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Abstract Managing seed movement is an important com-
ponent of forest resource management to minimize malad-
aptation of planting stock in forest plantations. Here, we
describe a new approach to analyze geographic patterns of
adaptive and neutral genetic variation in forest trees and to
link this genetic information to geographic variables for the
delineation of seed zones and the development of seed
transfer guidelines. We apply multivariate regression trees
to partition genetic variation, using a set of environmental
or geographic predictor variables as partitioning criteria in a
series of dichotomous splits of the genetic dataset. The
method can be applied to any type of genetic data (growth,
adaptive, or marker traits) and can simultaneously evaluate
multiple traits observed over several environments. The
predictor variables can be categorical (e.g., ecosystem of
seed source), continuous (e.g., geographic or climate
variables), or a combination of both. Different sets of
predictor variables can be used for different purposes: In
two case studies for aspen and red alder, we show (1) how
latitude, longitude, and elevation of seed sources in a
provenance trial can be used to develop simple seed transfer
guidelines; (2) how ecosystem classes and elevation as
predictor variables can be used to delineate seed zones and
breeding regions; and (3) how climate variables as
predictors can reveal adaptation of genotypes to the

environments in which they occur. Partitioning of genetic
variation appears very robust regarding the choice of
predictor variables, and we find that the method is a
powerful aid for interpreting complex genetic datasets.
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Introduction

Seed zones and seed transfer guidelines are essential tools in
reforestation to ensure that seedlings are well adapted to the
growing conditions of the planting site (e.g., Morgenstern
1996; Ying and Yanchuk 2006). Using planting stock for
reforestation that originates within a restricted geographic
area delineated as a seed zone aims at minimizing loss of
productivity and forest health issues due to maladaptation.
Alternatively, movement of seed can be restricted with seed
transfer guidelines, also sometimes referred to as floating or
flexible seed zones (Ying and Yanchuk 2006). Transfer
guidelines avoid drawing fixed boundaries across continuous
genetic clines by specifying a maximum distance and
elevation movement from source location to a planting site
to avoid maladaptation (e.g., Rehfeldt 1988, 1989).

Generally, there are two conceptual approaches to
develop seed zones and seed transfer guidelines. The first
aims at maximizing tree growth by comparing response
functions of different genotypes over multiple test environ-
ments. The approach usually employs univariate or multi-
variate curve fitting techniques to analyze growth and
adaptive traits as a function of environmental or geographic
predictor variables (e.g., Lindgren and Ying 2000;
Raymond and Lindgren 1990; Roberds et al. 1990; Wang
et al. 2006b). The second approach aims at minimizing risk
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based on the assumption that local sources are optimally
adapted to the environments in which they occur. Numer-
ous techniques have been developed to match seed sources
from various geographic locations to target environments,
and these techniques use the environmental conditions of
the seed source as matching criteria (e.g., Campbell 1979,
1986; Lesser and Parker 2006; Parker 1992; Rehfeldt 1988,
1989).

Both approaches pose major practical and research
challenges. The response-function approach requires ex-
pensive series of test plantations over multiple environ-
ments, and it is generally difficult to fit mathematical
response functions to traits that are influenced by multiple
environmental variables, plus additional confounding fac-
tors related to test-site conditions (e.g., O’Neill et al. 2007).
Further, it is often unclear how adaptive trait measurements
correspond to fitness (e.g., we do not know what the
optimal timing of leafout and budset is), and as a
consequence, important adaptive traits cannot be taken into
account in the same way as growth traits. Perhaps the
largest drawback for the second, risk-avoidance approach is
that the assumption of local optimality is not always valid
(Mangold and Libby 1978; Mátyás 1990; Namkoong 1969)
and that the approach will further lose relevance under
observed and projected global climate change (Marris 2009;
McKenney et al. 2009).

It is also difficult to translate genetic information into
geographic zones or transfer guidelines—a second step
that is required for both the risk-avoidance and growth-
optimization approaches. Geographic information system
(GIS)-based techniques have been developed to delineate
seed-zone boundaries where response functions of dif-
ferently adapted genotypes intersect or drop below a
certain threshold (Hamann et al. 2000). For the risk-
avoidance strategy, GIS-based seed-zone optimization
techniques are available that assign groups of similarly
adapted genotypes to their corresponding environments
(O’Neill and Aitken 2004; Parker 1992). However,
complications arise in this second step when genetic
information for multiple growth and adaptive traits has
to be integrated and then translated to practical seed zones
and transfer guidelines that further have to account for
administrative and operational planning realities of refor-
estation programs (Ying and Yanchuk 2006). To our
knowledge, virtually all seed-zone systems in practical
use have been developed by evaluating available genetic
information and then subjectively deciding on reasonable
transfer guidelines or seed-zone delineations that usually
track ecological regions.

This practice has generally resulted in sensible guide-
lines that have been successfully used for many decades,
and the methodology that we propose in this study is not
meant to replace sound judgment. Using two case

studies, we illustrate how multivariate regression tree
analysis can be used to support subjective decisions by
integrating and visualizing complex genetic information.
The technique can be applied for both risk-avoidance and
growth-optimization strategies and executes the genetic
analysis and the geographic mapping of seed zones in
one step. By using climatic variables or potentially other
relevant environmental factors instead of geographic
variables, the technique can further help us to understand
how genotypes are adapted to their source environments.
This is relevant not only for delineating seed zones under
current environments but also for developing climate
change adaptation strategies.

In two case studies for aspen (Populus tremuloides
Michaux.) and red alder (Alnus rubra Bong.), we show (1)
how latitude, longitude, and elevation of seed sources in a
provenance trial can be used to develop simple seed transfer
guidelines with multivariate regression trees; (2) how
ecosystem classes and elevation as clustering criteria can
be used to delineate seed zones and breeding regions; and
(3) how climate variables as predictors can reveal adapta-
tion of genotypes to their source environments.

Methods

Genetic trials and measurements

The aspen case study is based on a provenance trial series
established by an industry cooperative in 1998 at five
locations in western Canada and includes seed collections
from British Columbia to Minnesota. At each test site,
provenances were planted in a randomized complete block
design with six replications in five-tree row plots. Trees
were evaluated in 2006 for height after eight growing
seasons in the field. For this analysis, we use means of 42
provenances in five-tree row plots as basic experimental
units. Means of row plots were summarized at the
provenance level as least-squares means, taking advantage
of the blocked experimental design. A normalized version
of these data is included as a sample dataset in the
Electronic Supplement 1.

For the red alder case study, we re-analyzed previ-
ously published data from a trial series planted in 1994
by the BC Ministry of Forests with 55 provenances. To
illustrate how multivariate regression tree analysis can
handle various types of genetic information, we analyzed
data from only a single site of this series, but we
included multiple quantitative traits as well as genetic
marker traits (Hamann et al. 1998, 2000). Measurements
include provenance means for 4-year height and survival,
the timing of leaf abscission in fall of 1998, the timing of
bud break in 1999 (average Julian day calculated from
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observations at weekly intervals), and the extent of wilting
of leaves during an exceptional drought period in July/
August of 1999 (scored on a scale of 0 = no wilting to 5 =
heavy wilting). Because of spatial heterogeneity of the test
sites, least-squares means for each provenance were
calculated after removal of spatial autocorrelations
(Hamann et al. 2002). We further evaluate allele frequen-
cies from six polymorphic allozyme loci for a subset of 19
provenances, using the frequency of the most frequent
allele at each locus for analysis (Table 1 in Hamann et al.
1998).

Climatic and spatial datasets

To characterize the long-term climate conditions at the
source locations of provenances, we used interpolated
climate data for the 1961–1990 normal period that was
generated with the Parameter Regression of Independent
Slopes Model (PRISM; Daly et al. 2008). We enhanced this
spatial database for use with sample data by applying lapse-
rate based elevation adjustment functions to all climate
variables that are based on temperature measurements (e.g.,
degree days, heat–moisture indices, or mean annual
temperature). This improves climate variable estimates by
accounting for the difference between the recorded eleva-
tion of the sample and the elevation that was used to
estimate climate variable values with PRISM for the sample
location (Hamann and Wang 2005; Wang et al. 2006a).
Estimation of biologically relevant climate variables, lapse-
rate elevation adjustments, and data extraction from grids
for sample locations were carried out with a custom
software application that we make freely available (Mbogga
et al. 2009).1

Ecosystem delineations of western Canada served as
candidate seed zones for multivariate regression tree
analysis. We use “Ecoprovinces” of the National Eco-
logical Framework for Canada (Selby and Santry 1996)
and for the USA we use the corresponding “Level 3”
delineation of the United States Ecoregion System (EPA
2007). Note that we chose a coarse ecosystem delineation
for illustrative reasons. The Natural Regions System of
Alberta (NRC 2006) and the Biogeoclimatic Ecosystem
Classification system for British Columbia (Meidinger
and Pojar 1991) would also be appropriate for analysis
but too detailed for display at the map scale we use in this
paper. Species distribution maps were added for illustra-

tion, using the maps of Hamann et al. (2005) for red alder
and Little’s (1971) maps for aspen, intersected with
remotely sensed deciduous forest land cover (Wulder et
al. 2008).

Statistical analysis

Data for all traits, including allozyme frequencies, were
standardized so that they are weighted equally in multivar-
iate regression tree analysis. We subtracted the mean and
divided by the standard deviation of each trait at each test
site, so that all traits are expressed in units of standard
deviations from a site mean of zero.

Multivariate regression tree analysis was implemented with
the MVpart package v1.2–6 for the R programming
environment (R Development Core Team 2008). Multivari-
ate regression trees (MRT) are based on the same principles
as Classification and Regression Trees (CART) but extended
to more than one response variable (De’Ath 2002). MRT can
be viewed as a constrained clustering methodology that is
suitable for explanation as well as prediction. A set of
clusters is grown by repeated binary splits of the genetic
dataset. Splits are made using environmental predictor
variables as criteria, so that the homogeneity of genetic
response variables is maximized. Homogeneity is evaluated
as sums of squares of traits around the multivariate mean of
observations in a cluster (De’Ath 2002). As in CART, no
assumptions are made about the mathematical nature of the
relationship between response and predictor variables. For
our application, it means that the reaction norms of
genotypes over multivariate environmental gradients may
take any form. Sample R code for this analysis is included in
the Electronic Supplement 2.

Although not used in this study, we provide addi-
tional R code for missing value imputation in the
genetic datasets (Electronic Supplement 3). Missing
values are a common occurrence in provenance trial data
(e.g., due to insufficient planting stock for a test series).
Since the MVpart function requires a complete dataset, a
bootstrapped regression tree analysis is first used to
impute missing values based on similarity with other
rows (genotypes) in the dataset. We use the bootstrap
implementation rfImpute of the randomForest package v
4.5 for the R programming environment (Breiman 2001).
Obviously, this procedure should not be used to fill a
large number of missing values in unbalanced experi-
mental designs. Similarly, several missing values in a
data table row will degrade the quality of imputations,
which have then to rely on a smaller number of remaining
trait values to represent a genotype. In this case, samples
should be removed from the analysis as in the second
case study, where we excluded genotypes that were not
screened for allozyme frequencies.

1 Available for download at http://www.ualberta.ca/~ahamann/climate.
html. An alternate download site is http://www.genetics.forestry.ubc.
ca/cfcg/climate-models.html.
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Results

Reaction norms over multiple test sites

Using the geographic variables latitude, longitude, and
elevation as predictors, provenances of the reciprocal trans-
plant experiment with aspen are split into four groups, which
explains 52% of the genetic variation in the dataset consisting
of height measurements at five test sites (Fig. 1a, b). The first
two longitudinal splits separate the sources from northern
British Columbia and Minnesota, and the third latitudinal
split separates northern provenances in Alberta from more
southern provenances in Saskachewan and Alberta. The bar
charts in the dendrogram represent group means, which can
be interpreted as average genetic reaction norms of similarly
adapted genotypes. The group from northern BC (Fig. 1a, b,
purple) performs below average at all test sites with the
relatively poorest performance at the most southern test site
(33). The five provenances from Minnesota (blue) perform
above average at the three southern test sites and approximately
average at the test sites in northern Alberta and British
Columbia. The group of five provenances from northern
Alberta (green) performs slightly below average at the southern
test sites but is the best performer in northern British Columbia.
The remaining provenances from central Alberta and
Saskachewan (orange) are average performers at all test sites.

Using ecological regions and elevation as predictor
variables (Fig. 1c, d), we obtain the same results as above
with four groups. Adding another group explains a small
amount of additional genetic variation (4%) and separates
the Rocky Mountain Foothill provenances, which are
weakly distinguished from Boreal Plains provenances by
lower performance at several locations, including their local
test site (33). Notably, elevation is not useful to further
separate provenances within ecological regions, and the
Alberta and Saskatchewan populations of the Boreal Plains
cannot be genetically distinguished.

Multiple traits observed in a single environment

Red alder populations from coastal British Columbia show a
latitudinal cline of genetic differentiation when analyzed with
geographic variables as predictors (Fig. 2a, b). Multivariate
regression tree analysis separates populations along three
roughly equally spaced latitudinal divisions that explain 42%
of the genetic variation in growth and adaptive traits measured
at a southern test site. At this test site, northern provenances
have reduced height and lower survival rates than local
sources. They break and set bud earlier and show a higher
degree of leaf wilting under drought conditions. The local
sources (Fig. 2a, b, light pink) are distinguished by the latest
dates of budbreak and leaf abscission and the least wilting
under drought.

Using ecological regions and elevation as predictor
variables (Fig. 2c, d), we obtain similar results as above
with four groups. Notably, provenances from the Queen
Charlotte Islands remain in the same group as the Mid Coast
provenances of the mainland. In southern British Columbia,
we find a new grouping that separates populations in the
Georgia Depression (South Coast and Vancouver Island
East) from more western sources. The Vancouver Island
West group can be further divided into low-elevation sources
that are typically located right on the west coast and more
inland sources above 165 m elevation. The coastal, low-
elevation group is distinguished by very late dates of
budbreak. The new Georgia Depression group is distin-
guished by another adaptive trait, showing the least amount
of wilting under drought conditions.

The third example for regression tree analysis with this
dataset adds genetic marker information, which substantial-
ly changes the group partitioning (Fig. 2c, e). Now, most of
the genetic variation is accounted for by separating the
island from mainland sources. Provenances from Queen
Charlotte Island and Vancouver Island generally show
above-average values for the most frequent allele at all
loci, indicating below-average heterozygosity. Further, one
locus for aspartate aminotransferase is fixed for alternate
alleles in the island and mainland populations (Fig. 2e,
solid red bars). Subsequent splits of the genetic dataset are
based on quantitative traits and approximately conform to
the partitioning described in the previous example. Growth
and adaptive traits primarily separate northern and southern
sources, with southern sources generally showing better
performance, later budbreak, and delayed leaf abscission.
However, since this analysis was performed on a reduced
set of 19 instead of 55 provenances (Fig. 2c, red dots), the
results are not identical.

Adaptation to climatic source environments

Instead of geographic variables in the form of ecosystem
delineations or geographic coordinates, we repeat the
multivariate regression tree analysis with climatic variables
at provenance sample locations as criteria for partitioning
genetic variation. Aspen provenances are split in a very
similar way: Minnesota sources (n=5) are characterized by
the highest mean annual temperature (Fig. 3). Because of
multicollinearity among climate variables, we also report
alternative predictors that could be used for the same
partitioning. For this split, one alternative variable, mean
warmest month temperature, was identified by the regres-
sion tree analysis (Table 1). The second node of the
regression tree separates the Boreal Plains provenances
(n=32) from more northern sources. This partitioning can
be based on mean annual temperature or chilling degree
days. The last division separates the two northern groups

402 Tree Genetics & Genomes (2011) 7:399–408



from Alberta and British Columbia based on differences in
summer precipitation or winter temperature.

The regression tree for alder first roughly separates the
southern provenances, which are associated with a long
growing season (Fig. 4). Alternative variables that could
explain this division are mean warmest month temperature
and the date where the growing degree days reach 100, an
indicator for the start of the growing season (Table 2). The
southern group is then subdivided by separating three
sources from the Vancouver Island west coast based on a
low annual heat moisture index (indicating moist con-
ditions). These provenances are characterized by a high
wilting score at the relatively dry test location. Subsequent-
ly, another four provenances from the driest areas of the
Georgia Depression are separated, which are characterized
by the lowest wilting score. Notably, climate variables were

not able to separate provenances from the Queen Charlotte
Island, Mid Coast, and North Coast regions, which
potentially explains 5% to 6% of the total variation in the
genetic dataset (Fig. 2b, d).

Discussion

Interpreting dendrograms

First, we should point out that regression tree partitioning
should not be taken as optimal seed-zone delineations at
face value. The groupings not only reflect genetic differen-
tiation but they are also influenced by the provenance
sampling design and the nature of geographic variables. For
example, longitudinal divisions in Fig. 1a do not necessar-

Fig. 1 Multivariate regression tree analysis of 8-year height of aspen provenances at five test sites. Candidate predictor variables are latitude,
longitude, and elevation (a, b) and ecological region and elevation (c, d)

Tree Genetics & Genomes (2011) 7:399–408 403



ily imply a longitudinal genetic cline. Since the sampling
design is roughly diagonal from northwest to southeast, a
latitudinal division is equally possible. As an example of
how the nature of geographic variables influences partition-
ing, note that the Foothills group of the aspen provenance

trial (Fig. 1c) could not be separated based on latitude and
longitude because it would have required a diagonally
oriented (southwest to northeast) predictor variable.

Another obvious limitation is that genetic differentiation
cannot be detected in regions that have never been sampled.

Fig. 2 Multivariate regression tree analysis of quantitative traits of
red alder observed at a single test site (star). Candidate predictor
variables are latitude, longitude, and elevation (a, b) and ecological

region plus elevation (c–e). Allozyme frequencies for 19 sample
locations (c, red dots) are included in the last dendrogram (e, red bar
charts), where a fixed allele is highlighted in solid red
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In Fig. 1a, Minnesota sources are separated by the
latitudinal mid-point between Saskachewan and Minnesota
samples, an arbitrary division in a region that lacks sample
coverage. However, the two case studies we present here
are not unusual for the level of information that researchers
and resource managers have available from provenance
tests. A widely used means to overcome the limitation of
very restricted geographic sampling is to partition species
habitat into ecological zones that represent reasonably
homogeneous environments as the basis of seed zones
(Campbell 1991; Ying and Yanchuk 2006). Essentially,
ecological proxy data (plant community composition and
physiogeographic variables) are used to extrapolate where
genotypes similar to a few tested samples may be found.

These limitations are not unique to multivariate regres-
sion tree analysis and need to be considered in developing

seed zones and seed transfer guidelines using any tech-
nique. Ultimately, the regression tree clusters are driven by
the degree of genetic differentiation observed in the
available samples. If there is none, provenances will not
be separated by any candidate partitioning criteria: geo-
graphic, ecosystem, or climate variables (e.g., Saskachewan
vs. Alberta provenances from the boreal plains region). We
find that groupings of genotypes are very robust, which can
be explored by randomly or regionally removing prove-
nance samples and repeating the analysis with a reduced
dataset. Another indication of robustness is that alternative
predictor variables such as geographic coordinates, climate
variables, or various ecosystem delineations yield similar if
not identical results.

Fig. 4 Multivariate regression tree analysis of growth and adaptive
traits of 55 red alder provenances observed at a single test site.
Candidate predictor variables are 15 climate variables and the amount
of variance explained by the groupings of genotypes are indicated in
red. Alternative climate variables are listed in Table 2

Fig. 3 Multivariate regression tree analysis of 8-year height of aspen
provenances at five test sites. Candidate predictor variables are 15
climate variables and the amount of variance explained by the
groupings of genotypes are indicated in red. Alternative climate
variables are listed in Table 1

Table 2 Climate variables that could alternatively be used as criteria in
the multivariate regression tree analysis for red alder shown in Fig. 4

Climate variable Threshold (right side)

Groups 1 vs. 2, 3, 4

Degree days >5°C ≥1,558
Mean warmest month temperature (°C) ≥15.65
Julian day where degree days reach 100 <117.5

Groups 2 vs. 3, 4

Annual heat/moisture index (°C/m) ≥4.55
Mean coldest month temperature (°C) <2.25

Groups 3 vs. 4

Mean summer precipitation (mm) ≥219
Mean annual precipitation (mm) ≥1,206
Annual heat/moisture index (°C/m) <77.1

Table 1 Climate variables that could alternatively be used as criteria
in the multivariate regression tree analysis for aspen shown in Fig. 3

Climate variable Threshold (right side)

Groups 1, 2, 3 vs. 4

Mean annual temperature (°C) ≥2.65
Mean warmest month temperature (°C) ≥17.8
Groups 1, 2 vs. 3

Mean annual temperature (°C) ≥ −0.35
Degree days <0°C <2,248

Groups 1 vs. 2

Mean summer precipitation (mm) <285

Mean coldest month temperature (°C) < −20.95
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Interpreting dendrogram bar charts

There is substantial explanatory potential in cluster aver-
ages of genetic traits that are conveniently provided by the
MVpart software implementation as bar charts (note that if
the dependent variable is univariate categorical, these charts
can also represent a histogram of class frequencies). The
regression tree technique maximizes multivariate homoge-
neity within groups. For genetic information from a single
test environment, as in the red alder example, bar charts
therefore represent groups of genotypes that are similar in
multiple genetic traits, each bar representing the group
average for a different trait. If a single trait is analyzed over
multiple test environments, as in the aspen example, each
bar of the chart represents the trait average in a different
environment. The groups could therefore be interpreted as
provenances with similar response functions to multiple
environments, although a better term would be similar
“genetic reaction norms”, since no mathematical function is
fitted to a quantitative trait in response to an environmental
predictor.

The lack of curve fitting could be viewed as an advantage or
disadvantage. A fitted mathematical function allows general
inferences of how to maximize growth throughout a study area
through seed movement. But unless there is a good mathemat-
ical fit for response functions, such general inferences may not
be appropriate for multifaceted genetic variation across
complex landscapes. Multivariate regression tree analysis
simply clusters genotypes with similar genetic reaction norms
that can take any shape. The trade-off is that the environmental
factors that drive the observed reaction norms remain unde-
fined (for example, unknown soil conditions at the planting
sites could very well contribute to the observed reaction
norms). Instead of relying on general response functions, we
now have to examine reaction norms for each group of
genotypes to determine sensible restrictions to seed movement.

In the case of aspen, the bar charts are not difficult to
interpret, suggesting asymmetric seed transfer guidelines.
North or northwest movement maximizes height growth or
results in a neutral effect compared to growth performance
of local sources (Fig. 1b, d, bar charts for the Boreal Shield
and Boreal Plains genotypes). In contrast, transfer to the
south or southeast has increasingly negative effects relative
to the local sources (Fig. 1b, d, bar charts for the Taiga
Plains and Northern Boreal Plains genotypes). In a separate
study, we make the case that the observed sub-optimality of
local sources should be interpreted as adaptational lag due
to recent climate trends toward warmer and drier conditions
throughout the study area and that seed sources should
therefore be moved north or northwest by 1° to 2° latitude
(Gray et al., submitted).

For the red alder case study, there is an obvious cline in
growth and adaptive traits (Fig. 2a, b) that could be

accounted for by zones in north–south direction along the
coast. In addition, it would be prudent to delineate a seed
zone corresponding to the Georgia Depression seed zone
(eastern Vancouver Island and the southern mainland).
Populations of the dry Georgia Depression and wet west
coast of Vancouver Island are genetically differentiated,
which is revealed both by geographic criteria (Fig. 2d) and
by climatic predictor variables (Fig. 4). Although only a
small amount of genetic variation is explained, the genetic
differences appear related to fitness: On the west coast, we
find very late budbreak indicating high heat-sum or chilling
requirements. This prevents populations from premature
leaf flush due to forcing temperatures in mid-winter under
the very maritime conditions of the west coast. In contrast,
provenances from the comparatively dry southern Mainland
and east Vancouver Island regions lack those high heat-sum
requirements, resulting in an early growing season start that
takes advantage of moist growing conditions in spring.
They further show higher resilience to summer droughts.

While the example with neutral genetic markers that reflect
refugial history (Fig. 2e) is meant as a proof of concept, such
applications are likely to become increasingly valuable as we
learn how variation in molecular genetic markers shape
quantitative trait variation in trees. For example, Eckert et al.
(2009) identified a number of candidate genes that appear to
be the target of selection for cold hardiness in Douglas-fir. In
a similar range-wide study for Sitka spruce, Holliday et al.
(2010) identified genes that cumulatively explained one third
of the phenotypic variance in cold hardiness and bud set.
Multivariate regression tree analysis could powerfully link
such data to geographic or environmental variables, and
surveys of nucleotide diversity linked to adaptive traits could
in turn become valuable information to develop seed transfer
guidelines.

Although some of the data in this paper has been
analyzed before (Hamann et al. 1998, 2000, 2002), we find
that none of the previously employed multivariate analysis,
spatial statistics, or curve fitting techniques is as powerful
in reducing complexity in the genetic dataset and in
revealing reaction norms, geographic structure, and local
adaptation of populations. Although we did not use soil and
topoedaphic predictor variables, we think it would be
promising to employ the technique to study patterns of
adaptive genetic variation at finer scales. However, this will
likely require reliable soil and topoedaphic data and a
higher density of provenance samples.

Developing seed zones and seed transfer guidelines

Partitioning genetic variation with multivariate regression
trees primarily helps us to understand how populations are
adapted to the environments in which they occur. Alterna-
tively, we can emphasize practical applications rather than
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scientific insight by replacing environmental predictor
variables with geographic variables or ecosystem delinea-
tions. Multivariate regression trees then provide a “first
draft” of seed transfer guidelines or seed-zone delineations.
The groupings of genotypes seem generally very robust
with respect to the choice of predictor variables, and using
ecosystem delineations or geographic variables as alterna-
tive predictors can meet different objectives.

Ecosystem delineations that are based on forest types can
be very good integrators of biologically relevant environ-
mental factors for which we often have only limited data.
This may allow us to make reasonable extrapolations of
seed zones beyond the data coverage of provenance
samples. For example, we think that extrapolation of seed
zones beyond coverage of provenance samples for aspen is
more realistic for ecosystems (Fig. 1c) than for geographic
variables (Fig. 1a). On the other hand, geographic variables
as predictors can be useful if the objective is to arrive at
simple and flexible transfer guidelines. Drawing a fixed
seed-zone boundary across a continuous cline of genetic
variation is not always a practical solution. In the case study
for red alder, one could infer from Fig. 2a that a north or
south movement of any seed sources up to 2° latitude is a
sensible seed transfer rule.

In this context, we should point out that multivariate
regression tree analysis does not support null hypothesis
testing. For example, the technique does not test whether
there is a significant difference among genotypes from
region A versus B, or whether transfer distance X is
associated with a significant change in trait Y. We do not
think that this is a drawback because such null hypotheses
are a priori known to be false (e.g., Cohen 1994; Johnson
1999). However, we find it useful to carry out an analysis
of effect-size statistics after groups have been determined,
in order to test whether a genetic difference among regions
is “significant enough” (in a non-statistical sense) to
warrant separate seed zones. This requires determining
thresholds of acceptable performance following seed
movement and the use of confidence intervals. For
example, it is straightforward to determine if seed move-
ment from one region to another results in performance that
is above an acceptable threshold (e.g., at least 90% of local
sources), given a predetermined confidence level. Such
thresholds could also be set in terms of absolute values for
growth traits if they determine the economic viability of a
reforestation program.

Unfortunately, this approach will not work for genetic
markers or adaptive traits because we are usually unable to
determine a meaningful threshold to apply effect-size
statistics. For example, we do not know if an advance in
the date of budbreak by, say, 1, 5, or 10 days relative to
local sources is problematic or perhaps even desirable. We
further caution against using the amount of explained

variance as a criteria how many seed zones are needed.
Technically, optimal delineations for a predetermined
number of breeding zones are possible with multivariate
regression tree analysis, but it should only be carried out if
all genetic traits can be objectively weighted. For example,
economic weights of growth and wood quality traits may be
applied by multiplying the economic weights with the
normalized dataset of genetic traits. However, determining
such weights is usually not possible, and even a small
amount of genetic variation explained may indicate an
important adaptation of a local population.

In conclusion, we concur with Ying and Yanchuk (2006)
that the development of seed transfer guidelines is as much
an art as a science. Multivariate regression tree analysis
simply enables us to make better-informed subjective
decisions on how seed transfer should be regulated, as
illustrated in the case study examples.
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