microsoft has
made available, in Microsoft’s software developer’s kit (SDK), tests that validate
conformance of the specification. However, analysis of the composed system is
missing.

OLE DB is not applicable for the real-time domain since it does not provide
support for specifying and enforcing temporal constraints on the components and

10.2 COMPONENT-BASED DATABASE SYSTEMS 205

OLE DB

C
O

M
/D

C
O

M

OLE DB

ActiveX Data Objects (ADO)

Application or tool

M
icro

so
ft tran

sactio
n

 serv
er

SERVICES

CONSUMERS

DATA
PROVIDERSOLAP EMAIL ISAMSPATIAL

Cursor engine Distributed query
engine

Relational query
engine

Figure 10.4: The Universal Data Access (UDA) architecture

the system. Additionally, OLE DB is limited with respect to software platforms,
since it can only be used in Microsoft software environments.

(Real-time) CORBAservices

One single DBMS could be obtained by gluing together CORBAservices that are
relevant for databases, such as transaction service, backup and recovery service,
and concurrency service. Adding the real-time services of CORBA, such as sche-
duling service, could result in real-time CORBAservices DBMS. CORBAservices
are implemented on the top of the object request broker (ORB). Service interfaces
are defined using the interface definition language [56]. In this scenario a compo-
nent would be one of the database (or real-time) relevant CORBAservices. This
would mean that applications could choose, from a set of stand-alone services,
those services (components) that they need. However, this approach is (still) not
viable because it requires writing significant amount of glue code. In addition,
performance overhead could be a problem due to the inability of an ORB to ef-
ficiently deal with fine-granularity objects [131]. Also, an adequate value-added
framework that allows development of components and use of these components
in other applications is still missing.

KIDS

The KIDS [64], kernel-based implementation of database management systems,
approach to constructing configurable component-based databases is an interes-
ting research project at the University of Zürich, since it offers a high level of
reusability, where virtually any results obtained in a previous system construc-
tion is reused (designs, architectures, specifications, etc.). Components in KIDS
are DBMS subsystems that are collections of brokers. Brokers are responsible

206 RELATED WORK 10.2

Object server

User interfaces

OMS TMS IMS

DBMS

Figure 10.5: The KIDS subsystem architecture

for a related set of tasks, e.g., object management, transaction management, and
integrity management. A structural view of the KIDS architecture is shown in
figure 10.5. The DBMS architecture consists of two layers. The first layer is the
object server component, which supports the storage and retrieval of storage ob-
jects. The object server component is reused in its entirety, and it belongs to the
fixed part of the DBMS architecture (this is because the object server implements
functionality needed by any DBMS). The second layer is variable to a large extent,
and can be decomposed into various subsystems. In the initial decomposition of
KIDS, three major subsystems exist in the second layer:

❏ the object management subsystem (OMS), which implements the mapping
from data model objects into storage objects, retrieval of data model objects,
and meta data management;

❏ the transaction management subsystem (TSM), which implements the con-
cept of a transaction, including concurrency control, recovery, and logging;
and

❏ the integrity management subsystem (IMS), which implements the (DBMS-
specific) notion of semantic integrity, and is responsible for checking whether
database state transitions result in consistent states.

These three subsystems (OMS, TMS, and IMS) implement basic database func-
tionality. Additional functionality can be provided by adding new subsystems in
the second layer of the KIDS architecture, i.e., expanding decomposition of this
layer to more than three subsystems.

By expanding the initial set of components in the KIDS architecture with the
functionality (components) needed by a particular application, one could be able
to design “plain” object-oriented DBMS, a DBMS video-server, or a real-time
plant control DBMS. Of course, in the proposed initial design of KIDS, real-time
properties of the system or components are not considered.

10.3 ASPECT-ORIENTED DATABASE SYSTEMS 207

A defined process of a DBMS construction, reusability of components and
architectures, and high degree of componentization (tailorability) of a system
differentiates this CDBMS from all others.

10.3 Aspect-Oriented Database Systems

In the area of database systems the AOD [18], aspect-oriented databases, initiative
aims to incorporate the notion of separation of concerns into databases. The focus
of this initiative is on providing a non-real-time database that can be effectively
customized using aspects [143].

The AOD initiative separates aspects in database systems in two levels [144]:

❏ DBMS level, which are aspects that provide features affecting the software
architecture of the database system, and

❏ database level, which are aspects that relate to the data maintained by the
database and their relationship, i.e., database schema.

Aspects on the DBMS level correspond to application aspects defined within
ACCORD. Within the AOD initiative, the aspect-oriented approach has been
employed to achieve customization in SADES [142], a semi-autonomous database
evolution system.

Following is a description of main features of SADES with the focus on aspect
support. As mentioned, SADES is a database system that incorporates the no-
tions from AOSD to provide support for effective customization. SADES has been
implemented on top of the commercially available Jasmine object DBMS [144].
The SADES architecture is divided into a set of spaces as follows:

❏ object space, which holds all objects, i.e., data, residing in the database,

❏ meta-object space, which holds meta-data, e.g., classes, class member defi-
nitions, and definition scopes,

❏ meta-class space, which holds entities that are used to instantiate meta-
objects in the meta-object space, and

❏ aspect space, which holds all the aspects residing in the database.

Meta-class “aspect” residing in the meta-class space is used to instantiate aspects.
SADES uses aspects to provide customization of the following features on the
database level [144]:

❏ changes to links among entities, such as predecessor/successor links between
object versions or class versions, inheritance links between classes, etc.,

❏ changes to version strategy for object and class versioning,

208 RELATED WORK 10.4

❏ changes to structural consistency approach, and

❏ extending the system with new meta-classes.

Although COMET goals overlap partly with the goals for SADES in the effort
to enable customization of the database system by aspect weaving, aspects sup-
ported by SADES differ from aspects supported by COMET. Namely, COMET
supports aspects on the DBMS level, while the main focus of SADES is aspect
support on the database level. SADES has been developed for non-real-time envi-
ronments and, thus, does not address real-time issues. Although it is claimed that
the SADES approach to aspect support could be applied to existing component-
based database systems [144], it is not clear how this can be achieved since the
components in SADES are typical AOSD-type components, i.e., white-box com-
ponents.

10.4 Formal Approaches for Aspects and Components

Li et al. and Sipma have provided basic formalization methods for verification of
reconfigurable component-based designs [100, 101, 156]. Both of these research
efforts primarily focus on proving the correctness of the functional behavior of
components and aspects, and do not consider timing behavior of the system.
Sipma [156] provides a formal method for crosscutting, where system and aspects
are modeled as modular transition system, and verification of crosscuttings is done
applying deductive reasoning. Her work is more oriented toward existing aspect
languages, providing support for explicit specification of aspects and advices as
well as the pointcuts.

Li et al. [100, 101] model the system (components) and extensions (features)
as state machines. They provide a compositional verification based on model
checking, and quasi-sequential composition of features with the base system. Mo-
reover, their work concentrates on the features, and feature-oriented systems, and
therefore considers crosscutting on a more abstract level than crosscutting de-
fined by aspect weaving and existing aspect languages; their approach, in the
named papers, does not support specification of aspects by means of advices and
pointcuts. Krishnamurthi et al. [90] extended this feature-oriented formalization
to support verification of aspect-oriented programs. Here aspects are explicitly
modeled as state machines. They give an informal description of a method as
follows. The verification is done by first extracting an appropriate interface from
the crossproduct of the state machines that model the program and pointcut de-
signators. These interfaces are then used in the property preservation step, in
which the advice is checked to find out whether the weaving preserves proven
program property.

In the real-time domain, a lot of work has been done in the area of verifica-
tion of real-time systems, see [8] for a survey. Approaches to real-time system

10.4 FORMAL APPROACHES FOR ASPECTS AND COMPONENTS 209

verification typically use timed automata as the underlying formalization and pri-
marily focus on parallel composition of the components and the system, and the
space-explosion reduction [8, 9, 96]. We build upon this work, focusing on the
representation of the timed automata in terms of zones, and provide a method
for verification of the real-time systems obtained by quasi-sequential composition
of aspects with components.

Chapter 11
Conclusions

This final chapter presents a summary of our work and restates the research
contributions. The issues for the future work are also identified.

11.1 Summary

The cost-effective development of real-time software through reuse and reconfi-
guration is one of the key issues that needs to be investigated. Using software
engineering techniques specifically developed to facilitate reuse and reconfigura-
tion could be beneficial for engineering real-time systems. Especially applying the
main principles of the component-based and aspect-oriented software development
to real-time systems development would enable:

❏ efficient and fast system configuration from the components in the compo-
nent library based on the system requirements;

❏ (re)configuring, i.e., tailoring, components and/or a system for a specific
application by changing the behavior (code) of the component via aspect
weaving; and

❏ enhanced reusability of software as both components and aspects can be
reused across different applications.

However, applying aspect-oriented and component-based principles to real-
time system development is challenging for a number of reasons. Namely, if
both aspects and components are to be used for system development, a real-time
component model should be defined such that it enables aspect weaving into com-
ponent code, while preserving information hiding. Moreover, the model should
also provide adequate means for specifying temporal and resource constraints and,

211

212 CONCLUSIONS 11.1

thereby, ensure that analysis of temporal correctness of the resulting system can
be performed.

To fully capitalize on the benefits that component-based development offers,
it is desirable to enable dynamic reconfiguration of a real-time system. Dynamic
reconfiguration is often preferable for embedded real-time systems that require
continuous hardware and software upgrades in response to technological advan-
cements, environmental change, or alteration of system goals during system ope-
ration. However, dynamic reconfiguration of a real-time system also changes the
temporal properties of the tasks in a system, which in turn affects the performance
of the system negatively, e.g., increasing the deadline miss ratio. Hence, dynamic
reconfiguration of real-time systems should be enabled, but only under the con-
dition that a desirable performance level can be guaranteed in the reconfigured
system.

Also, when composing systems using components and aspect it is expedient
to be able to formally prove temporal and functional properties of components,
aspects, and the resulting system. The verification challenge for reconfigurable
systems is great as the verification methodology needs to ensure that compone-
nts are verified only once and the verification of reconfigured designs is done on
aspects. This is to overcome the possible state explosion that might happen in
cases where verification is done on the resulting, woven systems.

Since there could be many aspects and components in the library, the designer
might need assistance in choosing the relevant subset for configuring and analyzing
the system for a specific real-time application. Therefore, appropriate tools for
configuration and analysis also need to be provided.

Resolving the identified issues would enable successful integration of the ideas
and notions from component-based and aspect-oriented software development into
real-time system development. Thereby, cost-effective development of reconfigu-
rable and reusable real-time software would be feasible. In this thesis we have
proposed the following solutions.

1. The RTCOM component model, which describes how a real-time compo-
nent, supporting different aspects and enforcing information hiding, could
be efficiently designed and implemented.

2. Support for static and dynamic reconfiguration of a real-time system in
terms of:

(a) Design guidelines for development of real-time systems out of compone-
nts and aspects, which prescribe that a real-time system design should
be carried out in the following sequential phases: (i) decomposition of
the real-time system into a set of components, followed by (ii) decom-
position into a set of aspects, and (iii) implementation of components
and aspects based on RTCOM.

(b) A method for dynamic system reconfiguration suited for resource-
constrained real-time applications ensuring that components and

11.2 FUTURE WORK 213

aspects can be added, removed, or exchanged in the system at run-
time. Thus, in addition to traditional static reconfiguration, we sup-
port dynamic reconfiguration of a system.

3. Methods for ensuring satisfaction of real-time constraints, namely:

(a) A method for aspect-level worst-case execution time analysis of real-
time systems assembled out of aspects and components, which is per-
formed at system composition time.

(b) A method for formal verification of temporal properties of reconfigu-
rable real-time components that enables (i) proving temporal proper-
ties of individual components and aspects, and (ii) proving that re-
configuration of a component via aspect weaving preserves expected
temporal behavior in the reconfigured component.

(c) A method for reconfigurable quality of service that enables configu-
ring quality of service in real-time systems in terms of desired perfor-
mance metric and performance level based on the underlying appli-
cation requirements. The method ensures that the specified level of
performance is maintained during system operation and after reconfi-
guration.

We have implemented a tool set with which the designer can efficiently confi-
gure a real-time system to meet functional requirements and analyze it to ensure
that non-functional requirements in terms of temporal constraints and available
memory are satisfied. The analysis tools represent an automation of the analysis
methods from (3).

We refer to these methods and tools collectively as the ACCORD framework
to indicate that, in addition of being used in isolation, the solutions can be used
together to further alleviate efficient development of reconfigurable and reusable
real-time software.

We have shown how ACCORD can be used in practice by describing the way
we have used it in the design and development of COMET, a configurable real-
time database. From this case study we conclude that ACCORD could have a
positive impact on real-time system development in general by enabling efficient
configuration of real-time systems, and improving reusability and flexibility of
real-time software.

11.2 Future Work

ACCORD with its accompanied tools and methods could still be enhanced to en-
sure more successful application to real-time systems development. The following
is a number of issues that, if resolved, could further increase applicability and rea-
diness of ACCORD to be used in all phases of the real-time system development.

214 CONCLUSIONS

Currently, with our method for formal verification it is possible to verify a
limited set of aspects and components. Extending the existing method to em-
brace the verification of a number of aspects and components is needed to ensure
scalability of the verification method to complex real-time systems. Moreover,
the formal verification is currently not supported by tools within the ACCORD
development environment. A tool that would automatically translate models of
ACCORD-based systems into formal models (timed automata) based on our for-
malizations would provide a necessary foundation for tool support.

The method for QoS-aware dynamic system reconfiguration could further be
enhanced so that the system developer can determine if dynamic reconfiguration
of the system is feasible or not before the actual reconfiguration takes place. This
way we can ensure that the reconfiguration is carried out only if it is safe to do so,
i.e., when we made sure that reconfiguring a system will not violate the quality of
service specification and that the performance of the system will be at the desired
level under and after reconfiguration.

We would also like to refine the composition part of RTCOM, i.e., a language
for describing the composition needs of components/aspects. Currently the com-
ponent model supports only simple composition rules specifying for an aspect or a
component with which components and/or aspects it can be combined. We would
like to develop composition rules that account for both functional and run-time
needs of components and aspects.

Appendix A

Abbreviations

ACCORD AspeCtual COmponent-based Real-time system De-
velopment

ACCORD-ME ACCORD Modeling Environment
ACID Atomicity, Consistency, Isolation, Durability
ADARTS ADA-based Design Approach for Real-Time Systems
ADL Architectural Description Language
AOD Aspect-Oriented Databases
AOSD Aspect-Oriented Software Development
AS Aspect Separation
CBSD Component-Based Software Development
CC Concurrency Control
CDBMS Component-based DataBase Management Services
CM Component Model
COMET COMponent-based Embedded real-Time database
DARTS Design Approach for Real-Time Systems
DBMS DataBase Management System
ECU Electronic Control Unit
EDF Earliest Deadline First
FCC Feedback Controller Component
FC-M Feedback Control based on Miss ratio

215

216 APPENDIX A

GME Generic Modeling Environment
GUARD Gatekeeping Using Adaptive eaRliest Deadline
HP-2PL Hight Priority 2 Phase Locking
HRT-HOOD Hard Real-Time Hierarchical Object Oriented De-

sign
Hw Db Hardware Database
IMC Indexing Manager Component
IDL Interface Definition Language
IECU Instrumental Electronic Control Unit
ISC Invasive Software Composition
KIDS Kernel-based Implementation of Database manage-

ment
LMC Locking Manager Component
MMC Memory Manager Component
OCC Optimistic Concurrency Control
ODC Optimistic Divergence Control
ORB Object Request Broker
OS Operating System
PBO Port-Based Object
QAC QoS Actuator Component
QoS Quality of Service
RMS Rate Monotonic Scheduling
RT-UML Real-Time Unified Modeling Language
RTCOM Real-Time COmponent Model
SADES Semi-Autonomous Database Evolution System
SC System Composability
SOP Subject-Oriented Programming
TAO The Adaptive communication environment ORB
TCTL Timed Computational Tree Logic
TMC Transaction Manager Component
TRSD Transactional Real-Time System Design
SADES Semi-Autonomous Database Evolution System
SMC Scheduling Manager Component
UIC User Interface Component
UML Unified Modeling Language
VECU Vehicle Electronic Control Unit
VEST Virginia Embedded Systems Toolkit
WCET Worst-Case Execution Time
WoE Warnings or Errors
WoE Db Warnings or Errors Database

Bibliography

[1] R. K. Abbott and H. Garcia-Molina. Scheduling real-time transactions:
a performance evaluation. ACM Transactions on Database Systems,
17(3):513–560, September 1992.

[2] T. Abdelzaher, Y. Lu, R. Zhang, and D. Henriksson. Practical applica-
tion of control theory to web services. In Proceedings of American Control
Conference (ACC), 2004.

[3] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Performance guarantees for
web server end-systems: A control-theoretical approach. IEEE Transactions
on Parallel and Distributed Systems, 13(1):80–96, 2002.

[4] T. F. Abdelzaher, J. A. Stankovic, C. Lu, R. Zhang, and Y. Lu. Feedback
performance control in software services. IEEE Control Systems Magazine,
23(3):74–90, June 2003.

[5] G. D. Abowd, R. Allen, and D. Garlan. Using style to understand descrip-
tions of software architectures. ACM Software Engineering Notes, 18(5):9–
20, 1993.

[6] AIRES: Aspects in real-time embedded systems. Project website at http:
//www.dist-systems.bbn.com/projects/AIRES/, February 2003.

[7] M. Aksit, J. Bosch, W. van der Sterren, and L. Bergmans. Real-time spe-
cification inheritance anomalies and real-time filters. In Proceedings of the
8th European Conference on Object-Oriented Programming (ECOOP’94),
volume 821 of Lecture Notes in Computer Science, pages 386–407. Springer-
Verlag, 1994.

[8] R. Alur. Timed automata. In Proceedings of 11th International Conference
on Computer Aided Verification (CAV’99), volume 1633 of Lecture Notes
in Computer Science, pages 8–22. Springer Verlag, 1999.

[9] R. Alur, C. Courcoubetis, and D. Dill. Model checking for real-time systems.
In Proceedings of the 5th IEEE International Symposium on Logic in Com-
puter Science, Philadelphia, 1990. IEEE Computer Scoiety Press.

217

218 BIBLIOGRAPHY

[10] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

[11] M. Amirijoo, J. Hansson, S. Gunnarsson, and S. H. Son. Enhancing feedback
control scheduling performance by on-line quantification and suppression of
measurement disturbance. In Proceedings of the 11th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS’05), pages 2–11.
IEEE Computer Society Press, 2005.

[12] M. Amirijoo, J. Hansson, and S. H. Son. Error-driven QoS management
in imprecise real-time databases. In Proceedings of the 15th IEEE Euro-
micro Conference on Real-Time Systems (ECRTS’03), pages 63–72. IEEE
Computer Society Press, 2003.

[13] M. Amirijoo, J. Hansson, and S. H. Son. Specification and management of
QoS in imprecise real-time databases. In Proceedings of the 7th IEEE Inter-
national Database Engineering and Applications Symposium (IDEAS’03),
pages 192–201. IEEE Computer society Press, 2003.

[14] M. Amirijoo, J. Hansson, and S. H. Son. Algorithms for managing QoS
for real-time data services using imprecise computation. In Proceedings of
the Conference on Real-Time and Embedded Computing Systems and App-
lications (RTCSA’03), volume 2968 of Lecture Notes in Computer Science,
pages 136–157. Springer-Verlag, 2004.

[15] M. Amirijoo, J. Hansson, S. H. Son, and S. Gunnarsson. Robust quality
management for differentiated imprecise data services. In Proceedings of the
25th IEEE International Real-Time Systems Symposium (RTSS’04), pages
265–275. IEEE Computer Society Press, 2004.

[16] M. Amirijoo, J. Hansson, S. H. Son, and S. Gunnarsson. Generalized per-
formance management of multi class real-time imprecise data services. In
Proceedings of the 26th IEEE International Real-Time Systems Symposium
(RTSS’05), pages 38–49, 2005.

[17] S. F. Andler, J. Hansson, J. Eriksson, J. Mellin, M. Berndtsson, and N. Elft-
ring. DeeDS towards a distributed and active real-time database system.
ACM SIGMOD Record, 25(1), 1996.

[18] AOD: Aspect-oriented databases. Project website at http://www.comp.
lancs.ac.uk/computing/aod/, May 2003.

[19] AOSD: Aspect-Oriented Software Development. Official AOSD website:
http://www.aosd.net/, January 2005.

[20] Articus Systems. Rubus OS - Reference Manual, 1996.

BIBLIOGRAPHY 219

[21] U. Aßmann. Invasive Software Composition. Springer-Verlag, December
2002.

[22] L. Bass, P. Clements, and R. Kazman. Software Architecture In Practice.
SEI Series in Software Engineering. Addison Wesley, 1998.

[23] D. Batory and S. O’Malley. The design and implementation of hierarchical
software systems with reusable components. ACM Transactions on Software
Engineering and Methodology (TOSEM), 1(4):355–398, 1992.

[24] R. Bayer and M. Schkolnick. Concurrency of operations on B-trees. Acta
Informatica, 9:1–21, 1977.

[25] J. Bengtsson and W. Yi. Concurrency and Petri Nets, volume 3098 of
Lecture Notes in Computer Science, chapter Timed Automata: Semantics,
Algorithms and Tools. Springer-Verlag, 2004.

[26] Berkeley DB. Sleepycat Software Inc., http://www.sleepycat.com,
March 2003.

[27] G. Bernat and A. Burns. An approach to symbolic worst-case execution
time analysis. In Proceedings of the 25th IFAC Workshop on Real-Time
Programming. Elsevier, 2000.

[28] G. Bernat, A. Coling, and S. Petters. pWCET: A tool for probabilistic
worst-case execution time analysis. In Proceedings of the 3rd Internatio-
nal Workshop on Worst-Case Execution Time Analysis (WCET’03), Porto,
Portugal, July 2003.

[29] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

[30] P.A. Bernstein and N. Goodman. Multiversion concurrency control - theory
and algorithms. ACM Transactions on Database Systems, 8(4):465–483,
1983.

[31] B. N. Bershad, C. Chambers, S. Eggers, C. Maeda, D. McNamee, P. Par-
dyak, S. Savage, and E. G. Sirer. SPIN - an extensible microkernel for
application-specific operating system services. Technical Report 94-03-03,
Department of Computer Science and Engineering, University of Washing-
ton, Seattle, WA, USA, February 1994.

[32] M. Björk. QoS management in configurable real-time databases. Master’s
thesis, Department of Computer Science, Linköping University, Sweden,
2004.

220 BIBLIOGRAPHY

[33] L. Blair and G. Blair. A tool suite to support aspect-oriented specifica-
tion. In Proceedings of the Aspect-Oriented Programming Workshop at 13th
European Conference on Object-Oriented Programming (ECOOP’99), pages
7–10, Lisbon, Portugal, June 1999.

[34] J. A. Blakeley. OLE DB: a component DBMS architecture. In Proceedings
of the 12th IEEE International Conference on Data Engineering (ICDE’96),
pages 203–204. IEEE Computer Society Press, March 1996.

[35] J. A. Blakeley. Universal data access with OLE DB. In Proceedings of the
42nd IEEE International Computer Conference (COMPCON’97), pages 2–
7, San Jose California, February 1997. IEEE Computer Society Press.

[36] J. A. Blakeley and M. J. Pizzo. Component Database Systems, chap-
ter Enabling Component Databases with OLE DB. Morgan Kaufmann
Publishers, 2000.

[37] J. Bosch. Design and Use of Software Architectures. ACM Press in colla-
boration with Addison-Wesley, 2000.

[38] A. Burns and A. Wellings. HRT-HOOD: a Structured Design Method
for Hard Real-Time Ada Systems, volume 3 of Real-Time Safety Critical
Systems. Elsevier, 1995.

[39] A. Burns and A. Wellings. Real-Time Systems and Programming Languages.
International Computer Science Series. Addison-Wesley, 1997.

[40] G. C. Buttazzo. Hard Real-Time Computing Systems. Kluwer Academic
Publishers, 1997.

[41] R. Camposano and J. Wilberg. Embedded system design. Design Automa-
tion for Embedded Systems, 1(1):5–50, 1996.

[42] M. J. Carey, L. M. Haas, J. Kleewein, and B. Reinwald. Data access inte-
roperability in the IBM database family. IEEE Quarterly Bulletin on Data
Engineering; Special Issue on Interoperability, 21(3):4–11, 1998.

[43] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Volcano - a revo-
lution in on-board communications. Technical report, VolvoTechnologyRe-
port, 1998.

[44] A. Cerpa and D. Estrin. ASCENT: Adaptive Self-Configuring sEnsor
Networks Topologies. IEEE Transactions on Mobile Computing, 3(3):272–
285, 2004.

[45] A. Cervin, J. Eker, B. Bernhardsson, and K. Årzén. Feedback-
feedforward scheduling of control tasks. Real-time Systems Journal, 23(1/2),
July/September 2002. Special Issue on Control-Theoretical Approaches to
Real-Time Computing.

BIBLIOGRAPHY 221

[46] Y. Coady and G. Kiczales. Back to the future: A retroactive study of aspect
evolution in operating system code. In Proceedings of the 2nd ACM Inter-
national Conference on Aspect-Oriented Software Development (AOSD’03),
pages 50–59, Boston, USA, 2003. ACM Press.

[47] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to improve
the modularity of path-specific customization in operating system code. In
Proceedings of the Joint European Software Engineering Conference (ESEC)
and 9th ACM SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE-9), 2002.

[48] Com: The component object model specification, microsoft. Available at:
http://www.microsoft.com/com/resources/comdocs.asp, Feb-
ruary 2001.

[49] TimeSys Corp. Timewiz. http://www.timesys.com, October 2005.

[50] I. Crnkovic, B. Hnich, T. Jonsson, and Z. Kiziltan. Specification, imple-
mentation, and deployment of components. Communications of the ACM,
45(10):35–40, October 2002.

[51] I. Crnkovic and M. Larsson, editors. Building Reliable Component-Based
Real-Time Systems. Artech House Publishers, July 2002.

[52] J. R. Davis. Creating an extensible, object-relational data management
environment: IBM’s DB2 Universal Database. Database Associated In-
ternational, InfoIT Services, November 1996. Available at http://www.
dbaint.com/pdf/db2obj.pdf.

[53] M. Daz, D. Garrido, L. M. Llopis, F. Rus, and J. M. Troya. Integrating real-
time analysis in a component model for embedded systems. In Proceedings of
the 30th IEEE Euromicro conference, pages 14–21. IEEE Computer Society
Press, 2004.

[54] M. H. DeGroot and M. J. Schervish. Probability and Statistics. Addison-
Wesley, 3rd edition, 2002.

[55] K. R. Dittrich and A. Geppert. Component Database Systems, chapter
Component Database Systems: Introduction, Foundations, and Overview.
Morgan Kaufmann Publishers, 2000.

[56] A. Dogac, C. Dengi, and M. T. Öszu. Distributed object computing plat-
form. Communications of the ACM, 41(9):95–103, 1998.

[57] B. P. Douglass. Real-Time UML: Developing Efficient Objects for Embedded
Systems. Addison-Wesley, 2000.

222 BIBLIOGRAPHY

[58] K. Erlandsson. Concurrency control in a configurable component-based
real-time database. Master’s thesis, Department of Computer Science,
Linkköping University, Linköping, Sweden, August 2004.

[59] FACET: Framework for aspect composition for an event channel. Project
website at http://www.cs.wustl.edu/∼doc/RandD/PCES/, Febru-
ary 2003.

[60] Kronos tool. http://www-verimag.imag.fr/TEMPORISE/kronos/,
January 2005.

[61] W. Fleisch. Applying use cases for the requirements validation of
component-based real-time software. In Proceedings of 2nd IEEE Inter-
national Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC’99), pages 75–84. IEEE Computer Society Press, May 1999.

[62] G. F. Franklin, J. D. Powell, and M. Workman. Digital Control of Dynamic
Systems. Addison-Wesley, third edition, 1998.

[63] L. Freidrich, J. Stankovic, M. Humphrey, M. Marley, and J. Haskins. A
survey of configurable, component-based operating systems for embedded
applications. IEEE Micro, 21(3):54–68, May/Jun 2001.

[64] A. Geppert, S. Scherrer, and K. R. Dittrich. KIDS: Construction of da-
tabase management systems based on reuse. Technical Report ifi-97.01,
Department of Computer Science, University of Zurich, September 1997.

[65] GME: The genric modeling environement. Institute for Software Integrated
Systems, Vanderbilt University, http://www.isis.vanderbilt.edu/
Projects/gme/, December 2004.

[66] H. Gomaa. A software design method for real-time systems. Communica-
tions of the ACM, 27(9):938–949, September 1984.

[67] H. Gomaa. A software design method for Ada based real time systems. In
Proceedings of the 6th Washington Ada Symposium, pages 273–284. ACM
Press, 1989.

[68] H. Gomaa. Designing real-time and embedded systems with the
COMET/UML method. Dedicated Systems Magazine, pages 44–49, 2001.

[69] R. K. Gupta. Co-Synthesis of Hardware and Software for Digital Embedded
Systems. The Kluwer International Series in Engineering and Computer
Science. Kluwer Academic Publishers, 1995.

[70] J. H̊akansson, L. Mokrushin, P. Pettersson, and W. Yi. An analysis tool
for UML models with SPT annotations. In Proceedings of the International
Workshop on Specification and Validation of UML models for Real Time
and Embedded Systems (SVERTS’04), 2004.

BIBLIOGRAPHY 223

[71] J. R. Haritsa and S. Seshadri. Real-time index concurrency control. IEEE
Transactions on Knowledge and Data Engineering, 12(3):429–447, 2000.

[72] J. R. Haritsa and S. Seshadri. Real-time index concurrency control. In Real-
Time Database Systems: Architecture and Techniques, pages 59–74. Kluwer
Academic Publishers, 2001.

[73] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback Control
of Computing Systems. Wiley-IEEE Press, 2004.

[74] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model
checking for real-time systems. In Proceedings of the 7th IEEE Symposium
of Logics in Computer Science, pages 394–406. IEEE Computer Society
Press, 1992.

[75] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. Sy-
stem architecture directions for networked sensors. ACM SIGOPS Opera-
ting Systems Review, 34(5):93–104, 2000.

[76] S. Hissam, G. Moreno, J. Stafford, and K. Wallnau. Enabling predictable
assembly. The Journal of Systems and Software, 65:185–198, 2003.

[77] Developing DataBlade modules for Informix-Universal Server. Informix Da-
taBlade Technology. Informix Corporation, 22 March 2001. Available at
http://www.informix.com/datablades/.

[78] ISIS-PCES project: Constraint-based embedded program composition.
Project website at http://www.isis.vanderbilt.edu/Projects/

PCES/, February 2003.

[79] D. Isovic and C. Norström. Components in real-time systems. In Proceedings
of the 8th IEEE International Conference on Real-Time Computing Systems
and Applications (RTCSA’02), pages 135–139, Tokyo, Japan, March 2002.

[80] K.-D. Kang, S. H. Son, J. A. Stankovic, and T. F. Abdelzaher. A QoS-
sensitive approach for timeliness and freshness guarantees in real-time data-
bases. In Proceedings of the 14th IEEE Euromicro Conference on Real-time
Systems (ECRTS’02), pages 203–212. IEEE Computer Society Press, 2002.

[81] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loing-
tier, and J. Irwin. Aspect-oriented programming. In Proceedings of the 11th
European Conference on Object-Oriented Programming (ECOOP’97), vo-
lume 1241 of Lecture Notes in Computer Science, pages 220–242. Springer-
Verlag, 1997.

[82] Y. Kim, M. Lehr, D. George, and S. Son. A database server for distributed
real-time systems: Issues and experiences. In Proceedings of the 2nd Works-
hop on Parallel and Distributed Real-Time Systems, Cancun, Mexico, April
1994.

224 BIBLIOGRAPHY

[83] F. Kon, R. H. Campbell, F. J. Ballesteros, M. D. Mickunas, and K. Na-
hrsted. 2K: A distributed operating system for dynamic heterogeneous
environments. In Proceedings of the 9th IEEE International Symposium
on High Performance Distributed Computing (HPDC’00), pages 201–208,
Pittsburgh, August 2000.

[84] F. Kon, M. Román, P. Liu, J. Mao, T. Yamane, L. C. Magalhales, and R. H.
Campbell. Monitoring, security, and dynamic configuration with the dyna-
micTAO reflective ORB. In Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms and Open Distributed Proces-
sing, volume 1795 of Lecture Notes in Computer Science, pages 121–143.
Springer-Verlag, 2000.

[85] F. Kon, A. Singhai, R. H. Campbell, and D. Carvalho. 2K: A reflective,
component-based operating system for rapidly changing environments. In
Proceedings of the Workshop on Reflective Object-Oriented Programming
and Systems at the 12th European Conference on Object-Oriented Program-
ming (ECOOP’98), volume 1543 of Lecture Notes in Computer Science,
Brussels, Belgium, July 1998. Springer-Verlag.

[86] H. Kopetz and H. Obermaisser. Temporal composability. Computing and
Control Engineering Journal, pages 156–162, August 2002.

[87] H. Kopetz, R. Zainlinger, G. Fohler, H. Kantz, P. Puschner, and W. Schütz.
The design of real-time systems: from specification to implementation and
verification. Software Engineering Journal, 6(3):72–82, 1991.

[88] X. Koutsoukos, R. Tekumalla, B. Natarajan, and C. Lu. Hybrid supervisory
utilization control of real-time systems. In Proceedings of 11th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS’05),
pages 12–21. IEEE Computer Society Press, 2005.

[89] C. M. Krishna and K. G. Shin. Real-time Systems. McGraw-Hill Series in
Computer Science. The McGraw-Hill Companies, Inc., 1997.

[90] S. Krishnamurthi, K. Fisler, and M. Greenberg. Verifying aspect advice
modularity. In Proceedings of the ACM SIGSOFT International Symposium
on the Foundations of Software Engineering. ACM Press, November 2004.

[91] T.-W. Kuo. Real-Time Database Systems: Architecture and Techniques,
chapter Conservative and Optimistic Protocols, pages 29–44. Kluwer Aca-
demic Publishers, 2001.

[92] T.-W. Kuo and A. K. Mok. Application semantics and concurrency control
of real-time data-intensive applications. In Proceedings of 13th IEEE Real-
Time Systems Symposium (RTSS’92), pages 35–45. IEEE Computer Society
Press, 1992.

BIBLIOGRAPHY 225

[93] J. J. Labrosse. MicroC/OS-II the Real-Time Kernel. CMPBooks, 2002.

[94] K. Y. Lam, T.-W. Kuo, B. Kao, T. S. H. Lee, and R. Cheng. Evaluation
of concurrency control strategies for mixed soft real-time database systems.
Information Systems, 27(2):123–149, 2002.

[95] K. Y. Lam and W. C. Yau. On using similarity for concurrency con-
trol in real-time database systems. The Journal of Systems and Software,
43(3):223–232, 1998.

[96] K. Larsen, P. Pettersson, and W. Yi. Compositional and symbolic model-
checking of real-time systems. In Proceedings of the 16th IEEE Real-Time
Systems Symposium, pages 76–87. IEEE Computer Society Press, 1995.

[97] P. L. Lehman and S. B. Yao. Efficient locking for concurrent operations on
b-trees. ACM Transactions on Database Systems, 6(4):650–670, 1981.

[98] T. J. Lehman and M. J. Carey. A study of index structures for main memory
database management systems. In Proceedings of the 12th International
Conference on Very Large Databases (VLDB’86), pages 294–303.

[99] B. Li and K. Nahrstedt. A control theoretical model for quality of service
adaptations. In Proceedings of the 6th IEEE International Workshop on
Quality of Service, pages 145–153, 1998.

[100] H. Li, S. Krishnamurthi, and K. Fisler. Interfaces for modular feature
verification. In Proceedings of the 17th IEEE International Conference on
Automated Software Engineering (ASE’02), pages 195–204. IEEE Computer
Society Press, September 2002.

[101] H. Li, S. Krishnamurthi, and K. Fisler. Verifying cross-cutting features as
open systems. In Proceedings of the ACM SIGSOFT International Sympo-
sium on the Foundations of Software Engineering. ACM Press, November
2002.

[102] J. Lindström, T. Niklander, P. Porkka, and K. Raatikainen. A distributed
real-time main-memory database for telecommunication. In Proceedings of
the International Workshop on Databases in Telecommunications, volume
1819 of Lecture Notes in Computer Science, pages 158–173, 1999.

[103] Linköping University, Sweden. COMET User Manual.

[104] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard real-time environment. Journal of the ACM, 20(1):46–61, January
1973.

[105] J. W. S. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung. Imprecise
computations. IEEE Computer, 82(1), 1994.

226 BIBLIOGRAPHY

[106] X. Liu, C. Kreitz, R. Renesse, J.Hickey, M. Hayden, K. Birman, and
R. Constable. Building reliable, high-performance communication systems
from components. In Proceedings of the 17th ACM Symposium on Opera-
ting Systems Principles (SOSP), volume 34, pages 80–92, December 1999.
Published as Operating Systems Review.

[107] D. Locke. Real-Time Database Systems: Issues and Applications, chap-
ter Real-Time Databases: Real-World Requirements. Kluwer Academic
Publishers, 1997.

[108] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Feedback control real-time
scheduling: Framework, modeling and algorithms. Journal of Real-time
Systems, 23(1/2), July/September 2002.

[109] H. Lu, Y. Ng, and Z. Tian. T-tree or B-tree: Main memory database index
structure revisited. In Proceedings of the 11th IEEE Australasian Database
Conference, pages 65–73. IEEE Computer Society, 2000.

[110] Y. Lu, A. Saxena, and T. F. Abdelzaher. Differentiated caching services; a
control-theoretical approach. In Proceedings of the 21st IEEE International
Conference on Distributed Computing Systems (ICDCS’01), pages 615–622.
IEEE Computer Society Press, 2001.

[111] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and
W. Mann. Specification and analysis of system architecture using Rapide.
IEEE Transactions on Software Engineering, 21(4):336–355, April 1995.
Special Issue on Software Architecture.

[112] D. Mahrenholz, O. Spinczyk, A. Gal, and W. Schröder-Preikschat. An
aspect-orientied implementation of interrupt synchronization in the PURE
operating system family. In Proceedings of the 5th Workshop on Object
Orientation and Operating Systems at 16th European Conference on Object-
Oriented Programming (ECOOP’02), Malaga, Spain, June 2002.

[113] MBrane Ltd. RDM Database Manager. http://www.mbrane.com.

[114] N. Medvedovic and R. N. Taylor. Separating fact from fiction in software
architecture. In Proceedings of the 3rd International Workshop on Software
Architecture, pages 10–108. ACM Press, 1999.

[115] B. Meyer and C. Mingins. Component-based development: From buzz to
spark. IEEE Computer, 32(7):35–37, July 1999. Guest Editors’ Introduc-
tion.

[116] Universal data access through OLE DB. OLE DB Technical Materials. OLE
DB White Papers, 12 April 2001. Available at http://www.microsoft.
com/data/techmat.htm.

BIBLIOGRAPHY 227

[117] C. Mohan. ARIES/KVL: A key-value locking method for concurrency con-
trol of multiaction transactions operating on b-tree indexes. In Proceedings
of the 16th International Conference on Very Large Databases (VLDB’90),
pages 392–405. Morgan Kaufmann Publishers, 1990.

[118] A. Möller, I. Peake, M. Nolin, J. Fredriksson, and H. Schmidt. Component-
based context-dependent hybrid property prediction. In Proceedings of the
ERCIM Workshop on Dependable Software Intensive Embedded systems,
2005.

[119] Y. Mond and Y. Raz. Concurrency control in b+-trees using preparatory
operations. In Proceedings of the 11th International Conference on Very
Large Databases ()VLDB’85, pages 331–334. Morgan Kaufmann Publishers,
1985.

[120] J. Montgomery. A model for updating real-time applications. Real-Time
Systems, 7:169–189, 2004.

[121] A. Münnich, M. Birkhold, G. Färber, and P. Woitschach. Towards an ar-
chitecture for reactive systems using an active real-time database and stan-
dardized components. In Proceedings of 3rd IEEE International Database
Engineering and Application Symposium (IDEAS’99), pages 351–359. IEEE
Computer Society Press, 1999.

[122] D. Nyström, M. Nolin, A. Tešanović, C. Norström, and J. Hansson. Pessi-
mistic concurrency-control and versioning to support database pointers in
real-time databases. In Proceedings of the 16th IEEE Euromicro Confe-
rence on Real-Time Systems (ECRTS’04), pages 261–270. IEEE Computer
Society Press, 2004.

[123] D. Nyström, A. Tešanović, M. Nolin, C. Norström, and J. Hansson.
COMET: A component-based real-time database for automotive systems. In
Proceedings of the IEEE Workshop on Software Engineering for Automotive
Systems, pages 1–8, May 2004.

[124] D. Nyström, A. Tešanović, C. Norström, J. Hansson, and N-E. B̊ankestad.
Data management issues in vehicle control systems: a case study. In Procee-
dings of the 14th IEEE Euromicro International Conference on Real-Time
Systems (ECRTS’02), pages 249–256. IEEE Computer Society Press, 2002.

[125] M. A. Olson. Selecting and implementing an embedded database system.
IEEE Computers, 33(9):27–34, Sept. 2000.

[126] S. Olson, R. Pledereder, P. Shaw, and D. Yach. The Sybase architecture
for extensible data management. Data Engineering Bulletin, 21(3):12–24,
1998.

228 BIBLIOGRAPHY

[127] OMG. The common object request broker: Architecture and specification.
OMG Formal Documatation (formal/01-02-10), February 2001. Available
at: ftp://ftp.omg.org/pub/docs/formal/01-02-01.pdf.

[128] All your data: The Oracle extensibility architecture. Oracle Technical White
Paper. Oracle Corporation. Redwood Shores, CA, February 1999.

[129] H. Ossher and P. Tarr. Subject-oriented programming: a critique of pure ob-
jects. In Proceedings of the eighth annual conference on object-oriented pro-
gramming systems, languages, and applications, pages 411–428, Washing-
ton, USA, September 26 - October 1 1993. ACM Press.

[130] H. Ossher and P. Tarr. Multi-dimensional separation of concerns and the
hyperspace approach. In Proceedings of the Symposium on Software Ar-
chitectures and Component Technology: The State of the Art in Software
Development. Kluwer, 2000.

[131] M. T. Özsu and B. Yao. Component Database Systems, chapter Building
Component Database Systems Using CORBA. Data Management Systems.
Morgan Kaufmann Publishers, 2000.

[132] P. Pardyak and B. N. Bershad. Dynamic binding for an extensible system.
In Proceedings of the 2nd USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI’96), Operating Systems Review, Special
Issue, pages 201–212, Seattle WA, USA, October 1996. ACM and USENIX
Association.

[133] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bi-
gus. Using control theory to achieve service level objectives in performance
managment. Journal of Real-time Systems, 23(1/2), July/September 2002.

[134] Pervasive Software Inc. Pervasive.SQL Database Manager. http://www.
pervasive.com.

[135] Polyhedra Plc. Polyhedra database manager. http://www.polyhedra.
com.

[136] DARPA ITO projects. Program composition for embedded systems.
http://www.darpa.mil/ito/research/pces/index.html, 7 Au-
gust 2001.

[137] P. Puschner and A. Burns. A review of worst-case execution-time analysis
(editorial). Journal of Real-Time Systems, 18(2/3):115–128, May 2000.

[138] P. Puschner and R. Kirner. Avoiding timing problems in real-time software.
In Proceedings of the IEEE Workshop on Software Technologies for Future
Embedded Systems, pages 75–78, May 2003.

BIBLIOGRAPHY 229

[139] K. Ramamritham. Real-time databases. Distributed and Parallel Databases,
1(2):199–226, 1993.

[140] K. Ramamritham, S. H. Son, and L. C. DiPippo. Real-time databases and
data services. Journal of Real-Time Systems, 28(2-3):179–215, 2004.

[141] RapidRMA. Tri-Pacific Software, Inc., http://www.tripac.com/

html/prod-fact-rrm.html, October 2005.

[142] A. Rashid. A hybrid approach to separation of concerns: the story of SA-
DES. In Proceedings of the 3rd International REFLECTION Conference,
volume 2192 of Lecture Notes in Computer Science, pages 231–249, Kyoto,
Japan, September 2001. Springer-Verlag.

[143] A. Rashid and E. Pulvermueller. From object-oriented to aspect-oriented
databases. In Proceedings of the 11th International Conference on Database
and Expert Systems Applications (DEXA’00), volume 1873 of Lecture Notes
in Computer Science, pages 125–134. Springer-Verlag, 2000.

[144] A. Rashid and P. Sawyer. Aspect-orientation and database systems: an
effective customization approach. IEE Software, 148(5):156–164, October
2001.

[145] R. Rastogi, S. Seshadri, P. Bohannon, D. W. Leinbaugh, A. Silberschatz,
and S. Sudarshan. Improving predictability of transaction execution times
in real-time databases. Journal of Real-Time Systems, 19(3):283–302, No-
vember 2000.

[146] K. J. Åström and B. Wittenmark. Adaptive Control. Addison-Wesley, se-
cond edition, 1995.

[147] R. Reussner, I. Poernomo, and H. Schmidt. Using the TrustME tool suite
for automatic component protocol adaptation. In Proceedings of the Inter-
national Conference on Computational Science (ICCS’02), volume 2330 of
Lecture Notes in Computer Science, pages 854–862. Springer-Verlag, 2002.

[148] A. Robertson, B. Wittenmark, and M. Kihl. Analysis and design of ad-
mission control in web-server systems. In Proceedings of American Control
Conference (ACC), 2003.

[149] ROBOCOP: Robust open component based software architecture for
configurable devices project. Project website at http://www.

hitech-projects.com/euprojects/robocop/, January 2005. RO-
BOCOP ITEA project.

[150] K. Sandström, J. Fredriksson, and M. Åkerholm. Introducing a component
technology for safety critical embedded realtime systems. In Proceedings
of the International Symposium on Component-based Software Engineering
(CBSE7), pages 194–208, Scotland, May 2004. Springer-Verlag.

230 BIBLIOGRAPHY

[151] H. Schmidt. Trustworthy components-compositionality and predicition. The
Journal of Systems and Software, 65:215–225, 2003.

[152] H. Schmidt, I. Peake, J. Xie, I. Thomas, B. Kramer, A. Fay, and P. Bort.
Modelling predictable component-based distributed control architectures.
In Proceedings of the 9th IEEE International Workshop on Object-Oriented
Real-Time Dependable Systems (WORDS’03), pages 339–346. IEEE Com-
puter Society Press, 2003.

[153] L. Sha, X. Liu, Y. Lu, and T. Abdelzaher. Queuing model based network
server performance control. In Proceedings of 23rd IEEE Real-Time Systems
Symposium (RTSS’02). IEEE Computer Society Press, 2002.

[154] L. Sha, R. Rajkumar, S. H. Son, and C.-H. Chang. A real-time locking pro-
tocol. IEEE Transactions on Computers, 40(7):793–800, September 1991.

[155] A. Silberschatz, H. F. Korthe, and S. Sudarshan. Database System Concepts.
The McGraw-Hill Companies, Inc., 1997.

[156] H. Sipma. A formal model for cross-cutting modular transition systems. In
In Proceedings of the Workshop on Foundations of Aspect-Oriented Langu-
ages (FOAL’03), Boston, USA, March 2003.

[157] Solaris 9 operating system. http://www.sun.com/solaris/, January
2005.

[158] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++: an
aspect-oriented extension to C++. In Proceedings of the 40th Internatio-
nal Conference on Technology of Object-Oriented Languages and Systems
(TOOLS’02), Sydney, Australia, February 2002. Australian Computer So-
ciety.

[159] J. Stankovic. Misconceptions about real-time computing: a serious problem
for next-generation systems. IEEE Computer, 21(10):10–19, October 1988.

[160] J. Stankovic. VEST: a toolset for constructing and analyzing component-
based operating systems for embedded and real-time systems. Technical
Report CS-2000-19, Department of Computer Science, University of Virgi-
nia, May 2000.

[161] J. Stankovic. VEST: a toolset for constructing and analyzing component ba-
sed operating systems for embedded and real-time systems. In Proceedings of
the 1st International Conference on Embedded Software, (EMSOFT’01), vo-
lume 2211 of Lecture Notes in Computer Science, pages 390–402. Springer-
Verlag, 2001.

BIBLIOGRAPHY 231

[162] J. Stankovic, P. Nagaraddi, Z. Yu, and Z. He. Exploiting perscriptive
aspects: A design time capability. In Proceedings of the 4th ACM In-
ternational Conference on Embedded Software (EMSOFT’04), Pisa, Italy,
September 2004. ACM Pess.

[163] J. Stankovic, S. Son, and J. Liebeherr. Real-Time Databases and Infor-
mation Systems, chapter BeeHive: Global Multimedia Database Support
for Dependable, Real-Time Applications, pages 409–422. Kluwer Academic
Publishers, 1997.

[164] J. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu, M. Humphrey,
and B. Ellis. VEST: an aspect-based composition tool for real-time
systems. In Proceedings of the 9th IEEE Real-Time Applications Sympo-
sium (RTAS’03), pages 58–69. IEEE Computer Society Press, 2003.

[165] J. A. Stankovic, K. Ramamritham, and D. Towsley. Scheduling in real-
time transaction systems. Technical report, Department of Computer and
Information Science, University of Massachusetts, 1991.

[166] D. B. Stewart, R. Volpe, and P. K. Khosla. Design of dynamically reconfi-
gurable real-time software using port-based objects. IEEE Transactions on
Software Engineering, 23(12), 1997.

[167] D. S. Stewart. Designing software components for real-time applications.
In Proceedings of Embedded System Conference, San Jose, CA, September
2000. Class 408, 428.

[168] D. S. Stewart and G. Arora. Dynamically reconfigurable embedded software
- does it make sense? In Proceedings of IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS), pages 217–220.
IEEE Computer Society Press, October 1996.

[169] C. Szyperski. Component Software - Beyond Object-Oriented Programming.
Addison-Wesley, 1999.

[170] A. Tešanović, S. Nadjm-Tehrani, and J. Hansson. Component-Based Soft-
ware Development for Embedded Systems - An Overview on Current Rese-
arch Trends, volume 3778 of Lecture Notes in Computer Science, chapter
Modular Verification of Reconfigurable Components, pages 59–81. Springer-
Verlag, 2005.

[171] A. Tešanović, D. Nyström, J. Hansson, and C. Norström. Embedded data-
bases for embedded real-time systems: a component-based approach. Tech-
nical report, Department of Computer Science, Linköping University, and
Department of Computer Engineering, Mälardalen University, 2002.

232 BIBLIOGRAPHY

[172] A. Tešanović, D. Nyström, J. Hansson, and C. Norström. Integrating sym-
bolic worst-case execution time analysis into aspect-oriented software deve-
lopment. OOPSLA 2002 Workshop on Tools for Aspect-Oriented Software
Development, November 2002.

[173] A. Tešanović, D. Nyström, J. Hansson, and C. Norström. Aspect-level
worst-case execution time analysis of real-time systems compositioned using
aspects and components. In Proceedings of the 27th IFAC/IFIP/IEEE
Workshop on Real-Time Programming (WRTP’03), Poland, May 2003. El-
sevier.

[174] A. Tešanović, D. Nyström, J. Hansson, and C. Norström. Aspects and
components in real-time system development: Towards reconfigurable and
reusable software. Journal of Embedded Computing, 1(1), October 2004.

[175] A. Tešanović, K. Sheng, and J. Hansson. Application-tailored database
systems: a case of aspects in an embedded database. In Proceedings of the
8th IEEE International Database Engineering and Applications Symposium
(IDEAS’04), pages 291–301. IEEE Computer Society, 2004.

[176] TimesTen Performance Software. TimesTen DB. http://www.

timesten.com.

[177] Germany University of Karlsruhe. Compost. Documentation available at:
http://i44w3.info.uni-karlsruhe.de/∼compost/, June 2001.

[178] UPPAAL tool. http://www.uppaal.com, January 2005.

[179] R. van Ommering. Building product populations with software components.
In Proceedings of the 24th International Conference on Software Enginee-
ring, pages 255–265. ACM Press, 2002.

[180] Anders Wall. Architectural Modeling and Analysis of Complex Real-Time
Systems. PhD thesis, Mlardalen University, 2003.

[181] K. L. Wu, P. S. Yu, and C. Pu. Divergence control algorithms for epsilon
serializability. IEEE Transactions on Knowledge and Data Engineering,
9(2):262–274, March-April 1997.

[182] Xerox Corporation. The AspectJ Programming Guide, September 2002.
Available at: http://aspectj.org/doc/dist/progguide/index.html.

[183] M. Yannakakis. Perspectives on database theory. SIGACT News, 27(3):25–
49, 1996.

[184] P. S. Yu and D. M. Dias. Impact of large memory on the performance of
optimistic concurrency control schemes. In Proceedings of the International
Conference on Databases, Parallel Architectures, and Their Applications
(PARBASE’90), pages 86–90. IEEE Computer Society Press, 1990.

BIBLIOGRAPHY 233

[185] G. Zelesnik. The UniCon Language User Manual. Carnegie Mellon Uni-
versity, Pittsburgh, USA, May 1996. Available at http://www.cs.cmu.
edu/afs/cs/project/vit/www/unicon/reference-manual/.

[186] Y. Zhu and F. Mueller. Feedback EDF scheduling exploiting dynamic vol-
tage scaling. In Proceedings of the 10th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’04), pages 84–93. IEEE
Computer Society Press, 2004.

Index

absolute consistency, 35
ACCORD, 9, 61, 213

development environment, 125
ACCORD-ME, 125, 179
ACID, 35
advice, 16

after, 17, 170
around, 17, 168
before, 16, 103

AOSD, 5, 15, 42, 45, 53, 66
application aspects, 65, 68
architecture systems, 19
arrival time, 23
aspect, 15, 46, 68

application, 65
composition, 67
connector, 86, 89
join points, 15
language, 15, 193
pointcuts, 15
policy, 86
run-time, 67, 76, 129, 182
weaver, 18, 46, 192
weaving, 73, 76

aspect package, 84, 86
COMET, 147
concurrency control, 157, 174
index, 163, 174
QoS, 86, 165, 168, 174

aspect-level WCET analysis, 97
aspect-oriented software development,

see AOSD, 45
aspect-oriented systems, 19
aspects

FC-M, 166
GUARD, 163
HP-2PL, 157
ODC, 159
QMF, 166

assembly, 15

CBSD, 3, 13, 42, 51
COMET, 9, 146, 173, 182, 191

admission control, 174
aspect packages, 157
aspects, 149, 157
components, 147, 151
configuration, 173, 182
FC-M, 178, 185
GUARD, 174
HP-2PL, 173, 182, 184
middleware layer, 91
ODC, 174
QMF, 178
QOS, 174
QoS, 184
RM, 178
STR, 178

component, 13, 42
black box, 14, 42
connector, 14, 43, 68
domain, 14
grey box, 42, 69
inteface

provided, 14
intefaces

analytical, 42
constructive, 42

234

INDEX 235

functional, 42
non-functional, 42
provided, 42
required, 42

interfaces, 13, 42
provided, 54
required, 54

middleware layer, 91, 94
white box, 15, 42

component views, 44
component-based software develop-

ment, see CBSD
component-based systems, 18
composition aspects, 67
composition language, 20
composition operators, 20
concurrency control, 36

2V-DBP, 38
ARIES, 38
B-tree, 38
epsilon-based, 38
GUARD, 39, 163
HP-2PL, 37, 157
IM, 38
indexing CC, 38
OCC, 37
ODC, 159
priority inheritance, 37
RWPCP, 37
similarity-based, 38
timestamp-based, 37
versioning, 37

configuration, 15
dynamic, 49, 178
static, 47, 178

connector aspects, 89
QoS, 89

connectors, 43

DAG, 70
DBMS, 34, 202, 205
deadline, 22
deadline miss ratio, 107
direct acyclic graph, see DAG

ECU, 137, 146, 179
IECU, 138
VECU, 138

electronic control unit, see ECU
embedded

real-time, 22
embedded database, 34, 39, 145

commercial, 39
research, 40

embedded systems, 21, 76
execution time, 22
execution tree, 152

FC-M, 107, 166, 168, 178, 183
FCC, 86, 107, 165, 168
feedback control, 24
feedback loop, 107, 166
feedback-based QoS management, 27
FIFO, 75
formal methods, 25, 208

GME, 127
GUARD, 163, 174

HP-2PL, 157, 173

IECU, 138, 141
information hiding, 15, 42, 68
interfaces, 43

composition, 83
configuration, 82
provided, 82
required, 82

join points, 15, 160
jump table, 183

least square regression, 178

mechanisms, 69
memory, 34, 76

footprint, 34, 76
static, 76

memory footprint, 79
middleware layer, 91

236 INDEX

ODC, 159, 174

path, 32
period, 23
pointcuts, 15
policy, 69
power consumption, 34
predictability, 23, 73

QAC, 86, 107, 165, 168
QMF, 166, 168, 178
QoS, 24, 49, 50, 66, 106, 165, 182, 184,

187, 192
infrastructure, 84

QoS management
feedback control-based, 27
feedback-based, 27

QoS policy, 86, 87
FC-M, 166, 168, 183
least squares regression, 168
QMF, 166, 168
self-tuning, 168

quality attributes, 12
quality of service, see QoS

reachability analysis, 32, 114
real-time software, 21, 25, 61, 213
real-time systems, 21

closed, 23, 145
hard, 23
open, 23
soft, 23

reconfiguration
dynamic, 49, 89
static, 47, 89

reconfiguration locations, 72, 91, 109,
114, 160, 161, 191

relative consistency, 35
release time, 22
reuse context, 6, 83, 114
RM, see least square regression
RTCOM, 8, 68, 69, 91

interfaces, 81
composition, 83

configuration, 82
provided, 82
required, 82

mechanisms, 69
policy, 69

Rubus, 138
run-time aspects, 67, 76, 129
run-time environment, 22, 25, 64, 67,

152, 183

scheduling, 24
dynamic, 24
earliest-deadline first, 24
feedback control scheduling, 24
rate-monotonic, 24, 37
static, 24

self-tuning, 178
sensor component, 86
serializability, 36
signature, 16

function, 16
method, 16

software architecture, 11
static memory, 76
steady state, 24, 49, 106
STR, see self-tuning
symbolic transition, 32

task, 22, 43
aperiodic, 23
model, 22, 86, 87

arrival time, 23
deadlines, 22
execution time, 22
inter-arrival time, 23, 186
period, 23
release time, 22

periodic, 23
priority, 24
sporadic, 23

task mapping, 44, 45, 105
TCTL, 33, 115
temporal consistency, 34, 35
temporal operators, 33

INDEX 237

thread pool, 152
timed automata, see timed automaton
timed automaton, 30, 31

clocks, 30, 31
guards, 30
locations, 30
semantics

operational, 31
symbolics, 32

transition, 30
transaction, 35, 110, 144

model, 35, 157, 160, 167
transaction flow, 155
transient state, 24, 188

VECU, 138, 139

WCET, 64, 67, 76, 78, 95, 97, 182
analysis, 97

aspect-level, 97
symbolic, 97

worst-case execution time, see WCET
analysis, 25, 95

XML, 129

zone graph, 32, 116
enriched, 119

Department of Computer and Information Science
Linköpings universitet

Dissertations

Linköping Studies in Science and Technology

No 14 Anders Haraldsson: A Program Manipulation
System Based on Partial Evaluation, 1977,
ISBN 91-7372-144-1.

No 17 Bengt Magnhagen: Probability Based Verifica-
tion of Time Margins in Digital Designs, 1977,
ISBN 91-7372-157-3.

No 18 Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt språk, 1977, ISBN 91-
7372-168-9.

No 22 Jaak Urmi: A Machine Independent LISP
Compiler and its Implications for Ideal Hard-
ware, 1978, ISBN 91-7372-188-3.

No 33 Tore Risch: Compilation of Multiple File Que-
ries in a Meta-Database System 1978, ISBN 91-
7372-232-4.

No 51 Erland Jungert: Synthesizing Database Struc-
tures from a User Oriented Data Model, 1980,
ISBN 91-7372-387-8.

No 54 Sture Hägglund: Contributions to the Devel-
opment of Methods and Tools for Interactive
Design of Applications Software, 1980, ISBN
91-7372-404-1.

No 55 Pär Emanuelson: Performance Enhancement
in a Well-Structured Pattern Matcher through
Partial Evaluation, 1980, ISBN 91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The Hu-
man-Computer Interface in Commercial Sys-
tems, 1981, ISBN 91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an Ab-
stract Prolog Machine and its Application to
Partial Evaluation, 1981, ISBN 91-7372-479-3.

No 71 René Reboh: Knowledge Engineering Tech-
niques and Tools for Expert Systems, 1981,
ISBN 91-7372-489-0.

No 77 Östen Oskarsson: Mechanisms of Modifiabili-
ty in large Software Systems, 1982, ISBN 91-
7372-527-7.

No 94 Hans Lunell: Code Generator Writing Sys-
tems, 1983, ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Advances in Minimum
Weight Triangulation, 1983, ISBN91-7372-660-5.

No 109 Peter Fritzson: Towards a Distributed Pro-
gramming Environment based on Incremental
Compilation,1984, ISBN 91-7372-801-2.

No 111 Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Plan-
ning System for Turning, 1984, ISBN 91-7372-
805-5.

No 155 Christos Levcopoulos: Heuristics for Mini-
mum Decompositions of Polygons, 1987, ISBN
91-7870-133-3.

No 165 James W. Goodwin: A Theory and System for
Non-Monotonic Reasoning, 1987, ISBN 91-
7870-183-X.

No 170 Zebo Peng: A Formal Methodology for Auto-
mated Synthesis of VLSI Systems, 1987, ISBN
91-7870-225-9.

No 174 Johan Fagerström: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-
7870-301-8.

No 192 Dimiter Driankov: Towards a Many Valued
Logic of Quantified Belief, 1988, ISBN 91-7870-
374-3.

No 213 Lin Padgham: Non-Monotonic Inheritance for
an Object Oriented Knowledge Base, 1989,
ISBN 91-7870-485-5.

No 214 Tony Larsson: A Formal Hardware Descrip-
tion and Verification Method, 1989, ISBN 91-
7870-517-7.

No 221 Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN
91-7870-546-0.

No 239 Jonas Löwgren: Knowledge-Based Design
Support and Discourse Management in User
Interface Management Systems, 1991, ISBN 91-
7870-720-X.

No 244 Henrik Eriksson: Meta-Tool Support for
Knowledge Acquisition, 1991, ISBN 91-7870-
746-3.

No 252 Peter Eklund: An Epistemic Approach to Inter-
active Design in Multiple Inheritance Hierar-
chies,1991, ISBN 91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monotonic
Formalism with Explicit Defaults, 1991, ISBN
91-7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorithmic
Debugging, 1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Discourse-
Cognitive and Computational Aspects, 1992,
ISBN 91-7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and Ab-
stract Machines: Contributions to a Methodolo-
gy for the Implementation of Logic Programs,
1992, ISBN 91-7870-858-3.

No 270 Ralph Rönnquist: Theory and Practice of
Tense-bound Object References, 1992, ISBN 91-
7870-873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI
Data Path Synthesis, 1992, ISBN 91-7870-880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn
Clause Logic with External Polymorphic Func-
tions, 1992, ISBN 91-7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge
Management Systems with an Active Expert
Methodology, 1992, ISBN 91-7870-897-4.

No 281 Christer Bäckström: Computational Complex-
ity of Reasoning about Plans, 1992, ISBN 91-
7870-979-2.

No 292 Mats Wirén: Studies in Incremental Natural
Language Analysis, 1992, ISBN 91-7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dynamic
Slicing with Applications to Debugging and
Testing, 1993, ISBN 91-7871-065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using
Classification and Defaults, 1993, ISBN 91-
7871-078-2.

No 312 Arne Jönsson: Dialogue Management for Nat-
ural Language Interfaces - An Empirical Ap-
proach, 1993, ISBN 91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems in
Physical Environments: Compositional Mod-
elling and Framework for Verification, 1994,
ISBN 91-7871-237-8.

No 371 Bengt Savén: Business Models for Decision
Support and Learning. A Study of Discrete-
Event Manufacturing Simulation at Asea/ABB
1968-1993, 1995, ISBN 91-7871-494-X.

No 375 Ulf Söderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-
7871-516-4.

No 383 Andreas Kågedal: Exploiting Groundness in
Logic Programs, 1995, ISBN 91-7871-538-5.

No 396 George Fodor: Ontological Control, Descrip-
tion, Identification and Recovery from Prob-
lematic Control Situations, 1995, ISBN 91-7871-
603-9.

No 413 Mikael Pettersson: Compiling Natural Seman-
tics, 1995, ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement
by Testability Analysis and Transformations,
1996, ISBN 91-7871-654-3.

No 416 Hua Shu: Distributed Default Reasoning, 1996,
ISBN 91-7871-665-9.

No 429 Jaime Villegas: Simulation Supported Indus-
trial Training from an Organisational Learning
Perspective - Development and Evaluation of
the SSIT Method, 1996, ISBN 91-7871-700-0.

No 431 Peter Jonsson: Studies in Action Planning: Al-
gorithms and Complexity, 1996, ISBN 91-7871-
704-3.

No 437 Johan Boye: Directional Types in Logic Pro-
gramming, 1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-
7871-728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in De-
scription Logics, 1996, ISBN 91-7871-820-1.

No 452 Kjell Orsborn: On Extensible and Object-Rela-
tional Database Technology for Finite Element
Analysis Applications, 1996, ISBN 91-7871-827-
9.

No 459 Olof Johansson: Development Environments
for Complex Product Models, 1996, ISBN 91-
7871-855-4.

No 461 Lena Strömbäck: User-Defined Constructions
in Unification-Based Formalisms,1997, ISBN
91-7871-857-0.

No 462 Lars Degerstedt: Tabulation-based Logic Pro-
gramming: A Multi-Level View of Query An-
swering, 1996, ISBN 91-7871-858-9.

No 475 Fredrik Nilsson: Strategi och ekonomisk styrn-
ing - En studie av hur ekonomiska styrsystem
utformas och används efter företagsförvärv,
1997, ISBN 91-7871-914-3.

No 480 Mikael Lindvall: An Empirical Study of Re-
quirements-Driven Impact Analysis in Object-
Oriented Software Evolution, 1997, ISBN 91-
7871-927-5.

No 485 Göran Forslund: Opinion-Based Systems: The
Cooperative Perspective on Knowledge-Based
Decision Support, 1997, ISBN 91-7871-938-0.

No 494 Martin Sköld: Active Database Management
Systems for Monitoring and Control, 1997,
ISBN 91-7219-002-7.

No 495 Hans Olsén: Automatic Verification of Petri
Nets in a CLP framework, 1997, ISBN 91-7219-
011-6.

No 498 Thomas Drakengren: Algorithms and Com-
plexity for Temporal and Spatial Formalisms,
1997, ISBN 91-7219-019-1.

No 502 Jakob Axelsson: Analysis and Synthesis of
Heterogeneous Real-Time Systems, 1997, ISBN
91-7219-035-3.

No 503 Johan Ringström: Compiler Generation for
Data-Parallel Programming Langugaes from
Two-Level Semantics Specifications, 1997,
ISBN 91-7219-045-0.

No 512 Anna Moberg: Närhet och distans - Studier av
kommunikationsmmönster i satellitkontor och
flexibla kontor, 1997, ISBN 91-7219-119-8.

No 520 Mikael Ronström: Design and Modelling of a
Parallel Data Server for Telecom Applications,
1998, ISBN 91-7219-169-4.

No 522 Niclas Ohlsson: Towards Effective Fault
Prevention - An Empirical Study in Software
Engineering, 1998, ISBN 91-7219-176-7.

No 526 Joachim Karlsson: A Systematic Approach for
Prioritizing Software Requirements, 1998, ISBN
91-7219-184-8.

No 530 Henrik Nilsson: Declarative Debugging for
Lazy Functional Languages, 1998, ISBN 91-
7219-197-x.

No 555 Jonas Hallberg: Timing Issues in High-Level
Synthesis,1998, ISBN 91-7219-369-7.

No 561 Ling Lin: Management of 1-D Sequence Data -
From Discrete to Continuous, 1999, ISBN 91-
7219-402-2.

No 563 Eva L Ragnemalm: Student Modelling based
on Collaborative Dialogue with a Learning
Companion, 1999, ISBN 91-7219-412-X.

No 567 Jörgen Lindström: Does Distance matter? On
geographical dispersion in organisations, 1999,
ISBN 91-7219-439-1.

No 582 Vanja Josifovski: Design, Implementation and
Evaluation of a Distributed Mediator System
for Data Integration, 1999, ISBN 91-7219-482-0.

No 589 Rita Kovordányi: Modeling and Simulating
Inhibitory Mechanisms in Mental Image Re-
interpretation - Towards Cooperative Human-
Computer Creativity, 1999, ISBN 91-7219-506-1.

No 592 Mikael Ericsson: Supporting the Use of De-
sign Knowledge - An Assessment of Com-
menting Agents, 1999, ISBN 91-7219-532-0.

No 593 Lars Karlsson: Actions, Interactions and Nar-
ratives, 1999, ISBN 91-7219-534-7.

No 594 C. G. Mikael Johansson: Social and Organiza-
tional Aspects of Requirements Engineering
Methods - A practice-oriented approach, 1999,
ISBN 91-7219-541-X.

No 595 Jörgen Hansson: Value-Driven Multi-Class
Overload Management in Real-Time Database
Systems, 1999, ISBN 91-7219-542-8.

No 596 Niklas Hallberg: Incorporating User Values in
the Design of Information Systems and
Services in the Public Sector: A Methods
Approach, 1999, ISBN 91-7219-543-6.

No 597 Vivian Vimarlund: An Economic Perspective
on the Analysis of Impacts of Information
Technology: From Case Studies in Health-Care
towards General Models and Theories, 1999,
ISBN 91-7219-544-4.

No 598 Johan Jenvald: Methods and Tools in
Computer-Supported Taskforce Training,
1999, ISBN 91-7219-547-9.

No 607 Magnus Merkel: Understanding and
enhancing translation by parallel text
processing, 1999, ISBN 91-7219-614-9.

No 611 Silvia Coradeschi: Anchoring symbols to
sensory data, 1999, ISBN 91-7219-623-8.

No 613 Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture
Perspective, 1999, ISBN 91-7219-630-0.

No 618 Jimmy Tjäder: Systemimplementering i
praktiken - En studie av logiker i fyra projekt,
1999, ISBN 91-7219-657-2.

No 627 Vadim Engelson: Tools for Design, Interactive
Simulation, and Visualization of Object-
Oriented Models in Scientific Computing,
2000, ISBN 91-7219-709-9.

No 637 Esa Falkenroth: Database Technology for
Control and Simulation, 2000, ISBN 91-7219-
766-8.

No 639 Per-Arne Persson: Bringing Power and
Knowledge Together: Information Systems
Design for Autonomy and Control in
Command Work, 2000, ISBN 91-7219-796-X.

No 660 Erik Larsson: An Integrated System-Level
Design for Testability Methodology, 2000, ISBN
91-7219-890-7.

No 688 Marcus Bjäreland: Model-based Execution
Monitoring, 2001, ISBN 91-7373-016-5.

No 689 Joakim Gustafsson: Extending Temporal
Action Logic, 2001, ISBN 91-7373-017-3.

No 720 Carl-Johan Petri: Organizational Information
Provision - Managing Mandatory and Discre-
tionary Use of Information Technology, 2001,
ISBN-91-7373-126-9.

No 724 Paul Scerri: Designing Agents for Systems with
Adjustable Autonomy, 2001, ISBN 91 7373 207
9.

No 725 Tim Heyer: Semantic Inspection of Software
Artifacts: From Theory to Practice, 2001, ISBN 91
7373 208 7.

No 726 Pär Carlshamre: A Usability Perspective on Re-
quirements Engineering - From Methodology to
Product Development, 2001, ISBN 91 7373 212 5.

No 732 Juha Takkinen: From Information Manage-
ment to Task Management in Electronic Mail,
2002, ISBN 91 7373 258 3.

No 745 Johan Åberg: Live Help Systems: An Approach
to Intelligent Help for Web Information Sys-
tems, 2002, ISBN 91-7373-311-3.

No 746 Rego Granlund: Monitoring Distributed Team-
work Training, 2002, ISBN 91-7373-312-1.

No 757 Henrik André-Jönsson: Indexing Strategies for
Time Series Data, 2002, ISBN 917373-346-6.

No 747 Anneli Hagdahl: Development of IT-suppor-
ted Inter-organisational Collaboration - A Case
Study in the Swedish Public Sector, 2002, ISBN
91-7373-314-8.

No 749 Sofie Pilemalm: Information Technology for
Non-Profit Organisations - Extended Participa-
tory Design of an Information System for Trade
Union Shop Stewards, 2002, ISBN 91-7373-

318-0.

No 765 Stefan Holmlid: Adapting users: Towards a
theory of use quality, 2002, ISBN 91-7373-397-0.

No 771 Magnus Morin: Multimedia Representations
of Distributed Tactical Operations, 2002, ISBN
91-7373-421-7.

No 772 Pawel Pietrzak: A Type-Based Framework for
Locating Errors in Constraint Logic Programs,
2002, ISBN 91-7373-422-5.

No 758 Erik Berglund: Library Communication
Among Programmers Worldwide, 2002,
ISBN 91-7373-349-0.

No 774 Choong-ho Yi: Modelling Object-Oriented
Dynamic Systems Using a Logic-Based Frame-
work, 2002, ISBN 91-7373-424-1.

No 779 Mathias Broxvall: A Study in the
Computational Complexity of Temporal
Reasoning, 2002, ISBN 91-7373-440-3.

No 793 Asmus Pandikow: A Generic Principle for
Enabling Interoperability of Structured and
Object-Oriented Analysis and Design Tools,
2002, ISBN 91-7373-479-9.

No 785 Lars Hult: Publika Informationstjänster. En
studie av den Internetbaserade encyklopedins
bruksegenskaper, 2003, ISBN 91-7373-461-6.

No 800 Lars Taxén: A Framework for the Coordina-
tion of Complex Systems´ Development, 2003,
ISBN 91-7373-604-X

No 808 Klas Gäre: Tre perspektiv på förväntningar
och förändringar i samband med införande av
informationsystem, 2003, ISBN 91-7373-618-X.

No 821 Mikael Kindborg: Concurrent Comics - pro-
gramming of social agents by children, 2003,
ISBN 91-7373-651-1.

No 823 Christina Ölvingson: On Development of In-
formation Systems with GIS Functionality in
Public Health Informatics: A Requirements
Engineering Approach, 2003, ISBN 91-7373-
656-2.

No 828 Tobias Ritzau: Memory Efficient Hard Real-
Time Garbage Collection, 2003, ISBN 91-7373-
666-X.

No 833 Paul Pop: Analysis and Synthesis of
Communication-Intensive Heterogeneous
Real-Time Systems, 2003, ISBN 91-7373-683-X.

No 852 Johan Moe: Observing the Dynamic
Behaviour of Large Distributed Systems to Im-
prove Development and Testing - An Emperi-
cal Study in Software Engineering, 2003, ISBN
91-7373-779-8.

No 867 Erik Herzog: An Approach to Systems Engi-
neering Tool Data Representation and Ex-
change, 2004, ISBN 91-7373-929-4.

No 872 Aseel Berglund: Augmenting the Remote
Control: Studies in Complex Information
Navigation for Digital TV, 2004, ISBN 91-7373-
940-5.

No 869 Jo Skåmedal: Telecommuting’s Implications
on Travel and Travel Patterns, 2004, ISBN 91-
7373-935-9.

No 870 Linda Askenäs: The Roles of IT - Studies of Or-
ganising when Implementing and Using En-
terprise Systems, 2004, ISBN 91-7373-936-7.

No 874 Annika Flycht-Eriksson: Design and Use of
Ontologies in Information-Providing Dialogue
Systems, 2004, ISBN 91-7373-947-2.

No 873 Peter Bunus: Debugging Techniques for Equa-
tion-Based Languages, 2004, ISBN 91-7373-
941-3.

No 876 Jonas Mellin: Resource-Predictable and Effi-
cient Monitoring of Events, 2004, ISBN 91-
7373-956-1.

No 883 Magnus Bång: Computing at the Speed of Pa-
per: Ubiquitous Computing Environments for
Healthcare Professionals, 2004, ISBN 91-7373-
971-5

No 882 Robert Eklund: Disfluency in Swedish
human-human and human-machine travel
booking dialogues, 2004. ISBN 91-7373-966-9.

No 887 Anders Lindström: English and other Foreign
Linquistic Elements in Spoken Swedish. Stud-
ies of Productive Processes and their Modelling
using Finite-State Tools, 2004, ISBN 91-7373-
981-2.

No 889 Zhiping Wang: Capacity-Constrained Produc-
tion-inventory systems - Modellling and Anal-
ysis in both a traditional and an e-business
context, 2004, ISBN 91-85295-08-6.

No 893 Pernilla Qvarfordt: Eyes on Multimodal Inter-
action, 2004, ISBN 91-85295-30-2.

No 910 Magnus Kald: In the Borderland between
Strategy and Management Control - Theoret-
ical Framework and Empirical Evidence,
2004, ISBN 91-85295-82-5.

No 918 Jonas Lundberg: Shaping Electronic News:
Genre Perspectives on Interaction Design,
2004, ISBN 91-85297-14-3.

No 900 Mattias Arvola: Shades of use: The dynamics
of interaction design for sociable use, 2004,
ISBN 91-85295-42-6.

No 920 Luis Alejandro Cortés: Verification and
Scheduling Techniques for Real-Time Em-
bedded Systems, 2004, ISBN 91-85297-21-6.

No 929 Diana Szentivanyi: Performance Studies of
Fault-Tolerant Middleware, 2005, ISBN 91-
85297-58-5.

No 933 Mikael Cäker: Management Accounting as
Constructing and Opposing Customer Focus:
Three Case Studies on Management Account-
ing and Customer Relations, 2005, ISBN 91-
85297-64-X.

No 937 Jonas Kvarnström: TALplanner and Other
Extensions to Temporal Action Logic, 2005,
ISBN 91-85297-75-5.

No 938 Bourhane Kadmiry: Fuzzy Gain-Scheduled
Visual Servoing for Unmanned Helicopter,
2005, ISBN 91-85297-76-3.

No 945 Gert Jervan: Hybrid Built-In Self-Test and
Test Generation Techniques for Digital Sys-
tems, 2005, ISBN: 91-85297-97-6.

No 946 Anders Arpteg: Intelligent Semi-Structured
Information Extraction, 2005, ISBN 91-85297-
98-4.

No 947 Ola Angelsmark: Constructing Algorithms
for Constraint Satisfaction and Related Prob-
lems - Methods and Applications, 2005, ISBN
91-85297-99-2.

No 963 Calin Curescu: Utility-based Optimisation of
Resource Allocation for Wireless Networks,
2005. ISBN 91-85457-07-8.

No 972 Björn Johansson: Joint Control in Dynamic
Situations, 2005, ISBN 91-85457-31-0.

No 974 Dan Lawesson: An Approach to Diagnosa-
bility Analysis for Interacting Finite State
Systems, 2005, ISBN 91-85457-39-6.

No 979 Claudiu Duma: Security and Trust Mecha-
nisms for Groups in Distributed Services,
2005, ISBN 91-85457-54-X.

No 983 Sorin Manolache: Analysis and Optimisa-
tion of Real-Time Systems with Stochastic
Behaviour, 2005, ISBN 91-85457-60-4.

No 986 Yuxiao Zhao: Standards-Based Application
Integration for Business-to-Business Com-
munications, 2005, ISBN 91-85457-66-3.

No 1004 Patrik Haslum: Admissible Heuristics for
Automated Planning, 2006, ISBN 91-85497-
28-2.

No 1005 Aleksandra Tesanovic: Developing Re-
usable and Reconfigurable Real-Time Soft-
ware using Aspects and Components, 2006,
ISBN 91-85497-29-0.

Linköping Studies in Information Science
No 1 Karin Axelsson: Metodisk systemstrukture-

ring- att skapa samstämmighet mellan infor-
ma-tionssystemarkitektur och verksamhet,
1998. ISBN-9172-19-296-8.

No 2 Stefan Cronholm: Metodverktyg och använd-
barhet - en studie av datorstödd metodbaserad
systemutveckling, 1998. ISBN-9172-19-299-2.

No 3 Anders Avdic: Användare och utvecklare - om
anveckling med kalkylprogram, 1999. ISBN-
91-7219-606-8.

No 4 Owen Eriksson: Kommunikationskvalitet hos
informationssystem och affärsprocesser, 2000.
ISBN 91-7219-811-7.

No 5 Mikael Lind: Från system till process - kriteri-
er för processbestämning vid verksamhetsana-
lys, 2001, ISBN 91-7373-067-X

No 6 Ulf Melin: Koordination och informationssys-
tem i företag och nätverk, 2002, ISBN 91-7373-
278-8.

No 7 Pär J. Ågerfalk: Information Systems Actabili-
ty - Understanding Information Technology as
a Tool for Business Action and Communica-
tion, 2003, ISBN 91-7373-628-7.

No 8 Ulf Seigerroth: Att förstå och förändra
systemutvecklingsverksamheter - en taxonomi
för metautveckling, 2003, ISBN91-7373-736-4.

No 9 Karin Hedström: Spår av datoriseringens
värden - Effekter av IT i äldreomsorg, 2004,
ISBN 91-7373-963-4.

No 10 Ewa Braf: Knowledge Demanded for Action -
Studies on Knowledge Mediation in Organisa-
tions, 2004, ISBN 91-85295-47-7.

No 11 Fredrik Karlsson: Method Configuration -
method and computerized tool support, 2005,
ISBN 91-85297-48-8.

No 12 Malin Nordström: Styrbar systemförvaltning -
Att organisera systemförvaltningsverksamhet

med hjälp av effektiva förvaltningsobjekt, 2005,
ISBN 91-85297-60-7.

No 13 Stefan Holgersson: Yrke: POLIS - Yrkeskun-
skap, motivation, IT-system och andra förutsät-
tningar för polisarbete, 2005, ISBN 91-85299-43-
X.

