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Abstract

Background: Effective standardisation of methodologies to analyse the microbiome is essential to the entire
microbiome community. Despite the microbiome field being established for over a decade, there are no accredited
or certified reference materials available to the wider community. In this study, we describe the development of the
first reference reagents produced by the National Institute for Biological Standards and Control (NIBSC) for
microbiome analysis by next-generation sequencing. These can act as global working standards and will be
evaluated as candidate World Health Organization International Reference Reagents.

Results: We developed the NIBSC DNA reference reagents Gut-Mix-RR and Gut-HiLo-RR and a four-measure
framework for evaluation of bioinformatics tool and pipeline bias. Using these reagents and reporting system, we
performed an independent evaluation of a variety of bioinformatics tools by analysing shotgun sequencing and
16S rRNA sequencing data generated from the Gut-Mix-RR and Gut-HiLo-RR. We demonstrate that key measures of
microbiome health, such as diversity estimates, are largely inflated by the majority of bioinformatics tools. Across all
tested tools, biases were present, with a clear trade-off occurring between sensitivity and the relative abundance of
false positives in the final dataset. Using commercially available mock communities, we investigated how the
composition of reference reagents may impact benchmarking studies. Reporting measures consistently changed
when the same bioinformatics tools were used on different community compositions. This was influenced by both
community complexity and taxonomy of species present. Both NIBSC reference reagents, which consisted of gut
commensal species, proved to be the most challenging for the majority of bioinformatics tools tested. Going
forward, we recommend the field uses site-specific reagents of a high complexity to ensure pipeline benchmarking
is fit for purpose.

Conclusions: If a consensus of acceptable levels of error can be agreed on, widespread adoption of these
reference reagents will standardise downstream gut microbiome analyses. We propose to do this through a large
open-invite collaborative study for multiple laboratories in 2020.
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Background
Developments in next-generation sequencing (NGS)
technologies have facilitated the rapid expansion of the
microbiome field. As new technologies have been devel-
oped, the cost per read of sequencing has decreased,
meaning sequencing-based cohort studies have become
more accessible to the wider scientific community [1].
NGS technologies have allowed for microbiome studies
from vast cohorts of volunteers and patients [2, 3]; how-
ever, differences across methodologies have led to uncer-
tainty on best practice approaches for studying the
microbiome [4]. For example, studies have established
significant variation in results occur when using different
microbiome protocols to analyse the same samples [5–
7]. This has been attributed to multiple reasons includ-
ing differences in storage and collection of the sample
[8], differences across different DNA extraction proce-
dures [6], differences across the available NGS platforms
commonly used for sequencing [9], differences between
using a shotgun sequencing approach vs an amplicon
approach [7], differences between the different 16S
rRNA regions which can be amplified when a 16S rRNA
approach is being used [10], and differences in bioinfor-
matics pipelines depending on both laboratory prefer-
ence and the current prevailing consensus can also
introduce significant biases into results [5].
Despite efforts to better standardise the microbiome

field, there are no certified or accredited reference re-
agents available and no framework established for how
potential reference reagents could work. Without refer-
ence reagents, standardisation of the microbiome field
remains impossible, as users are not able to accurately
evaluate their pipelines or use established controls for
their experiments. Reference reagents which are widely
used by the field are often termed ‘standards’. In many
fields, standards are the bedrock of clinical trials and
product manufacture, allowing commutability between
results from globally disparate groups conducting clin-
ical trials and giving assurances of quality during prod-
uct manufacture [11]. For users, standards allow for a
critical evaluation of the procedures being used, a better
understanding of where biases have been introduced,
and if applicable, calibration of an assay to allow results
to be interpreted in a standard arbitrary unitage [11].
The creation of global standards for the microbiome
field has the potential to improve method development,
prevent erroneous results being reported, and allow for
effective commutability of results globally. These im-
provements will be essential for effective translation of
research to clinical application. Furthermore, standards
can open up innovation in the field, as they negate the
requirement for everyone to use the same protocol as
long as users validate their protocol with respect to the
global standard [11].

Standardisation of the microbiome field is complex:
methodologies used for study comprise multiple steps
and the primary measurements are semi-quantitative es-
timates of thousands of a priori unknown components.
Hence, for effective standardisation, there likely needs to
be a range of reference reagents to standardise the mul-
tiple steps which introduce variability into studies [4].
Furthermore, there needs to be a robust reporting
framework which allows measurement and evaluation of
how accurately methods are capturing the abundance of
known and a priori unknown microbes. The National
Institute for Biological Standards and Control (NIBSC)
is a collaborating centre of the World Health
Organization (WHO) and produces and stocks the ma-
jority of WHO International Reference Reagents or
international standards. WHO standards are widely con-
sidered as references of the highest order and these
allow the assessment of the commutability of studies on
a global scale [12]. As part of NIBSC’s role in the devel-
opment of WHO reference reagents, we have initiated a
substantial program to create a suite of microbiome ref-
erence reagents and a reporting framework for effective
standardisation of the field. Here, we set out the creation
of the first NIBSC DNA reference reagents for analysis
of the microbiome and detail a robust reporting frame-
work for the evaluation of biases in common analyses.
These DNA reference reagents are to be used as global
working standards for gut microbiome analysis by NGS
and are considered as future candidates for International
Reference Reagents, which will be evaluated in multiple
laboratories and put forward for endorsement by the
WHO. Using our reference reagents and a reporting sys-
tem developed in-house, we performed several bench-
marking studies of common 16S rRNA and shotgun
pipelines. Currently, there are a few reference reagents
commercially available which are marketed for micro-
biome standardisation. We also evaluated these reference
reagents for benchmarking pipelines and demonstrate
how reagent composition of the reference impacts the re-
sults of benchmarking studies.

Results
Development of reference reagents and a reporting
system
It is envisaged that at least three types of reference re-
agent will be required for effective standardisation of
microbiome protocols: DNA reagents to control for
biases in library preparation, sequencing, and bioinfor-
matics pipelines; whole-cell reagents to control for biases
in DNA extraction; and matrix-spiked whole-cell re-
agents to control for biases from inhibitors or storage
conditions. In this study, we created DNA reference re-
agents which allow for the standardisation of down-
stream analyses.
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Establishing reference reagents for the analysis of the
microbiome requires the construction of reagents of known
composition (‘ground truth’) which can be used to evaluate
the accuracy of the predicted taxonomic composition given
by pipelines used for microbiome analysis. We created two
DNA mock communities, Gut-Mix-RR and Gut-HiLo-RR,
consisting of 20 common gut microbiome strains in both
an even and staggered composition (Table 1). These refer-
ence reagents comprised strains spanning 5 phyla, 13 fam-
ilies, 16 genera, and 19 species, to allow testing of pipelines’
ability at different taxonomic levels (Table 1) [13]. A key
component of a reference reagent is to have a reproducible
reporting system allowing a global comparison of results.
Because no reporting system currently exists, an in-house
reporting system was designed to assess downstream
microbiome analyses.

When developing our reporting system, we considered
measures which could capture biases that are introduced
commonly during analytical pipelines and reflect the re-
sults that are reported during microbiome studies. It is
important to note the different requirements for devel-
oping a reporting framework to allow for effective stand-
ardisation in contrast to measures for evaluating
taxonomic classifier performance. When assessing classi-
fier performance, area under the precision-recall curve
(AUPR) has been successfully used as a measure of how
well classifiers detect strains and introduce false posi-
tives at different abundance thresholds21. However, for
standardisation, it is important to delineate these two
separate biases to allow adequate control over the separ-
ate aspects of the sensitivity in detecting species present
and the introduction of false positives into the dataset.

Table 1 Strains and characteristics of the NIBSC Gut-Mix-RR and Gut-HiLo-RR. Gut-Mix-RR percentage is based on relative number of
genome copies. Gut-HiLo-RR percentage is based on relative number of genome copies. GC content based on genome sequences
where available or if not available (*) by the original species description. Accession numbers are GenBank Accession numbers or
RefSeq accession numbers if available. NC_008530 is the RefSeq accession for the type strain Lactobacillus gasseri ATCC 33323.
Sequences generated from this study for all strains are available from NCBI Bioproject ID PRJNA622674. 16S rRNA copy number and
intragenomic variation is based on analysis of genome sequences through IMG/M

Species Culture collection
number

GC-content (%) Gut-Mix-RR (%) Gut-HiLo-RR (%) Accession numbers 16S copy number
(number of
sequence variants)

Akkermansia muciniphila DSM 22959 55.8 6.37 0.18 NC_010655 3 (1)

Alistipes finegoldii DSM 17242 56.7 4.54 1.30 NC_018011 2 (2)

Anaerostipes hadrus DSM 3319 37.2 6.11 1.75 NZ_KB290627 1 (1)

Bacteroides
thetaiotaomicron

DSM 2079 42.9 2.69 7.72 NC_004663 5 (3)

Bacteroides uniformis DSM 6597 46.5 3.66 1.05 GCF_000154205 4 (2)

Bifidobacterium longum
subsp. infantis

DSM 20088 59.9 6.00 17.20 NC_011593 4 (1)

Bifidobacterium longum
subsp. longum

DSM 20219 60.3 6.92 19.82 GCF_900104835 4 (2)

Blautia wexlerae DSM 19850 41.4 3.77 0.11 GCF_000484655 2 (1)

Clostridium butyricum DSM 10702 28.5 3.70 10.59 GCF_000409755 1 (1)

Collinsella aerofaciens DSM 13712 60.0* 6.95 1.99 GCF_902501475 7 (3)

Escherichia coli DSM 1103 50.4 3.26 9.33 CP009072 7 (5)

Eubacterium hallii DSM 3353 38.2 5.16 1.48 GCF_000173975 1 (1)

Faecalibacterium
prausnitzii

DSM 17677 56.4 5.49 0.16 NZ_CP048437 3 (3)

Lactobacillus gasseri DSM 20077 33.0 8.97 0.26 NC_008530 6 (6)

Parabacteroides
distasonis

DSM 20701 45.1 3.52 10.10 NC_009615 7 (3)

Prevotella copri DSM 18205 44.9 4.83 13.84 GCF_000157935 7 (6)

Prevotella
melaninogenica

DSM 7089 41.0 5.34 1.53 NC_014370.1 and NC_014371.1 4 (2)

Roseburia hominis DSM 16839 48.5 4.72 1.35 NC_015977 4 (2)

Roseburia intestinalis DSM 14610 42.6 3.88 0.11 NZ_LR027880 6 (5)

Ruminococcus
gauvreauii

DSM 19829 47.6 4.13 0.12 GCF_000425525 4 (3)
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To ensure methodologies are fit for purpose, our report-
ing framework also needed to capture the accuracy of
pipelines in reporting species composition and species
diversity, as these are measures reported by many micro-
biome studies. The resulting reporting framework for
use with the NIBSC reference reagents consisted of four
key measures. To measure how well microbiome analyt-
ical pipelines detect known species in a sample, we
chose the measure of the number of correctly identified
species in the reagent expressed as a percentage. This is
often termed true positive rate, recall, or sensitivity. We
chose the term sensitivity for reporting purposes as it
describes the sensitivity in detecting strains. False-
positive species can be either measured by the actual
number of false positives detected or as the total relative
abundance of false positives in the final species compos-
ition. For microbiome researchers, a single false-positive
species which is of high abundance in the final dataset is
arguably more problematic than two false-positive spe-
cies of a very low abundance. Therefore, we chose the
total relative abundance of false-positive species to assess
how analytical pipelines introduced false-positive species
and termed this false positive relative abundance (FPRA)
for reporting purposes. Commonly, microbiome studies
report on species diversity as a key metric for health. For
this reason, we wanted a measure of how well analytical
pipelines determined the alpha diversity in a sample.
Studies can often use a wide range of alpha-diversity
metrics depending on the purpose of the study. We
chose the measure of the observed number of total spe-
cies as it gives users of the reagents a direct measure of
whether they are underestimating or overestimating the
number of species present in their sample. This report-
ing measure is hereon termed diversity. Finally, we
wanted to assess how well pipelines predicted species
composition reflects the actual species composition of a
sample. To measure this, we used the Bray-Curtis simi-
larity index and termed it similarity for reporting pur-
poses (Supplementary Material). The Bray-Curtis
similarity index was chosen as it is one of the most
highly cited methods for evaluating species composition
[14]. We note that there a number of other measures
which could be useful in assessing pipeline accuracy, and
these could be added to these four measures by users if
desired.

Evaluation of shotgun sequencing for taxonomic profiling
using NIBSC RRs
Few studies have independently compared the bioinfor-
matics tools used for taxonomic profiling of shotgun se-
quencing data. To validate the suitability of the NIBSC-
Gut-Mix-RR and NIBSC-Gut-HiLo-RRs and reporting
system, we conducted a study into the variability in out-
puts across bioinformatics tools used to profile the

taxonomy of shotgun sequencing metagenomic datasets.
Shallow shotgun sequencing [15] was performed on five
replicates of the reference reagents. Following initial
quality control, sequencing data was subsampled to 500,
000 reads per replicate and analysed using five common
bioinformatics tools which profile taxonomy from meta-
genomes, MetaPhlAn2 [16], Kraken [17], Bracken [18],
Kaiju [19], and Centrifuge [20] (Fig. 1, Supplementary
Table 1). Bioinformatics tools were tested following the
developer’s recommended settings to ensure a fair com-
parison between methods, and examples of commands
ran can be found in Supplementary Methods. Across all
tested tools and reagents, there was very little variation
across biological replicates (Supplementary Table 1). At
the species level, taxonomic profilers significantly dif-
fered across all reporting measures for both reference re-
agents (Fig. 1, Supplementary Table 2). There was a
notable trade-off between sensitivity and FPRA, with the
most sensitive tool Kaiju having the highest FPRA, and
the tool with the lowest FPRA MetaPhlan2 having re-
duced levels of sensitivity. For the GutMix-RR, sensitiv-
ity ranged from 73 to 100% across the five
bioinformatics tools with Kaiju being the only bioinfor-
matics tool to detect all species in the reagent. This was
primarily due to problems detecting Blautia wexlerae
and Ruminococcus gauverauii, with some tools misclassi-
fying them as incorrect species in the correct genera
(e.g. Kraken, Bracken, Centrifuge) and others failing to
detect any species in the entire genera (MetaPhlAn2).
MetaPhlAn2 was the only bioinformatics tool with 0%
FPRA, with multiple tools detecting a high number of
incorrect species at low abundances. For example, Kra-
ken and the related Bracken both detected 13 different
Bacteroides species, when only two were present. Centri-
fuge incorrectly assigned a large proportion of Escheri-
chia to the genus Shigella, whilst Kaiju detected many
species, unrelated to genera in the reference reagent, at
low abundances. Differences in sensitivity and FPRA
across the tools led to differences in diversity and simi-
larity. In particular, estimates of diversity varied widely,
with a nine-fold difference of observed species (17 to
158) recorded across pipelines. MetaPhlAn2 had the best
diversity estimate, observing 17 species in comparison to
the 19 within the reagent. Despite having significantly
differing profiles for sensitivity and FPRA, Kaiju and
MetaPhlAn2 both had the highest levels of similarity to
the actual composition of the Gut-Mix-RR at ~ 75% for
both bioinformatics pipelines.
We next evaluated the performance of the same bio-

informatics tools using the Gut-HiLo reagent which
challenges the ability to detect low abundance strains
(Fig. 1). Broadly, the performance of each tool was simi-
lar to that for Gut-Mix, with MetaPhlAn2 the only tool
with 0% FPRA and Kaiju the only tool to detect all
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species present in the reagent. For Centrifuge and
MetaPhlAn2, sensitivity dropped when tested on Gut-
Mix relative to Gut-HiLo, with MetaPhlAn2 dropping
from 89 to 74% owing to a failure to detect the lowest
abundant species. As with Gut-Mix, both Kaiju and
MetaPhlAn2 remained the two tools with the highest
measure of similarity in composition to the Gut-HiLo
reagent, though Kaiju had a markedly higher measure of
similarity than MetaPhlAn2.
To investigate whether differences across bioinformat-

ics tools could lead to differing conclusions on the rela-
tionships between microbial communities, we repeated
the same analysis performed on the NIBSC reagents for
the five commercially available mock communities with
defined microbial communities (Fig. 2). Visualisation of
the similarity between the microbial communities dem-
onstrated that samples grouped were based on the

reference reagent which was sequenced as opposed to
the bioinformatics tool, the analysis was derived from
(Fig. 2). Modelling the variance across community com-
positions demonstrated that reference reagent, from
which sequences were generated, described the most
variation in the data (Adonis, R2 = 0.91633 F =
0.000999), with bioinformatics tools used explaining ap-
proximately 5.29% of the variation in the dataset (Ado-
nis, R2 = 0.05278, F = 0.000999). This suggests that
although the choice of bioinformatics tool significantly
influences species composition, it does not appear to
change the underlying relationship between microbial
communities. Combined with the results from the evalu-
ation of pipeline performance using the four-measure
reporting system, our data suggests that the choice of
bioinformatics tool primarily influences measures of
alpha diversity. This supports the rationale for having a

Fig. 1 A comparison of different bioinformatics tool performances at both the species level and genera level using the NIBSC Gut-Mix-RR and
Gut-HiLo-RRs. a Relative abundance of each species in the Gut-Mix-RR as calculated by five different metagenomic taxonomic profiling tools in
comparison to the known composition of the reagent. b Relative abundance of each species in the Gut-HiLo-RR as calculated by five different
metagenomic taxonomic profiling tools in comparison to the known composition of the reagent. c Relative abundance of each genera in the
Gut-Mix-RR as calculated by five different metagenomic taxonomic profiling tools and two 16S rRNA taxonomic profiling pipelines in comparison
to the known composition of the reagent. d Relative abundance of each genera in the Gut-HiLo-RR as calculated by five different metagenomic
taxonomic profiling tools and two 16S rRNA taxonomic profiling pipelines in comparison to the known composition of the reagent. e Reporting
measures for pipeline performance for calculating species as evaluated using the Gut-Mix-RR. f Reporting measures for pipeline performance for
calculating species as evaluated using the Gut-HiLo-RR. g Reporting measures for pipeline performance for calculating genera as evaluated using
the Gut-Mix-RR. h Reporting measures for pipeline performance for calculating genera as evaluated using the Gut-HiLo-RR. Mp MetaPhlAn2, Kj
Kaiju, Kr Kraken, Br Bracken, Cn Centrifuge, Sens sensitivity, FPRA false positive relative abundance, Div diversity, Sim similarity
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multi-measure reporting system for reagents, as it allows
for an accurate evaluation of the different aspects of re-
sults which most microbiome studies report on.

Investigating the impact of strain composition on
pipeline performance
There are a limited number of commercial reagents
available for microbiome standardisation, although these
are not considered accredited reference reagents. Indeed,
there is no literature on what makes a suitable micro-
biome reference reagent, how different reference re-
agents might influence benchmarking studies, or how
different microbial compositions may influence the ac-
curacy of different pipelines. To understand how these
factors may influence standardisation of the microbiome
field, we investigated how five commercially available
reference reagents compare in their ability to effectively
benchmark bioinformatics tools. Using the sequences of
these commercial mock communities, we calculated
measures of sensitivity, FPRA, and similarity for five bio-
informatics tools. These were then compared to the
measures generated for the two NIBSC reference re-
agents. Across all tools, sensitivity and FPRA were

significantly impacted depending on reference reagent
choice, illustrating the variable nature of taxonomic pro-
filing tools when changing microbial composition of the
target sample (Fig. 3, Supplementary Table 3). For sensi-
tivity, clear trends in tool performance were evident with
tool performance was influenced by the number of
strains present in a reagent and the composition which
these strains were present (Fig. 3, Supplementary Tables
4 and 5). Across all tools, there was a lower sensitivity
for reagents with a higher strain number and reagents
with staggered concentrations of strains as opposed to
even concentrations (Fig. 3, Supplementary Table 5).
However, even considering composition and strain num-
ber, bioinformatics tools had a lower sensitivity for four of
the five pipelines for NIBSC reagents in comparison to
other reagents over a similar strain number and compos-
ition. This suggests that the species present also influences
sequencing and bioinformatics tool performance, perhaps
due to a GC content bias or their presence/absence in
public databases [21, 22]. Similarity also significantly dif-
fered across reference reagents for different pipelines;
however, changes were generally pipeline-specific, with no
clear patterns emerging. Collectively, results demonstrate

Fig. 2 Visualisation of the relationship between different mock communities following sequencing and taxonomic profiling by a variety of
approaches. A nMDS plot of a Bray-Curtis dissimilarity matrix was constructed from the species composition of five reference reagents following
shotgun sequencing and taxonomic profiling by five different bioinformatics tools, MetaPhlAn2, Kaiju, Kraken, Bracken, and Centrifuge. Gut-HiLo =
NIBSC Gut-HiLo-RR. Gut-Mix = NIBSC Gut-Mix-RR. MSA_1000 = ATCC MSA-1000. MSA_1001 = ATCC MSA-1001. MSA_1002 = ATCC MSA-1002.
MSA_1003 = ATCC MSA-1003. Zymo = ZymoBIOMICS Microbial Community Standard
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that different reference reagents will give different results
for different pipelines. Hence, for effective bioinformatics
tool benchmarking, purpose-specific reagents will be
needed, which simulate the likely species composition of
the target sample being analysed.

Changing taxonomic resolution impacts pipeline
performance
Strain level resolution is a desirable characteristic from
bioinformatics tools for users investigating strain-level
heterogeneity of detailed strain tracking [23]. In order to
test the ability of bioinformatics tools to resolve a tax-
onomy lower than the species level, NIBSC-RRs included
two subspecies of Bifidobacterium longum: B. longum
ssp. longum and B. longum ssp. Infantis. At the se-
quenced depth, no pipeline could accurately resolve
these two different subspecies, suggesting that strain or
subspecies resolution is not possible using shallow shot-
gun metagenomics with the bioinformatics tools tested.
Frequently, microbiome studies report at different

taxonomic levels depending on the hypothesis of the
study and sequencing approaches used. We investigated
how changing taxonomic levels may influence bioinfor-
matics tool performance using the NIBSC-RRs. Using
the four-measure reporting system to test tools at the
genera level, tools significantly improved in performance
for each reporting measure when using Gut-Mix-RR
(Fig. 1, Supplementary Table 6). Four of the five tools
had 100% sensitivity at the genera level and four of the
five pipelines had < 1% FPRA. This had an impact on
both diversity and similarity, with Kraken, Bracken, and
Kaiju being the three tools with the highest similarity to

the original composition. MetaPhlAn2 was the only bio-
informatics tool to not significantly improve at the
higher taxonomic classification but remained the tool
with the best estimates of diversity of the Gut-Mix-RR
(Fig. 1). For the Gut-HiLo-RR, classification level had
less impact on measure performance, with only sensitiv-
ity being significantly improved by changing from spe-
cies to genera level classification (Fig. 1, Supplementary
Table 6). Across both reference reagents, improvements
in tool performance when classifying at a higher taxo-
nomic level were primarily due to reads previously
assigned to incorrect species of the correct genera, now
being classified as reads of the correct genera.

Evaluation of 16S rRNA sequencing using NIBSC RRs
Amplicon sequencing of the16S rRNA gene is one of the
most common methods for taxonomic profiling of the
microbiome and is a proven effective tool for analysing
broad-scale microbiome shifts in large cohort studies
[24]. Considering its widespread use, we tested whether
the NIBSC RRs and four-measure reporting system
could effectively benchmark different 16S rRNA proto-
cols and understand the biases they may introduce. Fre-
quently, different primer sets are used in different
microbiome studies, often amplifying different regions of
the 16S rRNA gene [25]. Here, using the Gut-RRs, we
tested the difference in performance between the V3-V4
and V4 region using two commonly cited primer sets S-
D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21 targeting the
V3-V4 region [26], and 515F(Parada)/806R(Apprill) tar-
geting the V4 region [27, 28]. We also tested the per-
formance of two of the most commonly used pipelines

Fig. 3 Changes in pipeline performance for sensitivity (a) and similarity (b) when using different reference reagents to benchmark bioinformatics
tool performance. Gut-HiLo = NIBSC Gut-HiLo-RR. Gut-Mix = NIBSC Gut-Mix-RR. MSA_1000 = ATCC MSA-1000. MSA_1001 = ATCC MSA-1001.
MSA_1002 = ATCC MSA-1002. MSA_1003 = ATCC MSA-1003. Zymo = ZymoBIOMICS Microbial Community Standard

Amos et al. Microbiome            (2020) 8:98 Page 7 of 13



for analysing amplicon data, DADA2 [29] and Deblur
[30], which were implemented through the QIIME2 plat-
form [31].
Both primer sets were highly specific with < 0.01%

FPRA; however, the 515F(Parada)/806R(Apprill) primers
demonstrated significant improvements over the S-D-
Bact-0341-b-S-17/S-D-Bact-0785-a-A-21 primer set in
measures of sensitivity (94% vs 78%), similarity (80% vs
60%), and diversity estimates (16 observed genera vs 13
observed genera) for both tested bioinformatics pipelines
(Fig. 1, Supplementary Table 7), supporting the wide-
spread use of this primer set in global microbiome stud-
ies [24]. Comparison of DADA2 and Deblur pipelines
for data generated by the 515F(Parada)/806R(Apprill)
using both reference reagents suggested pipelines are
comparable in performance. Both pipelines detected 15/
16 present genera in both reagents with < 0.01% FPRA
and both pipelines gave identical diversity estimates as
measured by observed genera for the Gut-Mix-RR (15)
and Gut-HiLo-RR (16). The only reporting measure to
differ between pipelines was similarity, with taxonomic
profiles from Deblur having a higher similarity to the ac-
tual compositions of Gut-Mix (84.47% vs 82.98%) and
Gut-HiLo (77.12% vs 74.91%) than taxonomic profiles
produced by DADA2 (Supplementary Table 8). An add-
itional reporting measure which could be considered for
amplicon sequencing is the number of recorded ampli-
con sequence variants (ASVs), a commonly used meas-
ure of sample diversity [32]. Deblur consistently
estimated an ASV count of 24 across both reagents, an
overestimation of 20% compared to the known number
of strains. DADA2 estimated 26 ASVs for Gut-Mix-RR
and 27 ASVS for Gut-HiLo-RR, an overestimation of 30
and 35% respectively. ASV estimates of biological diver-
sity are likely inflated due to intragenomic variation in
the 16S rRNA region [33]. Using publicly available ge-
nomes, we analysed the number of 16S rRNA genes per
genome and the number of intragenomic variants.
Across the 20 strains, there was a total of 53 possible
16S rRNA gene sequences. This highlights the problem
of using ASVs as a measure of biological species diver-
sity and supports results support previous findings relat-
ing to over-inflation of true strain diversity using
DADA2 [34].
Rapid advancements in technology have resulted in

multiple methods for the microbiome emerging in the
last decade alone. Being able to assess accuracy across
different methods is a crucial aspect of method develop-
ment and of critical importance for ensuring compar-
ability between studies. Using calculations of the four
measure reporting system for both shotgun sequencing
and 16S rRNA sequencing at the genera level, we inves-
tigated whether data from these two different sequen-
cing strategies and associated bioinformatics tools could

be accurately compared (Fig. 1, Supplementary Tables 9
– 14). Broadly the four-reporting results for 16S rRNA
sequencing were similar to those obtained by shotgun
sequencing. Differences were observed across all bio-
informatics tools; however, these differences were tool/
pipeline specific as opposed to being specifically biased
by the library preparation used. For example, 16S rRNA
sequencing pipelines were more sensitive than some
shotgun sequencing tools (e.g. MetaPhlAn2) but less
sensitive than others (e.g. Kaiju). Similarly, 16S rRNA se-
quencing pipelines had lower FPRA values than some
shotgun tools (e.g. Centrifuge, Kaiju), but the same as
others (MetaPhlAn2). This suggests that as previously
reported, shallow shotgun sequencing and 16S rRNA
technology results are comparable at the genera level
[15], with the choice of bioinformatics pipeline being the
key influence on the performance of the four reporting
measures evaluated in this study.

Discussion
Effective standardisation of methodologies used to ana-
lyse the microbiome is essential to the entire micro-
biome community [35]. Despite the microbiome field
being established for over a decade, there are no accre-
dited or certified reference materials available to the
wider community. In this study, we describe the devel-
opment of two NIBSC reference reagents for analysis of
the microbiome, which can act as the first global work-
ing standards, and are candidate of WHO International
Reference Reagents for NGS analysis of the microbiome.
These reagents are part of a broader strategy for effective
microbiome standardisation by NIBSC and will be
followed by the development of whole-cell strain stan-
dards and spiked matrix standards to complement the
DNA standards.
Standardisation of the microbiome field is complex as

the methodologies used for study of the microbiome give
semi-quantitative estimates of thousands of a priori un-
known components. Hence, effective standardisation re-
quires reporting measures which evaluate how accurately
methods are capturing the abundance of thousands of a
priori unknown microbes. The reporting system devel-
oped in this study combined with the two NIBSC DNA
reference reagents allowed for a critical evaluation of the
key biases of five commonly bioinformatics tools used to
analyse shotgun sequencing through an Illumina platform.
Reporting measures were designed to be general and sim-
plistic to allow comparison between multiple methodology
types. This ensures that reference reagents and the report-
ing framework are both compatible with older technolo-
gies and future-proof against newer technologies, allowing
for traceability, continuity, and continuous innovation.
We demonstrate here that reagents can be used with both
16S rRNA sequencing and shotgun sequencing on the
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Illumina platform. With novel technologies continually
emerging, in the future these reference reagents will be
tested with sequencing technologies other than those used
here, such as long-read technologies and deep whole
metagenomic sequencing.
DNA reference reagents allow for standardisation of li-

brary preparation, sequencing platform, and bioinfor-
matics tools. There are several sequencing datasets
available which are used to benchmark bioinformatics
pipelines [22, 36]. Although good for initial tool develop-
ment, they do not allow primary users to control for
biases introduced during library preparation or sequen-
cing. Different sequencing technologies will likely have
their own specific biases, meaning that at laboratory
level adoption of DNA reagents is required. Using DNA
reference reagents will also allow users to capture the
impact which sequence quality has on their final results.
In this study, we exclusively used the Illumina MiSeq
platform. Following quality control, we performed an in-
dependent evaluation of commonly used shotgun se-
quencing bioinformatics tools. The settings of each tool
are adjustable but were left in this study at the settings
recommended by the developers. This was deliberate to
allow for a fair comparison across methodologies and to
mimic how a typical user first approaches analysis.
Under the recommended settings, the performance of
different shotgun bioinformatics tools varied widely, sup-
porting previous findings on the variability of shotgun
sequencing pipelines [7, 37]. Differences in bioinformat-
ics tools are likely due to both the settings, the databases
which different tools use, and the fundamentally differ-
ent algorithms underpinning the programs strategies for
taxonomic profiling. For example, Kraken is based on an
exact k-mer matching approach, MetaPhlAn2 is based
on a unique clade-specific marker gene approach, and
Kaiju translates nucleotides into amino acids and per-
formed protein alignments. The variability across tools
reported here supports previous studies which have
demonstrated similar findings for other methodologies
[5, 7, 22, 37, 38]. In this study, sequencing depth was
consistent at the depth recommended for shallow shot-
gun sequencing [15]; however, it should be noted that
tools could perform differently at different sequencing
depths under the same settings.
For effective standardisation, global adoption of appro-

priate reference reagents is required. We demonstrate
that the commercially available generic microbiome ref-
erence reagents are not appropriate for standardising the
gut microbiome due to the inherent changes in pipeline
performance, which occurs when changing reference re-
agents. A variety of factors ranging from GC content to
presence of the sequence in databases can impact the
successful sequencing and reporting of a strain in a com-
munity [21, 22]. Reagents which include strains which

are not in the gut give an inaccurate picture on the likely
taxonomy and GC content of the target sample. Bench-
marking using these reagents, therefore, could give un-
realistic estimates of pipeline performance particularly
for reagents which are relatively simplistic. In the future,
it is likely that purpose-specific reference reagents are
needed, for each specific microbiome site measured (e.g.
Skin, Lung, Oral, Vaginal).
Widespread adoption of the reference reagents and

reporting system developed in this study could be an ef-
fective way for users to understand the biases they are
introducing into their gut microbiome studies. In par-
ticular, it is concerning to see key measures of gut health
such as ‘diversity’, being overestimated by as high as
eight-fold for using some pipelines. To harmonise results
across studies, in the future we will aim to establish key
thresholds for each of these reporting measures to set
benchmarks for what pipelines should have to achieve
for data to be published and be accepted by the micro-
biome community. To do this, we will be proposing a
collaborative study with multiple expert laboratories to
take place during 2020, which should establish a consen-
sus across the wider community. The study will also
serve to have the reference reagents evaluated and sub-
mitted for endorsement by WHO as the first WHO
International Reference Reagents for NGS analysis of the
microbiome.

Conclusions
We have developed two reference reagents and a report-
ing system which can help standardise the microbiome
field. Testing of these reference reagents demonstrates
that they can accurately evaluate differences in bioinfor-
matics pipelines and reveal the staggering variability
across a range of shotgun sequencing taxonomic pro-
filers. Agreeing consensus thresholds for what users
should achieve when using such reagents could prevent
incorrect reporting of data and allow harmonisation of
the field. Importantly, reference reagents were fit for
purpose when using both 16S rRNA sequencing and
shotgun sequencing and their use allowed for compar-
ability of the biases of the two different approaches. Due
to the variability in pipeline performance observed fol-
lowing the use of generic reference reagents, it is highly
likely that site or purpose-specific reference reagents will
be required in the future to ensure that pipelines are
correctly benchmarked.

Methods
Strain selection
Prior studies such as the Human Microbiome Project
and MetaHIT, have given a comprehensive catalogue of
strains observed in the gut [2, 3]. As the microbiome
varies on an individual basis and including all known
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strains to occur in the gut would not be practical, we fo-
cussed including genera which are known to have mul-
tiple abundant species and strains present in the healthy
human gut. This allowed us to develop a standard which
could test pipelines ability to distinguish between genera
in the same family, species in the same genera, and
strains in the same species. In total, we developed a 20-
strain reference reagent (Table 1) comprising strains ob-
tained from Leibniz Institute DSMZ-German Collection
of Microorganisms and Cell Cultures GmbH (DSMZ).

Generation of reference reagents
Strains were cultured as recommended by the supplier
DSMZ (Table 1). Strains were checked for purity using
agar streak plating and phase-contrast microscopy. Once
purity was confirmed, strains were cultivated as recom-
mended by supplier DSMZ, with strains harvested for
DNA extraction. DNA was extracted using the Qiagen
DNeasy PowerSoil kit (Qiagen, Manchester, UK). This
kit was chosen on the basis that it is frequently used to
extract DNA from samples for microbiome studies, such
as in the Earth Microbiome Project [24]. Integrity of
DNA was checked using agarose gel electrophoresis,
with DNA visually checked to ensure size between 5–>
20 kb. In brief, 0.8% agarose (Cambridge Reagents, Cam-
bridge, UK) gels were ran for 1 h at 100 v prior to visual-
isation using (Syngene Pxi Gel-Doc System). Following
size validation, DNA was quantified using qubit fluoro-
metric quantification (Thermo Fisher Scientific, UK).
Each strain was measured on five separate occasions
with an average reading taken as the final concentration
value. To ensure strains were not contaminated, DNAs
were then subjected to 16S rRNA PCR using the univer-
sal 27F and 1492R primers using Platinum Taq DNA
Polymerase (Thermo Fisher Scientific, UK). PCR prod-
ucts were purified using a Qiagen PCR purification kit
(Qiagen, Manchester, UK) and sequencing at Source
Biosciences, Cambridge. Sequences were BLAST against
the NCBI nr/nt database for strain identification. Following
correct identification, DNA libraries for shotgun sequen-
cing were constructed using the Nextera XT Kit (Illumina,
USA) and sequenced paired end with 150 bp read length
on a NextSeq 500 platform (Illumina, USA) using a Next-
Seq 500 Reagent Kit v2.5 (Illumina, USA). Resulting se-
quences were analysed using MetaPhlAn2 [16] to ensure
no contamination was present. Following the cultivation
and validation of all 20 strains, DNA was mixed to a final
concentration of 10 ng/μl for the Gut-Mix-RR with all
strains added to a concentration of 10 ng/μl. For Gut-HiLo,
the final concentration of the reagent was 7.85 ng/μl, with
strains added at a higher concentration of 20 ng/μl, a mid-
dle concentration of 2 ng/μl, and a low concentration of
0.2 ng/μl (Table 1). Integrity of the final reagents (pooled
DNAs) was further assessed using Aglient TapeStation

2200 gDNA assay following manufacturer’s instructions.
Briefly 1 μl of extracted DNA samples were added to 10 μl
of gDNA sample buffer and run on a gDNA ScreenTape.
TapeStation plots DNA fragment size (bp) against sample
intensity (FU) generating a DNA Integrity Number (DIN)
that determines the level of sample degradation. TapeSta-
tion allows for an accurate assessment of DNA quality and
quantity. In all cases, reagents were over a DNA integrity
score of 7.0 indicating highly intact genomic DNA. Evalu-
ation of concentration by TapeStation showed good con-
cordance range of the results from qubit fluorimetry
(within a 15% range), giving additional assurance on estima-
tion of DNA concentration. For final relative abundance,
strains were adjusted for genome copy size (Table 1); hence,
relative abundance represents the relative proportion in
numbers of genomes of each strain. Genome sizes and per-
centage GC content were taken from The Bacterial Diver-
sity Metadatabase (https://bacdive.dsmz.de/ Last Accessed
on the 21 May 2020) and IMG/M [21]. Qubit was chosen
as the primary method for giving estimated concentrations
based on genome copy number. This allows a high level of
comparability and utility with NGS protocols, such as Illu-
mina, which recommend quantifying libraries using a
fluorometric quantification method that uses dsDNA
binding dyes [39]. Pooled DNAs, in the form of NIBSC
Gut-Mix-RR and NIBSC Gut-HiLo-RR, were further
evaluated using next generation 16S rRNA sequencing
and shotgun sequencing. Shotgun and 16S rRNA se-
quencing analysis of the pooled DNAs, although vari-
able across tools, widely gave results which would be
expected based on pooling of the validated constituents.
As part of our ongoing QC, we perform real-time moni-
toring of heterogeneity and degradation of all materials.
Our product labels state the most up-to-date information
on stability and storage available at the time.

Shotgun sequencing
The NIBSC Gut-Mix-RR Gut-HiLo-RRs, ATCC MSA-
1000, MSA-1001, MSA-1002, and MSA-1003 reagents, and
ZymoBIOMICS Microbial Community DNA Standard li-
braries for shotgun sequencing were constructed using the
Nextera XT Kit (Illumina, USA) and sequenced paired end
with 300 bp read length on a MiSeq platform (Illumina,
USA) using a MiSeq Reagent Kit v3 (Illumina, USA).
NIBSC reference reagents were sequenced on the same se-
quencing run, ATCC reagents across two sequencing runs,
and ZymoBIOMICS on its own sequencing run.

Taxonomic profiling of shotgun metagenomic data
A detailed methodology including commands executed
for the analysis of shotgun sequencing files, tool versions,
and database versions can be found in the Supplementary
Methods. All sequencing files (fastq) are publicly available
through the NCBI Sequence Read Archive (NCBI
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Bioproject ID PRJNA622674). In brief, following sequen-
cing, FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) was used to make initial judgements on
data quality. In particular, the ends of the second (R2)
reads were of low quality, as has previously been ob-
served for longer Illumina reads. Quality control was
employed using BBDuk (https://sourceforge.net/pro-
jects/bbmap/) with quality trimming at Q = 25 and min-
imal length filtering of trimmed reads at 100 bp. Sequence
files were subsampled to 250,000 reads for R1 and R2
reads using seqtk (https://github.com/lh3/seqtk), making
a total of 500,000 reads, the depth previously described
for shallow shotgun metagenomics [15]. Following QC,
shotgun sequencing data was analysed using the pro-
grams, MetaPhlAn2 [16], Kaiju [19], Kraken [17], Bracken
[18], and Centrifuge [20]. Programs were chosen based on
prevalence in the literature and because they offered a di-
versity of approaches to taxonomic profiling of metage-
nomic data. We acknowledge that there is a wealth of
other programs for profiling shotgun sequencing data;
however, the scope of this study was to validate the refer-
ence reagents, and not provide an exhaustive comparison
of all possible methodologies. Considering this, programs
were only tested in line with the developer’s recommenda-
tions in their tool’s tutorials (i.e. default), to allow for a fair
comparison across programs. This also likely represents the
settings which users would initially use when running the
programs for the first time. The programs Kraken (and
therefore Bracken) and Kaiju accepted paired-end reads.
For MetaPhlan2 and Centrifuge, reads were combined into
a single file prior to being processed. MetaPhlan2 does
accept paired-end reads; however, the tool does not make
use of the paired-end information; hence, this function was
not used. Outputs from these programs were used to gen-
erate species and genera abundance tables. We then per-
formed an additional quality filtering step of removing all
species and or/genera below 0.005%, due to a substantial
tail of low abundant species for several tools. This filter-
ing was performed manually in Excel. Filtering of low
abundant reads has been described as an effective
measure of improving diversity estimates for Illumina se-
quencing data [40].

16S rRNA analysis
A detailed methodology including commands executed
for the analysis of 16S rRNA sequencing files can be found
in the Supplementary Methods. In brief, for each reference
reagent, two sets of 16S rRNA sequencing data were
generated based on two different primer sets. Amplicons
were generated with Platinum Taq DNA Polymerase
using S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21 target-
ing the V3-V4 region [26], and 515F(Parada)/806R(Apprill)
targeting the V4 region [27, 28]. Amplicons were gen-
erated, purified, and sequenced according to Illumina

manufacturer’s recommendations (https://support.illu-
mina.com/documents/documentation/chemistry_docu-
mentation/16s/16s-metagenomic-library-prep-guide-15
044223-b.pdf). Sequenced data was analysed through
the QIIME2 (version 2019.7) with Deblur or DADA2 used
for sequence quality control [29–31]. In brief, for analysis
with DADA2, data was imported with the q2-cutadapt
plugin used to remove primers and adapters. Reads with-
out identifiable primer sequences were discarded. The q2-
DADA2 plugin was then used to quality control sequence,
merge error-corrected reads, and perform chimera/bimera
removal. The q2-feature-classifier (sklearn) was used to
assign taxonomy to representative sequences against the
Silva database (132 release) [41]. Sequences were further
filtered using the q2-feature-table plugin to ensure that
only features which were present in all replicates of each
respective reference reagent were included. Furthermore,
as with shotgun data, all features which were less than
0.005% abundant for each replicate were removed. The
q2-taxa plugin was used to generate taxa-bar plots which
were used to extract relative genera abundances within
each sample. For analysis with Deblur, following removal
of primers and adapters with q2-cutadapt plugin, paired
ends were joined using the q2-vsearch plugin. Sequences
were then quality controlled using the q2-quality-filter
plugin followed by the q2-deblur plugin. Following this,
analysis was the same as for DADA2, with reads classified,
filtered, and relative abundances of genera calculated.
The theoretical number of 16S rRNA sequence vari-

ants was calculated by using publicly available genomes
(Table 1) which were analysed through IMG/M through
the Sequence Alignment webtool [42].

Calculation of the four reporting measures and statistical
analyses
Using the species and genera abundance tables generated
through bioinformatics analysis of the 16S rRNA sequen-
cing files and shotgun sequencing files, we calculated mea-
sures of sensitivity, FPRA, diversity, and similarity based
on mean average species or genera abundances of the five
biological replicates. Measures of sensitivity, FPRA, diver-
sity, and similarity were calculated using the following
equations:

Sensitivity ¼ Number of correctly identified species
Total number of species in reagent

� 100

False positive relative abundance

¼ Abundance of all false positive species
Total abundance of all species

� 100

Amos et al. Microbiome            (2020) 8:98 Page 11 of 13

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/bbmap/
https://github.com/lh3/seqtk
https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf


Diversity ¼ Total number of all observed species
¼ Number of true positive species

þ number of false positive species

Similarity jk½ � ¼ 1−
sumabs x ij½ �−x ik½ �ð Þ
sum x ij½ � þ x ik½ �ð Þ

Where x[ij] and x[ik] refer to the quantity on species
[i] in the actual species composition [j] and observed
species composition [k] of the reagent. The vegdist func-
tion of the R vegan package can be used to calculate
Bray-Curtis dissimilarity and was used in the current
study, with 1—dissimilarity being used to calculate
similarity.
The Kruskal-Wallis test was used to test for signifi-

cance in changes for each reporting measure across bio-
informatics tools and was calculated through R using the
kruskal.test function [43]. The Wilcoxon signed-rank
test was used to test for significance in improvements in
tool performance when classifying at a species level
against at a genera level. This was calculated in R using
the wilcox.test function. The Dunn test was used as a
post hoc test to the Kruskal-Wallis to evaluate signifi-
cance in differences in reporting measures for each tool
when compared with one another. This was done in R
through the dunn.test function, To visualise similarity
between communities analysed with each bioinformatics
tool, a non-metric multidimensional scaling (nMDS)
analysis using the Bray-Curtis dissimilarity was per-
formed through the metaMDS function in the R vegan
package and visualised using the ggplot function in the
R ggplot2 package. A multivariate analysis of variance
was performed using the adonis function the in R vegan
package.
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