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Abstract
Background: Digital biomarkers that measure physical activity and mobility are of great in-
terest in the assessment of chronic diseases such as rheumatoid arthritis, as it provides in-
sights on patients’ quality of life that can be reliably compared across a whole population. 
Objective: To investigate the feasibility of analyzing iPhone sensor data collected remotely 
by means of a mobile software application in order to derive meaningful information on func-
tional ability in rheumatoid arthritis patients. Methods: Two objective, active tasks were made 
available to the study participants: a wrist joint motion test and a walk test, both performed 
remotely and without any medical supervision. During these tasks, gyroscope and accelerom-
eter time-series data were captured. Processing schemes were developed using machine 
learning techniques such as logistic regression as well as explicitly programmed algorithms 
to assess data quality in both tasks. Motion-specific features including wrist joint range of 
motion (ROM) in flexion-extension (for the wrist motion test) and gait parameters (for the 
walk test) were extracted from high quality data and compared with subjective pain and mo-
bility parameters, separately captured via the application. Results: Out of 646 wrist joint mo-
tion samples collected, 289 (45%) were high quality. Data collected for the walk test included 
2,583 samples (through 867 executions of the test) from which 651 (25%) were high quality. 
Further analysis of high-quality data highlighted links between reduced mobility and in-
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creased symptom severity. ANOVA testing showed statistically significant differences in wrist 
joint ROM between groups with light-moderate (220 participants) versus severe (36 partici-
pants) wrist pain (p < 0.001) as well as in average step times between groups with slight ver-
sus moderate problems walking about (p < 0.03). Conclusion: These findings demonstrate 
the potential to capture and quantify meaningful objective clinical information remotely using 
iPhone sensors and represent an early step towards the development of patient-centric digi-
tal endpoints for clinical trials in rheumatoid arthritis. © 2020 The Author(s)

Published by S. Karger AG, Basel

Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease mainly characterized by 
persistent inflammation of large and small joints, with chronic pain, joint swelling, and defor-
mities leading to disability and impaired ability to perform daily tasks [1–5]. RA is one of the 
most prevalent chronic inflammatory diseases [6]. The individual burden results from the 
musculoskeletal impairment, with progressive decline in physical function and quality of life. 
While existing measures of treatment efficacy, such as American College of Rheumatology 20 
[7] or Disease Activity Score 28 [8] provide useful efficacy endpoints in clinical trials, RA 
symptoms fluctuate throughout the day and are variable within and between patients. As a 
result, the infrequent clinic visits involved in clinical trials present an incomplete view of 
disease activity. In addition, the evaluation of joint swelling and joint pain by a study physician 
introduces a high degree of subjectivity, limiting the ability to draw strong conclusions from 
the data. Hence, it is imperative to develop objective tools to measure RA disease progression 
that can be used at home with a frequency that captures the real-time disease variation, 
thereby gathering valuable insights into the effectiveness of new medicines as well as aspects 
of patients’ daily lives which remain overlooked.

Activity- and mobility-specific tasks have been successfully used in several studies to 
collect “real-world” data, providing insights into the effect of therapies on the daily lives of 
patients suffering from RA as well as other conditions. In particular, iPhone-embedded 
sensors have been used to collect range of motion (ROM) data for wrist joint [9–11] in healthy 
subjects. Likewise, several studies have explored the use of smartphone-based sensor data 
collection to analyze gait [12–14]. The Patient Rheumatoid Arthritis Data from the Real World 
(PARADE) mobile software application (app) was developed in a successful attempt to assess 
the feasibility of using a ResearchKit-based iPhone app to conduct an end-to-end remote real-
world evidence study [15]. The PARADE app included preliminary objective assessments of 
mobility leveraging iPhone embedded sensors and targeting two types of motion: wrist joint 
flexion-extension movement and walking.

This paper provides a description of the algorithms and machine learning models 
developed to analyze data generated in the PARADE study through these objective assess-
ments. In both cases, data quality criteria were designed to identify low compliance with the 
instructions provided. Task-specific motion parameters were subsequently derived from 
high-quality data and compared with subjective data reported via questionnaires. The 
purpose of this data analysis was to examine the possibility of extracting clinically meaningful 
information from the data captured. Such novel, remote, mobility assessment tools are 
expected to become useful for gauging how the wrist joint movement and walk function are 
impacted by the degree of RA-induced joint pain and subsequent disability over time.
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Materials and Methods

Data Collection
A total of 399 participants were enrolled in the study and invited to report on various 

symptoms each week, using their own iPhone, over a period of 12 weeks. The PARADE study 
was run in the United States between July and November 2016. The app was available for free 
on the AppStore. Baseline population characteristics have been described in a previous publi-
cation [15]. Quality of life was assessed using the 5-level version of the EuroQoL, 5 dimen-
sions (EQ-5D-5L) questionnaire [16, 17] including questions on mobility, self-care, usual 
activities, pain/discomfort, and anxiety/depression. An interactive joint-pain map was 
designed specifically for the app to record the number of painful joints (from 55 pre-specified 
joints which may be affected in RA patients) and the associated pain severity. At weeks 1 and 
8, participants were asked to score the pain in each joint depicted in a body map (Fig. 1) as 0 
(no pain, set as default), 1 (mild pain), 2 (moderate pain), or 3 (severe pain).

In addition to traditional patient-reported outcome questionnaires, the study partici-
pants were invited to perform two pre-defined activities for objective data collection in order 
to assess the impact of the disease on the wrist joint flexion-extension motion and gait. In both 
tasks, raw data from the iPhone’s inertial measurement unit were captured to monitor partic-
ipants’ motion as they performed the tests. Gyroscope and accelerometer data were collected 
at a sampling frequency of 10 Hz.

Wrist joint motion sensor data were collected at weeks 1 and 12. For this task, on-screen 
guidance was provided by means of a short video: participants were instructed to sit down 
and place their forearm at the edge of a standard size table, with palm facing up, and holding 
the iPhone in their hand, and to flex and extend their wrist joint to its maximum ROM. Specific 
warning was given not to attempt to do this test in case of severe wrist joint or hand arthritis. 
Participants who indicated that they thought their wrist joint or hand arthritis would allow 

Step 1 of 3

Joint Pain Map

On the next screen you will be asked to
select any and all joints where you

experience RA pain.

Please select an area on the 
bodymap to record your joint

pain today

Tap once for mild pain
Tap twice for moderate pain
Tap three times for severe pain
Tap four times to clear selection

Close

Body Map Left HandGet Started

Cancel Step 2 of 3 Step 2 of 3

No SIM 20:19 61%No SIM No SIM20:19 20:1961% 61%

DoneNo Pain

Fig. 1. Screenshots of the PARADE app showing the interactive joint-pain map tool utilized to record pain 
from 55 prespecified joints.
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them to try the test were instructed to perform the task for 10 s with the iPhone held in the 
right hand first and then repeat it with the iPhone held in their left hand.

The walk task was designed in a similar fashion as in the mPower study [18] and consisted 
of three segments, each performed with the iPhone placed in the participant’s pocket. Walk 
data were collected on a weekly basis over the whole study period. For this activity, partici-
pants were instructed to walk up to 10 steps in a straight line for 10 s (segment 1), turn 
around and stand still for 10 s (segment 2), and then walk up to 10 steps back for 10 s (segment 
3). Audio instructions were provided to indicate the start and end of each segment. As for the 
wrist task, specific warning was given and only participants who indicated they could walk 
10 steps without assistance were invited to complete the activity test.

Videos of the app screens detailing both objective task instructions and flow are available 
in the online suppl. material A (see www.karger.com/doi/10.1159/000506860 for all online 
suppl. material).

Data Analysis
The gravity vector in the iPhone’s frame of reference – isolated from the accelerometer 

signal using gyroscope data – was used as a parameter of interest for motion quantification, 
as well as the rotation rate (for the wrist task only). Fig. 2a provides a description of the 
iPhone’s axes naming convention for reference. All sensor data were collected in a real-world 
setting, without clinical supervision. Due to the high variability in the data, a number of task-
specific checking steps were applied to identify and filter out samples where instructions had 
not been followed correctly while keeping all analyzable files. An overview of the analysis 
framework for data collected in each type of active task is shown in Fig. 2b. All analyses are 
presented from the “point of view” of the iPhone’s frame of reference.

y→

z→

x→

Wrist motion data processing framework

Motion directionality
PCA

Comparison with
JPM data

Movement repetitions
Frequency analysis

ROM
Angles extrema

In pocket detection
GMM clustering

Walk vs. non walk (1)
Time window analysis

Walk vs. non walk (2)
Cropping

Walk vs. non walk (3)
Logistic regression

Pre-processing
Wavelet transform

Gait parameters (1)
Peak detection

Activity counts
Filtering & integration

Gait parameters (2)
Pendulum model

Comparison with
pain data

Angular velocity
ResearchKit

Walk data processing framework

Movement orientation
CART model

Device mishandling
PCA characteristics

Quality checks

Quality checks

Angles computation
G trajectory→

a

b

Fig. 2. Description of the iPhone’s reference frame (a). Overview of the processing and analysis framework 
for data from both tasks (b). In each box, the upper part indicates the processing step while the lower text in 
italic describes the method used.
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Wrist Joint Motion
Motion Directionality
The primary challenge in analyzing the wrist motion data was to identify the main direc-

tionality of the recorded movement. In the ideal case, the motion would be performed in a 
robotic way including only rotation of the iPhone about y→ (see Fig. 2a). Such motion is very 
unlikely to be observed in the real world and especially in RA patients who are prone to expe-
riencing pain and discomfort due to their disease, e.g., through joint deformities. Thus, it is 
expected that a limited proportion of the wrist motion will consist of pronation-supination 
(i.e., rotation about x→) and radial-ulnar deviation (i.e., rotation about z→). To account for this 
effect, principal component analysis (PCA) was applied to the trajectory of the gravity vector 
over time in the iPhone’s frame of reference, thus allowing for derivation of the main wrist 
joint motion directionality. Assuming reasonable compliance with the task instructions, this 
main motion directionality captured in the plane defined by the first two principal compo-
nents output by PCA will mainly reflect flexion-extension motion (see Fig. 3). Projecting the 
data points onto such plane enables the extraction of angles for subsequent computation of the 
flexion-extension ROM. Importantly, the iPhone orientation at the beginning of the task may 
differ depending on the positioning and shape of the participant hands and the direction may 
not exactly align with the direction of the gravity vector. Consequently, the detected neutral 
wrist orientation is likely to vary between different executions of the task both within and 
between subjects. For this reason, separate measures of range of flexion or range of extension 
cannot be estimated in a way that would allow for comparison between samples. Instead, a 
single measure was used for the ROM, defined as the median of angle differences between 
consecutive full flexion and full extension (see Fig. 3b). Additional details on the assessment 
of validity of the wrist ROM computation are available in the online suppl. material B. Both 
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Fig. 3. Example principal component analysis of wrist joint motion with 3-dimensional representation of the 
data highlighting its nonplanar nature (a) and projection onto the plane that best represents the flexion-
extension motion (b). Red dots indicate the trajectory of the gravity vector over time in the iPhone’s frame 
of reference represented by the blue axes, while black axes represent the principal components.
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ROM and wrist angular velocity were computed for all analyzable samples, i.e., that passed 
the checks described in the following paragraphs.

Movement Repetitions
Reliable measurement of the wrist joint ROM requires the full flexion-extension motion 

to be completed at least once within the allotted 10 s. This time duration, however, allows for 
multiple repetitions of the movement resulting in periodic variation of the gravity vector 
orientation in the iPhone’s reference frame. The frequency of this periodic signal was 
measured as half of the number of local extrema. Samples with relatively high frequency 
signal imply that the movement was likely to have been performed too fast for the full ROM 
to be reached. Test data were collected from 5 healthy volunteers with no wrist motion 
problems who repeatedly performed the task with increasing numbers of movement repeti-
tions. The ROMs computed from these test data were used to investigate the frequency range 
resulting in reduced estimates.

Movement Orientation and Device Mispositioning
Assessment of movement in the flexion-extension direction was the main target for the 

task, hence any motion including high proportions of supination-pronation and/or radial-
ulnar deviation (see formalism in the online suppl. material C) should not be considered for 
analysis. Furthermore, as defined in on-screen guidance for the task, participants were 
instructed to place their iPhone in their hands, palm facing up. While enabling the measurement 
of wrist joint motion, this gives participants freedom to further increase the iPhone incli-
nation using fingers or elbow when reaching their maximum wrist angle capacity, leading to 
the introduction of a measurement bias. In order to account for these extra motions, 300 
samples were selected at random from the study dataset and manually labeled as analyzable 
or non-analyzable (using 3D modeling of the iPhone’s motion). A set of features were subse-
quently computed for each sample, including:

	− Maximum range of angles for data points projected onto the plane defined by the 
second and third PCA components (i.e., reflecting pronation-supination).

	− Pearson’s correlation between changes in G→. x→ and  G→. z→ over time (i.e., reflecting 
whether x→ and z→ follow similar trajectories in the reference frame of the laboratory as 
impacted by radial-ulnar deviation), where G→ is the gravity vector in the iPhone’s 
reference frame as represented in Fig. 2a.

	− Angles in flexion-extension with respect to the initial wrist orientation (i.e., reflecting 
fingers and/or elbow motion).
The dataset formed of the computed features and associated high-/low-quality labels 

defined a training set for a classification and regression tree (CART) model. The model was 
pruned by reduction on a 5-fold cross-validation error and applied to the full wrist motion 
dataset for classification as high or low quality. A specific restriction on the angle between the 
third PCA component was also introduced to account for instances where the iPhone was not 
held properly.

Walk Test
A correctly performed walk test means the participant was walking with the iPhone in 

their pocket when instructed to do so by the app (segments 1 and 3), and not walking during 
the resting phase (segment 2). Upon initial inspection of the collected data, two types of 
non-compliance with these instructions could be identified: (i) task performed while the 
iPhone was not in a pocket, (ii) participants not walking during the walking phases or 
walking during the non-walking phase. The former case made it unreliable to compare 
samples, for example if a participant was holding the iPhone in their hand and swinging 
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their arm as they were walking, the intensity of the activity recorded by the iPhone’s sensors 
may appear comparatively larger than if the iPhone was in the pocket. Therefore, these 
samples had to be discarded. In the latter case, the samples could still be used but the label 
assigned to them (walking/not walking) based on the type of segment needed to be updated. 
The following pre-processing steps were applied to identify instances where these situa-
tions occurred.

Phone Location
If the iPhone was in a pocket, the angle between  z→ and G→ would be expected to be close 

to 90°. If the angle was closer to 180°, i.e., iPhone facing upwards, it is more likely that the 
participant had the iPhone out of their pocket and was looking at the screen. Unsupervised 
machine learning algorithms including: 2- and 3-means as well as 2- and 3-components 
Gaussian mixture model (GMM) was used to define clusters in the feature space defined by 
the mean and standard deviation for this angle over time.

Walking versus Not Walking
Each performance of the task produced one data file per segment, thus providing an 

initial classification between walking (forth or back) and non-walking (i.e., turn around and 
stand still). In this stage, data from both walking segments were combined into a single 
category. However, such initial classification needed to be refined.

As a first step, local averaging of raw acceleration signals was applied using a sliding time 
window (2 s with 1 s overlap). Samples in which the user acceleration continuously exceeded 
a magnitude threshold of 0.05 g for a duration of at least 6, 8, or 10 s remained labeled as 
walking and were trimmed so that only the signal of interest could be kept. The selection of 
the best of these three values for the time duration threshold is described in the Results 
section. Samples not matching this criterion were re-labeled as not walking. The magnitude 
threshold value selection was based on a trade-off between excluding signals with a low 
amplitude throughout the whole spectrum – obtained by Fourier transform of the acceler-
ation signal – and including signals with low amplitude except for a peak in the 1.5–2 Hz 
region (typically associated with walking [19]). This trade-off was performed using visual 
inspection of the amplitude Fourier spectra.

Following the initial re-labeling based on signal characteristics, subsequent data re-clas-
sification was performed to further refine such labels. This could be achieved by training a 
classifier using the imperfectly labeled dataset and then reassign labels to the same data using 
the trained model. This approach was justified as a small proportion of samples would be 
labeled incorrectly after time window analysis. Logistic regression was chosen as classifier 
due to its flexibility and its characteristic soft assignment to classes. Re-classification consisted 
of three stages:

	− Training using imperfect labels obtained from previous time window analysis 
(overfitting was avoided using cross-validation).

	− Use model to estimate each sample’s probability to correspond to walking (i.e., soft 
assignment).

	− Selection of an appropriate cut-off probability value using the model’s receiver 
operating characteristic curve and update labels.
The following features were used to identify walking: (i) the peak of the amplitude 

spectrum of the vertical component of the acceleration signal, for which a peak in frequency 
is expected in the 1.5–2 Hz region, (ii) the peak of the amplitude spectrum of the angle between 
y→ and G→, as this angle is expected to oscillate following the leg’s pendulum-like motion.
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Gait Parameterization
For all analyzable walk samples (i.e., labeled both as “in-pocket” and “walking” after 

re-classification), a number of processing steps were applied to the signal, starting with the 
extraction of initial foot contacts (or heel strikes) as well as final contacts (or toe offs) using 
McCamley’s method [20]. This method consists of integrating the vertical component of the 
accelerometer signal which is then differentiated using the continuous wavelet transform 
with a Gaussian wavelet kernel. Peak detection applied to the resulting signal provided the 
occurrences of initial and final contacts corresponding to minima and maxima, respectively. 
Once extracted, the detected peaks were used to compute step times and derive the number 
of steps. A pendulum model [21, 22] was subsequently used to compute estimates of the 
average step length, assuming that the iPhone was located at a height equal to half the partic-
ipant’s height. Additional details on the assessment of validity of the gait parameters compu-
tation are available in the online suppl. material B.

The average number of activity counts per second [23] was also computed to provide a 
measure of how vigorously the participant was walking throughout the test.

Comparison to Pain Data
All the measures derived from each of the objective data collection tasks were subse-

quently compared with specific pain scores independently collected via the app question-
naires. As the wrist joint motion test predominantly mobilizes a single joint, ROM measures 
were directly compared with the corresponding entries in the joint-pain map (i.e., right or left 
wrist). However, because walking is a much more complex type of activity involving several 
joints (including ankles, knees, hips, and back/spine), parameters related to gait cannot be 
compared to the pain score recorded for a single joint. For this reason, more generic outcomes 
from questionnaires available through the app and targeting symptoms relevant to walking 
were used for comparison. These include:

	− Pain: current level of pain on a scale of 1 (no pain) to 10 (worst pain imaginable).
	− Pain/discomfort: current level of pain/discomfort on a scale of 1 (no pain) to 5 

(extreme pain) from EQ-5D-5L.
	− Mobility: current level of mobility on a scale of 1 (no problem walking about) to 5 

(unable to walk about), also from EQ-5D-5L.
Both the EQ-5D-5L and joint-pain map instruments have been psychometrically eval-

uated at group level in RA. The pain scale had not been psychometrically evaluated at the time 
of the study.

The mobile application allowed for large variability (up to 1 week) in time difference 
between completion of the various tasks and questionnaires. To account for this and ensure 
that pain levels were reflecting the participant’s experience at the time of the activity task, 
comparison was only performed between questionnaire and sensor data that had been 
collected within a maximum period of 2 h of each other.

Results

The total volume of data collected for PARADE’s objective tasks included 376 wrist test 
attempts (29 not completed due to hand arthritis) and 1,086 walk test attempts (49 not 
completed due to inability to walk without assistance) representing 26% of ideal case full 
compliance across the 399 participants.
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Wrist Joint Motion
In total, 646 samples were collected from 287 participants throughout the study period 

(week 1 and week 12), including 570 samples at week 1.

Movement Repetitions
Test data analysis showed that reduced measures of ROM were obtained for samples 

including 6 or more repetitions of the full movement. Therefore, samples where the frequency 
fell below 0.1 Hz (i.e., at least one full flexion-extension) or above 0.55 Hz (i.e., at most 5.5 
repetitions) were excluded from further analysis.

Movement Orientation and Device Mispositioning
Cut-off values for the different orientation-related features as derived from the CART 

model training to define high quality were: maximum pronation-supination range of 50°, 
radial-ulnar range resulting in Pearson’s correlation coefficient r ≥ 0.94, and a limitation on 
the flexion-extension over time not to exceed 100° in more than 30% of the data points. Addi-
tionally, samples where the third PCA component deviated from y→ by more than 35° were 
also excluded to avoid bias due to device mispositioning. The classification error of the CART 
model on the training set was 4% and visual inspection of the remaining samples classifi-
cation did not highlight any obvious issue.

Comparison to Pain Data
It was found that 289 (257 at week 1) samples satisfied all three QC criteria, representing 

45% of the total data volume. 101 (35%) out of the 287 participants who took part in the test 
provided analyzable data for at least one of the 2 weeks.

ROM data were compared with wrist joint pain information provided through the joint-
pain map. In total there were 233 week 1 analyzable samples with joint-pain map data 
available (i.e., participants had completed both tasks within the 2-hour time window). Such 
comparisons could not be performed using week 12 data because wrist joint specific pain 
information was not captured at that time point.

Fig. 4 shows boxplots of wrist joint ROM and maximum angular wrist velocity for each 
reported wrist joint-pain level at week 1, with no distinction between right and left joint. The 
lower ROMs measured by the iPhone sensors for severe pain levels are consistent with clinical 
expectation. Maximum angular velocity also appears to decrease with increasing pain level. 
There was a statistically significant difference between severity groups as determined by 
one-way analysis of variance (ANOVA) for both wrist joint ROM (F(3,229) = 6.59, p < 0.001) 
and maximum wrist angular velocity (F(3,229) = 10.87, p < 0.0001). Tukey’s honestly signif-
icant difference (HSD) post hoc test subsequently showed that both measures in the severe 
wrist joint-pain group significantly differ from the other groups. Moreover, the maximum 
angular velocity in the moderate wrist joint-pain group also significantly differs from the 
group with no pain reported (indicated as “N/A” in Fig. 4). A similar repartition of high- and 
low-quality data across wrist pain groups was observed as summarized in the tables available 
in the online suppl. material D.

Walk Test
In total, the test was attempted in 867 instances (including 854 walk-forth, 863 walk-

back, and 866 turn-around-and-stop), resulting in 2,583 single-segment samples collected 
from 316 participants throughout the whole study period (week 1 to week 12), including 867 
samples at week 1.
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Phone Location
Amongst the different clustering algorithms tested, the 3-component GMM provided the 

most sensible results, allowing for curved decision boundaries for the two clearly identifiable 
clusters in the data distribution represented in Fig. 5a. The model output is shown in Fig. 5b. 
The cluster made of red circles is near a mean of 180° and corresponds to cases where the 
iPhone was facing up for the entire segment, while the cluster made of green squares appears 
closer to a mean of 90° and corresponds to cases where the iPhone was near-vertical (likely 
in the pocket) for the entire test segment. The remaining points in the blue cluster labeled as 
“undefined” are likely to be cases in which the iPhone was in the participant’s pocket only 
during a limited part of the segment. Points where the standard deviation is large can be inter-
preted as samples where the participants moves (and rotates) the iPhone during the recording 
phase, possibly to take the iPhone out of their pocket and/or put it back into their pocket. 
Visual inspection of the gravity vector trajectory for samples from each of the clusters iden-
tified by the model corroborated these interpretations.

According to the 3-component GMM, 29.9% of the samples contain data collected with 
the iPhone out of the pocket, 41.4% contain data collected with the iPhone in the pocket, and 
28.8% of the samples contain undefined data. Whilst the participants who followed the 
instructions to place the iPhone in the pocket form the largest cluster, a number seem to have 
held the iPhone in their hand or otherwise out of their pocket during the task.

Walking versus Not Walking
The time threshold values used for time window analysis were tested to optimize the 

trade-off between including samples of sufficient walking duration for subsequently extracted 
gait parameters to be meaningful, and including as many samples as possible in the selection. 
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Fig. 4. Boxplots for ROM (a) and maximum angular velocity (b) with respect to wrist pain level reported in 
the joint-pain map at week 1. In each box the central mark indicates the median, and the bottom and top 
edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most ex-
treme data points.
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The 10 s threshold was not kept as it only included 15.4% of the samples labeled as in pocket. 
Setting the threshold at 6 or 8 s resulted in a similar number of samples included with 25.9 
and 25.2%, respectively.

The relabeling resulting from the time window analysis efficiently identified most 
samples incorrectly labeled as “walking” (details of the Fourier spectra inspection are 
available in the online suppl. material C). However, a number of samples remain mis-labeled, 
which suggests that a subsequent re-classification stage with logistic regression was appro-
priate.

The logistic regression classifier was trained on the “in-pocket” data. Based on the soft 
class assignments output by the model, a probability threshold of 41% was chosen, thus 
determining a particular tuning of the classifier. This choice corresponds to the optimal oper-
ating point on the receiver operating characteristic curve (details available in the online 
suppl. material C) and was guided by sensitivity analysis. It is a trade-off between high confi-
dence that the participant performed the test correctly and inclusion of participants who 
walked less vigorously. This relatively low value prioritizes the latter over the former, as RA 
patients are likely to have more restricted mobility due to their disease.

Gait Parameterization
It was found that 651 samples satisfied both QC criteria, representing 25% total data 

volume. 111 (35%) out of the 316 participants who took part in the test provided analyzable 
data for at least one of the twelve data collection time points.

Gait parameters computed for analyzable samples are presented in Fig. 6. Mean values 
for the average step length, step time, and number of steps are 0.66 m, 0.7 s, and 10.4, respec-
tively. Also presented in Fig. 6b is the comparison between average step length and average 
counts of activity showing a moderate correlation (Pearson correlation coefficient r = 0.56,  
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p < 1e–50). This trend is in agreement with the intuitive expectation that the more vigorous 
the walking, the longer the steps. The distribution of activity counts is centered around a 
mean of 62.73 (median 55.73, interquartile range 24.42) counts per second, which is consistent 
with values previously reported for slow walking in healthy individuals [23, 24]. Step 
frequency, derived from the step times, has a mean and median value of 1.4 Hz (interquartile 
range 0.33), which is consistent with the expected frequency of walking (typically in the range 
of 1.5–2 Hz in healthy individuals).

Comparison to Questionnaire Data
In total 440 and 201 samples were available for comparison with pain scores and scores 

from the EQ-5D-5L (i.e., participants had completed the task and questionnaires within the 
2-hour time window), respectively. Interestingly, one participant indicated they were unable 
to walk but did performed the walk test. However, the corresponding samples did not match 
the requirement for the time difference between completion of the objective task and the 
EQ-5D-5L. This provides evidence of symptom variability and justifies the use of the 2-hour 
time window.

Encouraging trends were observed as illustrated in Fig. 7. In particular, step time appears 
to slightly increase with increasing pain, pain/discomfort, and mobility scores. Also, the step 
length appears to slightly decrease with increasing scores. Step frequency and velocity logi-
cally follow the same trend as inversely proportional to step time and – for velocity only – 
proportional to step length, hence these are not included in Fig. 7 for the sake of clarity. There 
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was no statistically significant difference between pain groups as determined by one-way 
ANOVA for step length and step time nor between pain/discomfort groups for step length. 
However, there was a statistically significant difference between pain/discomfort groups for 
step time (F(4,195) = 2.71, p < 0.04), with Tukey’s HSD showing that step time in the pain/
discomfort score 2 group significantly differed from the pain/discomfort score 4 group. 
Lastly, there was a statistically significant difference between mobility groups for both step 
length (F(3,196) = 2.83, p < 0.04) and step time (F(3,196) = 3.06, p < 0.03). Tukey’s HSD 
showed that both step measures in the mobility score 3 group significantly differed from the 
mobility score 1 group. In the case of step length, the mobility score 3 group also significantly 
differs from the mobility score 2 group. A similar repartition of high- and low-quality data 
across pain/discomfort and mobility groups was observed as summarized in the tables 
available in the online suppl. material D.
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treme data points.



39Digit Biomark 2020;4:26–43

Hamy et al.: Smartphone-Based Objective Assessments of Physical Function in 
Rheumatoid Arthritis Patients

www.karger.com/dib
© 2020 The Author(s). Published by S. Karger AG, BaselDOI: 10.1159/000506860

Discussion/Conclusion

This study addresses the challenge of deriving meaningful information on functional 
ability from objective sensor data collected remotely from patients with RA. It is based on 
the PARADE study in which all participants’ data were collected entirely through an iPhone 
app and which targeted two types of physical functions: wrist joint flexion-extension and 
walking. The principal finding of the described work is the highlighted link between 
objective measurements and the participant-reported information on pain, discomfort, and 
mobility. This suggests that the collected data do convey clinically meaningful information. 
The development of task-specific schemes for extraction of quantitative measures from raw 
sensor data yielded encouraging results despite challenges related to data quality and 
adherence.

A number of studies using smartphone apps including the combination of questionnaires 
and objective tasks to assess the impact of a disease have been reported. Gait assessment tests 
have been deployed in research on Parkinson’s disease for both observational [18] and inter-
ventional [12] studies. In particular, several studies on RA investigated smartphone sensor 
data collected during walking over a short distance using features such as peak frequency, 
autocorrelation peak, and coefficient of variance from the acceleration signal [13, 14]. In the 
present case, it was chosen to extract gait parameters directly related to steps as these seem 
more meaningful and appropriate for direct comparison to clinical data. However, the use of 
a specific model to estimate step length involves assumptions, for example on the partici-
pants’ leg length.

Unlike walking, few studies focused on wrist ROM assessment. While this work relied on 
the computation of angles using information on the gravity vector orientation, other 
approaches essentially involved direct on-screen reading of angles from built-in iPhone apps 
[9, 11] or third-party applications [10]. The choice of the gravity vector in the iPhone’s 
reference frame as a representation of orientation in space was motivated by the access to 
the vertical direction while keeping the same axis convention, as opposed to other represen-
tations such as attitude quaternion, which is specified with respect to a laboratory reference 
frame with arbitrary directions for x→ and y→.

The level of compliance to the objective tasks deployed in this study was moderate (26%). 
Similar challenges around compliance were observed in mPower, which also was a fully 
remote, digital observational study [18]. However, higher compliance was reported in other 
recent studies with different settings. In Perraudin et al. [25], 56% of the administered 
repeated sit-to-stand task were performed as instructed. The study included supervised 
performance of the objective task during face-to-face onsite visits at the beginning and at the 
end of the 4-week study period. This may partly explain the larger proportion of analyzable 
data in comparison to that observed in PARADE, bearing in mind the difference in the nature 
of the objective tasks (i.e., wrist joint flexion-extension/walking versus sit-to-stand). Likewise, 
Lipsmeier et al. [12] reported 61% adherence to active tests in their study, where the initial 
in-clinic visit, during which training was provided, possibly contributed to this high rate.

The performance of the algorithms used for wrist ROM computation and gait analysis 
were assessed through comparison with gold standard goniometer measures and GAITRite® 
mat parameters, respectively. Details of those experiments are available in the online suppl. 
material B and include quantitative information on the algorithms’ accuracy and applicability. 
While these experiments were useful to show the feasibility of deriving meaningful infor-
mation from sensor data, a more thorough validation, including for instance larger numbers 
of subjects, is necessary.

Generating accurate and truthful objective measures requires robust data collection 
schemes and high-data quality. In that sense, this study has several limitations. The variability 
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observed in the sensor data was a challenge. Objective activity tasks were performed as 
expected in 45% of wrist motion data samples and 25% of walk data samples. The corre-
sponding volume of analyzable data was sufficient to run a comparison with symptom severity 
data and the random distribution of low-quality data did not seem to bias the outcome. 
However, it is desirable to obtain higher proportions of high-quality data as this is likely to 
result in stronger signals. The low success rate in meeting quality criteria is likely to be 
related, at least in part, to the absence of clinical supervision and/or training: task-specific 
(as opposed to free living) data acquisition conducted in a fully unsupervised manner requires 
that extremely clear and extensive guidance is provided to participants. Preliminary tests run 
in a controlled clinical environment could be considered for the deployment of similar 
objective activity tasks in the future. Such tests may provide information on how participants 
interpret the instructions, which may then be used to improve guidance. The choice of the 
pocket as the iPhone’s location during the walk task may be the cause of less reliable gait 
parameters estimates as opposed to, for example, attaching the device to the participant’s 
back or hip with a belt [22]. It was found that a significant number of participants (at least 
29.9%) did not perform the test with the phone in their pocket for the whole task duration, 
possibly due to a misunderstanding of the instructions. This limitation may be addressed in 
future studies by requesting participants to place their iPhone on a different body location, 
including the use of a strap around the participant’s leg or waist, or using a wearable device 
to collect the data. Further improvement of gait parameters estimates may be obtained by 
setting up a clearer target in terms of number of steps (instead of allowing for “up to” 10 
steps) or time. Non-analyzable samples were also found in the wrist task dataset. Improvement 
in consistency of execution regarding this type of test may be obtained by adding further 
detailed guidance (e.g., to specify how not to hold the iPhone at the beginning or during the 
test) to improve clarity.

Additionally, quality control algorithms developed for this study rely on several thresholds 
defined empirically and optimized for the study population. Although cross-validation and 
subsequent results inspection were used, the machine learning models applied for quality 
control were directly trained and applied to single datasets, which limits generalization to 
other study datasets. Ideally these thresholds should be prospectively defined through super-
vised tests based upon ground truth observations. In-depth validation accounting for as many 
edge cases (e.g., with respect to age, morphology, and disease severity) as possible is required 
to refine the parameterization of such algorithms. If successful, these quality control algo-
rithms may be incorporated to future versions of the objective tasks, either as remote moni-
toring tools or as real-time prompts displayed on screen and notifying participants that the 
task is not being performed as expected.

Sensor data analysis in PARADE was limited by the overall high level of attrition and the 
observational nature of the study (i.e., no medical intervention) [15]. In this context, esti-
mating change over time in the derived measures would be irrelevant and longitudinal 
assessment was therefore not included as a study objective. However, the definition of 
concepts such as minimum clinically important difference for objective measures including 
wrist ROM or gait parameters would be of interest in future studies with the appropriate 
settings. In an attempt to reduce attrition, future work may include reminders sent through 
the app to participants who do not comply with the schedule of activities.

A further limitation pertains to the availability of participant-reported data collected at 
the same time points as the objective test. The frequency at which tasks were assigned was 
defined to minimize the burden to participants at a specific time point. Some assessments 
such as the joint-pain map and the wrist joint motion test were administered in such a way 
that corresponding data collection overlapped at baseline, enabling investigation of correla-
tions. Future work may consider synchronized collection of objective data and participant-
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reported information to maximize the relevance of comparison. This is particularly important 
in diseases such as RA where symptoms fluctuation is high.

A possible extension of the data analysis work presented in this paper may leverage 
machine learning models to explore the predictive power of mobility parameters and joint-
pain map on disease severity. The joint-pain map contains the most direct indication of the 
level of pain in each joint. It may be beneficial to consider combinations of the pain levels of 
multiple joints reported through the joint-pain map that would better reflect the mechanisms 
involved in different types of movement. Again, machine learning techniques could be used 
to define the relevant weighting to generate the combination providing the best prediction of 
overall pain scores.

In summary, this work presented methodologies developed for the analysis of iPhone-
captured time-series data collected during objective activity tasks on wrist motion and 
walking. Movement-specific processing based on various learning algorithms was success-
fully applied to assess data quality, extract measures of interest, and compare these to partic-
ipant-reported pain. This feasibility study for fully remote real-world data collection resulted 
in encouraging trends suggesting that iPhone sensor data can provide meaningful infor-
mation on functional ability in patients suffering from RA, including sensitivity to disease 
severity. Such information may contribute to a better understanding of patients’ overall 
quality of life. Further investigation and improvement to data acquisition schemes would be 
needed to confirm these observations. This includes prospective testing and changes to the 
design of the objective tasks to reduce variability and therefore increase data quality along 
with output measures’ accuracy.
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