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Abstract 

It is important to be able to predict the potential spread of water borne diseases 

when building dams or redirecting rivers. This study was designed to test whether the use 

of a growing degree day (GDD) climate model and remotely sensed data (RS) within a 

geographic information system (GIS), could be used to predict both the distribution and 

severity of Schistosoma haematobium. Growing degree days are defined as the number of 

degrees centigrade over the minimum temperature required for development. The base 

temperature and the number of GDD required to complete one generation varies for each 

species. A monthly climate surface grid containing the high and low temperature, rainfall, 

potential evapotranspiration (PET), and the ratio of rain to PET was used to calculate the 

total number of GDD provisional on suitable moisture content in the soil. The latitude 

and longitude for known snail locations were used to create a point file. A 5km buffer 

was made around each point. Mean values were extracted from buffer areas for Advanced 

Very High Resolution Radiometer (AVHRR) data on maximum land surface temperature 

(Tmax) and normalized difference vegetation index (NDVI). The values for Tmax ranged 

from 15-28 and the NDVI values were 130-157. A map query found all areas that meet 

both criteria and produced a model surface showing the potential distribution of the 

vectors for this disease. Results indicate that the GDD and AVHRR models can  be used 

together to define both the distribut ion range and relative risk of S.haematobium in 

anticipated water development projects and for control program planning and better 

allocation of health resources in endemic vs. non-endemic areas. 
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Introduction 

 Schistosomiasis is one of the World Health Organization’s (WHO) great 

neglected diseases. It is the second most prevalent tropical disease, with 200 million 

people infected and 500 million at risk (Lengeler et al., 2002).  The great majority (80-

85%) of schistosomiasis is found in sub-Saharan Africa (Bergquist, 2002). It is important 

to create some method of separating areas of high risk from areas of low risk for control 

programs.  Schistosomiasis is spread by water contact of human hosts in freshwater 

habitats of snails suitable for propagation and transmission of the parasite.   

 Schistosoma haematobium has an indirect life cycle that requires aquatic snail 

intermediate hosts of several Bulinus spp. Suitable snail hosts are penetrated by miracidia 

that hatch in fresh water aquatic environments  from eggs shed in the urine of infected 

humans. The miracidia have 8-12 hours to infect a suitable Bulinus spp. snail host. In the 

snail, the miracidium then develops into sporocysts and then to cercariae. The sporocyst 

can produce up to 600 daughter sporocysts. The daughter sporocysts migrate to the 

digestive gland of the snail host to begin producing the cercariae stage. The snail can  

shed approximately 100’s of cercariae/day up to 18 days 

(http://martin.parasitology.mcgill.ca/jimspage/biol/schisto.htm). Temperature effects the 

amount of time needed to complete this portion of the life cycle. Cooler temperatures 

decrease the rate of development while warmer temperatures up to the optimum 

temperature 22°C. Pflüger (1981) describes this portion of the schistosome life cycle as 

being the most restrictive with respect to temperature. The free swimming cercariae 

released from snail hosts infect the human host by penetrating the skin. The cercariae 

shed their bifurcated tail, and the resulting schistosomula are carried through the blood 
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stream to the lungs for approximately 8 days. The schistosomula are then transported to 

the liver where they mature to adults and begin pairing as adult. The paired adults begin 

producing eggs that pass into adjacent tissues, while many eggs penetrate through the 

mucosa of bladder. The eggs of S. haematobium are shed in the urine (Ross, 2002). Eggs 

contaminate fresh water due to the lack of a proper sewerage system or defecating close 

to a water body. The eggs, once in water, then hatch because of the osmotic pressure 

releasing the miracidia to the water to infect more snail hosts.   

 Advances in technology have allowed geographical information systems (GIS) 

and remote sensing (RS) to be used in the epidemiology of disease to create risk 

assessment maps. John Snow first used GIS in 1854, in a public health application of an 

outbreak of cholera in London (Loslier, 1995). Because of the lack of spatial data sources 

and the limited capability of computer software, GIS has not been used at it full potential, 

until recently. Technological advances in computers, software, and data availability have 

led to development of a number of GIS medical applications that allow evaluation of both 

spatial and temporal relationships of the environment and disease agents. In the last 

decade, GIS has been used to create risk models for a number of environmentally 

sensitive diseases including malaria, onchocerciasis, rift valley fever, fascioliasis, and 

African trypanosomiasis (Brooker, et al. 2001, Malone et al., 1995, 2003). Environmental 

factors such as climate, satellite sensor data, elevation, land use, soil type, and other map 

data are overlaid on a base map of standard geographic projection and scale.   A series of 

points can then be added and used to extract data for all layers of environmental data and 

interactively analyzed by GIS query and statistical methods. These points can be cities, 
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weather stations, or locations where health data was collected in previous or current field 

research.   

 Remote sensing data from earth observing satellites or aircraft can be used to 

gather ‘surrogate’ information on climate, vegetation, soil moisture, and other 

environmental features. Remote sensing has not been widely used in public health, until 

recently due to the coarse resolution of early sensors and the cost of obtaining satellite 

images. Environmental satellites have been launched into space for 40 years, but were 

originally limited to use for the military and weather observations (Huh and Malone, 

2001). Among the advantages of using RS are that data can be provided on areas that are 

not assessable, it offers the possibility of global coverage, and data can be collected, 

processed, and used in near real time. Weather stations can only provide data for small 

areas, and therefore it can require hundreds or thousands of climate stations to effectively 

cover a given country in the same detail as satellite imagery. 

 Currently, the Advanced Very High Resolution Radiometer (AVHRR) sensor is 

one of the most widely used remote sensing systems used in parasitological and 

epidemiological studies. This system uses 5 bands with bands 1 and 2 being in the visible 

portion of the energy spectrum, bands 4 and 5 being thermal infrared data, and band 3 

being mid-range infrared data, all with a pixel resolution of 1.1km2 (Huh and Malone, 

2001). The first AVHRR sensor satellite was launched in 1978, providing a long-term 

archive of satellite data that can be used to map the distribution and abundance of 

diseases and vectors and to document the spread of a given disease.  A limitation of using 

AVHRR is the 1.1km2 resolution and the fact that snails and the parasites they carry often 

live in water bodies and streams smaller than 1.1km2.  
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The effects of environmental factors on the development of the intermediate hosts 

of schistosomiasis were described by Malek in 1958. A suitable range was defined for 

each factor and the limiting effect it has on the snail. It is reported that Bulinus globosus 

and Bulinus physopsis can survive 12 months of drought in the laboratory and 45 days in 

its natural habitat (Malek, 1958). 

Many studies have been done to evaluate and predict the effects of irrigation 

projects on snails and schistosomes with mixed success. For example in 1976, the United 

States Agency for International Development (USAID) did an assessment on the risk of 

schistosomiasis before a water development scheme began in the Senegal River Basin 

and predicted the river basin was at low risk for the development of this disease. Two 

dams were built, one in 1985 and a second in 1989, which changed the environment in 

the Senegal River Basin and led to one of the worst outbreaks of schistosomiasis ever 

recorded (Southgate, 1997). This was likely to occur, since data cannot be recorded for 

every location or every point in time (Kitron, 2000) and thus field assessments were 

incomplete. This event and earlier experience with other water development projects that 

ultimately led to increased risk of schistosomiasis, notably the Aswan Dam in Egypt and 

the Akosombo Dam in Ghana (Hunter et al., 1982), indicate the need for more accurate 

risk assessment methods. 

The construction of the Aswan Dam altered the environment, creating 

unfavorable conditions for Bulinus sp. and favorable conditions for Biomphalaria spp. 

Under pre-dam conditions of a single seasonal irrigation period that were more suitable 

for the development of Bulinus sp., the prevalence in the Nile Delta of S. haematobium 

was 74% in 1935 and the prevalence of S.mansoni was 3.2% (Abdel-Wahab, 1979). In 
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1979, when the human population was retested, the prevalence relationship had reversed; 

S. haematobium prevalence was 2.2% and S.mansoni prevalence was 73%. 

  Irrigation and water development is thus known to be highly influential in the 

spread and increased relative severity of schistosomiasis. Sturrock (1965) monitored nine 

irrigations schemes in Tanzania to determine the effect of these water developments on 

the establishment of snail populations. Each scheme used different methods of water 

control and maintenance leading to the establishment of different assemblage of snail 

species in each scheme. In 1977, established irrigation schemes in Ethiopia were 

surveyed to measure the prevalence of schistosomiasis, the effects of water temperature, 

and elevation on the snail population. The results of this study showed that Biomphalaria 

pfeifferi were found in large numbers, while only a few snails from the Bulinus spp were 

found in the canals (Kloos and Lemma, 1977). It was reported that resettlement was 

another method of introducing infected people to uninfected areas. In many cases the 

schistosomes died and did not create new endemic areas (Kloos, 1990).   

 The ecology of S.mansoni and S. haematobium was mapped for Ethiopia by Kloos 

(1988) to show the relationships between prevalence and environmental factors, both 

natural and man-made. An elevational limit of 800m-2200m above sea level was 

established as suitable elevation for S.mansoni due to hot water temperatures below 800m 

and cold water temperature above 2200m (Kloos et al., 1988). S. haematobium was found 

below 800m because the Bulinus spp. in Ethiopia favor warm water temperatures. 

S.mansoni prevalence declines when the elevation is above 2000m (Kloos et al., 1988). In 

addition to describing the elevational requirements for the intermediate hosts, Kloos also 

identified the specific species capable of transmission for various region in Ethiopia.   
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 The effects of temperature on prevalence and development of schistosomes have 

been studied in the laboratory by a number of authors. Anderson et al. (1979) found that 

the rate of development increased with temperature as a linear relationship. The suitable 

temperature range for larval development in the laboratory was between 15°C to 35°C, 

with an optimum temperature for intramolluscan development of 25°C. The study also 

determined that infection considerably reduced the life span of the snail. Woolhouse et al. 

(1990) describes the fecundity rate as being dependent on temperature by modeling a bell 

curve relationship with the optimum temperature peak at 20.6°C. 

The thermal development requirements of S. haematobium and S.mansoni have 

been reported in detailed studies by Pflüger (1981). A minimum temperature and 

maximum temperature for development of the parasite was established as well as the 

number of GDD required to complete one life cycle in the snail host for both S.mansoni 

and S. haematobium. The rate of development, as influenced by temperature, was shown 

to have a linear relationship starting with the minimum temperature (15.3°C for S. 

haematobium) to an optimum temperature (22°C for S. haematobium). Again, it was 

stated that there is an inverse relationship of development and temperature above the 

optimum temperature. Parasitic development within the snail has the most restricted 

range of temperatures throughout the life cycle (Pflüger, 1981).  The effects of 

temperature on Bulinus globosus in field studies in the Kenya coastal areas were reported 

by O’Keeffe, (1985); snail populations were limited when temperatures rise above 

28.5°C, an effect that was attributed to gonadal atrophy. The optimum temperature for 

population growth was shown to be 25°C. Rainfall and water temperature were reported 
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to be the most important variables for controlling the population of B.globosus 

(O’Keeffe, 1985).  

The use of GIS and RS for the prediction of schistosomiasis was first attempted in 

the Philippines and the Caribbean by Cross et al. (1984). Data collected by weather 

stations, topographic information, Landsat data, and disease was combined to create a 

model. This model had 93.2% correct classification of known endemic areas in the 

Philippines. The model was not accurate when classifying the environment for 

schistosomiasis in the Caribbean (Cross et al., 1984).  

 GIS and remote sensing (RS) were later used to evaluate risk of schistosomiasis in 

the Nile River delta of Egypt (Malone, 1994) for use in control program management for 

schistosomiasis.  A regional scale model was created for the Nile Delta on the potential 

distribution and abundance of S.mansoni by Malone et al. (2001) who used AVHRR to 

create diurnal temperature difference maps which indicated thermal-hydrological regimes 

that favored the snail host and transmission of the parasite. Bulinus spp. was suggested to 

be more tolerate of drought and high temperatures than Biomphalaria spp, the snail host 

for S.mansoni (Malone, 1994, 1995).  

The habitats for Bulinus globosus and Biomphalaria pfeifferi were described in 

Zimbabwe using Tmax and NDVI from the AVHRR sensor. The seasonal distribution 

was monitored using RS to determine which months had the most influence on 

transmission. The optimum range of NDVI was 128-160 for identifying areas of high 

prevalence (= 5%) (Mukaratirwa, 1999).  

 Risk assessment maps were created in 2001 for S. haematobium in Tanzania by 

use of RS and logistic regression, regions were identified as being risk (Brooker, 2001). 
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Remote sensing was used to define ecologic zones and then produce risk assessment 

maps for each zone. These models were then validated by using a questionnaire to 

determine prevalence in a given area (Brooker, 2002). A risk assessment model has been 

developed for S.mansoni, in Bahia, Brazil, using GIS.  The latter model evaluated several 

agro-climate and environmental factors to find areas that met the life cycle requirements 

of S.mansoni (Bavia, 1999). 

Geospatial studies on other diseases suggest new approaches for the use of GIS 

for better decision making toward schistosomiasis control. The spatial distribution of 

filariasis in the Nile Delta has been described using RS to identify environmental 

requirements for this disease. Normalized difference vegetation index (NDVI) combined 

with temperature were used to determine suitable mosquito habitat areas 

 (Crombie, 1999, Thompson et al.,1996). These studies used AVHRR and the Landsat 

sensor systems, respectively, to measure soil moisture parameters that determine potential 

breeding habitat. 

 For malaria, an environmental risk assessment model was recently used for 

prediction of malaria risk for Eritrea in 2002. A growing degree day model was used to 

determine the potential severity of malaria which was divided into a highland pattern and 

a coastal transmission pattern based on temperature and water balance parameters using a 

5km2 climate grid (Malone et al., 2003). A similar approach was successfully used to 

determine the potential severity of S.mansoni in Kenya (Malone and Corbett, 2002). The 

influences of resettlement were described for Malaria, yellow fever, onchocerciasis , and 

trypanosomiasis in Ethiopia. An upper limit for elevation was defined as 2000m for many 

tropical diseases in Ethiopia (Kloos, 1990). 
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The impetus for the current study on S. haematobium in Kenya arose from results 

of earlier work described above and the availability of GIS-compatible resource datasets 

from two sources: 1) A ‘minimum medical GIS database’ for the IGAD/Nile region of 

East Africa, including Kenya (Malone et al., 2001a,b), and 2) a database from a very 

complete recent survey of the freshwater snails of southern Kenya (Loker et al., 1993). 

The Global Network on Schistosomiasis Information Systems and Control of 

Snail-Borne Disease (www.GnosisGIS.org) has fostered use of satellite climatology in 

predictive models for schistosomiasis and fascioliasis. One of the purposes of this 

network is to create and maintain a “Minimum Medical Database” (MMDb), a 

compilation of environmental and parasitological data needed to develop risk assessment 

models for a variety of diseases and parasites. The MMDb includes AVHRR data, on 

NDVI and land surface temperature (Tmax), along with other data components such as a 

Food and Agriculture Organization (FAO) soil database, topography, and snail 

distribution for East Africa (Bergquist, NR, 2002). 

 Loker et al. (1993) performed a systematic survey in southern Kenya to map the 

locations of fresh water snails and determine the preferred habitat. Snails were collected 

and identified over a three year time period in natural and man-made water bodies.  

Elevation and habitat type were recorded as well as the number of each species found. 

The latitude and longitude were recorded so that these points could be used in a 

geographic information system (GIS).  The MMDb database, supplemented with 

geospatial data from other sources, and the Loker survey database were used in the 

current study to initiate development of a risk assessment model for Kenya using GIS/RS 

methodologies. 
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Methods and Materials  

 Two approaches were taken to develop separate GIS model components which 

were later combined to produce the final model: (1) a climate-growing degree day model 

and (2) a remote sensing model using earth observing satellites. The databases included 

in the GIS constructed for use in these stud ies is shown on Fig.1.   

 

 

 

 

 

 

 

 

 

 
 

 
Fig.1. Data layers that were used to construct the environmental risk assessment models 
for S. haematobium. 

 
Growing Degree Day Model 

 A growing degree day (GDD) model was developed using a MMDb climate 

surface 5km2 grid that had originally been obtained from the Almanac Characterization 

Tool 3.0 (ACT 3.0) (Corbett et al., 2001), a comprehensive database on climate, 

demography, topography, infrastructure, hydrology, and other environmental parameters 

for East Africa.  
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 Growing degree days were calculated as the number of degrees above 15.3°C, the 

minimum temperature required for development of S. haematobium (Pflüger, 1981) times 

the number of days per months ((mean temperature-15.3)*days of the month). Growing 

degree days were accumulated only under conditions in which a soil moisture water 

balance was above a threshold considered to be needed to allow the snail and the parasite 

to survive in a given environment. A precipitation:potential evapotranspiration ratio 

(PPE) greater than 0.5 was set as the criteria to indicate the presence of an adequate 

amount of surface water or soil moisture based on the water balance in the top 25cm of 

soil  water holding capacity. A total of 298 GDD is required to complete one S. 

haematobium development cycle in the snail host. GDD/298 represents the number of 

potential generations per year that could occur for each grid cell. 

Modified Risk Index Model 

 It is known that development rates of the free-living stages of many parasites 

increase with temperature until the optimum temperature is reached, then decrease at 

temperatures that exceed the optimum due to heat stress (Fig.2), although this factor has 

been difficult to measure in the field (Andrewartha and Burch, 1954, Woolhouse, 1990).  

 

Fig. 2. Relationships of mortality rate (d), and effective recruitment rate (b), to mean 
water temperature for B.globosus based on a mathematical model (Woolhouse, 1990). 
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The effect of heat stress was estimated by stratifying the growth curve into 7 classes 

assuming the population development-survival balance will lead to population growth at 

a given rate on either side of the optimum temperature (Fig.3). The water balance 

threshold of PPE>0.5 was used to indicate areas with adequate moisture for life cycle 

progression in each month. Monthly values were then summed to yield a cumulative risk 

index value.  

 
Fig.3. Stratified growth curve showing the rate of development compared to temperature 

for S. haematobium.  
 

Masking Unsuitable Areas 

 A temperature mask was created based on the incompatibility of high 

temperatures with snail survival over 28.5°C temperature (O’Keeffe, 1985) by GIS query 

analysis of the temperature grid to identify grid cells with a mean temperature above 

28.5°C. Since the mean temperature varies seasonally, the query was done on a monthly 

basis. Four months are displayed in Figure 4 to represent seasonal pattern change.  
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Fig. 4. Black areas have a monthly mean temperature above 28.5°C, which causes 
gonadal atrophy in B.globosus (O’Keeffe, 1985). (a) January (b) March) (c) May and (d) 

September  
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AVHRR Remote Sensing Models 

 Advanced Very High Resolution Radiometer (AVHRR) data was obtained 

(Malone et al., 2001) for 1992-1993 and 1995-1996 via the Internet from the United 

States Geological Survey (USGS) global 1km2 website 

(http://edcdaac.usgs.gov/1KM/1kmhomepage.html) for daytime land surface temperature 

(Tmax) and Normalized Difference Vegetation Index (NDVI). NDVI is an index that 

ranges from -1 to 1, that was rescaled for use by the global 1km2 website to yield NDVI 

values of 0-200. The primary purpose of NDVI is to measure vegetation health, however, 

NDVI can also be used to estimate soil moisture based on vegetation health (Crombie, 

1999, Huh and Malone, 2001). NDVI based on data from the AVHRR sensor is 

calculated by using channels 1 and 2 ((channel 2- channel1)/(channel 2+ channel 1)) 

(Huh and Malone, 2001). 

 The AVHRR data was downloaded at dekadal intervals (every10 days) that had 

already been processed by the USGS to eliminate cloud cover using an algorithm that 

records the highest pixel value for each pixel during the 10-day period. All satellite 

images were calibrated and georeferenced to a geographic decimal degree latitude and 

longitude coordinate system using ERDAS imagine 8.6 image processing software. The 

dekadal data were then combined to create monthly composite maps by averaging the 

images together: 

                           ((Image1+Image2+Image3)/3)=monthly composite 

 Monthly data were averaged together to create wet season (Oct-March), and dry season 

(April-Sept) composite maps, and an annual composite map. Composite images were 

incorporated into an ArcView 3.3 GIS project and converted to a grid file for further 
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analysis using a grid cell size of 1.1km2, the same spatial resolution as the original 

AVHRR data. 

 Buffer zones with a 5km diameter were created in ArcView 3.3 GIS centered on 

all survey points for B.globosus. A separate set of buffers was centered on survey points 

containing B.physopsis. These buffers were used to extract mean values for both Tmax 

and NDVI. Since each pixel in the AVHRR image represents 1.1km2, ArcView 3.3 GIS 

calculated the mean value for both NDVI and Tmax for the entire buffer area. Based on 

the mean value range, a map query was then done to select grid cells of the composite 

maps cons istent with the range of known infected sites. The intent was to show areas 

where B.globosus and B.physopsis can occur based on the value range of Tmax and 

NDVI at known endemic sites. 

Ecological Niche Modeling 

 Using the Genetic Algorithm for Rule-Set Prediction (GARP), an ecological niche 

for S haematobium was predicted based on environmental factors, including high 

temperature, low temperature, rainfall, evapotranspiration, topography, and AVHRR 

data. The snail survey dataset of Loker et al. (1993) was used as the positive point 

location records for this program. GARP uses 50% of the point locations for training and 

the remaining 50% as a test dataset, using either 1000 iterations or until an operator 

specified convergence level is reached in the rule-selection process. The predictive value 

is based on 1250 points taken from test data and 1250 points randomly selected from 

within the study area. Logistic regression is performed after each iteration to determine if 

the rule should be incorporated into the model (Peterson, 2002, 2003). An ArcView grid 
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is created based on the final model used by GARP. This grid can then be input into a GIS 

and compared to existing models. 
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Results 

GDD and Modified Risk Index 

 The range of potential generations per year throughout Kenya was -8 to +10 when 

a water balance of PPE>0.5 was considered to be a limiting factor (Fig. 5). The area 

surrounding Lake Victoria and along the southern coast had 6-10 generations per year. 

The eastern border, the area around Lake Turkana, and the highlands had values less than 

2 generations per year. For the remainder of the country 2-6 potential generations of S. 

haematobium were predicted developing in the snail hosts per year. 

For the modified risk index model that accounted for the effect of heat stress,  risk 

index value ranges of 0-15 (very low), 16-30 (low), 31-46 (moderate), 47-61 (high), and 

62-77 (very high) (Fig.6) were predicted, conditional on water balance values of 

PPE>0.5. The area surrounding Lake Victoria is the only region with both high and very 

high risk by this model. The southern part of Kenya along the coast, and regions in the 

highlands were predicted to have moderate risk. The remainder of the southern region of 

Kenya had low risk while the northern regions had very low risk.  

AVHRR Remote Sensing Model 
 

The mean values for Tmax within the 5km buffers centered on sna il survey data 

points ranged from 6.5-28.5°C for the wet season, and 7.5-29° C for the dry season based 

on 1992/1995 AVHRR composite seasonal maps (Fig.7).  The range used for the map 

queries was 15?C-29?C. The lower limit of this temperature range was chosen because of 

the life cycle demands of the schistosome. The upper limit was used based on the fact 

that no snails were found at higher temperatures and also because of reported gonadal 

atrophy above 28.5?C (O’Keeffe, 1985). 
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Fig.5. Potential generations  of S. haematobium per year (Cumulative Annual GDD/268) 
that can occur based on monthly mean temperature of > 15.3oC, conditional on a water 

balance ratio (Rain/Potential Evapotranspiration) of >0.5. 
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Fig.6. Risk index predicted distribution map, after correcting for the effect of increasing 
levels of heat stress (>optimum temperature) on the model output of the GDD-based 

generations per year model for S. haematobium, conditional on water balance values of 
PPE>0.5. 
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Fig.7. Four charts showing the value ranges of Tmax and NDVI for the wet season and 
the dry season (a) Tmax values for known Bulinus spp. locations during the wet season 

(b) Tmax values for known Bulinus spp. locations during the dry season (c) NDVI values 
for known Bulinus spp. locations during the wet season (d) NDVI values for known 

Bulinus spp. locations during the dry season. All Bulinus spp. locations were based on 
surveys performed by Loker et al. (1993). 
 

The map queries indicated almost the entire country fell within the suitable thermal range 

15°C-29°C (Fig. 8). The NDVI mean values extracted from for the 5km buffers were 35-

160 for the wet season, and 56-157 for the dry season based on the 1992/1995 composite 

seasonal map data (Fig. 7). Values of NDVI used for final map queries were 125-160 for 

the wet season, and 130-157 for the dry season (Fig.9).  Buffer query areas with low 

mean NDVI values (<100) were eliminated from consideration if part of the buffer zone 

being averaged included a water body of nil NDVI value.  Large water bodies register as 

0 for NDVI due to the fact that there is little or no vegetation in the middle of a body of 

water. Another map query, using boolian logic, shows areas that met both criteria (NDVI 

and Tmax), thus being suitable habitat for a snail population to survive (Fig. 10).   
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Fig.8. Areas within the Tmax ‘suitable’ range of 15°C to 29°C for (a) wet season and (b) 
dry season as determined by dekadal AVHRR satellite sensor data.    

 
Fig.9. Areas of adequate moisture based on NDVI map queries (a) wet season with a 
range of 125-160 (b) dry season with a range of 130-157. 
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Fig.10. Area determined to be potential habitat for snail development based on meeting 
both NDVI and Tmax suitable range criteria for the (a) wet season and (b) dry season 

 
 

Ecological Niche Modeling 
 
 Two seasonal ecological niche models for the distribution of S haematobium were 

derived based on temperature, rainfall, topography and remotely sensed data from the 

AVHRR sensor (Fig.11). Convergence at a threshold of 0.05 was reached after 20 

iterations for the wet season, and 25 iterations for the dry season. Once convergence was 

reached, Desktop GARP performs a Chi square analysis for a “best fit” ecological model 

for each season. The p values from the Chi square analysis for each model were 9.13e -18 

for the wet season, and 3.95e-15 for the dry season. 
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Fig.11. Areas selected by Desktop GARP as preferred habitat based on climatic factors, 
topography, and the locations of snails (Loker et al, 1992) for the (a) wet season and (b) 

dry season. 
 

Statistical Analysis 

 Multiple-regression analysis was done to determine which environmental and 

calculated factors had the highest impact on the distribution and abundance of the Bulinus 

spp. population. This was done for both a monthly average (Table 1) and annual totals 

(Table 2) of these factors. In both cases, the growing degree day model (WETGDD, 

p=0.0029, 0.0032) and the modified heat stress model (WETRANK, p=0.0011, 0.0014), 

as measured by the PPE>0.5 threshold, were the most significant factors.   
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Table 1. Multiple-regression analysis output for monthly averages of climatic and 
calculated factors. 

Maximum R-Square Improvement: Step 18

Variable LT Entered: R-Square = 0.2915 and C(p) = 11.0000

Analysis of Variance

Source                   DF        Squares         Square    F Value    Pr > F

Model                    10          28933     2893.25065       3.29    0.0013

Error                    80          70315      878.93295

Corrected Total          90          99247

Parameter     Standard

Variable Estimate Error Type II F value Pr>F

Intercept -26.96707 57.50568 193.28656 0.22 0.6406

Elevation 0.01888 0.04634 145.85476 0.17 0.6848

GDD w/o PPE>0.5 -0.66079 0.41591 2218.6384 2.52 0.1161

Low tmeperatre -0.71718 6.20303 11.74915 0.01 0.9082

PET -2.15153 1.03628 3788.7754 4.31 0.0411

PPE -211.911 162.17738 1500.6589 1.71 0.1951

PRE 1.01432 1.5097 396.75599 0.45 0.5036

Heat stress w/o PPE>0.5 -4.65159 9.30496 219.64861 0.25 0.6185

GDD w/ PPE>0.5 0.63705 0.20967 8113.5196 9.23 0.0032

Heat stress w/ PPE>0.5 -19.72045 5.83661 1.0034 11.42 0.0011

High tmeperature 19.32259 7.70205 5531.8949 6.29 0.0141  
Table 2. Multiple-regression analysis output for annual totals of climatic and calculated 
factors 

Maximum R-Square Improvement: Step 12

Variable LT Entered: R-Square = 0.2744 and C(p) = 11.0000

Analysis of Variance

Source                   DF        Squares         Square    F Value    Pr > F

Model                    10          27238     2723.82600       3.03    0.0027

Error                    80          72009      900.11104

Corrected Total          90          99247

Parameter     Standard

Variable Estimate Error Type II F value Pr>F

Intercept -127.8079 181.90179 444.36276 0.49 0.4843

Elevation 0.0379 0.0551 425.9589 0.47 0.4935

GDD w/o PPE>0.5 -0.05874 0.03602 2393.398 2.66 0.1069

Low tmeperatre 0.17846 0.66247 65.31983 0.07 0.7883

PET -0.16213 0.09338 2713.172 3.01 0.0864

PPE -14.93816 15.5069 835.29665 0.93 0.3383

PRE 0.05938 0.14271 155.86371 0.17 0.6784

Heat stress w/o PPE>0.5 -0.42079 0.78435 259.05802 0.29 0.5931

GDD w/ PPE>0.5 0.05693 0.01849 8529.987 9.48 0.0029

Heat stress w/ PPE>0.5 -1.68399 0.50826 9881.1785 10.98 0.0014

High tmeperature 1.67212 0.65947 5786.9 6.43 0.0132  
 

Use of GDD/Generations per Year and AVHRR Remote Sensing Models in Combination 

 
 In the current study it was assumed that if the host was present in an area the 

parasite could potentially also be found in the same area. The potential snail distribution, 

as determined by the AVHRR results, was used as a mask to remove unsuitable areas 

within the growing degree day model (Fig.12) and the modified heat stress model 

(Fig.13) for both seasons. The purpose of using the potential snail habitat based on 

AVHRR data as a mask over the GDD model and the modified heat stress model was to 
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Fig.12. Risk assessment maps that combined suitable habitat as determined by AVHRR sensor data and the GDD model. Colored 
areas represent suitable potential habitat. Darker color tones represent increasing potential severity of S. haematobium for                   

(a) wet season (b) dry season
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Fig. 13. Risk assessment maps that combined suitable habitat as determined by AVHRR sensor data and the Modified Risk Index. 
Colored areas represent suitable potential habitat. Darker color tones represent increasing potential severity of S. haematobium for     

(a) wet season (b) dry season 
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show the potential snail habitat and the potential severity of the disease on one map.  By 

dividing results into seasons, the two distributions can be studied to aid in the 

development or modification of control programs. The distribution, as determined based 

on AVHRR data, represents the areas that are susceptible during a given time period. The 

combination of AVHRR determined distribution zone, the mask of; unsuitable; areas, and 

the modified heat stress model yielded the most accurate model for S. haematobium.  

GDD Model for Water Development Schemes 

 When the water balance was not considered to be a limiting factor, the number of 

potential generations per year ranged from -10 to +18 (Fig.14). The area surrounding 

Lake Turkana and along the eastern border had the highest number of potential 

generations starting with 13 and increasing to 18. These regions do not have enough 

rainfall to sustain a snail population unless water was available through irrigation or other 

water development projects. The highlands had less than 2 generations which does not 

support intramolluscan development in the snail host. The area surrounding the highlands 

along with the Lake Victoria Basin had 5 to 9 potential generations of S. haematobium 

while the coast had 9 to 13 potential generations per year. 

Modified Risk Index Model for Water Development Schemes 

 The modified risk index, when corrected for the effects of heat stress on the 

development of the schistosome, had a risk index range of 0-84 with 0-28 (very low), 29-

45 (low), 46-54 (moderate), 55-67 (high), and 68-84 (very high) categories (Fig.15). The 

areas of very high risk surround the Lake Victoria Basin and the highlands. Moderate and 

low risk was found around Lake Turkana.  
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Fig.14. GDD model that did not use the PPE>0.5 threshold. By not using the moisture 
threshold, it is possible to estimate what could happen, if water is made available by man-
made environmental change at a given location. 
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Fig.15. The modified heat stress model, without the PPE>0.5 thresho ld, shows the 
predicted potential severity of S haematobium after introduction of water development 

projects. The addition of permanent water allows a snail population and S haematobium 
to develop in new areas. 
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Discussion  

The GDD/Generations per Year Model 

 The GDD/Generations per year model was based on the effects of temperature 

conditional on presence of a soil moisture threshold PPE>0.5 on the development of S. 

haematobium within the Bulinus snail host. Temperature and moisture are fundamental 

determinants of the distribution and abundance of a species (Andrewartha and Burch, 

1954). In the presence of adequate moisture, thermal regime is the driving force of 

development, a factor that can be easily measured. Agriculturalists evaluating the 

suitability of an area for specific crops routinely utilize the GDD method of measuring 

the rate of development based on temperature above a species-specific ‘base temperature’ 

below which development does not occur. This method was adapted by Pflüger (1981) to 

measure the rate of development of S.mansoni and S. haematobium within their 

respective intermediate hosts.  He described a minimum temperature threshold of 15.3oC 

for S. haematobium in B.globosus (base temperature), a maximum temperature threshold 

of 35oC (thermal death) and a linear relationship of increasing temperature and 

development rate between the minimum and optimum 22°C temperatures (Fig.16).  

Results of the GDD/Generations per year model indicate that areas with two potential 

generations or less in the snail host have a very low or no chance of schistosome infection 

in humans.  This may be because the amount of time needed to complete this portion of 

the life cycle takes more time than the life span of the snail (Anderson and May, 1979) 

due to unfavorable temperature or lack of rainfall or because of temporal relationships of 

non-consecutive ‘suitable’ periods of the year.  
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Fig.16. Linear relationship of temperature to the rate of S.mansoni development under 
conditions ranging from the minimum temperature required for development to the 
optimum temperature of 22°C (Pflüger, 1981). 

 
 

Modified Heat Stress Model 

The effect of heat stress on diminishing life cycle suitability at higher temperature 

regimes, a factor not considered in the initial GGD/Generations per year model, was 

accounted for in a modified model in two ways: 1) reduced development at temperatures 

over the optimum for S haematobium and 2) the sterilizing effect on Bulinus globosus 

snail hosts at temperatures above 28.5oC.   

Pflüger (1981) reported a suitable temperature range for S haematobium of 

15.3°C to 33°C, with a optimum temperature of development of 22°C and described a 

hyperbolic relationship between temperature and the length of the prepatent period in the 

snail, ie. increasing or diminishing development suitability are observed below or above  

the optimum temperature range (Fig.17). To account for this relationship, a stratified 

growth curve was developed for the current studies to assign a numerical index value for 

population. This is supported by field survey prevalence data as compared to 1992/1995 

AVHRR annual composite Tmax values extracted from 5 km buffers centered on           

S. haematobium prevalence survey sites by plotting prevalence values from the WHO 

 



 32 

 
 

Fig.17. S. haematobium prevalence compared to annual average Tmax from AVHRR 

annual composite (1992/1995) maps for East Africa 
 

atlas (Doumenge et al.,1987) against annual average Tmax over the entire East Africa 

region (Fig.17). 

 The temperature ‘mask’ was developed within the GIS to show both areas and 

times when monthly mean temperature was >28.5°C for at least 2 weeks during the 

development period of snail host reproductive capacity.  It was assumed that in areas 

covered by the mask, the snails will either be aestivating or rendered reproductively 

incompetent by temperature/moisture regime, with resultant ‘nul’ transmission potential.  

AVHRR Remote Sensing Model  

 Tmax and NDVI are two factors that can be measured by using AVHRR satellite 

sensor data to provide surrogate climate parameters that represent thermal-moisture 

regimes important to the life cycle of snail host-parasite systems.  Temperature alone can 

be a limiting factor for potential snail habitat and no snails were found in areas with 

temperatures >28.5°C based on the Tmax queries for either season (Fig.7). However this 

is not the case for most of Kenya. The majority of Kenya fell within a suitable 

temperature range for both the wet season and the dry season as determined by AVHRR 
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query analysis within ArcView 3.3; Tmax queries in fact resulted in an over prediction of 

suitability in zones considered free of schistosomiasis (Doumenge et al., 1987) (Fig.8).    

 The use of NDVI as a surrogate of moisture regime, appeared to be a more 

accurate limiting factor for snail distribution in Kenya based on GIS query analysis.   

Suitable NDVI values were found in the highlands and along the coast during the dry 

season (130-157) and throughout the south and the highlands during the wet season (125-

160). There was a difference between the pattern of the wet season and the dry season 

queries, a reflection of the lack of rainfall during the dry season and the abundance of 

rainfall during the wet season associated with both the position of the intertropical 

convergence zone (Wu, 2003) and seasonal patterns of temperature.  NDVI alone was not 

a sufficiently accurate predictor and, like Tmax, over-predicted the endemic area. 

 In areas selected as suitable for the Bulinus-S. haematobium system using a 

combination of Tmax and NDVI satellite sensor data, a query based on prediction of the 

area where the suitability range of both NDVI and Tmax were met resulted in a modeled 

distribution zone that included 90% of known suitable Bulinus habitat points for the wet 

season and dry season (Fig.10). However, the resulting model based on AVHRR derived 

Tmax and NDVI parameters did not differentiate relative risk within the query-predicted 

area.   

Ecological Niche Modeling 

 Until recently, most models dealing with the locations of snails and other 

organisms had assumed a spatially uniform distribution within a selected study area 

(Anderson and May,1979). Ecological niche modeling is a method used for finding 

suitable host habitat that does not assume that the host has a uniform distribution. 



 34 

Desktop GARP analyzes environmental factors in GIS grid format to create a preferred 

habitat model. These factors may or may not have an impact on the geographical 

distribution of a species (Peterson, 2002). Desktop GARP was used in the current study 

to find suitable habitats for Bulinus spp. based on the 5km2 climate grid, and a 5km2 

topographic grid taken from the ACT3.0 (Corbett 2002). This created an output of two 

distributions which describe the wet season and a dry season distribution for Kenya (Fig. 

11). 

Use of AVHRR ‘climate surrogate’ data is another means of find suitable host 

habitat. This method only uses a combination of Tmax and NDVI for model 

development. A statistical program such as SAS or S-Plus must be used to provide 

statistical validity to this method. Remotely sensed data is easier to collect than climate 

data or other data used in the GARP program.  

Water Management and Snail Control 

 Regional environmental factors used in this study accounted for less than one 

third (29% or 27%) of the variation of disease risk using multiple-regression analysis 

(Table 1, Table 2). Humans are able to adapt to a wide range of environments by building 

shelters or adding water to arid areas. When water is introduced to arid areas, the 

environments change and water is no longer a limiting factor. The major difference 

between the GDD model and the modified heat stress model is best illustrated by looking 

at the two models created for water developments. The GDD model still shows the Lake 

Victoria Basin as being high risk. The region around Lake Turkana, and the eastern 

border have become the areas with the highest risk, having 18 potent ial generations per 

year (Fig.14). The modified heat stress model maintains that the Lake Victoria Basin is 
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still the highest risk; the very high risk class has expanded as compared to the model that 

considers PPE>0.5 (Fig.6) but the overall pattern is the same (Fig.15). 

 The utility of this modified heat stress model for water development is 

hypothetical and must wait for validation studies based on field experience. Water 

management can reduce transmission in areas of flooding by directing the excess water to 

more arid regions which causes a rapid spread of new habitat and snails (Kloos, 1985). 

Use of dams to create a constant water level in channels has a great impact on the spread 

of the snail host and increase of prevalence (Southgate, 2000, Sturrock, 1965). Man-made 

habitats often provide ideal conditions for the introduction of parasitic diseases in 

otherwise unfavorable regions (Hunter,1982). However, snails are able to move vertically 

in water bodies seeking optimum temperatures (Marti, 1985). This movement allows 

snails to survive at extreme temperatures in same locations depending on thermal flux 

dynamics in irrigation water bodies. 

Originally a highland model and a lowland model were going to be developed in 

these studies based on the distribution of Bulinus globosus (highland) and Bulinus 

physopsis (lowland) separated by Loker et al (1992). After performing the AVHRR 

queries, it was discovered that there was no difference for Tmax and very little difference 

for NDVI requirements for these two species.  There was also little difference in 

elevation between these two species. These two snails are now referred to as a single 

group because of the similarities between these two Bulinus species. Classification of 

Bulinus and other snail species is often controversial due to subspecies and varying 

strains of the same snail (Kristensen, personal communication). Consideration of both 

species combined led to the risk assessment maps produced by this project. 
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Limitations of This Study 

A limitation of using 5km2 climate grid data is that there can be a tremendous 

amount of variation of both climate and topography possible at regional scales. In 

highland regions, for example, it is possible to have a difference in elevation of several 

hundred meters within a 5km2 area and this difference in elevation affects temperature. 

For each increase of 620 meters in elevation, the temperature decreases 2.1°C (Hardwick, 

et al., 1996). Because of this, it is possible in some instances for the GDD/Generations 

per year model to predict that it is not likely or impossible for S. haematobium to develop 

in some grid cells even though the World Health Organization (WHO) has recorded that 

the disease was there in earlier surveys. 

The use of remotely sensed data may be of limited use for disease prediction 

when dealing with water development projects. The AVHRR queries for Tmax showed 

that most of Kenya is suitable for snail habitat and queries for NDVI showed a very 

limited region that is suitable. The 5km2 climate grid and the AVHRR sensor are best 

used on a regional or national scale. To accurately identify high risk zones found within 

coarse (5km2) climate grids, higher resolution sensors such as Landsat TM or SPOT must 

be used to create a city or village scale risk maps in future work.  
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Conclusions  and Significance  

 The current work has resulted in the construction of two GIS risk assessment 

models for S. haematobium in Kenya that we propose will be useful in predicting 

potential risk of disease for control program management in Kenya:  

1. GDD-Heat Stress Index: This risk assessment method utilizes a GDD-heat 

stress model, conditional on soil moisture (PPE>0.5), to predict relative risk within the 

potential seasonal distribution zones defined by AVHRR satellite sensor data (NDVI and 

Tmax). The model was based on Bulinus spp. snail survey records and known 

development requirements for S. haematobium within the current endemic area in Kenya. 

2. GDD-Heat Stress Index for Water Developments: The GDD-Heat Stress Index 

was modified to predict hypothetical risk of establishment of S. haematobium in future 

water development schemes, assuming natural rainfall is no longer limiting. The model is 

the same as the S. haematobium suitability model without consideration of the soil 

moisture (PPE>0.5) limit or AVHRR potential distribution zones.  

 The GIS models incorporate innovative use of GDD-water budget concepts that 

are used in crop production models, and apply a unique heat stress modifier methodology 

to produce digital maps of the suitability of the environment for the Bulinus-S. 

haematobium system in Kenya. Using the power of new GIS/RS tools, data from 

excellent classical epidemiologic studies can now be systematically placed in an 

environmental context and used to spatially define the ecological requirements of vector-

parasite systems and associated disease risk. Results can potentially be used to develop 

future in real-time spatial decision support models for health care program management. 
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