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Abstract In this review, self-mixing interferometry (SMI), a new

configuration of interferometry, is discussed. SMI has practical

advantages compared to standard interferometry, for example

SMI does not require any optical part external to the laser chip

and can be employed in a variety of measurements. Applications

range from the traditional measurements related to optical path-

length – like displacement, small-amplitude vibrations, velocity –

to sensing of weak optical echoes – for return loss and isolation

factor measurements, CD readout and scroll sensing – and also,

a special feature because of the interaction with the medium,

measurements of physical parameters, like the laser linewidth,

coherence length, and the alfa factor. Because it is also a coher-

ent detection scheme, the SMI works close to the quantum limit

of the received field, typically 90 dBm, so that minimum de-

tectable amplitudes of 100 pm/ Hz are currently achieved upon

operation on diffusive targets, whereas a corner cube allows

half-wavelength counting mode – or 0.5 μm resolution – on a

dynamic range up to 2 m and more. With its compact setup, the

SMI is easy to deploy in the field and can interface a variety of

experiments – from MEMS testing to rotating machines vibration

testing to pickup of biological motility. The illustration shows a

double-channel, differential SMI incorporated in a thermome-

chanical test equipment to trace the mechanical hysteresis cycle

of the beads of a motor-engine brake.

Developing self-mixing interferometry for instrumentation

and measurements

Silvano Donati

1. Introduction

Self-mixing interferometry is a new method for the mea-
surement of the optical phaseshift of a remote target. In
contrast to methods that employ the laser as the source and
an optical interferometer to split and recombine the beam,
self-mixing is based on the interaction of cavity field with
the field backscatter from the target, what is known as a
special case of coupling phenomena.

In general, we get coupling when a small fraction of the
field is injected into the laser cavity, either from a physically
different laser or from a delayed portion of the laser field it-
self, as shown in Fig. 1. Coupling phenomena have attracted
the interest of researchers since the early days of the laser,
because of the theoretical problem of interaction as well as
for the potential applications.

The first were the Nobel Prize laureate H. Lamb Jr.
and M. B. Spencer, who published in 1972 a pair of
seminal papers describing both the three-mirror laser (or
self-injection) [1] and the mutual (two sources) injec-
tion case [2].

Figure 1 Basic scheme

of mutual coupling (top),

and self-coupling (bot-

tom).

The analysis was carried out based on the slowly varying
description of field amplitude E and phase ϕ of the oscil-
lating field, what we call today the Lamb’s equations of the
laser. Lamb’s equations are well suited to gas and crystal
lasers in which E and ϕ are decoupled from the density
of states N, whereas in a semiconductor laser we shall add
a third equation to describe the carrier concentration and
its dependence on E and ϕ , getting the modified Lamb (or
Lang and Kobayashi) equations [3–5]. Despite the differ-
ence, interestingly the main results found with the Lamb’s
equations still hold and correctly describe coupling phe-
nomena for any type of laser, including the semiconductor
laser diode.

A classification of systems based on coupling, as shown
in Fig. 1, is that of mutual-coupled and self -coupled sys-
tems. Mutual-coupled system are the paradigm of oscillator
synchronization and may be symmetrical or asymmetrical

(a master/slave system when an optical isolator is inserted
between the sources).

Another classification is according to the strength of
coupling. We say coupling is weak when the perturbing
field brought back into the laser cavity is a fraction of, say,
down to 10 8 and up to 10 2, of the pre-existing field power.

In the weak regime of self-coupling, the main phe-
nomenon is amplitude (AM) and frequency (FM) modu-
lation of the oscillating field, with a driving term (or mod-
ulation index) proportional to the fraction of returned field
and to the sine or cosine of the optical phaseshift 2ks (k
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Figure 2 (online color at: www.lpr-journal.org) Self-coupling

interaction can be represented by a rotating-vector addition, with

a small returned component a E0 exp iϕ dynamically added to the

cavity field E0: the in-phase component cosϕ generates AM mod-

ulation, whereas the in-quadrature component sinϕ is responsible

for FM.

= wavevector, s = distance) external to the perturbed laser.
This is the case studied by Spencer and Lamb in [2]. In ap-
plications, we will readily take advantage of weak coupling
in self-coupled systems by making out of it very sensitive
echo sensors and interferometers.

Before proceeding, let us explain the self-mixing mod-
ulations as the result of rotating-vector addition [5] as
in Fig. 2. Let E0 be the unperturbed cavity field, and
aE0expi2ks the field back from the target, a being the atten-
uation and 2ks the phase delay of propagation. As is well
known from communication theory, rotating vector addition
generates an AM modulation driven by the in-phase compo-
nent of the modulating term, that is aE0 cos2ks, and an FM
by the in-quadrature component, or aE0 sin2ks.

In applications, while the AM is readily available
from the intensity (or power) detected by a photodiode,
FM is difficult to retrieve because is impressed onto the
optical frequency (it requires frequency downconversion,
see Sect. 3.2.3).

Also in the weak regime of mutual-coupling we find AM
and FM in each of the two interacting lasers, and the driving
terms are now the ratio of amplitudes and the frequency
difference of the two waves [6]. The coupled system can
then be regarded as a special coherent detector receiver, also
called an injection detector [4].

Going back to classification, we say coupling is strong

when the exchange is a fraction up to several per cent of
the pre-existing oscillation power. Even at this apparently
modest level of injection, the AM and FM modulations
become so strong that they drive the laser out of a repro-
ducible regime of oscillation, entering a nonlinear high-level
dynamic regime [7], in both the mutual- and self-coupling
cases. This regime is highly characteristic of a complex sys-
tem and is heralded by new unexpected behaviors such as
bifurcations, multiperiodicity and chaos in mutual-coupled
systems, and relaxation oscillations, bistability, multistabil-
ity, and chaos in self-coupled systems.

No wonder then, the Lang and Kobayashi equations for
the laser are similar to the Lorenz and Lorentz equations
for turbulence in a fluid, the canonic system generating
chaos dynamics.

Fortunately, the high-level dynamics can be still de-
scribed by small-perturbation analysis, or, the Lang and
Kobayashi equations still apply at strong level and fully
account for the observed complexity and chaos regimes [7].

In applications, the regimes of strong coupling are of
importance to develop new techniques like optical chaos
generators, chaos masking, synchronization, and chaos-
cryptography systems.

Because a remote mirror can also be regarded as a source
of feedback, schemes based on self-coupling have been vari-
ously referred to as feedback, induced-modulation, injection,
and self-mixing interferometers. This is the subject covered
in this paper, which is organized as follows. In the next sec-
tion we introduce the basic ideas underlying a self-mixing
interferometer, and summarize the methods to analyze it. In
Sect. 3 we develop the applications of self-mixing to a vari-
ety of kinematic measurements (displacement, vibrations,
velocity), and in Sects. 4 and 5 we describe the measure-
ments of some physical quantities of the laser (linewidth,
alfa factor), and last but not least, as a remote echo detector;
finally we draw some conclusions.

2. Description of the self-mixing
interferometer (SMI)

The basic setup of a self-mixing interferometer is shown
in Fig. 3: the beam from a laser diode is shone onto a re-
mote target and a fraction 1❂A of the emitted power P0 is
collected back into the cavity, where it leads to modulation
of the cavity field. A photodiode detects the AM-modulated,
interferometric signal contained in the beam power.

The practical implementation of a SMI is similar to its
very simple schematic: as a detector we customarily use
the monitor photodiode already provided in the laser diode
package by the manufacturer, whereas on the front output
we just need a collimating optics (the plastic molded lens
offered by the manufacturer is adequate) and eventually an
attenuator to adjust the level of retuning signal. Often, the
target need not be reflective, as the weak backdiffused signal
from a plain diffuser surface is usually large enough.

The only care to exercise is that the laser works in a
single longitudinal mode regime, and is biased well above
threshold so as to have low side-mode content: this ensures
a clean SMI waveform.

Figure 3 (online color at: www.lpr-journal.org)

Schematic of a self-mixing interferometer

(SMI) using a laser diode.
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Figure 4 (online color at:

www.lpr-journal.org) SMI wave-

forms for weak to moderate level

of coupling. Left: calculated re-

sults; right experimental wave-

forms for a sine-wave driving. Up

to C ✙ 0✿1 the waveform is much

a cosine function of the optical

phaseshift, then at increasing C it

becomes progressively distorted

until at C ❂ 1 a switching ap-

pears in the trailing edge, marking

the onset of ECM (external cavity

mode). Regimes are those used in

applications such as: 2-channel in-

terferometer, LDV (C✜ 1), fringe-

counting SMI (1 ❁ C ❁ 4✿6), and

also alfa-factor, linewidth measure-

ment, and angle measurements.

Now, because of the self-mixing process in the cavity,
the resulting emitted power can be written [8] as:

P ❂ P0❬1✰mAF✭ϕ✮❪ ❀ (1)

where P0 is the unperturbed power, ϕ ❂ 2ks is the optical
phase shift suffered on propagating to the target distance
s and back, with k ❂ 2π❂λ the wavevector, and mA is the
amplitude modulation index whose expression is found [8,9]
as

mA ❂ A�1❂2❬c❂2s✭γ�1❂τ✮❪ ❀ (2)

γ being the gain per unit time of the medium and τ the
cavity decay time. Note that the�1❂2 dependence on power
attenuation A is a clear sign that the SMI process depends
on field, not power, and so it is a coherent process [10].

(Explicitly, A�1❂2 ❂ a is the field attenuation used in Fig. 2.)
Finally, in Eq. (1), F is a function depending on the

strength of coupling, yet always a 2π-periodic function of
its argument 2ks. So, we have a full period of the power
waveform swing for a variation of target distance 2kΔs ❂
2π or, solving for Δs, Δs ❂ λ❂2 – just like in a normal
interferometer. Function F is a plain cosine function of ϕ at
very weak coupling strength, whereas at weak or moderate
coupling F becomes a distorted cosine wave (Fig. 4).

Following Acket et al [11], we can introduce an injection

parameter C to describe the strength of coupling as follows:

C ❂ ✭1✰α2✮1❂2A�1❂2κs❂nlasLlas ❀ (3)

where
κ ❂ εδ ✭1�R2✮❂

♣
R2 (3a)

is the fraction of field coupled back and interacting with
the laser mode. In Eqs. (3) and (3a), α is the linewidth
enhancement factor of the laser, ε is the mode superposition
factor, R2 is the output mirror (power) reflectivity, δ the
(field) target diffusivity (if not already included in A), s the
target distance, nlas and Llas the effective index of refraction
and the cavity length of the laser, respectively.

About the waveform F✭ϕ✮ of the SMI signal, starting
from weak coupling, C ❁ 0✿01, F is initially a cosine wave
as in a normal interferometer, but as C increases the wave-
form becomes progressively distorted, with the trailing edge
steeper than the leading edge (Fig. 4) [5,8], up to the critical
condition C ❂ 1 when a switching appears in the trailing
edge. The regime of SMI with one switching per period is
important and corresponds to moderate coupling, a preferred
condition for SMI operation.

On continuing to increase C, we reach C ❂ 4✿6, when a
second switching shows up in a 2ks period. Further increase
of coupling brings about additional switchings, see Fig. 5,
up to the point that waveform becomes erratic, because one
of a multiple choice of switchings to be sorted will depend
critically on initial conditions of the system – the system
enters a regime of multistability and chaos.

To develop interferometry measurements, we work up
to C ❁ 4✿6 but usually at C✜ 1 to have an easily processed
signal. There is no reason to work at C ❃ 4✿6 and face the
problem of multiple switchings per period when making
measurements, also because peak-to-peak amplitude of the
SMI waveform (and the SNR) is no longer improved. We
go at high values C ❃ 20–50 when we wish to generate
optical chaos.

About the signal pickup, the most convenient to use
is the rear output of the laser, as shown in Fig. 3, where
the manufacturer usually provides a photodiode (with tilted
surface) for output-power monitoring. Yet, if the rear PD is
missing, as in VCSELs, we can place a photodiode on the
front output beam, and eventually detect the SMI signal at
the target location.

When using the front output, we shall avoid falling on a
zero of the SMI signal [12,13]. Vanishing of the self-mixing
signal is found at a certain bias current, at which the outgo-
ing field is cancelled by an opposite-phase, backreflected
field bouncing back at the output mirror, (see details in [12]).
Finally, if PDs are not practicable, we can also read the SMI
signal as a (small) voltage superposed to the quiescent bias

www.lpr-journal.org © 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 5 (online color at: www.lpr-journal.org)

At even increasing values of C, the SMI wave-

form first displays more than one switching

per period of 2ks, and then multiple switchings

soon becoming erratic. The system then en-

ters the chaos regime of oscillations, no more

convenient for SMI but useful for chaos gener-

ation, synchronization, and cryptography.

voltage [12, 13], though the S/N ratio there is not as good as
at the rear and front outputs.

2.1. Analyzing self-mixing phenomena

Basically, three methods are available to analyze self-mixing
phenomena. One, the rotating-vector addition (Section 1),
simply explains the AM and FM sine and cosine dependence
of the SMI signal.

Secondly, the 3-mirror model analyzes the optical feed-
back in view of the theory of oscillators (Fig. 6), considering
the target as a retroreflecting element and applying the
steady-state Barkhausen condition of oscillations. To do
that, let us write the perturbed loop gain of the laser oscilla-
tor as a balance starting at mirror M1:

Gloop ❂ r1r2 exp2α✄L exp i2kL✰aexp i2ks ❀ (4a)

where r1 and r2 are the mirror (field) reflectivities, α✄ and
L are the (field) gain per unit length and the length of the
laser, and a is the field attenuation of the external target.

First, letting a❂ 0 in Eq. (4a), we get Gloop ❂ r1r2 exp2α ✄
Lexp i2k0L, for k0 ❂ 2πnlν0❂c and the unperturbed fre-
quency ν0 of oscillation, nl being the effective index of
refraction of the laser medium.

Now, let’s apply the second Barkhausen condition – that
the loop gain in the permanent oscillation regime is ex-
actly one – or: ℜ❢Gloop❣ ❂ 1 and ℑ❢Gloop❣ ❂ 0. Using
Eq. (4a), and r1r2 exp2α ✄L✙ exp�i2k0L, and developing
ℑ❢Gloop❣❂ 0 we get:

sin4πLnl✭ν�ν0✮❂c✰asin4π✭ν❂c✮s ❂ 0 ❀ (4b)

or also, being 4πLnl✭ν�ν0✮❂c✜ 1, and rearranging terms

ν ❂ ν0✰✭c❂4πLnl✮asin4π✭ν❂c✮s ✿ (4c)

In Fig. 6 (bottom), we plot the diagram of the actual oscilla-
tion frequency ν as a function of unperturbed frequency ν0.
Here, as long as the ✭c❂4πLnl✮a remains small, or C ❁ 1,
there is one solution for ν (a stable, single oscillating mode).
But, on increasing a, the undulation increases in amplitude
and for 1 ❁ C ❁ 4✿6 there are 3 solutions, one unstable
(the central one) and two stable [8]. This corresponds to a
switching in the waveform, and to the onset of ECM (ex-
ternal cavity modes), starting to be excited at C ❂ 1 and
increasing in total mode number as ✙ 2C❂π .

Equation (4c) can be brought to the form of the standard
Adler’s frequency equation [6, 8, 14]:

ωτ ❂ ω0τ�C sin✭ωτ ✰a tanα✮ ❀ (4d)

where τ ❂ 2L❂c is the external time delay, C is the coupling
factor (Eq. (3) and α is the linewidth enhancement (in this
equation, α is introduced a posteriori). Interestingly, condi-
tion (Eq. (4d)) can also be derived from the Lang-Kobayashi
equations (see below).

The 3-mirror model explains several interesting results
but lacks some details concerning the physical setting of the
phenomenon, i. e. the material (semiconductor) and associ-
ated effects for a laser diode.

The third approach is the most complete, based on the
Lamb’s equation for the slowly varying approximation of
amplitude and phase of the electric field, and modified with
the additional equation for the state concentration, i. e. the
Lang-and-Kobayashi (L-K) equations [3], which can be

© 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.lpr-journal.org
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Figure 6 The 3-mirror model (top) and the plot of actual fre-

quency ν to unperturbed frequency ν0 of the laser: for C ❁ 1

there is a single intersection (one stable solution), for C ❃ 1 three

intersections (two stable and one unstable), and the system starts

oscillating on external cavity modes.

written in the following form [5, 8]:

dE❂dt ❂ 1
2
❬GN✭N�N0✮�1❂τp❪E

✰✭κ❂τ✮E✭t� τ✮cos❬ω0t ✰ϕ✭t✮�ϕ✭t� τ✮❪ ❀

dϕ❂dt ❂ 1
2
α❢GN✭N�Nthr✮�1❂τp❣

✰✭κ❂τ✮E✭t� τ✮❂E✭t✮

✂ sin❬ω0t ✰ϕ✭t✮�ϕ✭t� τ✮❪ ❀

✭d❂dt✮N ❂ Jη❂ed�N❂τr �GN✭N�N0✮E
2
i ✭t✮ ❀

(5)
where (with typical values noted):
τ ❂ 2s❂c is the roundtrip propagation delay,
GN ❂ modal gain ❂ 8✿1✂10�13 m3s � 1,
κ ❂ fraction of field coupled to the oscillating mode
(Eq. (3a)),
N ❂ carrier concentration (m � 3),
Nthr at threshold ❂ 2✿5✂1024 m � 3,
N0 at inversion ❂ 1✿2✂1024 m � 3,
τp ❂ photon lifetime in cavity ❂ 2 ps,

τr ❂ carrier lifetime ❂ 5 ns,
α ❂ linewidth enhancement factor ❂ 3 – 6❀
ω0 ❂ unperturbed frequency ❂ k0❂c❀
Jη ❂ pumping current density and internal quantum effi-
ciency on the active layer thickness d.

The L-K equations are point-independent equations de-
scribing the active material, quite different from the 3-mirror
system-based equations. Yet they carry a description of a
laser oscillator through the coupled terms (those multiplied
by κ) and the delayed terms E✭t� τ✮ and ϕ✭t� τ✮.

The L-K equations surprisingly yield all the results al-
ready discussed above and found with other approaches,
including Adler’s equation (Eq. (4d)).

Solutions of the L-K equations reveal: the AM/FM mod-
ulations, the F✭ϕ✮ waveforms, the C factor as the break
point of switching, (see [5] for detailed calculations), incip-
ient bi- and multistability, line broadening and narrowing,
route to chaos [7], etc. When compared to experiments,
the L-K equations are found to give a remarkably accurate
modeling of both the weak-level SMI phenomena and the
high-level chaos-related dynamics. The only deviation is
a larger than predicted linewidth of oscillation, reconciled
with experiment, as first proposed by Henry, with the in-
troduction of an a-posteriori linewidth enhancement factor
α [15] in the L-K equations, on the second line of Eq. (5).

As a final remark, we can use the diagram introduced
by Tkach and Chraplyvy [16] who first described the feed-
back effects, later also discussed by Petermann [14] with
reference to communication applications. In the diagram
(Fig. 7), SMI phenomena are located at the left bottom cor-
ner, whereas chaos for cryptography is in the topmost region.
SMI obviously requires coherence of the returning field ad-
dition to the in-cavity unperturbed field, whereas chaos can
be generated also from incoherent coupling (because field
E is coupled to concentration N, see the last of Eq. (5)). In
Fig. 7 we have drawn the lines at constant C (cf. Eq. (3)) for
a typical laser diode. Also shown is the characteristic length
Lfreq ❂ c❂2 f2, associated to the high-frequency (modulation)
cutoff f2 of the laser diode, separating the short (s ❁ Lfreq)
cavity regime with continuous frequency spectrum of the
chaos, from the long (s ❃ Lfreq) cavity regime with spike-
like spectrum.

2.2. Features of SMI interferometer –
advantages and disadvantages

Well-established interferometers [17, 18] used in applica-
tions (such as instrumentation, avionics, etc.), fall into one
of two configurations, depending on the position of the
source respect to the optical interferometer: the external

(Fig. 8, upper left) or the internal (Fig. 8, lower left).
Analyzing these configurations [17], we find that the

optical pathlength 2ks is read on an amplitude output signal
of (for the external) and on a frequency output signal (for
the internal), respectively.

In a self-mixing interferometer, interaction with the
backreflected weak field generates in AM and FM mod-
ulations of the emitted field. The modulation indexes are the

www.lpr-journal.org © 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 7 In the diagram of coupling-strength

(backreflection attenuation) versus external cav-

ity length, applications of SMI phenomena are lo-

cated in the lower left side, whereas high level dy-

namics effects (multi-periodicity and chaos) are

mostly in the upper part of the diagram. Ac-

cording to the original description of Tkach and

Chraplyvy, regime I corresponds to linewidth nar-

rowing/broadening (depending on the phase of

feedback), II to line splitting and mode-hopping, III

to return to single-mode narrow-line operation, IV

to cohereence collapse, V to external cavity mode.

Dotted lines represent constant C for a typical laser

diode. Lfreq is the relaxation length and Lcoh the

coherence length of the laser.

Figure 8 (online color at: www.lpr-journal.org) Compared to conventional schemes of interferometry (left) the external used in

displacement measurements and velocimeters, and the internal used in gyroscopes, self-mixing (right) yields a different output signal,

yet containing as AM/FM the same pathlength information, a sine/cosine function of optical phase shift 2ks to the remote target.

sin2ks and cos2ks signals we exactly need [17] in an inter-
ferometer to be able to reconstruct the argument 2ks from
trigonometric signals without ambiguity. So, in principle,
the adequate signals are available to make a new interferom-
eter out of the self-mixing configuration.

From the user’s point of view, when compared to the
other traditional interferometric configurations, the SMI has
inherently these advantageous features:

– optical part-count is minimal (there is no optical interfer-
ometer external to the source);

© 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.lpr-journal.org
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– setup is self-aligned (the SMI makes a measurement
where the laser spot falls);

– no spatial, wavelength or stray-light filters required (the
Fabry-Perot or DFB cavity of the laser already acts as
a filter);

– operates on a normal diffusing target surface (SMI toler-
ates a relatively strong loss A);

– signal is everywhere on the beam, also at the target side
(this is a feature unique to SMI, exploited in special ap-
plications);

– resolution is λ❂2 with fringe counting, and sub-λ with
analog processing (SMI, like any interferometer, reaches
the quantum noise limit of detection, thus minimum de-
tectable displacement is✜ λ );

– bandwidth is up to hundreds of kHz or MHz (with
easy processing).

Of course, there are also disadvantages, like:
– a reference arm is missing (at least in the basic setup);
– wavelength accuracy and long-term stability is poor (with

a cheap Fabry-Perot laser diode, the strong λ dependence
on bias current and temperature makes it difficult to have
Δλ❂λ ❁ 10�3, thus the measurement has 3 significant
digits, not 6–7 as with a HeNe laser [17]);

– little flexibility of reconfiguration (as it is minimum-part
count, the SMI can’t easily be modified);

– operating on a diffuser target surface, the SMI signal is
affected by the speckle pattern statistics (with fading of
amplitude, and phase-error effects, see [19]).

2.3. Classification of SMI measurements

Basically, looking at the SMI schematic and waveforms
(Fig. 9), we can think a single processing scheme will fit all
applications, but this is not the case.

As a first approach, we can make a digital processing
of Iph✭t✮, by counting periods of peak-to-peak swing IP�P,
which correspond to λ❂2 variations Δs of target distance.

Secondly, we may use an analog processing for Iph✭t✮,
because a small observed variation ΔIph corresponds to
a small distance variation Δs, easily seen equal to Δs ❂
✭λ❂4π✮ΔIph❂IP�P.

As the minimum ΔIph we can appreciate is much smaller
than IP�P, (the rms noise σI ph associated to Iph, see the
trace in Fig. 9), resolution is much better with the analog
processing, reaching down to nanometers easily, and with

20–50 pm attainable in experiments. (The quantum noise
limit is even smaller, in the range of 1–10 fm/

♣
Hz, see [17].)

Yet digital processing is by far superior when we re-
quire a large dynamic range. By counting λ❂2 fringes, the
dynamic range of measurement is only limited by the num-
ber of decades we allocate to the counter. Thus, we can
readily attain 5–6 decades of λ❂2 steps, opposite to a IP�P

swing corresponding to λ❂2, just one half-wavelength, of
the analog.

Therefore, it is customary to classify the SMI as a dis-
placement measuring instrument, when we use digital pro-
cessing and aim to make a measurement with sub-λ reso-
lution over a large distance – typically up to a few meters –
as required for machine tool and mechanical shop applica-
tions [18].

On the other hand, if we use the SMI with an analog
processing, we will probably be interested in analyzing pe-
riodic motions of small amplitude (e. g. up to 1–100 µm
peak-to-peak) as required in vibration and mechanical fa-
tigue analysis [17], and then we classify it as a vibration

measurement, and the instrument as a vibrometer.
Note that some authors identify vibrometers as velocime-

ters, not a good choice given that velocimeters [20] are the
well-known laser Doppler or LDV instruments, intended for
fluid-velocity analysis and anemometry [20]. (Of course, an
SMI can also be designed for a ds✭t✮❂dt measurement of
the target, then it will be properly called a velocimeter.)

2.4. Typical applications of SMI

In the last two decades, several applications have been re-
ported of SMI that can be classified as follows:
– metrology: displacement, vibration, velocity, distance, an-

gle;
– measurements of laser parameters: linewidth, alfa factor;
– physical quantities: thickness, refraction index, rough-

ness, mechanical resonance, stress/strain hysteresis;
– sensing: detection of remote echoes, return loss, confocal

microscopy sensor, CD/scroll sensors, biological motil-
ity.

In the following we review a number of reported applica-
tions along with the approaches to solve specific problems
of each of them.

As a general comment, SMI techniques offer a very
remarkable performance and outperform conventional ap-

Figure 9 (online color at: www.lpr-journal.org) When the SMI (left) works at C ❃ 1, the output signal detected by the photodiode

waveform has switching every λ❂2 displacement of the target. The switching is negative-going (bottom trace) when the target is

receding (top trace) and is positive-going when the target is approaching. (from [8], courtesy of the IEEE)
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proaches, yet with limited flexibility in their range of ap-
plicability, because even minor changes of specifications
usually require major changes and often a complete redesign
of the instrument.

3. SMI application to metrology

3.1. Displacement measurements

In the application called by mechanical workshop metrol-
ogy, the well-known and undisputed instrument is the so-
called “laser interferometer” [17], built around a frequency-
stabilized HeNe laser. When used with a corner-cube retrore-
flector as the target, the instrument offers a 0.1-µm resolu-
tion on a several meters displacement, corresponding to a
dynamic range ❃ 107 [18].

The SMI approach to displacement measurement is at-
tractive because it can also work on a diffuser, untreated tar-
get surface, replacing the corner-cube, and be much cheaper
and simpler to operate. In contrast to a normal laser interfer-
ometer that requires two signals, cos2ks✭t✮ and sin2ks✭t✮ to
function properly [17] and be able to recover s✭t✮ from the
phase of a sine/cosine function without ambiguity, the SMI
has the big advantage of readily providing the sign of the dis-
placement increments when operated in the C ❃ 1 regime.

Indeed, as we look at the waveform of the SMI signal
of the basic SMI configuration (Fig. 9), we see that the
waveform switches every λ❂2 variation Δs of the external
distance s✭t✮. Also, the switching is positive(negative)-going
when the target approaches(recedes) the source, and this
marks the sign of the displacement Δs (positive or negative)
to be counted [8, 21].

Thus, the development of a displacement-measuring
SMI is straightforward (see Fig. 10): from the photodiode

output we go to a transimpedence op-amp amplifier convert-
ing Iph in a voltage, then we time-differentiate the signal
so as to extract switchings as pulses, and rectify the (+/–)
pulses, sending them to separate outputs. On counting the
pulses in a decimal up/down counter [8], the counter content
is the accumulated displacement s✭t✮ to the target, in units of
λ❂2, from the t ❂ 0 when the counter is reset, to the current
time. To end with a decimal, metric readout, a multiplier of
the counter content by λ❂2 is provided.

Using a typical GaAlAs laser diode at λ ❂ 850, as
λ❂2 ❂ 425 nm, we get a resolution of about half a microm-
eter, more than adequate for most machine-tool positioning
and measurements [18]. Also, by keeping the time constant
of the differentiator stage short enough (say τ ❂ 300 ns)
we can accommodate as many as ✙ 1❂τ pulses per second
(say 3✂106) or, be able counting the pulses up to a maxi-
mum speed v ❂ λ❂2τ ✙ 1✿2 m/s of the target. Finally, the
SMI signal is found to be large enough to be detected and
processed up to a distance s ✙ 2 m, even using a diffuser
noncooperative surface as a target [8, 21].

Concerning accuracy and precision of the measurement,
wavelength stability is the first issue. Careful control of
bias current and of temperature allows us to work with a
stability down to the ppm (10�6) level in the laboratory
environment. Another issue is the speckle pattern statistics,
adversely affecting the amplitude of the SMI signal and also
introducing phase errors [19].

To evaluate the intrinsic performance of the SMI, we
have carried out a set of repeated measurements on a s ❂ 65-
cm displacement. To avoid speckle errors, measurements
were done on a corner-cube target. First, as reported in
Fig. 11, we observe an important roll-off with temperature,
with a relative rms error δ s❂s of about �95 ppm/✍C (1
ppm ❂ 10�6). After stabilizing the laser chip temperature
with a thermoelectric cooler, data go around the zero line

Figure 10 (online color at:

www.lpr-journal.org) Schematic

of an SMI for measuring displace-

ment with λ❂2-resolution: the pho-

todiode signal is passed through

a transimpedance op-amp, time-

differentiated and pulses rectified

and sorted to the Up /Down input

of a decimal counter. A multiplier

(not shown) is used to bring the ac-

cumulated counting to metric dec-

imal on the display. Typical res-

olution is 0.5 μm, and maximum

speed of the target, with a pulse

width of 300-ns, is about 1.2 m/s.

© 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.lpr-journal.org
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Figure 11 Results of measuring a s=65-cm displacement exhibit

a roll-off as a function of diode laser temperature (top, open

circles). When temperature is stabilized by a thermoelectric cooler,

data returns around zero (top, full dots). The spread over a N ❂

60 sample of measurements lasting 4 hours is about ✝2 ppm

(bottom) (from [21], courtesy of the IEEE)

with a spread of about 2 ppm on a set of 60 samples in a
4-h period [21].

Actually, in the practical implementation of the displace-
ment SMI, Fabry-Perot lasers fall short of the ppm-level
resolution, because they exhibit wavelength mode hopping
(up to Δλ ❂ 1 nm each) at warm-up after switch-on, with a
concurrent hysteresis in λ [5]. Instead, DFB laser should be
employed, as these sources have been found to be capable
of ensuring a ppm long-term (❃ 1 year) accuracy [21, 22],
at least in the laboratory.

With the right laser diode, the SMI performance is
thus comparable to that of a traditional HeNe-based instru-
ment [5, 18].

Now we want to go further, and replace the corner cube
with a plain diffuser, as permitted by the SMI configuration
(whereas this is unwieldy in a normal HeNe-based interfer-
ometer, see [5]).

The problem now is that speckle pattern statistics affects
the amplitude and phase of the field returning into the laser
cavity [23], just the field giving rise to the SMI effect.

An analysis of the phenomenon (see for example [19])
shows that while the phase error can be kept relatively small
(e. g., a few λ ’s on a s ❂ 1 m swing), amplitude fluctuations
are a serious problem and should be strongly reduced, be-
cause they cause the loss of the signal (or, a decrease below
the desired C ❃ 1 level) and of the associated λ❂2 countings.

This happens when we fall on a relatively “dark” speckle
during the displacement of the target along the path s✭t✮
under measurement.

More precisely, the probability of getting a speckle am-
plitude less than k (e. g., 0.01) times the average is just
k [19, 23]. So, even introducing an AGC (automatic gain
control) on a range G, there is always a small probability
of fading, i. e. of the signal becoming so small as to be lost
(e. g., a probability of 0✿01❂G).

One idea for mitigating speckle fading is to take advan-
tage of the statistics itself: alongside a dark speckle there
are probably other more intense, brighter speckles. If we
arrange a minute deflection of the spot projected onto the
target, large enough to change the speckle sample but small
enough that the distance under measurement is unchanged,
we may be able to move away from the “dark” speckle fad-
ing.

The deflection can be performed by a pair of small PZT
piezoactuators holding the objective lens and moving it
along the X-Y axes, and a servocircuit that, after the detec-
tion, closes the loop and feeds the piezo so as to keep the
SMI signal maximized [24].

The technique is called BST (bright speckle tracking)
and an example of the results is shown in Fig. 12, where,
under a normal working condition, a “dark” speckle is found
between s ❂ 74 and 78 cm, with the amplitude becoming so
small that counts are lost. With the BST circuit on, the dip
at 76 cm is avoided and counts are registered correctly. (We
can also see in Fig. 12 a step up at about s ❂ 73✿5 cm where
the system decides to jump to a brighter adjacent speckle.)

To be rigorous, also with BST we get a reduction but
not elimination of the fading probability. Yet, as we may go
down to a value✙ 10�6 from k❂ 0✿01, (see [24] for details),
we make the SMI-BST instrument operation on a plain
noncooperative diffuser acceptable from the practical point
of view, with meter-swing capability and λ❂2 resolution, as
implemented in a prototype instrument (see [25]).

3.2. Vibration measurements

When the displacement to be measured is a periodical mo-
tion of small amplitude and a frequency range – say from
audio to MHz, counting λ❂2 steps is too rough and we may
prefer an analog processing of signal s✭t✮.

To start with, the analog format has a dynamic range
limitation – a typical op-amp circuit can accommodate sig-
nals ranging from mVs (the offset limit) to tens of volts,
or have a 104 dynamic range – thus, two or three decades
less than digital processing in a displacement interferometer
with 6–7 decades.

Yet, we can significantly improve the sensitivity to small
displacements, well beyond the λ❂2 limit and go down to
noise limits of the detected signal.

From this point of view, the minimum detectable dis-
placement or NED (noise equivalent displacement) is easily
found [17] noting that the detected signal

Iph ❂ Iph0✭1✰ cosϕ✮ ❀ (6)

www.lpr-journal.org © 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 12 (online color at: www.lpr-journal.org) In the technique

called BST – Bright Speckle Tracking – the objective lens is slightly

moved it along the X and Y axes by a pair of PZT actuators

so as to track the local maximum of intensity scattered by the

diffuser back into the laser (top). In an experiment demonstrating

BST control, a dark speckle affecting a counting loss at s ❂ 76-

cm is avoided and the corresponding error is removed (bottom).

(from [24], courtesy of the IEEE)

where ϕ ❂ 2ks, has maximum sensitivity to phase at the
half-fringe point (ϕ ❂ π❂2) where ✭ΔIph❂Iph0✮

2 ❂ ✭Δϕ✮2.
Recalling the expression for the shot noise associated with
the detected current, that is ✭ΔIph✮

2 ❂ 2eIph0B [4], we read-
ily get for Δϕ:

✡
✭Δϕ✮2

☛
❂ 2eB❂Iph0 ❂ SNR�1 ❀ (7)

where SNR is the signal-to-noise ratio of the amplitude
(i. e. photocurrent) measurement. Using Δϕ ❂ 2kΔs and
k ❂ 2π❂λ gives [17]:

NED ❂
✡
Δs2

☛1❂2
❂ λ❂2π❬eBIph0❪

1❂2 ❂ λ❂4π SNR1❂2 ✿
(8)

Putting numbers into Eq. (8) reveals [17] that the minimum
detectable displacement can go down to nanometers for
detected currents of µAs and bandwidth of MHz, and even

to picometers for mAs and kHz. These limits are reached
or approached substantially in practice, provided we first
cure a number of much larger sources of disturbance and
interference commonly found in processing circuits.

There are also other fundamental limits to the minimum
signal that can be measured by an interferometer, notably co-
herence, speckle statistics and thermodynamic fluctuations,
yet they can be managed to be negligible in a well-designed
SMI, and we refer the interested reader to [17] for more de-
tails.

Now, there are basically two approaches to implement a
small-signal vibrometer by analog-signal processing, that
is:
(i) Readout at half-fringe, so as to take advantage of the

linear conversion offered by the phase-to-current re-
lationship of Eq. (6) when the interferometer is read
in quadrature. To this end, we shall set the quiescent
working point of the interferometer in the middle of
the cosine amplitude swing, around ϕ ❂ π❂2. Indeed,
letting ϕ ❂ π❂2✰2ks in Eq. (6), the signal is

Iph ❂ Iph0✭1✰ cosϕ✮ ❂ Iph0✭1� sinϕ✮✙�Iph0ϕ

for small ϕ . Then, for small displacements it is

ΔIph ❂�Iph0Δϕ ❂�Iph02kΔs ❀

i. e. we get a linear relation between Δs and the SMI
output signal ΔIph, and we can read Δs ❂ Δϕ❂2k di-
rectly from the current variations ΔIph of the detected
current. Note that the linear range of response is lim-
ited to ✝λ❂2 by the cosine-like function, at least in the
basic arrangement.
This technique, known since the early times of con-
ventional interferometry [17], is easy to implement
when a reference arm is available, because the half-
fringe condition is in this case written as cos✭ϕmeas�

ϕref✮✙ 0. To achieve this, we adjust the reference path-
length to be ϕref ❂ Δϕmeaπ❂2, so that cos✭ϕmeasϕref ❂
�sinΔϕmeas ✙�Δϕmeas for small Δϕmeas.

(ii) Waveform reconstruction technique. We can solve for
s✭t✮ from the measured photocurrent Iph✭t✮, by inverting
the general relationship Iph ❂ Iph0❬1✰F✭2ks✮❪ for 0 ❁
2ks ❁ 2π and then using an unfolding algorithm for
extending the reconstruction for N2π ❁ 2ks ❁ ✭N ✰
1✮2π [26, 27].
In principle, this method can reconstruct s✭t✮ on a rel-
atively large number N of periods, only limited by the
accuracy with which the parameters C and α of the SMI
(Eqs. (4d) and (5)) are known.
In practice, results reported in the literature are limited
to N ✙ 30–100, or max amplitudes of s ❂ 50–150 µm
(peak-to-peak), whereas for small s the residual compu-
tational errors are or the order of 5–10 nm [26], much
larger than the noise limit attainable in case (i).

3.2.1. Vibration SMI, small amplitude, linear conversion

In an SMI, we don’t have available a reference channel to
adjust the fringe signal in quadrature, yet we can take ad-
vantage of the wavelength dependence of the semiconductor

© 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.lpr-journal.org
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Figure 13 (online color at: www.lpr-journal.org)

Linear processing in a small-amplitude vibrometer:

to lock the quiescent point at the middle of the sig-

nal swing (left) we use the half-fringe voltage level

Vref as the reference of the difference amplifier re-

ceiving the preamp signal Vop-amp. Output is then

converted to current and feeds the laser diode. To

an interferometric phase variation 2kΔs due to tar-

get motion, the electronic feedback loop reacts with

a wavelength change giving an equal and opposite

phase �2sΔk. The vibration signal 2kΔs is then

found at the output Vout of the difference amplifier

A (from [28], courtesy of the Institute of Physics).

laser from the bias current to develop a control loop and set
the working point at half-fringe [28] of the interferometer.

In the moderate feedback regime (C ❃ 1) we can use
the slow semiperiod of the fringe that is fairly linear (see
Fig. 13, left) as the region of operation.

To dynamically regulate the working point at half-
fringe, consider the detected signal at the output of the
transimpedance amplifier of the photodiode and its ampli-
tude swing, and let Vref be the half-fringe voltage. We use
Vref as the reference input of a difference op-amp (block of
gain A in Fig. 13) receiving the detected signal Vop-amp at
the other input. Then, we amplify the difference and convert
it to a current (block Gm in Fig. 13) and send the current to
feed the laser diode.

As current Ibias impresses a wavelength variation
Δλ ❂ αλ ΔIbias, and hence a wave number variation Δk ❂
�kΔλ❂λ , we have closed the feedback loop and servoed the
phase 2ks signal. Indeed, as the target moves, generating an
interferometric phase 2kΔs, the feedback loop reacts with
a wavelength change yielding an equal and opposite phase
�2sΔk (if the loop gain is large).

By virtue of the feedback loop, the vibration signal 2kΔs

appears at the output Vout of the difference amplifier (Fig. 13,
right). This rather surprising result is a consequence of a
large loop gain, by which a small difference between Vref and
the op-amp output Vop-amp will be exactly the one needed
to generate Vout and from it the αλ GmVout bias current that
fulfils the phase-nulling condition 2Δks�2kΔs ❂ 0.

Thus, we get the vibration signal from the op-amp output
ΔVout as:

ΔVout ❂ ❬αλ Gm❪�1✭λ❂s✮Δs ✿ (9)

Note that, interestingly, the result is independent of the
amplitude of the photodetected signal Iph and all its fluctua-
tions, including the target retrodiffuser factor and speckle
pattern fading. The only condition is that the loop gain Gloop

is large. From Fig. 13, the loop gain is easily evaluated as

Gloop ❂ RAαλ Gm✭s❂λ 2✮σP0 ❀ (10)

where σP0 ❂ Iph0 is the mean photodetected current, and σ
is the spectral sensitivity of the photodiode.

In practice, in a typical layout of vibrometer [28] we
can make Gloop ✙ 500–1000, a condition close to ideality
of large gain. More precisely, as a well-known consequence
from feedback theory, we can say that residual nonidealities
found in the closed loop are reduced by a factor Gloop with
respect to the nonfeedback condition.

In particular, speckle-pattern fading is nicely reduced by
a factor 500–1000, and no longer affects the measurement.
(Speckle fading will actually reduce the available loop gain,
however, as given by term P0 in Eq. (10).)

Another beneficial effect of the feedback loop is that
linearity and dynamic range are improved by a factor
Gloop [28]. As is well known from control theory, the dy-
namic range limit is just an error introduced in the loop, and
as such is reduced by Gloop. Thus, our small-signal vibrome-
ter does not saturate as the vibration amplitude is larger than
a half-fringe (or, ❁ λ❂2). Indeed, as the signal increases and
tends to slip out of the fringe, the feedback loop will pull
it back, leaving only a 1❂Gloop residual. So, the dynamic
range now becomes Gloopλ❂2, something in the range of
200–500 µm.

An example of performances obtained with a bread-
board vibrometer developed from the concept of half-fringe
servo loop is reported in [29]. The prototype has a minimum
detectable signal of NED = 100 pm (on a B ❂ 1-Hz band-
width) and a max (dynamic range) of ✙ 500 µm. The Wegel
diagram of bandwidth/amplitude performance is reported
in Fig. 14 along with an example of pickup of vibrations in
the field.

Another remarkable application of the half-fringe stabi-
lized, small-amplitude vibrometer worth noting is that to the
differential vibrometer, see Sect. 5, for detecting mechanical
hysteresis cycle.

3.2.2. Vibration SMI, large-amplitude,

waveform reconstruction

We can go to a theoretically unlimited dynamic range of
measurement for the signal s✭t✮ if we are able to invert
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Figure 14 (online color at: www.lpr-journal.org) Left: performance of a half-fringe locked vibrometer: minimum displacement signal is

100 pm (B❂ 1 Hz) and maximum amplitude 500 μm, frequency from 0.1 Hz to 80 kHz (from [28], courtesy of the Institute of Physics).

Right: the instrument at work detecting small vibrations on the locked door, as produced by the engine of the car.

Eq. (1) and solve for phase ϕ ❂ 2ks✭t✮ from the measured
waveform Iph✭t✮ or P✭t✮.

The algorithm to carry out the inversion has two parts:
that relative to the range �π ❁ ϕ ❁ ✰π , where we shall
remove the nonlinearity of the F function (Eq. (1)), and that
relative to the unwrapping of phase when ϕ goes beyond
2π to the interval ✭2N�1✮π ❁ ϕ ❁ ✭2N ✰1✮π .

As already noted, when feedback is weak (C ❁ 1) and
the waveform is practically time-symmetrical, to invert
Eq. (1) unambiguously we need two signals, the sine and
cosine of ϕ ❂ 2ks (see also Sect. 3.2.3). For this problem,
an ample literature is available (see e. g. [30]) about the
application of the arccosine function to measured data Iph✭t✮
and its segmentation for phase unwrapping.

When the regime of feedback is moderate and C ❃ 1,
a single signal is sufficient to carry out the reconstruction,
because switchings in the waveform carry the sign of π in-
crements required to unwrap phase. As first proposed in [26],
an algorithm can be derived from Eqs. (1) and (4d), that can
be applied to the waveform coming from the experimen-
tal measurement F✭t✮ ❂ ΔP❂P0 (or ΔIph❂Iph0✮, and we can
retrieve s✭t✮ as:

2ks✭t✮ ❂✝arccosF✭t✮ (11)

�C❢�αF✭t✮✝♣❬1�F✭t✮2❪❣❂♣✭1✰α2✮✰2mπ ✿

Here, the sign shall be taken ‘✰’ for dF✭t✮❂dt ✁ ✭ds❂dt✮❁ 0,
and ‘�’ for dF✭t✮❂dt ✁ ✭ds❂dt✮ ❃ 0, and m shall be in-
creased by 1 every two zero crossings of F✭t✮ (for more
details see [26]).

Application of Eq. (11) requires the knowledge of pa-
rameters C and α . As pointed out in [8], if the linewidth
enhancement factor is not too small and the approximation
α2 ✢ 1 is acceptable, then C can be easily determined from
the shape of the F✭t✮ waveform, by looking at the semiperi-
ods of increasing (trise) and decreasing (tfall) F , whose ratio

is found [8] as:

trise❂tfall ❂ ❢♣✭1✰α2✮π�2Cα❣✍❢♣✭1✰α2✮π ✰2Cα❣
✘❂ ✭π�2C✮❂✭π ✰2C✮ ✿ (12)

Additionally, factor α can be either estimated from the type
of laser diode, or measured as indicated later in this paper
(see Sect. 4.2).

For a typical Fabry-Perot MQW laser diode, with α
ranging from 4 to 6, and estimated α ❂ 5 for the calculation,
application of Eqs. (11) and (12) to a nonsinusoidal periodic
waveform s✭t✮ gives the result of reconstruction illustrated
in Fig. 15: a 2-µm waveform is reconstructed with a ❁ 5-nm
error [26].

A similar result is found when the signal has a much
larger amplitude, say N times the wavelength λ : the error
remains at ❁ 5–10 nm for N up to 10–20, then for N ❁ 100
small inaccuracies in the C factor and in the estimated α
factor may entail a π-phase (or λ❂2 amplitude) error in
the reconstruction.

A more sophisticated algorithm has been proposed by
Plantier et al [27], based on the minimization of a cost
function describing the quadratic distance of measured data
from a reference waveform calculated theoretically, with
adjustable C and α parameters.

Minimizing the error gives the best estimate of C and
α , and a self-consistency evaluation confirms the level of
accuracy also found with direct analysis of the waveform
details reported in Sect. 4.

As a final comment, none of the above algorithms has
yet been demonstrated for real-time reconstruction of large-
amplitude displacements, say up to the mm or cm ranges,
whereas the half-fringe technique (Section 3.2.1) covers
well up to the mm or sub-mm amplitudes.
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Figure 15 Reconstruction of the s(t) waveform from the mea-

sured F✭t✮ ❂ ΔIph✭t✮❂Iph0: from top to bottom: applied s✭t✮, SMI

waveform Iph✭t✮, reconstructed srec✭t✮, error s✭t✮�srec✭t✮. For a 2-

μm peak-to-peak signal, error keeps❁✝2 nm (from [26], courtesy

of the IEEE).

3.2.3. Vibration SMI, large-amplitude,

sin/cos reconstruction

A very effective method of unwrapping and reconstruction
for either displacement or vibration signals of large ampli-

tude, already known and applicable to all interferometers,
is that based on the processing of two orthogonal signals,
cos2ks and sin2ks. These two signals are those we look for
in a 2-channel laser interferometer [9, 17] to start a digital
or analog processing, and are those potentially available in
a SMI for C✜ 1.

Unluckily, in a laser diode SMI, we are unable to access
the sin2ks signal, because this is the modulation drive of FM
on the optical frequency, out of reach of the direct handling
of electrical signal.

On the contrary, if we had a two-mode operation for the
laser source, we could use one mode for SMI and keep the
other unaltered in the cavity to serve as the local oscillator
of a demodulation operation, bringing down to electrical
frequency the FM modulation, and making sin2ks available
for reconstruction.

This is exactly what was done in an early demonstration
of self-mixing interferometer dating back to 1977, see [9],
the first paper to report an SMI for displacement reconstruc-
tion.

To this purpose, we used a HeNe Zeeman laser [17], with
the active medium split into two populations, supporting two
modes with linear orthogonal polarizations and a frequency
difference of 20–100 kHz [9,17]. Only one mode is allowed
to reach the target (see Fig. 16, left) whereas the other is used
to downconvert the SMI signal from optical to electrical
frequencies, by beating on the rear photodetector. The signal
at the photodetector output (Fig. 16, left traces, right panel)
shows AM as a small ripple on the amplitude, and FM as a
jitter of the sinusoid. After AM and FM demodulations, we
get the two signals S❂ sin2ks and C ❂ cos2ks, see Fig. 16,
right traces, right panel [9, 17].

Figure 16 Reconstruction of displacement with the cos/sin signals: (left) we use a HeNe laser with transverse Zeeman effect, creating

a pair of orthogonal, linear- polarized modes. A polarizer at the target output selects one mode for self-mixing effect, while the other is

kept unaffected in the cavity. A 45-deg oriented polarizer at rear mirror allows beating of the two modes (one carrying the SMI signal,

the other a fixed reference) on the photodetector. Amplitude and frequency demodulation reveals the cos2ks and sin2ks signals (right).

We then make the cross product of signals and their derivatives to free out v and then integrate v to obtain s (from [9]).
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Reconstruction now proceeds as follows: we make the
time derivative of S and C, that is S✵ ❂ 2kvcos2ks and
C✵
❂�2kvsin2ks, v❂ ds❂dt being the time derivative of

s. Then, we cross-multiply the derivatives to S and C and
subtract the results, thus obtaining

S✵C�SC✵
❂ 2kvcos2 2ks✰2kvsin2 2ks ❂ 2kv ❀

and then we integrate v to obtain s. This algorithm was also
reported by Giallorenzi et al. [31].

In Fig. 16, signals v and s are displayed on the bottom
right-corner trace. Note that reconstructed waveforms of v,
s exhibit a minor ripple with respect to the electrical drive
waveform, but this is simply due to the frequency response
of the transducer (a loudspeaker) used in the experiment.
In other words, the measurement is in itself a diagnostic of
the transducer.

Note that the reconstruction calculation has no upper
limit of dynamic range, i. e. works for any amplitude, and
that, if preferred, in place of analog circuits, we could make
the processing numerically, with a PC using an ADC for
signal acquisition.

The reason for not being able to duplicate the same
arrangement with a laser diode is because it appears very
difficult to create two orthogonal modes at slightly different
frequencies, very stable, and easily split.

The HeNe reconstruction will be used later for biosig-
nal pickup (Sect. 5).

3.3. Velocity measurements

Basically, there are two versions of an SMI velocimeter,
according to whether we wish to measure the longitudinal

component of v, i. e. that v❦k parallel to the wavevector
k (or, more generally, to line-of-sight), or the transversal

component v❄k (perpendicular to k or to line-of-sight).
In the first case, we may start by noting that the phase

2ks is actually written, in a more general form, as ϕ ❂ 2k✎s,
where the dot stands for the scalar product of vectors k and s.

Then, as velocity is v❂ ds❂dt, by differentiating ϕ with
respect to time we have ✭d❂dt✮2k✎ s ❂ 2k✎v ❂ dϕ❂dt ❂ ω .
This equation simply tells us that the SMI output sig-
nal Iph already contains the desired velocity component
along the line-of-sight identified by the wavevector k, i. e.
k ✎ v ❂ v❦k, and that the velocity v❦k can be measured by
the frequency f ❂ ω2π contained in signal Iph, with a scale
factor 2k❂2π ❂ 2❂λ . This is sometimes called the Doppler
signal, yet it is nothing more than an interferometric phase-
shift.

Thus, the measurement of longitudinal velocity is sim-
ply a byproduct of the normal SMI working principle, and
several variants of the basic SMI concept have been dis-
cussed by Scalise et al [32]. A special feature is that, if the
transversal component is negligible, the target spot remains
the same during the movement and thus speckle statistics
does not affect the measurement.

In the case of transversal velocity component, being
2k ✎v ❂ 0, we shouldn’t observe any signal out of the SMI.

Figure 17 Application to scroll-sensing calls for a transversal

velocity measurement. To detect v❄ ❂ ds❂dt, a twin SMI arrange-

ment is used, and the time derivative of the phase difference

ϕ1�ϕ2 is calculated, obtaining 2✭k1� k2✮✎v.

Yet something, depending on the velocity, is observed be-
cause, while the true interferometric signal is absent, the
speckle statistics affects the otherwise constant field sent
back into the laser, and generates a random-like modulated
output current Iph. The frequency content of Iph can be cor-
related to the transversal component of velocity v❄k through
an ad-hoc calibration [33], yet a velocimeter based on this
principle has a somewhat erratic behavior also depending
on the texture of the target surface.

A better configuration of a transversal-component ve-
locimeter based on a true (SMI) interferometric signal can
be developed by using a differential setup like the one illus-
trated in Fig. 17, used for sensing applications [34] (see also
Sect. 6). If the wavevectors of the two separate (and nom-
inally identical) SMI are k1 and k2, then we have the two
output signals ϕ1 ❂ 2k1 ✎s and ϕ2 ❂ 2k2 ✎s. Now, taking the
difference of the phase signals measured by the SMIs, we
get ϕ1�ϕ2 ❂ 2✭k1� k2✮ ✎ s. Thus, the component sensed
by signal ϕ1 �ϕ2 is oriented parallel to k1 � k2, which is
transversal to the line of sight (Fig. 17).

Note that speckle statistics interferes also in this case
with the SMI signal, but less seriously because the common-
mode fluctuations are canceled out in the difference, and
just a residual amplitude modulation due to diffuser sample
changes is left, which can be made negligible by automatic
gain control (ACG).

3.4. Distance measurements

Like any other interferometer, SMI is based on a phase-
sensing mechanism, and thus multi-2π (or multi-λ ) op-
eration requires counting of phase increments, as seen in
Sect. 3.1. Actually, we do not measure distance to a target,
rather a displacement with an incremental accumulation of
small steps (e. g., λ❂2), and to do so we need to move the
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Figure 18 (online color at: www.lpr-journal.org) Distance mea-

surement with a SMI: by a bias current sweep applied to the laser

diode, wavelength is modulated with a triangular waveform, and

phase ϕ ❂ 2ks exhibits a number N of 2π-periods variations (the

small ripple on waveform). The SMI signal is time-differentiated

and the periods N counted. Unit of scale distance is λ 2❂2Δλ and

accordingly distance is s❂ Nλ 2❂2Δλ . Diagram at bottom is the

spread of measurements on a s❂ 1 ✿ ✿ ✿3-m distance.

retroreflector from the z❂ 0 to the z❂ s position and count
the incremental steps.

This circumstance looks like precluding a true distance
measurement with a phase-sensitive instrument like the in-
terferometer. To overcome this limitation, Gouaux et al [35]
proposed to take advantage of the dependence of the wave-
length of emission from the bias current Ibias and sort out s

from the phase ϕ ❂ 2ks (mod. 2π).

To this end, we impress a linear sweep to the bias cur-
rent, of amplitude ΔIbias (from a minimum I0 to a maxi-
mum I0✰ΔIbias✮ see Fig. 18. If αλ ❂ dλ❂dI is the current-
to-wavelength coefficient, the wavelength swing is Δλ ❂
αλ ΔIb, and wave number k varies by Δk ❂ ✭2π❂λ 2✮Δλ ac-
cordingly [33, 35, 36]. For a still target (s ❂ const.), we
observe a variation of the optical phaseshift the SMI, given
by Δϕ ❂ 2s✭2π❂λ 2✮Δλ .

Dividing by 2π , we get the number of periods the in-
terferometric signal of the SMI has passed through, or
N ❂ 2sΔλ❂λ 2. From this equation we solve for s and obtain

s ❂ Nλ 2❂2Δλ ✿ (13)

So, the procedure for an absolute distance measurement
(as opposed to incremental) is to sweep the bias current to
obtain a substantial Δλ , then count the periods N of the

self-mixing signal during the sweep time, and find distance
s using Eq. (13) [35, 36].

With regard to resolution, as Eq. (13) tells us, the unit of
distance measurement is the factor multiplying N, or dunit ❂
λ 2❂2Δλ . Then, we prefer to have a large Δλ swing for
best resolution, and commonly used laser Fabry-Perot laser
diodes may have Δλ ❂ 0✿1 nm (@λ ❂ 0✿85 µm), as limited
by mode-hopping problems, resulting in a reasonable dunit ❂
3✿6 mm.

Figure 18 depicts the waveforms obtained in the SMI
distance measuring instrument, and an example of repeata-
bility of the measurement on a 1–3-m distance.

3.5. Angle measurements

Since the early times of SMI it has been observed that a
reflection back into the laser from a remote mirror was read-
ily detectable, because microphonics-induced vibrations
collected from the ambient produce a sizeable SMI signal.
The circumstance was used by Matsumoto [37] to align a
HeNe infrared laser to an external remote mirror, down to
α ✙ 3 arcsec angular resolution.

An improved version of the setup has been developed
in [38] resulting in a true angle-measuring instrument, with
performance comparable to a good optical autocollimator.
The SMI setup (Fig. 19) uses a PZT-driven translation stage
mounting the small objective lens of the laser diode, to
modulate the aiming angle α and hence of the response
signal Iph.

As a well-known technique, commonly employed in
instrumentation to find the condition of maximum response
with the best accuracy, we look here at the phase relationship
of the Iph signal and compare it to the PZT drive. The ar-
rangement is equivalent to transforming the nearly quadratic
response of the plain SMI signal versus α into an almost lin-
ear one, with a zero crossing at the α ❂ 0 condition of best
alignment (Fig. 19, bottom right). With conventional compo-
nents, noise-limited resolution of ✙ 0✿2 arcsec and dynamic
range up to ✙ 5 arcmin have been demonstrated [38].

4. SMI measurement of laser parameters

Looking to the SMI signal waveform and to the fine features
we can recognize in it, we realize they are not inciden-
tal, but are somehow related to physical parameters of the
source. In particular, the jitter of the waveform switching
at C ❃ 1 unveils details about the laser linewidth, whereas
waveform distortion and switching positioning at C ❃ 1
are characteristic of parameters C, coupling strength, and
α , the linewidth enhancement factor. In the following, we
outline the principles of these two measurements based on
waveform analysis.

4.1. Measurement of the laser linewidth

In the self-mixing signal, phase fluctuations of the step-
down switching, revealed as a jitter of the waveform in
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Figure 19 Alignment and an-

gle measurement with a SMI:

when a remote mirror is well

aligned, the SMI signal due to

ambient microphonics is max-

imized (top). In an improved

setup, we modulate the angle

by an XY piezo actuator slightly

moving the objective lens. The

resulting SMI signal is sensed

in amplitude and phase respect

to the drive signal (✰/� sign for

phase/antiphase). The parabolic-

like response curve (lower left)

is thus transformed in a quasi-

linear passing through the zero.

Angles down to a fraction of arc-

sec can be measured on a dy-

namic range of a few arc-min

(adapted from [38]).

Figure 20 (online color at: www.lpr-journal.org) Linewidth measurement by SMI: the laser is set to a C ❃ 1 regime and we look at the

jitter of the switching transient appearing in the self-mixing waveform (bottom left). The variance of the associated phase fluctuation

Δ2ks❂ 2kΔs✰2sΔk, has a first term which is kept constant, and a second term 2sΔν❂c proportional to the linewidth Δν . At right, the

quadratic sum of variance contributions is fitted to obtain the linewidths of different laser specimen (from [39], courtesy of the IEEE).
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Fig. 20 (lower left), are caused either by a small variation
ΔL of target displacement, s ❂ L0 ✰ΔL, or by a variation
of wavevector Δk ❂ Δν❂c around k0 ❂ 2πν0❂c. As pointed
out by Giuliani and Norgia [39], the two contributions (sta-
tistically independent) add to the phase variance ❤ϕ2✐ and
are easily written as:

Δ
✡
ϕ2

☛
❂ Δ

✡
✭2ks✮2

☛

❂ 4
✂
k2

0

✡
ΔL2

☛
✰L2

0

✡
Δk2

☛✄

❂ ✭4π❂c✮2
✂
ν2

0

✡
ΔL2

☛
✰L2

0

✡
Δν2

☛✄
✿ (14)

Now, applying a sawtooth drive to ΔL, we can measure the
total phase variance Δ❤ϕ2✐ and fit it to a line L2

0❤Δν2✐✰
const., where the constant term is ✭4π❂c✮2ν2

0 ❤ΔL2✐.
The results are shown in Fig. 20. We apply a small (few

λ s) drive signal to a retroreflector, positioned at L0 ❂ 10 cm
to 3.5 m, and get a small added constant term (= 0.1 rad).
Superposed quadratically to it, as given by Eq. (14), we find
the desired linewidth term L2

0❤Δν2✐ which is then easily
measured with a few steps of 50-cm increment in L0.

As we can see from Fig. 20, with a displacement of a
few meters we can measure linewidths Δν ranging from
3.5 to 14 MHz, and the minimum measurable linewidth is
estimated ✙ 1 MHz. Given this limit, we conclude that the
method requires much less lab space that the usual measure-
ment method based on arm mismatch (also called delayed
heterodyne) requiring a propagation length of the order of
c❂Δν ✙ 300 m for 1 MHz.

Note that the linewidth measured in the self-mixing
regime might be different from the unperturbed one. Luckily,
at the switching time where the measurement is done, the
phase of feedback is π❂2 and the linewidth is unaffected by
feedback, as calculated by Petermann in [14].

Finally, let us note that the method also gives the coher-
ence length as Lc ❂ c❂

♣❤Δν2✐, again requiring an external
arm length L0 ✜ Lc much less than the coherence length.

4.2. Measurement of the alfa factor

The waveform F✭ϕ✮ ❂ cosωτ of the SMI signal depends
primarily on the feedback factor C and also, to a minor
extent, on the linewidth enhancement factor or alfa factor α
as indicated by Eq. (4d).

Several different parameters can be chosen to describe
the F waveshape and its dependence on α and C. We need
at least two of them to invert their functional dependence
and find α and C.

In general, the most suitable parameters should: (i)
sharply depend on α and C, (ii) be possibly orthogonal
(to ease the functional inversion), and (iii) be easily mea-
sured with good accuracy from waveform F✭ϕ✮ (also at
moderate SNR).

As proposed by Yu et al [40], a satisfactory choice is a
pair of phase delays, for example ϕ13, from upgoing zero
crossing to downgoing switching, and ϕ24, from downgoing
zero crossing to upgoing switching, see Fig. 21 (left). From
Eq. (4d), we find the following expressions for these phase
terms as [40]:

ϕ13 ❂
♣
✭C2�1✮✰C❂

♣
✭1✰α2✮✰ arccos✭�1❂C✮

� arctanα ✰π❂2 ❀

ϕ24 ❂
♣
✭C2�1✮�C❂

♣
✭1✰α2✮✰ arccos✭�1❂C✮

✰ arctanα�π❂2 ✿

(15)

In Fig. 21 (right) we plot the diagram of the dependence of
X13 ❂ ϕ1❂2π and of X24 ❂ ϕ2❂2π from C and α .

Figure 21 Alfa factor measurement: details of the waveform of F✭ϕ✮ depends on parameters α and C of Adler’s equation. We choose

the phase delays from zero crossing to downgoing switching, ϕ13, and from zero crossing to upgoing switching, ϕ24 (left). With the aid

of Eq. (9), we calculate the dependence of X13 ❂ ϕ13❂π and X24 ❂ ϕ24❂π from C and α and plot the diagram at right. Now, when we

measure a pair of values X13 and X24, we identify a point in the diagram and can read the corresponding C and α values (from [40],

courtesy of the IEEE).
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Once the values of ϕ13 and ϕ2 have been measured on a
waveform, we can report them in the diagram of Fig. 21 and
obtain α and C, via a graphical solution of the parameter
equation (Eq. (15)).

In Fig. 21 several experimental points are reported for
different laser diodes. Note that the α factor measurement
process also supplies the C factor at the same time. The C

factor is, however, a parameter describing the setup, not the
device or the laser source.

Of course, Eq. (15) and Fig. 21 are applicable for C ❃ 1
only, because they are based on switching times (or phases).

Yet, for C ❁ 1 other parameters can be easily found
out, similar to those of Eq. (15) or Eq. (12), as already men-
tioned.

Another issue with the α factor measurement concerns
the accuracy of the experimental determination. Xi et al. [41]
proposed to fit directly the F✭ϕ✮ waveform with an analyti-
cal expression (like e. g., Eq. (11)) where C and α are free
parameters and apply a minimization algorithm based on a
cost function. The estimated accuracy of the α factor, evalu-
ated by a test of self-consistency, is ✙ 6✿5% using the above
noted phases ϕ13 and ϕ24, and may go down to 2–4% with
more sophisticated methods [41].

A final point worth a comment is on the importance of
the α factor. Actually, the α is not a true physical parameter
of the laser, rather it is an ad-hoc parameter introduced in
the L-K equations (Eq. (5)) to justify the excess linewidth.
The introduction is successful because α values are self-
consistent in adjusting the performance evaluation and fit
a class of same-type experiments. Yet, when a round-robin
measurement of α factor was carried out by Villafranca et
al [42] to compare the α from several different measurement
methods, a disappointingly large spread was found. A possi-
ble explanation is that several elemental contributions to the

α factor [43] have different weights in different applications
– thus justifying a large spread. In conclusion, clarifying the
meaning of the α factor is still an open issue.

5. SMI measurement of physical quantities

In the following we describe several different physical quan-
tities that can be measured with SMI, taking advantage of
the simplicity of the SMI setup and of its special features.

5.1. SMI measurement of thickness and
refraction index

A frequently used configuration to measure the thickness
of a transparent slab is a shear interferometer, in which the
direct beam of the laser is superposed on the photodetector
(PD2) to the beam double-reflected at the slab walls (see
Fig. 22, left). This generates an interferometric signal of the
type:

ΔϕPD2 ❂ 2knd cosθ ❀ (16a)

here, phase is dependent on both the thickness d and the
index of refraction n of the slab, as normally found in op-
tical pathlength measurements. We can also get another
interferometer signal at PD1 (Fig. 22), a self-mixing signal
generated by the beam going through the slab, down to pho-
todiode PD2 and back, retracing the optical path up to the
source. The second phase signal at photodiode PD1, a true
SMI signal, is:

ΔϕPD1 ❂ 2kd✭ncosθ � cosα✮ ✿ (16b)

Figure 22 (online color at: www.lpr-journal.org) Transparent slab thickness measurement with SMI: (left) a laser diode acts as

a self-mixing sensor (output on photodiode PD1) and as a source of a lateral shear interferometer (output on photodiode PD2).

Subtraction of the fringes of the two outputs yields kd cosα , function of tilt angle α (right) and independent from n. Range of thickness

is measured from ✙5 to 1000 μm (adapted from [44]).
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By subtracting the two phases of Eqs. (16a and b), we have
obtained [43]:

Δϕ ❂ ΔϕPD2�ΔϕPD1 ❂ 2kd cosα (16c)

and the result is no longer dependent on n. On rotating
the slab (the angle α was turned from �30 to ✰30 deg,
typically) the shear and SMI waveforms were measured and,
after a scale adjustment Δϕ was computed and Eq. (16c)
solved for d in units of 2π❂2k ❂ λ❂2.

The range of measurement was typically is 5–2000 µm,
and the accuracy ✙ 2% [44]. In principle, once d is mea-
sured, we can go back to the PD2 signal (Eq. (16a)) and also
solve for the index of refraction.

5.2. SMI measurement of roughness

Backscatter from a rough surface carries information on
surface texture and rms height roughness. A few papers

describing the properties of the SMI signal obtained as a
surface echo and associated processing have been reported,
see e. g. [45, 46]

5.3. SMI measurement of mechanical resonance

In some SMI measurements, we can take advantage of know-
ing the drive waveform s✭t✮, like in the case of detecting
mechanical resonance in a MEMS, and be able to greatly
simplify signal handling.

As we can see in Fig. 23, we measure the inplane move-
ment of the spring-suspended test mass of a gyroscope
MEMS [47, 48] by aiming an SMI laser beam at a slant
angle (for example, 20 deg), so as to get a sizeable 2k ✎ s.
The typical test mass is a square slab of Si, a fraction of mm
on a side, with many holes etched in it to remove weight (so
as to have a high resonant frequency).

Figure 23 To test the mechanical properties of Si-machined MEMS with SMI, light from the laser (top left) is focused on the small

vibrating mass of the chip through the glass wall of a vacuum chamber. The vibration of the mass is viewed at an angle (✙ 20✍), and the

appropriate correction is appied to the SMI fringe signal (top right) giving the displacement waveform. Bottom left: as drive voltage is

increased, we find a drift of resonant frequency and then hysteresis shows up at 8. . . 9 V, indicating incipient fatigue and creep. Bottom

right: at increasing chamber pressure, the Q-factor of resonance is damped because of residual air friction (from [47], courtesy of the

IEEE).
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Figure 24 (online color at: www.lpr-

journal.org) Small micromirrors of a Si-

machined MEMS can be tested by us-

ing a single mode fiber as the probe pin-

pointing the mirror. The fiber has a tilted

splice at the laser chip coupling end, and

is tapered and lensed at the other end

to sense the mirror movement (adapted

from [48], courtesy of the IEEE).

The surface of the mass appears optically rough. The
SMI is well suited for this uneasy measurement because it
works on a diffuser target as well, is not disturbed by light
falling on still parts or outside the target, and wavefront
distortion of the (non-optical finish) walls of the vacuum-
tight enclosure is no problem.

To measure the mechanical response, we drive the
MEMS exciting comb structure by a square-wave excitation
Vexc and measure the amplitude of the corresponding dis-
placement.

Knowing where the Vexc starts and ends, it is an easy
matter to count periods of the interferometric signal, that
is, measure the amplitude in λ❂2 steps (and fractions of
it). Thus, we can plot a frequency-response diagram for the
MEMS (Fig. 23) with the drive voltage Vexc as a parameter.
In the diagram, hysteresis of the response curve reveals
incipient fatigue and creep of the mechanical structure, a
very crucial point in MEMS design, given that Si is very
well known as an electronic material but much less is known
of its mechanical properties, especially at high stress levels.
The same measurement, as a function of pressure, reveals the
practical damping factor of the mechanical Q, a parameter
not easily calculated.

Another sensing of a MEMS structure, the micromirror
of a photonic switching device, has been carried out by An-
novazzi et al [48] with the aid of an SMI setup modified with
the insertion of a fiber pigtail (Fig. 24), tapered and lensed
at the target end to pinpoint the small micromirror, so as to
detect its response to excitation and resonance frequency.

5.4. SMI measurement of stress/strain hysteresis

The SMI vibrometer described in Sect. 3.2.1 was developed
further with the addition of the differential mode of opera-
tion, to be able to measure small vibrations superposed onto
larger common-mode movements.

To make a differential measurement with conventional
configurations of an interferometer, we take advantage of
the usually available reference arm, so that we measure

ϕ1�ϕ2 ❂ 2k✭s1� s2✮. Yet, if we want to work on a diffuser-
like target surface, the speckle statistics will impair the
phase difference, adding a large error-phase term ϕsp.

Using the SMI half-fringe stabilized vibrometer with
the phase signal internal to the feedback loop, we have re-
moved the error ϕsp, as explained in Sect. 3.2.1, yet we lack
a second reference (optical) arm for the differential mea-
surement.

We can subtract electrical signals, however, and make
a double-channel SMI vibrometer, with one channel aimed
to the common mode signal sCM , and the other aimed to
sCM ✰ sD, containing the differential signal sD.

After checking that two channels can be built with nearly
identical performance (mismatch in responsivity ❁ 0✿1%,
noise floor and dynamic range differing by ❁ 5%) [49],
we concluded that the electronic subtraction differential be-
haves as well as the optical phase differential interferometer
and deployed it in a mechanical test application.

The experiment was a brake-bead testbed (see Fig. 25)
in which a shaker stresses into vibration a bead onto a break
support. The stress is a quasisinusoid VST excitation, and
the support vibration is the sCM , while the bead vibration is
the differential sD. The common mode is about 15–30 µm
wide, and the differential is 0.5–4 µm.

From the mechanics point of view, the VST excitation
is proportional to the stress T , and the differential sD is
proportional to the strain S of our mechanical sample.

With the (electronic) differential SMI, we were able to
measure [49] the hysteresis T -S diagram of our sample, for
the first time to the best of our knowledge. As we can see
from the result reported in Fig. 26, at moderate stress the
sample is in the elastic or Newtonian regime, with a linear
dependence of S on T and no hysteresis. At a certain thresh-
old, the material enters the plastic regime and the diagram
opens up with hysteresis. The hysteresis cycle widens until,
on a little further increase in T , the sample breaks down
(and the curve disappears).

Of course, the above information is of great value for the
design and testing of mechanical structures. In this applica-
tion, the SMI vibrometer is the key instrument to measure it.
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Figure 25 (online color at:

www.lpr-journal.org) The SMI half-

fringe servoed vibrometer can

also work in differential mode on

a diffuser target, here the damper

bead of a turbine motor brake. The

two (red) beams point at the base

of the shaker (common mode)

and the bead body (measurement)

(courtesy of M. M.Gola, Polytech-

nic of Turin, Italy)

Figure 26 (online color at: www.lpr-journal.org) The Strain-

Stress diagram is measured optically for the first time with the SMI

differential vibrometer, and reveals the Newtonian regime where

hysteresis is negligible (F ❁ 7 N), and the plastic regime where

the hysteresis loop opens (F ❂ 8. . . 15 N) and the bead dissipates

energy, before the breakdown occurrs (at F ✘❂ 17.5 N).

5.5. SMI measurement of biological motility

The sin/cos reconstruction vibrometer (Section 3.2.3) has
been used to pick up several kind of signals of biological ori-
gin [50].

In a clinical experiment in cardiology, the heart-beat
pulsation on the finger tip of a normal subject was observed,
replicating the shape of the cardiac pulsation, and exhibiting
details well known to the cardiologist, like the LVE (left

Figure 27 Two samples of biomedical signals measured by the

He-Ne SMI (see also Sect. 3.2.3) left: pulsation of blood on a finger

tip (0.5 μm/div, 0.3 s/div), right: respiratory sounds detected on the

back of a patient, with the acoustical signal of a stethoscope (top

right) compared to optical waveform taken by SMI (bottom right)

ventricular ejection) and DI (dichrotic incisure), usually
found in the normal ECG (Fig. 27).

Using another SMI arrangement, Hast et al [51] con-
ducted a survey on a sample of 200 volunteers, measuring
the Doppler signal (dϕ❂dt ❂ 2kv) of the cardiovascolar
pulse in radial arteries of the forearm. They found dϕ❂dt

is well correlated (c ❂ 0✿84) to the time derivative of the
blood-pressure waveform taken on the middle finger. This
is an important result confirming the validity of diagnostics
made by SMI.

The sin/cos vibrometer was able to pick up [50] res-
piratory sounds on the back of a live subject. Inspiration
and expiration noises (I and E in Fig. 27) were clearly mea-
sured, finding waveforms similar to those of the traditional
acoustical stethoscope, except for missing spikes (Fig. 27
right), identified as artifacts due to skin friction under the
stethoscope during respiration.

In all experiments of motility pickup on the skin, sur-
faces were untreated, yet the patient had to be immobilized
to avoid corruption of SMI signals because of the speckle
pattern statistics.

www.lpr-journal.org © 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 28 As an echo detector, the SMI can sense returns as small as 10�9 of the output power (left). To measure the return loss or

the isolation loss, (right) we add a modulation of the pathlength at a carrier frequency ω0, through an coiled PZT phase-modulator or a

target-end loudspeaker. The SMI signal output is then read at frequency ω0. Its amplitude provides the return loss of the DUT or the

insertion loss of the isolator.

An interesting application to biological signal pickup
was recently reported by Rovati et al [52]. With a superlu-
minescent diode as the source of the SMI, they were able
to measure the velocity profile of a liquid flow in a vein-
simulating capillary tube. Pesatori et al [53] reported an
improved version of the SMI aimed at blood-flow measure-
ment, where the capillary is aimed axially at a slant angle θ
to develop a signal 2ks✵ cosθ .

Taking advantage of the shorter emission wavelength of
a GaN, λ ❂ 405 nm, and using a slant angle θ ❂ 15 deg to
look at a capillary tube, Kliese et al [54] were able to report
a minimum measurable flow velocity as low as 26 µm/s.

6. SMI applications to sensing

Applications to sensing is when an SMI is used to measure
amplitudes of incoming signals, as opposed to phase mea-
surements considered till now. As pointed out in Sect. 2,
the SMI scheme belongs to the class of coherent detec-
tors [4] giving an output proportional to the field amplitude,
and characterized by the operation always in the desirable
regime of quantum limit of detection, i. e. with the SNR
limited by the quantization (or granularity) of the incoming
photon flux.

So, the ability of SMI to sense very small signals with a
high sensitivity is exploited in several applications.

6.1. SMI detection of remote echoes and
return loss

The response of an SMI to remote echoes is easily charac-
terized using a mirror and attenuator combination to let a
fraction of emitted power re-enter the laser cavity [55]. The
amplitude of the detected signal versus the attenuation suf-
fered in the go-and-return path is plotted in the diagram of
Fig. 28 for a typical laser diode (5 mW power, λ ❂ 825 nm).

As we can see, the SMI can detect an echo as small as
10�9 of the output power, with a saturation at✙ 10�3 as due
to the intervening strong regime of injection (C ❃ 1). The
echo detector is thus a very sensitive return-loss measuring
instrument (Fig. 28).

We can also make an in-situ measurement of the iso-
lation factor of an optical isolator mounted in front of the
laser chip to protect it from reflections [55, 56].

The only feature we need to add is a phase modulation
of the optical path, so that the amplitude of the remote echo
is moved from the zero-frequency component to a carrier ω0

(the modulation frequency), making it easier to perform the
amplitude measurement, away from low-frequency drifts.

As a component, the phase modulator may be either
a piezoceramic-driven fiber coil for a guided-propagation
version, or a loudspeaker for free space propagation.

In Fig. 28 (right) we report two schemes for the measure-
ment of: (i) return-loss of a fiberoptic DUT (device under
test), and (ii) isolation factor of an optical isolator mounted
in front of the chip (a case that can’t be covered by other ap-
proaches). In both cases, the reported sensitivity to returning
power is better than 10�8 or �80 dB [55].

6.2. SMI application to confocal microscopy

The SMI sensor has also been applied to a confocal micro-
scope arrangement. Following the proposal of Lu et al [57],
the use of SMI permits a simplification of the alignment
procedure of the optical setup (see Fig. 29).

While lateral resolution is of course the diffraction limit
λ❂π NA, the in-depth resolution can reach 30–50 nm thanks
to the electronic processing of the SMI-detected signal [57].

Developing the concept further, Wang et al have pro-
posed [58] a scanning profilometer, based on a SMI confocal
microscope, capable of resolving 10 nm height on a sample
5 µm by side.

© 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.lpr-journal.org
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Figure 29 The SMI can be used in connection to a confocal

microscope layout with the advantage of self-alignment of the

detector. Scanning the specimen generates an image with a spa-

tial resolution r ❂ λ❂π NA✙ 1-μm and a typical depth resolution

Δz✙ 30-nm (from [57] by courtesy of the OSA).

6.3. SMI application to scroll sensors and
CD readout

The application of SMI to a scroll sensor has been al-
ready discussed in Sect. 3.3 and Fig. 17, as an example of
transversal-component velocity sensor.

Another related consumer application, demonstrated by
Ukita et al [59] is the readout of pits in the CD and DVD
disk, illustrated in Fig. 30. The SMI is an echo sensor be-
cause unwritten portions of the disk surface reflect light and
give a large signal, whereas pits diffuse light and give a
small return.

With respect to a combination of laser and photodetector
requiring a beamsplitter BS to combine the two paths, the
SMI offers the advantage of a more compact setup [34, 59],

Figure 30 The SMI can be used as the

source/detector combination in the readout

of CD/DVD disk, as it simplifies the optical

read/write layout.

and saves the use of the BS (but requires a monomode laser,
in general).

7. Conclusions

In this paper we have presented an overview of instrumen-
tation developed from the concept of self-mixing interfer-
ometry, an approach based on weak coupling phenomena
in laser diodes. We have shown that SMI is conveniently
applied not only to kinematics and dimensional-related mea-
surements covered by traditional interferometry, but also to
the measurements of physical parameters, to small-signal
sensing, and echo detection.

We have also tried to systematize the field of SMI mea-
surements, discussing several versions of SMI that differ on
features like dynamic range, noise, periodic vs. aperiodic
displacement, analog versus digital processing, etc., which
are not only performance but actually represent different
classes of instrument.

The examples reported in this paper inevitably reflect
the scientific interest of the author and his group, yet they
should hopefully be representative of basic ideas and tools
we can deploy in research on SMI measurements.

In particular, rather than a list of contributions, we
have tried to show the guiding principles underpinning the
applications being developed, and how methods and op-
tions from different disciplines (electronics, communication,
control theory, etc.) can cross-fertilize the SMI concepts,
which really makes SMI an effective and sophisticated ap-
proach, quite different from the apparent simplicity of its
basic setup.

Self-mixing is still far from being fully exploited, and we
think that, in the years to come, it will continue to offer an
excellent opportunity for the activity of young researchers
and a ground to make the most of his/her creativity and tal-
ent.
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Note added in proof An interesting example of detection of-

fered by the self-mixing scheme used as a coherent echo detector

(Sect. 6.1) has been described in a recent paper by P. Dean et

al [60]. The novelty respect to previously reported cases (as in [55]

and Fig. 28) is the wavelength range of application – THz waves

– and the readout using the voltage across the diode laser junc-

tion. Thus, the SMI works not only as the source of radiation

to sense the remote target, but also as a detector of the weak

returning signal, down to a demonstrated level of about �50 dBm,

a remarkable result for a THz detectorless system.
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